diff --git a/.gitattributes b/.gitattributes index bca3a111930dc33cc4722b79181ae67913b960e2..41b35f741a4feb4b31fcff0b0717fad129867de5 100644 --- a/.gitattributes +++ b/.gitattributes @@ -284,3 +284,30 @@ NNAyT4oBgHgl3EQfgvgA/content/2301.00362v1.pdf filter=lfs diff=lfs merge=lfs -tex NNE3T4oBgHgl3EQfBglT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text FtE2T4oBgHgl3EQfTAfF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text FtE2T4oBgHgl3EQfTAfF/content/2301.03799v1.pdf filter=lfs diff=lfs merge=lfs -text +DdAzT4oBgHgl3EQfif0c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +h9AzT4oBgHgl3EQfbPwA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +zdE2T4oBgHgl3EQfMgbP/content/2301.03726v1.pdf filter=lfs diff=lfs merge=lfs -text +zdE2T4oBgHgl3EQfMgbP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +P9AzT4oBgHgl3EQflf2o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ddAzT4oBgHgl3EQfn_0r/content/2301.01588v1.pdf filter=lfs diff=lfs merge=lfs -text +VtFKT4oBgHgl3EQfmy5j/content/2301.11859v1.pdf filter=lfs diff=lfs merge=lfs -text +RtFRT4oBgHgl3EQfLTfA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CNFRT4oBgHgl3EQfvzii/content/2301.13636v1.pdf filter=lfs diff=lfs merge=lfs -text +CNFRT4oBgHgl3EQfvzii/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +69E5T4oBgHgl3EQfPw7T/content/2301.05508v1.pdf filter=lfs diff=lfs merge=lfs -text +EtAzT4oBgHgl3EQfUPx6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xtE5T4oBgHgl3EQfNA53/content/2301.05486v1.pdf filter=lfs diff=lfs merge=lfs -text +mtAyT4oBgHgl3EQflPh9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +RtFRT4oBgHgl3EQfLTfA/content/2301.13502v1.pdf filter=lfs diff=lfs merge=lfs -text +CtAyT4oBgHgl3EQfR_f1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +VtFKT4oBgHgl3EQfmy5j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +P9AzT4oBgHgl3EQflf2o/content/2301.01549v1.pdf filter=lfs diff=lfs merge=lfs -text +PdAzT4oBgHgl3EQfzv5V/content/2301.01773v1.pdf filter=lfs diff=lfs merge=lfs -text +btA0T4oBgHgl3EQfGf-a/content/2301.02048v1.pdf filter=lfs diff=lfs merge=lfs -text +pNE0T4oBgHgl3EQfqgGa/content/2301.02554v1.pdf filter=lfs diff=lfs merge=lfs -text +BtFAT4oBgHgl3EQfsR7g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +FNAyT4oBgHgl3EQf4_q8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +btA0T4oBgHgl3EQfGf-a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf filter=lfs diff=lfs merge=lfs -text +ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf filter=lfs diff=lfs merge=lfs -text +HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/19AzT4oBgHgl3EQfRvso/content/tmp_files/2301.01219v1.pdf.txt b/19AzT4oBgHgl3EQfRvso/content/tmp_files/2301.01219v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..be28df49c6088d711080b92330287df86b24fe5d --- /dev/null +++ b/19AzT4oBgHgl3EQfRvso/content/tmp_files/2301.01219v1.pdf.txt @@ -0,0 +1,2130 @@ +Task-Guided IRL in POMDPs that Scales +Franck Djeumou∗, Christian Ellis∗∗, Murat Cubuktepe∗, Craig Lennon, Ufuk Topcu∗ +Abstract +In inverse reinforcement learning (IRL), a learning agent infers a reward function en- +coding the underlying task using demonstrations from experts. However, many ex- +isting IRL techniques make the often unrealistic assumption that the agent has access +to full information about the environment. We remove this assumption by developing +an algorithm for IRL in partially observable Markov decision processes (POMDPs). +We address two limitations of existing IRL techniques. First, they require an exces- +sive amount of data due to the information asymmetry between the expert and the +learner. Second, most of these IRL techniques require solving the computationally in- +tractable forward problem—computing an optimal policy given a reward function—in +POMDPs. The developed algorithm reduces the information asymmetry while increas- +ing the data efficiency by incorporating task specifications expressed in temporal logic +into IRL. Such specifications may be interpreted as side information available to the +learner a priori in addition to the demonstrations. Further, the algorithm avoids a com- +mon source of algorithmic complexity by building on causal entropy as the measure of +the likelihood of the demonstrations as opposed to entropy. Nevertheless, the resulting +problem is nonconvex due to the so-called forward problem. We solve the intrinsic +nonconvexity of the forward problem in a scalable manner through a sequential linear +programming scheme that guarantees to converge to a locally optimal policy. In a series +of examples, including experiments in a high-fidelity Unity simulator, we demonstrate +that even with a limited amount of data and POMDPs with tens of thousands of states, +our algorithm learns reward functions and policies that satisfy the task while inducing +similar behavior to the expert by leveraging the provided side information. +1. Introduction +A robot can satisfy certain human-specified tasks by describing desired behavior +through a reward function. However, the design of such a reward function is a non- +trivial task. Inverse reinforcement learning (IRL) is an established technique that in- +fers a reward function encoding the underlying task using expert demonstrations. IRL +∗The University of Texas at Austin +∗∗The University of Massachusetts: Dartmouth +United States Army Research Laboratory +Email addresses: fdjeumou@utexas.edu (Franck Djeumou), cellis3@umassd.edu +(Christian Ellis), mcubuktepe@utexas.edu (Murat Cubuktepe), +craig.t.lennon.civ@army.mil (Craig Lennon), utopcu@utexas.edu (Ufuk Topcu) +Preprint submitted to Elsevier +January 4, 2023 +arXiv:2301.01219v1 [cs.LG] 30 Dec 2022 + +techniques have found a wide range of applications in various domains such as ac- +robatic helicopter flight [1], inferring future actions of people [2], human-autonomy +interaction [3, 4], robotic surgery [5, 6], and robotic manipulation tasks [7]. Most +existing work [1, 8, 9, 10, 3, 7] has focused on Markov decision processes (MDPs), +assuming that the learner can fully observe the state of the environment and expert +demonstrations. However, the learner will not have access to full state observations in +many applications. For example, a robot will never know everything about its envi- +ronment [11, 12, 13] and may not observe the internal states of a human with whom it +works [14, 15]. Such information limitations violate the intrinsic assumptions made in +most existing IRL techniques. +We investigate IRL in partially observable Markov decision processes (POMDPs), +a widely used model for decision-making under imperfect information. Partial observ- +ability brings two key challenges in IRL. The first challenge is due to the so-called +information asymmetry between the expert and the learner. The expert typically has +either full or partial information about the environment, while the learner has only a +partial view of the state and the expert’s demonstrations. Even in the hypothetical +case in which the underlying reward function is known to the learner, its optimal pol- +icy under limited information may not yield the same behavior as an expert with full +information due to such information asymmetry. +The second challenge is due to the computational complexity of policy synthesis in +POMDPs. Indeed, many standard IRL techniques rely on a subroutine that solves the +so-called forward problem, i.e., computing an optimal policy for a given reward. Solv- +ing the forward problem for POMDPs is significantly more challenging than MDPs, +both theoretically and practically [16]. Optimal policies for POMDPs may require infi- +nite memory of observations [17], whereas memoryless policies are enough for MDPs. +An additional limitation in existing IRL techniques is due to the limited expressiv- +ity and often impracticability of state-based reward functions in representing complex +tasks [18]. For example, it will be tremendously difficult to define a merely state-based +reward function to describe requirements such as “do not steer off the road while reach- +ing the target location and coming back to home” or “monitor multiple locations with +a certain order”. However, such requirements can be concisely and precisely speci- +fied in temporal logic [19, 20]. Therefore, recent work has demonstrated the utility of +incorporating temporal logic specifications into IRL in MDPs [21, 22]. +In this work, we address these challenges and limitations in state-of-the-art IRL +techniques by investigating the following problem. +Task-Guided IRL in POMDPs: Given a POMDP, a set of expert demonstrations, +and, if available, a task specification expressed in temporal logic, learn a policy +along with the underlying reward function that maximizes the causal entropy of +the induced stochastic process, induces a behavior similar to the expert’s, and +ensures the satisfaction of the specification. +We highlight two parts of the problem statement. Using causal entropy as an opti- +mization criterion instead of traditional entropy results in a least-committal policy that +induces a behavior obtaining the same accumulated reward as the expert’s demonstra- +tions while making no additional assumptions about the demonstrations. Task specifi- +2 + +cations given as task requirements guide the learning process by describing the feasible +behaviors and allow the learner to learn performant policies with respect to the task re- +quirements. Such specifications can be interpreted as side information available to +the learner a priori in addition to the demonstrations aimed at partially alleviating the +information asymmetry between the expert and the learner. +Specifically, we tackle the IRL on POMDPs problem by a reformulation into a +maximum causal entropy (MCE) problem. Then, we develop a new solver for the +MCE problem that improves computational tractability over existing approaches. The +developed solver can enforce prior task knowledge expressed as temporal logic specifi- +cations, which guides the learning, improves the data efficiency, and partially alleviates +the information asymmetry problem. +Most existing work on IRL relies on entropy as a measure of the likelihood of the +demonstrations, yet, when applied to stochastic MDPs, has to deal with nonconvex +optimization problems [8, 10]. On the other hand, IRL techniques that adopt causal +entropy as the measure of likelihood enjoy formulations based on convex optimiza- +tion [9, 10, 23]. We show similar algorithmic benefits in maximum-causal-entropy +IRL carry over from MDPs to POMDPs. +A major difference between MDPs and POMDPs in maximum-causal-entropy IRL +is, though, due to the intrinsic nonconvexity of policy synthesis in POMDPs, which +yields a formulation of the task-guided IRL problem as a nonconvex optimization +problem. It is known that this nonconvexity severely limits the scalability for syn- +thesis in POMDPs [16]. We develop an iterative algorithm that solves the resulting +nonconvex problem in a scalable manner by adapting sequential convex programming +(SCP) [24, 25]. +In each iteration, it linearizes the underlying nonconvex problem +around the solution from the previous iteration. The algorithm introduces several ex- +tensions to alleviate the errors resulting from the linearization. One of these extensions +is a verification step not present in existing SCP schemes. We show that the proposed +algorithm computes a sound and locally optimal solution to the task-guided problem. +Additionally, we empirically demonstrate that the algorithm scales to POMDPs +with tens of thousands of states as opposed to tens of states in most existing work. +In POMDPs, finite-memory policies that are functions of the history of the observa- +tions outperform memoryless policies [26]. Besides, computing a finite-memory pol- +icy for a POMDP is equivalent to computing a memoryless policy on a larger product +POMDP [27]. Thus, we leverage the scalability of our algorithm to compute more per- +formant policies that incorporate memory using finite-state controllers [28, 29]. On the +other hand, the existing IRL techniques on POMDPs aforementioned cannot effectively +utilize memory, as they do not scale to large POMDPs. +We demonstrate the applicability of the approach through several examples, in- +cluding a simulated wheeled ground robot operating in a high-fidelity, continuous, 3- +D Unity simulation. We show that, without task specifications, the developed algo- +rithm can compute more performant policies than a straight adaptation of the original +GAIL [30] to POMDPs. Then, we demonstrate that by incorporating task specifications +into the IRL procedure, the learned reward function and policy accurately describe +the behavior of the expert while outperforming the policy obtained without the task +specifications. We observe that with more limited data, the performance gap becomes +more prominent between the learned policies with and without using task specifica- +3 + +tions. Most importantly, we empirically demonstrate the scalability of our approach +for solving the forward problem through extensive comparisons with several state-of- +the-art POMDP solvers and show that on larger POMDPs, the algorithm can compute +more performant policies in significantly less time. +2. Preliminaries +The following section provides a review of prerequisite understanding for POMDPs, +their accompanying policies and how a POMDP’s belief over states is updated using +Bayesian techniques. +Notation. We denote the set of nonnegative real numbers by R+, the set of all proba- +bility distributions over a finite or countably infinite set X by Distr(X), the set of all +(infinite or empty) sequences x0, x1, . . . , x∞ with xi ∈ X by (X)∗ for some set X, +and the expectation of a function g of jointly distributed random variables X and Y by +EX,Y [g(X, Y )]. +2.1. Partially Observable Markov Decision Process +A partially observable Markov decision process (POMDP) is a framework for mod- +eling sequential interaction between an agent and a partially observable environment, +where the agent cannot perceive its underlying state but must infer it based on the given +noisy observation. +POMDPs. We define a POMDP by a tuple M = (S, A, P, Z, O, R, µ0, γ), where S, +A, and Z are finite sets of states, actions, and observations, respectively. The function +µ0 : S �→ R+ provides the initial distribution of the agent’s state and γ ∈ [0, 1) is +a discount factor over a possibly infinite planning horizon. At each decision time, an +agent selects an action α ∈ A and the transition function P : S × A �→ Distr(S) +defines the probability P(s′|s, α) of reaching state s′ ∈ S given the current state s ∈ S +and action α. After the state transition, the agent receives an observation z′ ∈ Z +according to the function O : S �→ Distr(Z), which defines the probability O(z′|s′) +of perceiving z′ at state s′. The agent also receives a reward function R(s, α) from the +function R : S × A �→ R encoding the task specification. In the following, without +loss of generality, we consider infinite-horizon problems. +Policies. An observation-based policy σ : (Z × A)∗ × Z �→ Distr(A) for a POMDP +M maps a sequence of observations and actions to a distribution over actions. A M- +finite-state controller (M-FSC) is a tuple C = (Q, qI, η, δ), where Q = {q1, q2, . . . , qM} +is a finite set of memory states, qI is the initial memory state, η : Q×Z �→ Distr(A) is +a decision function, and δ : Q × Z × A �→ Distr(Q) is a memory transition function. +The action mapping η(n, z) takes a FSC memory state n and an observation z ∈ Z, +and returns a distribution over the POMDP actions. The memory update δ(n, z, α) re- +turns a distribution over memory states and is a function of the action α selected by η. +An FSC induces an observation-based policy by following a joint execution of these +two functions upon a trace of the POMDP. An FSC is memoryless if there is a single +4 + +memory state. Memoryless FSCs, denoted by σ: Z → Distr(A), are observation- +based policies, where σ(α|z) = σz,α is the probability of taking the action α given +solely observation z. +Remark 1 (REDUCTION TO MEMORYLESS POLICIES). In the remainder of the pa- +per, for ease of notation, we synthesize optimal M-FSCs for POMDPs (so-called for- +ward problem) by computing memoryless policies σ on theoretically-justified larger +POMDPs obtained from the so-called product of the memory update δ and the original +POMDPs. Indeed, the authors of [27] provide product POMDPs, whose sizes grow +polynomially only with the size of the domain of δ. +Belief Update. Given a history on the POMDP M as the perceived observation and +executed action sequence τ = {(z0, α0), (z1, α1), . . . , (zT , αT )}, where zi ∈ Z, αi ∈ +A, i ∈ {0, . . . , T} and T is the length of the trajectory, the belief state specifies the +probability of being in each state of the POMDP given an initial belief b0 = µ0. Such +a belief state can be updated at each time step using the following Bayes rule +bt+1(s′) = +O(zt|s′) � +s∈S P(s′|s, αt)bt(s) +� +s′′∈S O(zt|s′′) � +s∈S P(s′′|s, αt)bt(s). +(1) +2.2. Causal Entropy in POMDPs. +For a POMDP M, a policy σ induces the stochastic processes Sσ +0:∞ := (Sσ +0 , . . . , Sσ +∞), +Aσ +0:∞ := (Aσ +0, . . . , Aσ +∞), and Zσ +0:∞ := (Zσ +0 , . . . , Zσ +∞). At each time index t, the ran- +dom variables Sσ +t , Aσ +t , and Zσ +t take values st ∈ S, αt ∈ A, and zt ∈ Z, respec- +tively. The probability P(A0:T ||S0:T ) of A0:T causally-conditioned on S0:T , given +by [10, 31, 32] P(A0:T ||S0:T ) := �T +t=0 P(At|S0:t, A0:t−1), defines a correlation be- +tween the stochastic processes, where each variable At is conditionally influenced by +only the earlier predicted variables S0:t, A0:t−1, and not the future variables St+1:T . +Let H(A|S) ≜ EA,S[− log P(A|S)] be the conditional entropy of a random variable +A given a random variable S. In the finite-horizon setting, the causal entropy Hσ in- +duced by a given policy σ is defined as Hσ := EAσ +0:T ,Sσ +0:T [− log P(Aσ +0:T ||Sσ +0:T )] = +�T +t=0 H(Aσ +t |Sσ +0:t, Aσ +0:t−1). Then, the causal entropy in the infinite-horizon setting, +namely the discounted causal entropy [9, 33], is defined as +Hγ +σ := +�∞ +t=0 γtH(Aσ +t |Sσ +0:t, Aσ +0:t−1) = +�∞ +t=0 γtEAσ +t ,Sσ +t [− log P(Aσ +t |Sσ +t )], +(2) +where the second equality is due to the Markov property. +Remark 2. The entropy of POMDPs (or MDPs) involves the future policy decisions [8], +i.e., Sσ +t+1:T , at a time index t, as opposed to the causal entropy in POMDPs (or MDPs). +Thus, the authors of [8] show that the problem of computing a policy that maximizes +the entropy is nonconvex, even in MDPs. Inverse reinforcement learning techniques +that maximize the entropy of the policy rely on approximations or assume that the tran- +sition function of the MDP is deterministic. On the other hand, computing a policy that +maximizes the causal entropy can be formulated as a convex optimization problem in +MDPs [10, 9]. +5 + +2.3. LTL Specifications. +We use general linear temporal logic (LTL) to express complex task specifications +on the POMDP M. Given a set AP of atomic propositions, i.e., Boolean variables +with truth values for a given state s or observation z, LTL formulae are constructed +inductively as following: +ϕ := true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2, +where a ∈ AP, ϕ, ϕ1, and ϕ2 are LTL formulae, ¬ and ∧ are the logic negation and +conjunction, and X and U are the next and until temporal operators. Besides, temporal +operators such as always (G) and eventually (F) are derived as Fϕ := trueUϕ and +Gϕ := ¬F¬ϕ. We denote by Prσ +M(ϕ) the probability of satisfying the LTL formula ϕ +when following the policy σ on the POMDP M. A detailed description of the syntax +and semantics of LTL is beyond the scope of this paper and can be found in [20, 19]. +3. Problem Formulation +In this section, we formulate the problem of task-guided inverse reinforcement +learning (IRL) in POMDPs. Given a POMDP M with an unknown reward function +R, we seek to learn a reward function R along with an underlying policy σ that in- +duces a behavior similar to the expert demonstrations. +We define an expert trajectory on the POMDP M as the perceived observation and +executed action sequence τ = {(z0, α0), (z1, α1), . . . , (zT , αT )}, where zi ∈ Z and +αi ∈ A for all i ∈ {0, . . . , T}, and T denotes the length of the trajectory. Similarly to +[34], we assume given or we can construct from τ (via Bayesian belief updates (1)) the +belief trajectory bτ = {b0 := µ0, . . . , bT }, where bi(s) is the estimated probability of +being at state s at time index i. In the following, we assume that we are given a set of +belief trajectories D = {bτ1, . . . , bτN } from trajectories τ1, . . . , τN, where N denotes +the total number of underlying trajectories. +We parameterize the unknown reward function R by a differentiable function (with +respect to the parameter) Rθ : S × A �→ Rd, where θ ∈ RF is a parameter that defines +uniquely the reward function. Such an encoding includes traditional representations of +the reward such as Rθ(s, α) = gθ(φ(s, α)), where φ : S × A �→ Rd is a known vector +of basis functions with components referred to as feature functions, d is the number +of features, and gθ can be any function approximator such as neural networks. For +example, in the traditional linear encoding, we have gθ(z) = θTz. +Specifically, we seek for a parameter θ defining Rθ and a policy σ such that its +discounted return expectation Rθ +σ matches an empirical discounted return expectation +¯Rθ of the expert demonstration D. That is, we have that Rθ +σ = ¯Rθ, where +Rθ +σ := +∞ +� +t=0 +γtESσ +t ,Aσ +t [Rθ(Sσ +t , Aσ +t )|σ] and ¯Rθ = 1 +N +� +bτ ∈D +� +bi∈bτ +γi � +s∈S +bi(s)Rθ(s, αi). +In the case of linear encoding of the reward, the above condition is called feature match- +ing expectation, and it can be simplified by replacing Rθ with the feature function φ. +6 + +Nevertheless, the problem is ill-posed and there may be infinitely many reward +functions and policies that can satisfy the above matching condition. To resolve the +ambiguities, we seek for a policy σ that also maximizes the discounted causal entropy +Hγ +σ. We now define the problem of interest. +Problem 1. Given a reward-free POMDP M, a demonstration set D, and a feature φ, +compute a policy σ and weight θ such that (a) The matching condition holds; (b) The +causal entropy Hγ +σ given by (2) is maximized by σ. +Furthermore, we seek to incorporate, if available, a priori high-level side informa- +tion on the task demonstrated by the expert in the design of the reward and policy. +Problem 2. Given a linear temporal logic formula ϕ, compute a policy σ and weight +θ such that the constraints (a) and (b) in Problem 1 are satisfied, and Prσ +M(ϕ) ≥ λ for +a given parameter λ ≥ 0. +Although the parameter λ that specifies the threshold for satisfaction of ϕ is as- +sumed to be given, the approach can easily be adapted to compute the optimal λ. +4. Nonconvex Formulation for IRL in POMDPs +In this section, we formulate Problem 1 and Problem 2 as finding saddle points of +a nonconvex functions. Then, we propose an algorithm based on solving a nonconvex +optimization problem to compute such saddle points. We emphasize (see Remark 1) +that we compute M-FSC for POMDPs by computing memoryless policies σ on larger +product POMDPs. Indeed, in the remainder of the paper, we reason directly on the +product POMDP, which is the product of a POMDP and an FSC, and it yields a POMDP +with state memory pairs [27]. +Substituting Visitation Counts. We eliminate the (infinite) time dependency in Hγ +σ +and the matching condition by a substitution of variables involving the policy-induced +discounted state visitation count µγ +σ : S �→ R+ and state-action visitation count νγ +σ : +S×A �→ R+. For a policy σ, state s, and action α, the discounted state and state-action +visitation counts are defined by +µγ +σ(s) := ESt[ +∞ +� +t=1 +γt1{St=s}|σ] and νγ +σ(s, α) := EAt,St[ +∞ +� +t=1 +γt1{St=s,At=α}|σ], +where 1{·} is the indicator function. From these definitions, it is straightforward to +deduce that νγ +σ(s, α) = πs,αµγ +σ(s), where πs,α = P[At = a|St = s]. It is also +straightforward to check that for all s ∈ S and α ∈ A, µγ +σ(s) ≥ 0, νγ +σ(s, α) ≥ 0, and +µγ +σ(s) = � +α∈A νγ +σ(s, α). +We first provide a concave expression for the discounted causal entropy Hγ +σ as a +7 + +function of the visitation counts µγ +σ and νγ +σ: +Hγ +σ := +�∞ +t=0 γtESσ +t ,Aσ +t [− log(πst,αt)] += +�∞ +t=0 +� +(s,α)∈S×A −(log πs,α)πs,αγtP[Sσ +t = s] += +� +(s,α)∈S×A −(log πs,α)πs,αµγ +σ(s) += +� +(s,α)∈S×A − log νγ +σ(s, α) +µγ +σ(s) νγ +σ(s, α), +(3) +where the first equality is due to the definition of the discounted causal entropy Hγ +σ, +the second equality is obtained by expanding the expectation. The third and fourth +equalities follow by the definition of the state visitation count µγ +σ, and the state-action +visitation count νγ +σ. We prove in the appendix that the above expression is indeed +concave in the visitation counts. Next, we obtain a linear expression in νγ +σ for the +discounted return expectation Rθ +σ as: +Rθ +σ = +∞ +� +t=0 +� +(s,α)∈S×A +Rθ(s, α)γtP[Sσ +t = s, Aσ +t = α] += +� +(s,α)∈S×A +Rθ(s, α)νγ +σ(s, α), +(4) +where the second equality is obtained by the definition of the visitation count νγ +σ. The +following nonconvex constraint in µγ +σ(s) and σz,α ensures observation-based policies: +νγ +σ(s, α) = µγ +σ(s) +� +z∈Z O(z|s)σz,α. +(5) +Finally, the variables for the discounted visitation counts must satisfy the so-called +Bellman flow constraint [9] to ensure that the policy is well-defined. For each state +s ∈ S, +µγ +σ(s) = µ0(s) + γ +� +s′∈S +� +α∈A +P(s|s′, α)νγ +σ(s′, α). +(6) +Saddle Point Formulation. Computing a policy σ that satisfies the return matching +constraint Rθ +σ = ¯Rθ might be infeasible due to ¯Rθ being an empirical estimate from +the finite set of demonstrations D. Additionally, the feature matching constraint might +also be infeasible due to the information asymmetry between the expert and the learner, +e.g., the expert has full observation. +We build on a saddle point computation problem to incorporate the return matching +constraints into the objective of the forward problem, similar to other IRL algorithms +in the literature. Specifically, the desired weight vector θ and policy σ of Problem 1 +and Problem 2 are the solutions of minθ f(θ) := maxσ Hγ +σ +(Rθ +σ − ¯Rθ). The function +f corresponds to the inner optimization problem when the reward parameter is fixed. +That is, f(θ) computes a policy σ that maximizes the sum Hγ +σ + Rθ +σ of the causal +8 + +Algorithm 1 Compute the weight vector θ and policy σ solution of the Lagrangian +relaxation of the IRL problem. +Input: Feature expectation ¯Rφ from D, initial weight θ0, step size η : N �→ R+, and +(if available) a priori side information ϕ and λ ∈ [0, 1] imposing Prσ +M(ϕ) ≥ λ . +1: σ0 ← uniform policy +▷ Initialize uniform policy +2: for k = 0, 1, . . . , do +▷ Compute θ via gradient descent +3: +σk+1 ← SCPForward(θk, σk, ϕ, λ) +▷ Solve the forward problem (7)–(9) +with optional ϕ and λ +4: +θk+1 ← θk − η(k)∇θf(θk; σk+1) +▷ Gradient step +5: end for +6: return σk, θk +entropy and the current estimate of the reward function. In other words, f(θ) returns +the solution to the forward problem, i.e., finding optimal policy on the POMDP when +the entropy term is removed. +Algorithm 1 updates the reward weights by using gradient descent. Initially, the +policy σ0 is a random uniform variable and the weight θ0 is a nonzero vector. At +iteration k ≥ 0, the policy σk+1 = arg maxσ Hγ +σ + (Rθk +σ − ¯Rθk) is the optimal policy +on the POMDP under the current reward estimate Rθk given by θk. That is, σk+1 is the +solution to the forward problem. Then, to update the weight θ, Algorithm 1 computes +the gradient ∇θf with respect to θ as follows: +∇θf(θ; σ) = +� +s,α∈S×A +νγ +σ(s, α)∇θRθ(s, α) − 1 +N +� +bτ ∈D +� +bi∈bτ +γi � +s∈S +bi(s)∇θRθ(s, αi). +We develop the algorithm SCPForward, presented in next section, to solve the +forward problem, i.e., computing σk+1 given θk, in an efficient and scalable manner +while incorporating high-level task specifications to guide the learning. +Nonconvex Formulation of the Forward Problem. Given a weight vector θk, we take +advantage of the obtained substitution by the expected visitation counts to formulate +the forward problem associated to Problem 1 as the nonconvex optimization problem: +maximize +µγ +σ,νγ +σ,σ +� +(s,α)∈S×A +− log νγ +σ(s, α) +µγ +σ(s) νγ +σ(s, α) + +� +(s,α)∈S×A +Rθk(s, α)νγ +σ(s, α) +(7) +subject to +(5) − (6), +∀(s, α) ∈ S × A, µγ +σ(s) ≥ 0, νγ +σ(s, α) ≥ 0, +(8) +∀(s, α) ∈ S × A, µγ +σ(s) = +� +α∈A νγ +σ(s, α), +(9) +where the source of nonconvexity is from (5), and we remove the constant − ¯Rθk from +the cost function of the above optimization problem. +9 + +5. Sequential Linear Programming Formulation +We develop an algorithm, SCPForward, adapting a sequential convex program- +ming (SCP) scheme to efficiently solve the nonconvex forward problem (7)–(9). In- +deed, SCPForward involves a verification step to compute sound policies and visi- +tation counts, which is not present in the existing SCP schemes. Additionally, we de- +scribe in the next section how to take advantage of high-level task specification (Prob- +lem 2) through slight modifications of the obtained optimization problem solved by +SCPForward. +5.1. Linearizing Nonconvex Optimization Problem +SCPForward iteratively linearizes the nonconvex constraints in (5) around a pre- +vious solution. However, the linearization may result in an infeasible or unbounded +linear subproblem [25]. We first add slack variables to the linearized constraints to +ensure feasibility. The linearized problem may not accurately approximate the non- +convex problem if the solutions to this problem deviate significantly from the previous +solution. Thus, we utilize trust region constraints [25] to ensure that the linearization is +accurate to the nonconvex problem. At each iteration, we introduce a verification step +to ensure that the computed policy and visitation counts are not just approximations but +actually satisfy the nonconvex policy constraint (5), improves the realized cost function +over past iterations, and satisfy the temporal logic specifications, if available. +Linearizing Nonconvex Constraints and Adding Slack Variables. We linearize the +nonconvex constraint (5), which is quadratic in µγ +σ(s) and σz,α, around the previously +computed solution denoted by ˆσ, µγ +ˆσ, and νγ +ˆσ. However, the linearized constraints may +be infeasible. We alleviate this drawback by adding slack variables ks,α ∈ R for +(s, α) ∈ S × A, which results in the affine constraint: +νγ +σ(s, α) + ks,α = µγ +ˆσ(s) +� +z∈Z O(z|s)σz,α + +(10) +� +µγ +σ(s) − µγ +ˆσ(s) +� � +z∈Z O(z|s)ˆσz,α. +Trust Region Constraints. The linearization may be inaccurate if the solution deviates +significantly from the previous solution. We add following trust region constraints to +alleviate this drawback: +∀(z, α) ∈ Z × A, +ˆσz,α/ρ ≤ σz,α ≤ ˆσz,αρ, +(11) +where ρ is the size of the trust region to restrict the set of allowed policies in the lin- +earized problem. We augment the cost function in (7) with the term −β � +(s,α)∈S×A ks,α +to ensure that we minimize the violation of the linearized constraints, where β is a large +positive constant. +10 + +Linearized Problem. Finally, by differentiating x �→ x log x and y �→ x log(x/y), +we obtain the coefficients required to linearize the convex causal entropy cost function +in (7). Thus, we obtain the following linear program (LP): +maximize +µγ +σ,νγ +σ,σ +� +(s,α)∈S×A − +� +βks,α − +�νγ +ˆσ(s, α) +µγ +ˆσ(s) +� +µγ +σ(s) ++ +� +log νγ +ˆσ(s, α) +µγ +ˆσ(s) ++ 1 +� +νγ +σ(s, α) +� ++ +� +(s,α)∈S×A +Rθk(s, α)νγ +σ(s, α) (12) +subject to +(6), (8) − (11). +Verification Step. After each iteration, the linearization might be inaccurate, i.e, the +resulting policy ˜σ and potentially inaccurate visitation counts ˜νγ +˜σ, ˜µγ +˜σ might not be fea- +sible to the nonconvex policy constraint (5). As a consequence of the potential infea- +sibility, the currently attained (linearized) optimal cost might significantly differ from +the realized cost by the feasible visiation counts for the ˜σ. Additionally, existing SCP +schemes linearizes the nonconvex problem around the previously inaccurate solutions +for ˜νγ +˜σ, and ˜µγ +˜σ, further propagating the inaccuracy. The proposed verification step +solves these issues. Given the computed policy ˜σ, SCPForward computes the unique +and sound solution for the visitation count µγ +˜σ by solving the corresponding Bellman +flow constraints: +µγ +˜σ(s) =µ0(s) + γ +� +s′∈S +� +α∈A +P(s|s′, α)µγ +˜σ(s′) +� +z∈Z +O(z|s)˜σz,α, +(13) +for all s ∈ S, and where µγ +˜σ ≥ 0 is the only variable of the linear program. Then, +SCPForward computes νγ +˜σ(s, α) = µγ +˜σ(s′) � +z∈Z O(z|s)˜σz,α and the realized cost +at the current iteration is defined by +C(˜σ, θk) = +� +(s,α)∈S×A +− log νγ +˜σ(s, α) +µγ +˜σ +νγ +˜σ(s, α) + +� +(s,α)∈S×A +Rθk(s, α)νγ +˜σ(s, α), +(14) +where we assume 0 log 0 = 0. Finally, if the realized cost C(˜σ, θk) does not improve +over the previous cost C(ˆσ, θk), the verification step rejects the obtained policy ˜σ, con- +tracts the trust region, and SCPForward iterates with the previous solutions ˆσ, µγ +ˆσ, +and νγ +ˆσ . Otherwise, the linearization is sufficiently accurate, the trust region is ex- +panded, and SCPForward iterates with ˜σ, µγ +˜σ and νγ +˜σ. By incorporating this verifica- +tion step, we ensure that SCPForward always linearizes the nonconvex optimization +problem around a solution that satisfies the nonconvex constraint (5). +5.2. Incorporating High-Level Task Specifications +Given high-level side information on the agent tasks as the LTL formula ϕ, we first +compute the product of the POMDP and the ω-automaton representing ϕ to find the +set T ⊆ S of states, called target or reach states, satisfying ϕ with probability 1 by +11 + +using standard graph-based algorithms as a part of preprocessing step. We refer the +reader to [19] for a detailed introduction on how LTL specifications can be reduced to +reachability specifications given by T . +As a consequence, the probability of satisfying ϕ is the sum of the probability of +reaching the target states s ∈ T , which are given by the undiscounted state visitation +count µsp +σ . That is, Prσ +M(ϕ) = � +s∈T µsp +σ (s). Unless γ = 1, µsp +σ +̸= µγ +σ. Thus, +we introduce new variables µsp +σ , νsp +σ , and the adequate constraints in the linearized +problem (12). +Incorporating Undiscounted Visitation Variables to Linearized Problem. We append +new constraints, similar to (8), (9), and (10), into the linearized problem (12), where +the variables µγ +σ, νγ +σ, ks,α, µγ +ˆσ, νγ +ˆσ are replaced by µsp +σ , νsp +σ , ksp +s,α, µsp +ˆσ , νsp +ˆσ , respectively. +Further, we add the constraint +µsp +σ (s) = µ0(s) + +� +s′∈S\T +� +α∈A +P(s|s′, α)νsp +σ (s′, α), +(15) +which is a modification of the Bellman flow constraints such that µsp +σ (s) for all s ∈ T +only counts transitions from non-target states. Finally, we penalize the introduced slack +variables for feasibility of the linearization by augmenting the cost function with the +term −β � +(s,α)∈S×A ksp +s,α. +Relaxing Specification Constraints. To incorporate the probability of satisfying the +specifications, We add the following constraint to the linearized problem: +(spec) := +� +s∈T +µsp +σ (s) + Γsp ≥ λ, +(16) +where we introduce Γsp ≥ 0 as a slack variable ensuring that the linearized problem +is always feasible. Further, we augment the cost function with −βspΓsp to penalize +violating ϕ, where βsp is a positive hyperparameter. +Updating Verification Step. We modify the previously-introduced realized cost C(˜σ, θk) +to penalize when the obtained policy does not satisfy the specification ϕ. This cost also +accounts for the linearization inaccuracy of the new policy constraint due to σ, µsp +σ , +and νsp +σ . At each iteration, SCPForward computes the accurate µsp +˜σ of current pol- +icy ˜σ through solving a feasibility LP with constraints given by the modified Bellman +flow constraints (15). Then, it augments Csp +˜σ = min{0, (� +s∈T µsp +˜σ (s) − λ)βsp} to the +realized cost to take the specification constraints into account. +Convergence to Local Optimum Solution. The convergence guarantees of the pro- +posed sequential convex scheme with trust regions follow straightforwardly from the +general convergence of sequential convex programming (SCP) schemes as proved in +Theorem 3.14 and Theorem 4.7 of [25]. Specifically, weak convergence is ensured as +the SCP algorithm generates a set of convergent subsequences, all of which satisfy the +first-order conditions [25]. This is not convergence in its strict sense due to potential +oscillation between several limit points. Still, surprisingly most of the convergence +12 + +Algorithm 2 SCPForward: Linear programming-based algorithm to solve the for- +ward problem (7)–(9), i.e., compute a policy σk+1 that maximizes the causal entropy, +considers the matching constraint, and satisfies the specifications, if available. +Input: Current weight estimate θk, current best policy ˆσ = σk, side information ϕ +and λ, trust region ρ > 1, penalization coefficients β, βsp ≥ 0, constant ρ0 to +expand or contract trust region, and a threshold ρlim for trust region contraction. +1: Find µγ +ˆσ via linear constraint (13) and νγ +ˆσ = µγ +ˆσ(s′) � +z∈Z O(z|s)ˆσz,α, given ˆσ ▷ +Realized visitation counts +2: Find µsp +ˆσ via linear constraint (15) with νsp +ˆσ = µsp +ˆσ (s′) � +z∈Z O(z|s)ˆσz,α, given ˆσ +▷ If ϕ is available +3: Compute the realized cost C(ˆσ, θk) ← (14) + Csp +ˆσ , given ˆσ ▷ Add specifications’ +violation +4: while ρ > ρlim do +▷ Trust region threshold +5: +Find optimal ˜σ to the augmented LP (12) via ˆσ, µγ +ˆσ, νγ +ˆσ, µsp +ˆσ , νsp +ˆσ +▷ We +augment the LP with constraints (8), (9), (10), (15), and (16) induced by µsp +σ , νsp +σ , +and by adding −β � +(s,α)∈S×A ksp +s,α − βspΓsp to the cost (12). +6: +Compute the realized µγ +˜σ, νγ +˜σ,µsp +˜σ , νsp +˜σ , and C(˜σ, θk) via ˜σ as in lines 1–3 +7: +{ˆσ ← ˜σ; ρ ← ρρ0} if C(˜σ, θk) ≥ C(ˆσ, θk) else {ρ ← ρ/ρ0} +▷ Verification +step +8: end while +9: return σk+1 := ˆσ +claims of nonlinear optimization schemes fall into this category. Furthermore, under +the right regularity assumptions on the cost function, the authors of [25] proved that +SCP schemes with trust regions can converge to a local optimum solution with a super- +linear convergence rate. +6. Numerical Experiments +We evaluate the proposed IRL algorithm on several POMDP instances from [35], +and a simulated wheeled ground robot operating in a high-fidelity, continuous, and 3-D +Unity simulation. We first compare our IRL algorithm with a straightforward variant +of GAIL [30] adapted for POMDPs. Then, we provide results on the data-efficiency +of the proposed approach when taking advantage of side information. Finally, we +demonstrate the scalability of the routine SCPForward for solving the forward prob- +lem through comparisons with state-of-the-art solvers such as SolvePOMDP [36], +SARSOP [37], PRISM-POMDP [38]. We provide the code for reproducibility of the +results in this paper at https://github.com/wuwushrek/MCE IRL POMDPS. +6.1. Simulation on Hand-Crafted POMDP Instances +We first evaluate the proposed IRL algorithm on several POMDP instances ex- +tracted from the work [35]. +13 + +1 +2 +3 +4 +5 +6 +9 +12 +7 +10 +13 +8 +11 +14 +Figure 1: Some examples from the benchmark set provided in [35]. From left to right, we have the Maze, +Avoid, and Evade environments, respectively. +Benchmark Set. The POMDP instances are as follows. Evade is a turn-based game +where the agent must reach a destination without being intercepted by a faster player. +In Avoid, the agent must avoid being detected by two other moving players following +certain preset, yet unknown routes. In Intercept, the agent must intercept another player +who is trying to exit a gridworld. In Rocks, the agents must sample at least one good +rock over the several rocks without any failures. In Obstacle, an agent must find an exit +in a gridworld without colliding with any static obstacles. In these instances, the agent +only observes a fixed radius around its current position, see Figure 1. Finally, in Maze, +the agent must exit a maze as fast as possible while observing only the walls around it +and should not get stuck in any of the trap states. +Variants of Learned Policies and Experts. We refer to four types of policies. The +type of policy depends on whether it uses side information from a temporal specifi- +cation ϕ or not, and whether it uses a memory size M = 1 or M = 10. We also +consider two types of experts. The first expert has full information about the envi- +ronment and computes an optimal policy in the underlying MDP. The second expert +has partial observation and computes a locally optimal policy in the POMDP with a +memory size of M = 15. Recall that the agent always has partial information. There- +fore, the first type of expert corresponds to having information asymmetry between the +learning agent and expert. Besides, we consider as a baseline a variant of GAIL where +we learn the policy on the MDP without side information, and extend it to POMDPs +via an offline computation of the belief in the states. Specifically, we find the optimal +policy on the MDP by solving the convex optimization problem corresponding to the +forward problem on MDPs. The resulting policy is a state-based policy that needs to +be transformed in order to act on a POMDP. The transformation is done by exploiting +the expert demonstrations to construct a belief state. That is, the trajectories τ of the +expert are used in a Bayesian belief updates (1) to estimate the probability of being in +each state of the POMDP. Thus, by combining the computed belief and the state-based +policy, we obtain an observation-based policy for the POMDP. Doing so could provide +a significant advantage to the GAIL variant since the state-based policy is the optimal +policy on the MDP. However, despite the high performance in practice, the policy on +the POMDP is generally suboptimal, even if the MDP policy were optimal. +We discuss the effect of side information and memory in the corresponding policies. +While we detail only on the Maze example, where the agent must exit a maze as fast as +possible, we observe similar patterns for other examples. Detailed results for the other +examples are provided in the appendix. +14 + +A low state-space Avoid instance +0 +1 +2 +3 +4 +5 +x=0,y=0 +0 +X=2,y=2,d=E +X=0,y=4,d=E +1 +west +east +2 +north +south +3 +adv +placement +5 +XA low state-space Evade instance +0 +1 +2 +3 +4 +5 +x=1,y=0 +0 +x=2,y=3 +1 +scan +adv +2 +north +east +3 +placement +west +south +4 +5 +XNo information asymmetry +Under information asymmetry +GAIL +0 +25 +50 +75 +100 +−20 +0 +20 +40 +60 +Finite-memory policy +Without side +information +Rθ +σ +0 +25 +50 +75 +100 +Memoryless policy +0 +25 +50 +75 +100 +−20 +0 +20 +40 +60 +Time Steps +With side +information +Rθ +σ +0 +25 +50 +75 +100 +Time Steps +Figure 2: Representative results on the Maze example; each sub-figure represents the average accumulated +reward under the true reward function (Rθ +σ) over 1000 runs as a function of time. Compare the two rows: +The policies in the top row that do not utilize side information suffer a performance drop under information +asymmetry. On the other hand, in the bottom row, the performance of policies incorporating side information +into learning does not decrease under information asymmetry. Compare the two columns: The performance +of the finite-memory policies in the left column is significantly better than memoryless policies. Except for +the memoryless policies without side information, our algorithm outperforms GAIL. The expert reward on +the MDP is in average 48.22, while we obtain the value 47.83 for an expert acting on the POMDP. +6.1.1. Maze Example +The POMDP M is specified by S = {s1, . . . , s14} corresponding to the cell labels +in Figure 1. An agent in the maze only observes whether or not there is a wall (in blue) +in a neighboring cell. That is, the set of observations is O = {o1, . . . , o6, o7}. For +example, o1 corresponds to observing west and north walls (s1), o2 to north and south +walls (s2, s4), and o5 to east and west walls (s6, s7, s8, s9, s10, s11). The observations +o6 and o7 denote the target state (s13) and bad states(s12, s14). The transition model is +stochastic with a probability of slipping p = 0.1. Further, the states s13 and s14 lead to +the end of the simulation (trapping states). +In the IRL experiments, we consider three feature functions. We penalize taking +more steps with φtime(s, α) = −1 for all s, α. We provide a positive reward when +reaching s13 with φtarget(s, α) = 1 if s = s13 and φtarget(s, α) = 0 otherwise. We +penalize bad states s12 and s14 with φbad(s, α) = −1 if s = s12 or s = s14, and +φbad(s, α) = 0 otherwise. Finally, we have the LTL formula ϕ = G ¬ bad as the +task specification, where bad is an atomic proposition that is true if the current state +s = s12 or s = s14. We constrain the learned policy to satisfy Prσ +M(G ¬ bad) ≥ 0.9. +Side Information Alleviates the Information Asymmetry. Figure 2 shows that if there +is an information asymmetry between the learning agent and the expert, the policies +that do not utilize side information suffer a significant performance drop. The policies +15 + +With side information +Without side information +GAIL +0 +75 +150 +225 +300 +−20 +0 +20 +40 +Time Steps +Total Reward +Figure 3: Representative results on the Avoid example showing the reward of the policies under the true +reward function (Rθ +σ) versus the time steps. +that do not incorporate side information into learning obtain a lower performance by +57% under information asymmetry, as shown in the top row of Figure 2. On the other +hand, as seen in the bottom row of Figure 2, the performance of the policies that use +side information is almost unaffected by the information asymmetry. +Memory Leads to More Performant Policies. The results in Figure 2 demonstrate that +incorporating memory into the policies improves the performance, i.e., the attained +reward, in all examples, both in solving the forward problem and learning policies +from expert demonstrations. Incorporating memory partially alleviates the effects of +information asymmetry, as the performance of the finite-memory policy decreases by +18% under information asymmetry as opposed to 57% for the memoryless policy. +We see that in Table 1, incorporating memory into policy on the Maze and Rocks +benchmarks, allows SCPForward to compute policies that are almost optimal, evi- +denced by obtaining almost the same reward as the solver SARSOP. +Side Information Improves Data Efficiency. Figure 4 shows that even on a low data +regime, learning with task specifications achieves significantly better performance than +without the task specifications. +5 +10 +15 +20 +30 +40 +Number of trajectories +Total reward +Without LTL +With LTL +Opt. Rew. POMDP +5 +10 +15 +40 +42 +44 +46 +Number of trajectories +Figure 4: We show the data efficiency of the proposed approach through the total reward obtained by the +learned policies as a function of the number of expert demonstrations (No information asymmetry). The +figure on the left shows the performance of learning memoryless policies, while the figure on the right shows +the performance of a 5-FSC. +16 + +SCPForward +SARSOP +SolvePOMDP +Problem +|S| +|S × O| +|O| +Rθ +σ +Time (s) +Rθ +σ +Time (s) +Rθ +σ +Time (s) +Maze +17 +162 +11 +39.24 +0.1 +47.83 +0.24 +47.83 +0.33 +Maze (3-FSC) +49 +777 +31 +44.98 +0.6 +NA +NA +NA +NA +Maze (10-FSC) +161 +2891 +101 +46.32 +2.04 +NA +NA +NA +NA +Obstacle[10] +102 +1126 +5 +19.71 +8.79 +19.8 +0.02 +5.05 +3600 +Obstacle[10](5-FSC) +679 +7545 +31 +19.77 +38 +NA +NA +NA +NA +Obstacle[25] +627 +7306 +5 +19.59 +14.22 +19.8 +0.1 +5.05 +3600 +Rock +550 +4643 +67 +19.68 +12.2 +19.83 +0.05 +− +− +Rock (3-FSC) +1648 +23203 +199 +19.8 +15.25 +NA +NA +− +− +Rock (5-FSC) +2746 +41759 +331 +19.82 +97.84 +NA +NA +− +− +Intercept[5, 2, 0] +1321 +5021 +1025 +19.83 +10.28 +19.83 +13.71 +− +− +Intercept[5, 2, 0.1] +1321 +7041 +1025 +19.81 +13.18 +19.81 +81.19 +− +− +Evade[5, 2, 0] +2081 +13561 +1089 +97.3 +26.25 +97.3 +3600 +− +− +Evade[5, 2, 0.1] +2081 +16761 +1089 +96.79 +26.25 +95.28 +3600 +− +− +Evade[10, 2, 0] +36361 +341121 +18383 +94.97 +3600 +− +− +− +− +Avoid[4, 2, 0] +2241 +5697 +1956 +9.86 +34.74 +9.86 +9.19 +− +− +Avoid[4, 2, 0.1] +2241 +8833 +1956 +9.86 +14.63 +9.86 +210.47 +− +− +Avoid[7, 2, 0] +19797 +62133 +3164 +9.72 +3503 +− +− +− +− +Table 1: Results for the benchmark sets for solving the forward problem. On larger benchmarks (e.g., Evade +and Avoid), SCPForward can compute locally optimal policies, while the other solvers fail to provide +solutions in the given time limit. In the environments Obstacle[n], Intercept[n, r, slip], Evade[n, r, slip], +and Avoid[n, r, slip], the parameters n, r, and slip are the size of the gridworld, the view radius of the agent, +and the probability of slippery, respectively. We set the time-out to 3600 seconds. An empty cell (denoted by +−) represents the solver failed to compute any policy before the time-out, while NA refers to not applicable +due to the approach being based on belief updates. +Side Information Improves Performance. Besides, in a more complicated environ- +ment such as Avoid, Figure 3 shows that task specifications are crucial to hope even +to learn the task. Specifically, Avoid[n, r, slip] is a turn-based game, where the agent +must reach an exit point while avoiding being detected by two other moving players +following certain predefined yet unknown routes. The agent can only observe the play- +ers if they are within a fixed radius from the agent’s current position when the action +scan is performed. Besides, with the players’ speed being uncertain, their position in +the routes can not be inferred by the agent. The parameters n, r, and slip specify the +dimension of the grid, the view radius, and the slippery probability, respectively. +We consider four feature functions to parameterize the unknown reward. The first +feature provides a positive reward to the agent upon reaching the exit point. The second +feature penalizes the agent if it collides with a player. The third feature penalizes the +agent if it is detected by a player. The fourth feature imposes a penalty cost for each +action taken. We encode the side information as the temporal logic task specification +avoid being detected until reaching the exit point with probability greater than 0.98. +Figure 3 shows that the algorithm is unable to learn without side information while +side information induces a learned policy that is optimal. Specifically, the learned +policy without side information seems to only focus on avoiding being detected and +collision as the corresponding learned features were close to zero. +17 + +Figure 5: Left: A simulated Clearpath Warthog operating in a Unity simulation. Right: A demonstration +provided by an expert. +6.1.2. SCPForward Yields Better Scalability +We highlight three observations regarding the scalability of SCPForward. First, +the results in Table 1 show that only SARSOP is competitive with SCPForward on +larger POMDPs. SolvePOMDP runs out of time in all but the smallest benchmarks, +and PrismPOMDP runs out of memory in all benchmarks. Most of these approaches +are based on updating a belief over the states, which for a large state space can become +extremely computationally expensive. +Second, in the benchmarks with smaller state spaces, e.g., Maze and Rock, SARSOP +can compute policies that yield better performance in less time. This is due to the effi- +ciency of belief-based approaches on small-size problems. On the other hand, SARSOP +does not scale to larger POMDPs with a larger number of states and observations. For +example, by increasing the number of transitions in Intercept benchmark from 5021 to +7041, the computation time for SARSOP increases by 516%. On the other hand, the +increase of the computation time of SCPForward is only 28%. +Third, on the largest benchmarks, including tens of thousands of states and obser- +vations, SARSOP fails to compute any policy before time-out, while SCPForward +found a solution. Finally, we also note that SCPForward can also compute a policy +that maximizes the causal entropy and satisfies an LTL specification, unlike SARSOP. +6.2. Simulation on a Ground Robot +We demonstrate an application of the proposed algorithm in a continuous 3-D Unity +environment containing a ClearPath warthog operating in a semi-structured village. A +screen shot of the robot operating in this environment and its corresponding trajectory +can be seen in Figure 5. This environment contains a variety of obstacles including +buildings, trees, and vehicles as well as three terrain types describing our features, φ, +grass, gravel, and road. The simulated environment operates in a state space consisting +of 3350 states, 33254 transitions and 944 total observations. This simulation is used to +18 + +0 +5 +10 +15 +20 +25 +30 +0 +10 +20 +30 +grass +gravel +road +unknown +Figure 6: Gridworld representation of the environment. The figure shows the area of the unity environment +where we applied the developed algorithm. +gather data for training, and test an agent’s ability to follow a policy from the learned +reward function in two experimental scenarios. In this experiment, we demonstrate +the agent’s ability to learn a reward function from demonstrations that are sub-optimal +with respect to a known, true reward function. We also show how the learned policies +perform compared to the optimal policies with full and partial observations obtained +by solving the MDP or POMDP problem with the true reward function. +The ground vehicle contains an autonomy stack consisting of three main subsys- +tems—mapping, perception, and planning. The mapping subsystem based on Omni- +Mapper[? ] performs simultaneous localization and mapping (SLAM) using LiDAR +and IMU sensors, providing a map used during planning. The perception subsystem +provides pixel level semantic segmentation for each image in a video stream from a +RGB camera to an ontology of terrain and object classes. Each semantic image is +passed to a terrain projection algorithm which builds N binary occupancy feature maps +of the known environment used for reward learning where N is the number of features. +The planning subsystem uses the maps produced from previous subsystems and the +trajectory from a learned policy to autonomously navigate to a waypoint. +Expert Demonstrations and Reward Feature Encoding. We collected 10 demonstra- +tions of an expert teleoperating a robot to a predetermined waypoint (see Figure 6). +The expert has an implicit preference to traverse the road followed by grass, and lastly +gravel. Consequently, we encode the unknown reward function as a linear combination +of known features: Rθ = θ1φroad + θ2φgravel + θ3φgrass + θ4φtime + θ5φgoal, where +φi returns a value of 0 when the feature of the corresponding state is not feature i, or +1 otherwise. In order to incentivize the shortest path, the feature time penalizes the +number of actions taken in the environment before reaching the waypoint. Further- +19 + +(a) The trajectories resulting from executing each policy +with and without task specifications. The learner exploit- +ing task specifications (orange) is able to reach one of the +target states, while avoiding the gravel along the path. In +contrast, the learner without side information (purple) fails +to avoid the gravel. +0 +100 +200 +300 +−20 +0 +20 +Expert MDP +Expert POMDP +With LTL +Without LTL +(b) Evolution of the cumulative reward obtained by the +learner as a function of the number of environment inter- +actions. +Expert MDP and Expert POMDP are the opti- +mal policies on the MDP and POMDP, respectively for the +ground truth reward function. +Figure 7: Impact of incorporating task specifications into reward learning. +more, goal provides a positive reward upon reaching the waypoint. For comparisons +of the learned policy, we use the values θ = [0.2, −30, −2, −0.5, 50] as the ground +truth reward weight vector. We emphasize that the demonstrations are sub-optimal +with respect to the above ground truth reward as the vehicle often traverses gravel, +corresponding to a high penalty reward. +Modeling Robot Dynamics as POMDPs. From a ground truth map of the environment +in the simulation, we obtain a high-level MDP abstraction of the learner’s behavior on +the entire state space. Then, we impose a partial observability of the robot as follows: +The robot does not see the entire map of the world but only see a fixed radius r = 4 +(in terms of the number of grid cells) around its current position. Furthermore, we also +incorporate uncertainty on the sensor classification of terrain features such that with +probability p = 0.9 the prediction is correct. +Task Specifications. In addition to the expert demonstrations, we constrain the learned +policy to satisfy Prσ +M(¬ gravel U goal) ≥ 0.9, where gravel is an atomic proposition +that is true for states having gravel as its feature, and goal is an atomic proposition that +is true at each target state. Note that this side information does not necessarily enforce +that the learner should reach the set of target states. Instead, if the learner reaches the +target state, it should not drive on gravel with probability at least +Results. Figure 7a shows how the learner with side information avoids the gravel com- +pared to the learner without side information. Figure 7b further illustrates this result by +empirically demonstrating that the proposed approach can efficiently take advantage +of side information to compute policies that matches the expert’s desired behavior. +Specifically, Figure 7b shows that the gain in the total reward of a learner without side +20 + +information increases by 294% with respect to a learner with side information. Ad- +ditionally, it is important to note in Figure 6 how the initial state distribution of the +demonstrator trajectories is different from the initial state distribution during the eval- +uation of the learned policies (Figure 7a). Nevertheless, despite these distinctions, the +learned policies can effectively navigate toward points present in the expert demonstra- +tions and then maximally mimic these trajectories. +7. Related work. +The closest work to ours is by [34], where they extend classical maximum-margin- +based IRL techniques for MDPs to POMDPs. However, even on MDPs, maximum- +margin-based approaches cannot resolve the ambiguity caused by suboptimal demon- +strations, and they work well when there is a single reward function that is clearly better +than alternatives [39]. In contrast, we adopt causal entropy that has been shown [39, 10] +to alleviate these limitations on MDPs. Besides, [34] rely on efficient off-the-shelf +solvers to the forward problem. Instead, this paper also develops an algorithm that +outperforms off-the-shelf solvers and can scale to POMDPs that are orders of magni- +tude larger compared to the examples in [34]. Further, [34] do not incorporate task +specifications in their formulations. +One of the basic challenges in IRL, is that finding a reward function and a policy +that induces a similar behavior to the expert is an ill-defined problem. Prior work has +addressed this challenge using maximum margin formulations [40, 41, 42], as well as +probabilistic models to compute a likelihood of the expert demonstrations [43, 8, 10]. +We build on the latter approach and build on the maximum-causal-entropy IRL [9, +10, 23], which brings algorithmic benefits to IRL in POMDPs as mentioned in the +introduction. We note that these maximum-causal-entropy IRL techniques assume that +both the expert and the agent can fully observe the environment, and these approaches +only apply for MDPs as opposed to POMDPs. +IRL under partial information has been studied in prior work [2, 44, 45, 46, 47]. +Reference [44] considers the setting where the features of the reward function are par- +tially specified as opposed to having partial information over the state of the environ- +ment. The work in [2] considers a special case of POMDPs. It only infers a distribution +over the future trajectories of the expert given demonstrations as opposed to computing +a policy that induces a similar behavior to the expert. The works in [45, 46, 47] assume +that the states of the environment are either fully observable, or fully hidden to the +learning agent. Therefore, these approaches also consider a special case of POMDPs, +like in [2]. We also note that none of these methods incorporate side information into +IRL and do not provide guarantees on the performance of the policy with respect to a +task specification. +The idea of using side information expressed in temporal logic to guide and aug- +ment IRL has been explored in some previous work. In [48, 22], the authors incor- +porate side information as in temporal logic specification to learn policies that induce +a behavior similar to the expert demonstrations and satisfies the specification. Refer- +ence [21] iteratively infers an underlying task specification that is consistent with the +expert demonstrations and learns a policy and a reward function that satisfies the task +21 + +specification. However, these methods also assume full information for both the expert +and the agent. +8. Conclusion +We develop an algorithm for inverse reinforcement learning under partial obser- +vation. We empirically demonstrate that by incorporating task specifications into the +learning process, we can alleviate the information asymmetry between the expert and +the learner while increasing the data efficiency of the learning scheme. Further, we +empirically demonstrate that our main routine SCPForward, used inside the IRL al- +gorithm, solves the forward problem in a scalable manner and outperforms state-of- +the-art POMDP solvers on instances with a large number of states, observations, and +transitions. +Work Limitations. This work assumes that the transition and observation functions of +the POMDP are known to the algorithm. Future work will investigate removing this +assumption and developing model-free-based approaches. We will also integrate the +framework with more expressive neural-network-based reward functions. +Acknowledgements.. Research was sponsored by the Army Research Laboratory and +Office of Naval Research accomplished under cooperative agreement number(s) ARL +W911NF-20-2-0132, ARL W911NF-19-2-0285 and ONR N00014-22-1-2254. The +views and conclusions contained in this document are those of the authors and should +not be interpreted as representing the official policies; either expressed or implied, +of the Army Research Laboratory, Office of Naval Research, or the U.S. Government. +The U.S. Government is authorized to reproduce and distribute reprints for Government +purposed notwithstanding any copyright notation herein. +References +[1] P. Abbeel, A. Coates, A. Y. Ng, Autonomous Helicopter Aerobatics Through +Apprenticeship Learning, The International Journal of Robotics Research 29 (13) +(2010) 1608–1639. +[2] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, M. Hebert, Activity Forecasting, in: +European Conference on Computer Vision, Springer, 2012, pp. 201–214. +[3] D. Hadfield-Menell, S. J. Russell, P. Abbeel, A. D. Dragan, Cooperative Inverse +Reinforcement Learning, in: NIPS, 2016. +[4] A. D. Dragan, S. S. Srinivasa, A Policy-Blending Formalism for Shared Control, +The International Journal of Robotics Research 32 (7) (2013) 790–805. +[5] T. Osa, N. Sugita, M. Mitsuishi, Online Trajectory Planning in Dynamic Envi- +ronments for Surgical Task Automation., in: Robotics: Science and Systems, +Citeseer, 2014, pp. 1–9. +22 + +[6] T. Osa, N. Sugita, M. Mitsuishi, Online Trajectory Planning and Force Control +for Automation of Surgical Tasks, IEEE Transactions on Automation Science and +Engineering 15 (2) (2017) 675–691. +[7] C. Finn, S. Levine, P. Abbeel, Guided Cost Learning: Deep Inverse Optimal Con- +trol via Policy Optimization, in: International conference on machine learning, +PMLR, 2016, pp. 49–58. +[8] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, Maximum Entropy Inverse +Reinforcement Learning, in: AAAI, Vol. 8, 2008, pp. 1433–1438. +[9] Z. Zhou, M. Bloem, N. Bambos, Infinite Time Horizon Maximum Causal Entropy +Inverse Reinforcement Learning, IEEE Transactions on Automatic Control 63 (9) +(2017) 2787–2802. +[10] B. D. Ziebart, J. A. Bagnell, A. K. Dey, Modeling Interaction via the Principle of +Maximum Causal Entropy. +[11] S. C. Ong, S. W. Png, D. Hsu, W. S. Lee, Pomdps for robotic tasks with mixed +observability, in: Robotics: Science and Systems, Vol. 5, 2009, p. 4. +[12] H. Bai, D. Hsu, W. S. Lee, Integrated Perception and Planning in the Continuous +Space: A POMDP Approach, The International Journal of Robotics Research +33 (9) (2014) 1288–1302. +[13] S. Zhang, J. Sinapov, S. Wei, P. Stone, Robot Behavioral Exploration and Mul- +timodal Perception using POMDPs, in: AAAI Spring Symposium on Interactive +Multisensory Object Perception for Embodied Agents, 2017. +[14] K. Akash, K. Polson, T. Reid, N. Jain, Improving Human-Machine Collabora- +tion Through Transparency-based Feedback–Part I: Human Trust and Workload +Model, IFAC-PapersOnLine 51 (34) (2019) 315–321. +[15] X. Liu, A. Datta, Modeling Context Aware Dynamic Trust Using Hidden Markov +Model, in: Proceedings of the AAAI Conference on Artificial Intelligence, +Vol. 26, 2012. +[16] N. Vlassis, M. L. Littman, D. Barber, On the computational complexity of +stochastic controller optimization in pomdps, ACM Trans. Comput. Theory 4 (4). +[17] O. Madani, S. Hanks, A. Condon, On the Undecidability of Probabilistic Planning +and Infinite-Horizon Partially Observable Markov Decision Problems, in: AAAI, +AAAI Press, 1999, pp. 541–548. +[18] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, J. MacGlashan, Environment- +Independent Task Specifications via GLTL, arXiv preprint arXiv:1704.04341. +[19] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008. +23 + +[20] A. Pnueli, The Temporal Logic of Programs, in: Proc. 18th Annu. Symp. Found. +Computer Sci., Washington, D.C., USA, 1977, pp. 46–57. +doi:10.1109/ +SFCS.1977.32. +[21] F. Memarian, Z. Xu, B. Wu, M. Wen, U. Topcu, Active Task-Inference-Guided +Deep Inverse Reinforcement Learning, in: 2020 59th IEEE Conference on Deci- +sion and Control (CDC), IEEE, 2020, pp. 1932–1938. +[22] M. Wen, I. Papusha, U. Topcu, Learning from Demonstrations with High-Level +Side Information, in: Proceedings of the Twenty-Sixth International Joint Con- +ference on Artificial Intelligence, 2017. +[23] B. D. Ziebart, J. A. Bagnell, A. K. Dey, The Principle of Maximum Causal En- +tropy for Estimating Interacting Processes, IEEE Transactions on Information +Theory 59 (4) (2013) 1966–1980. +[24] Y.-x. Yuan, Recent Advances in Trust Region Algorithms, Mathematical Pro- +gramming 151 (1) (2015) 249–281. +[25] Y. Mao, M. Szmuk, X. Xu, B. Ac¸ikmese, Successive convexification: A super- +linearly convergent algorithm for non-convex optimal control problems, arXiv +preprint arXiv:1804.06539. +[26] H. Yu, D. P. Bertsekas, On Near Optimality of the Set of Finite-State Controllers +for Average Cost POMDP, Mathematics of Operations Research 33 (1) (2008) +1–11. +[27] S. Junges, N. Jansen, R. Wimmer, T. Quatmann, L. Winterer, J.-P. Katoen, +B. Becker, Finite-State Controllers of POMDPs using Parameter Synthesis, in: +Proceedings of UAI, 2018, pp. 519–529. +[28] N. Meuleau, K.-E. Kim, L. P. Kaelbling, A. R. Cassandra, Solving POMDPs by +searching the space of finite policies, in: UAI, 1999, pp. 417–426. +[29] C. Amato, D. S. Bernstein, S. Zilberstein, Optimizing Fixed-Size Stochastic Con- +trollers for POMDPs and Decentralized POMDPs, AAMAS 21 (3) (2010) 293– +320. +[30] J. Ho, S. Ermon, Generative adversarial imitation learning, Advances in neural +information processing systems 29 (2016) 4565–4573. +[31] J. Massey, Causality, feedback and directed information, in: Proc. Int. Symp. Inf. +Theory Applic.(ISITA-90), Citeseer, 1990, pp. 303–305. +[32] G. Kramer, Directed Information for Channels with Feedback, Citeseer, 1998. +[33] L. P. Hansen, T. J. Sargent, G. Turmuhambetova, N. Williams, Robust Control +and Model Misspecification, Journal of Economic Theory 128 (1) (2006) 45–90. +[34] J. Choi, K.-E. Kim, Inverse Reinforcement Learning in Partially Observable En- +vironments, Journal of Machine Learning Research 12 (2011) 691–730. +24 + +[35] S. Junges, N. Jansen, S. A. Seshia, Enforcing almost-sure reachability in pomdps, +in: International Conference on Computer Aided Verification, 2020. +[36] E. Walraven, M. Spaan, Accelerated Vector Pruning for Optimal POMDP Solvers, +in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017. +[37] H. Kurniawati, D. Hsu, W. S. Lee, Sarsop: Efficient point-based pomdp planning +by approximating optimally reachable belief spaces., in: Robotics: Science and +systems, Vol. 2008, Citeseer, 2008. +[38] G. Norman, D. Parker, X. Zou, Verification and control of partially observable +probabilistic systems, Real-Time Systems 53 (3) (2017) 354–402. +[39] T. Osa, J. Pajarinen, G. Neumann, J. Bagnell, P. Abbeel, J. Peters, An Algorithmic +Perspective on Imitation Learning, Foundations and Trends in Robotics 7 (1-2) +(2018) 1–179. +[40] N. D. Ratliff, J. A. Bagnell, M. A. Zinkevich, Maximum Margin Planning, in: +Proceedings of the 23rd International Conference on Machine Learning, 2006, +pp. 729–736. +[41] P. Abbeel, A. Y. Ng, Apprenticeship Learning via Inverse Reinforcement Learn- +ing, in: Proceedings of the 21st International Conference on Machine Learning, +2004, p. 1. +[42] A. Y. Ng, S. J. Russell, et al., Algorithms for Inverse Reinforcement Learning., in: +Proceedings of the 17th International Conference on Machine Learning, Vol. 1, +2000, p. 2. +[43] D. Ramachandran, E. Amir, Bayesian Inverse Reinforcement Learning., in: IJ- +CAI, Vol. 7, 2007, pp. 2586–2591. +[44] A. Boularias, O. Kr¨omer, J. Peters, Structured Apprenticeship Learning, in: +Joint European Conference on Machine Learning and Knowledge Discovery in +Databases, Springer, 2012, pp. 227–242. +[45] K. Bogert, P. Doshi, Multi-Robot Inverse Reinforcement Learning under Occlu- +sion with Interactions, in: Proceedings of the 2014 International Conference on +Autonomous Agents and Multi-Agent Systems, Citeseer, 2014, pp. 173–180. +[46] K. Bogert, P. Doshi, Toward Estimating Others’ Transition Models under Occlu- +sion for Multi-Robot IRL, in: Twenty-Fourth International Joint Conference on +Artificial Intelligence, 2015. +[47] K. Bogert, J. F.-S. Lin, P. Doshi, D. Kulic, Expectation-Maximization for Inverse +Reinforcement Learning with Hidden Data, in: Proceedings of the 2016 Inter- +national Conference on Autonomous Agents & Multiagent Systems, 2016, pp. +1034–1042. +25 + +[48] I. Papusha, M. Wen, U. Topcu, Inverse Optimal Control with Regular Language +Specifications, in: 2018 Annual American Control Conference (ACC), IEEE, +2018, pp. 770–777. +Appendices +In this appendix, we provide supplementary derivations for the results in the paper and +more details on the numerical experiments. +A. Concavity of Causal Entropy and Derivations of the Bellman Constraints +In this section, we first recall the obtained expression of the causal entropy Hγ +σ as a +function of the visitation counts µγ +σ and νγ +σ. We then prove the concavity of the causal +entropy, which enables convex-optimization-based formulation of the task-guided in- +verse reinforcement learning (IRL) problem. Then, we provide additional details on +the derivation of the affine constraint implied by the Bellman flow constraint. +Concave Causal Entropy. We first recall the definitions of the state and state-action +visitation counts. For a policy σ, state s, and action α, the discounted state visitation +counts are defined by µγ +σ(s) ≜ ESt[�∞ +t=1 γt1{St=s}] and the discounted state-action +visitation counts are defined by νγ +σ(s, α) ≜ EAt,St[�∞ +t=1 γt1{St=s,At=α}], where 1{·} +is the indicator function and t is the time step. From the definitions of the state and +state-action visitation counts µγ +σ and νγ +σ, it is straightforward to deduce that νγ +σ(s, α) = +σs,αµγ +σ(s), where σs,α = P[At = a|St = s]. We use the visitation counts to prove in +Section 4 that +Hγ +σ = +� +(s,α)∈S×A +−(log πs,α)πs,αµγ +σ(s) = +� +(s,α)∈S×A +− log νγ +σ(s, α) +µγ +σ(s) νγ +σ(s, α), +where the last inequality is obtained by using that πs,α = νγ +σ(s, α)/µγ +σ(s). We claim +that Hγ +σ is a concave fucntion of the visitation counts. Thus, we want to show that +the function f(νγ +σ, µγ +σ) = � +(s,α)∈S×A − log νγ +σ(s,α) +µγ +σ(s) νγ +σ(s, α) is concave. To this end, +consider any λ ∈ (0, 1) and the two sets of variables νγ +σ, µγ +σ and ¯νγ +σ, ¯µγ +σ. Then, we have +26 + +the following result: +f(λνγ +σ + (1 − λ)¯νγ +σ, λ¯µγ +σ + (1 − λ)¯µγ +σ) += +� +(s,α)∈S×A +− log λνγ +σ(s, α) + (1 − λ)¯νγ +σ(s, α) +λµγ +σ(s) + (1 − λ)¯µγ +σ(s, α) (λνγ +σ(s, α) + (1 − λ)¯νγ +σ(s, α)) +≥ +� +(s,α)∈S×A +−λνγ +σ(s, α) log λνγ +σ(s, α) +λµγ +σ(s, α) − (1 − λ)¯νγ +σ(s, α) log (1 − λ)¯νγ +σ(s, α) +(1 − λ)¯µγ +σ(s, α) += +� +(s,α)∈S×A +−λνγ +σ(s, α) log νγ +σ(s, α) +µγ +σ(s, α) − (1 − λ)¯νγ +σ(s, α) log ¯νγ +σ(s, α) +¯µγ +σ(s, α) += λf(νγ +σ, µγ +σ) + (1 − λ)f(¯νγ +σ, ¯µγ +σ), +where the first inequality is obtained by applying to the well-known log-sum inequality, +i.e., +x1 log x1 +y1 ++ x2 log x2 +y2 +≥ (x1 + x2) log x1 + x2 +y1 + y2 +, +for nonnegative numbers x1, x2, y1, y2. Specifically, we apply the substitution x1 = +λνγ +σ, y1 = λµγ +σ, x2 = (1 − λ)¯νγ +σ, and y2 = (1 − λ)¯µγ +σ. Note that the inequality +f(λνγ +σ + (1 − λ)¯νγ +σ, λ¯µγ +σ + (1 − λ)¯µγ +σ) ≥ λf(νγ +σ, µγ +σ) + (1 − λ)f(¯νγ +σ, ¯µγ +σ) +implies that f(νγ +σ, µγ +σ) is concave in νγ +σ, and µγ +σ. +Bellman Flow Constraint. For the visitation count variables to correspond to a valid +policy generating actions in the POMDP M , νγ +σ and µγ +σ must satisfy the bellman flow +constraint given by +µγ +σ(s) = ESσ +t +� ∞ +� +t=0 +γt1{Sσ +t =s} +� += µ0(s) + γESσ +t +� ∞ +� +t=0 +γt1{Sσ +t+1=s} +� += µ0(s) + γ +∞ +� +t=0 +� +s′∈S +� +α∈A +γtP(s|s′, α)P[Sσ +t = s′, Aσ +t = α] += µ0(s) + γ +� +s′∈S +� +α∈A +P(s|s′, α)νγ +σ(s′, α). +B. Experimental Tasks +In this section, we first provide a detailed description of the POMDP models used +in the benchmark. The simulations on the benchmark examples empirically demon- +strate that side information alleviates the information asymmetry, and more memory +leads to more performant policies. Then, we provide additional numerical simulations +supporting the claim that SCPForward is sound and yields better scalability than +off-the-shelf solvers for the forward problem, i.e., computing an optimal policy on a +POMDP for a given reward function. +27 + +B.1. Computation Resources and External Assets +All the experiments of this paper were performed on a computer with an Intel Core +i9-9900 CPU 3.1GHz ×16 processors and 31.2 Gb of RAM. All the implementations +are written and tested in Python 3.8, and we attach the code with the supplementary +material. +Required Tools. . Our implementation requires Stormpy of Storm [? ] and Gurobipy +of Gurobi 9.1 [? ]. On one hand, we use Storm, a tool for model checking, to parse +POMDP file specifications, to compute the product POMDP with the finite state con- +troller in order to reduce the synthesis problem to the synthesis of memoryless policies, +and to compute the set T of target states satisfying a specification ϕ via graph prepro- +cessing. On the other hand, we use Gurobi to solve both the linearized problem in (7) +and the feasible solution of the Bellman flow constraint needed for the verification step. +Off-The-Shelf Solvers for Forward Problem. +. In order to show the scalability of +the developed algorithm SCPForward, we compare it to state-of-the-art POMDP +solvers SolvePOMDP [36], SARSOP [37], and PRISM-POMDP [38]. +The solver +SolvePOMDP implements both exact and approximate value iterations via incremen- +tal pruning [? ] combined with state-of-the-art vector pruning methods [36]. Finally, +PrismPOMDP discretizes the belief state and adopts a finite memory strategy to find +an approximate solution of the forward problem. For all the solvers above, we use the +default settings except from the timeout enforced to be 3600 seconds. These solvers +are not provided with our implementation. However, we provide the POMDP models +that each of the solvers can straightforwardly use. Further details are provided in the +readme files of our implementation. +B.2. Benchmark Set +We evaluate the proposed learning algorithm on several POMDP instances adapted +from [35]. We attached the modified instances in our code with the automatically +generated models for each off-the-shelf solver that the reader can straightforwardly +use to reproduce Table 1. The reader can refer to Table 1 for the number of states, +observations, and transitions of each environment of the benchmark set. In all the +examples, we gather 10 trajectories from an expert that can fully observe its current +state in the environment and an expert having partial observation of the environment. +Our algorithm learns reward functions from these trajectories under different memory +policies and high-level side information. +28 + +Rocks Instance. In the environment Rocks, an agent navigates in a gridworld to sam- +ple at least one valuable rock (if a valuable rock is in the grid) over the two possibly +dangerous rocks, without any failures. When at least one valuable rock has been col- +lected, or the agent realizes that all the rocks are dangerous, it needs to get to an exit +point to terminate the mission. The partial observability is due to the agent can only +observe if its current location is an exit point or a dangerous rock. Furthermore, the +agent has noisy sensors enabling sampling neighbor cells. +We consider three feature functions. The first feature provides a positive reward +when reaching the exit point with at least one valuable rock or no rocks when all of +them are dangerous. The second feature provides a negative reward when the agent +is at the location of a dangerous rock. Finally, the third feature penalizes each action +taken with a negative reward to promote reaching the exit point as soon as possible. +No information asymmetry +Under information asymmetry +GAIL +0 +75 +150 +225 +300 +0 +50 +100 +Finite-memory policy +Without side +information +Rφ +σ +0 +75 +150 +225 +300 +0 +50 +100 +Memoryless policy +Rφ +σ +0 +75 +150 +225 +300 +0 +50 +100 +Time Steps +With side +information +Rφ +σ +0 +75 +150 +225 +300 +0 +50 +100 +Time Steps +Rφ +σ +Figure 8: Representative results on the Rock example showing the reward of the policies under the true +reward function (Rφ +σ) versus the time steps. +We compare scenarios with no side information and the a priori knowledge on the +task such as the agent eventually reaches an exit point with a probability greater than +0.995. Figure 8 supports our claim that side information indeed alleviates the informa- +tion asymmetry between the expert and the agent. Additionally, we also observe that +incorporating memory leads to more performant policies in terms of the mean accumu- +lated reward. +29 + +Obstacle Instance. . In the environment Obstacle[n], an agent must find an exit in a +gridworld without colliding with any of the five static obstacles in the grid. The agent +only observes whether the current position is an obstacle or an exit state. The parameter +n specifies the dimension of the grid. +Similar to the Rocks example, the agent receives a positive reward if it successfully +exits the gridworld and a negative reward for every taken action or colliding with an +obstacle. +As for the side information, we specify in temporal logic that while learning the +reward, the agent should not collide any obstacles until it reaches an exit point with a +probability greater than 0.9. +No information asymmetry +Under information asymmetry +0 +25 +50 +75 +100 +−200 +0 +200 +400 +Finite-memory policy +Without side +information +Rφ +σ +0 +25 +50 +75 +100 +−200 +0 +200 +400 +Memoryless policy +Rφ +σ +0 +25 +50 +75 +100 +−200 +0 +200 +400 +Time Steps +With side +information +Rφ +σ +0 +25 +50 +75 +100 +−200 +0 +200 +400 +Time Steps +Rφ +σ +Figure 9: Representative results on the Obstacle example showing the reward of the policies under the true +reward function (Rφ +σ) versus the time steps. +Similar to the Maze and Rock examples, Figure 9 supports our claim that side in- +formation alleviates the information asymmetry and memory leads to more performant +policies. +30 + +Evade Instance. Evade[n, r, slip] is a turn-based game where the agent must reach a +destination without being intercepted by a faster player. The player cannot access the +top row of the grid. Further, the agent can only observe the player if it is within a fixed +radius from its current location and upon calling the action scan. The parameters n, r, +and slip specify the dimension of the grid, the view radius, and the slippery probability, +respectively. +The feature functions are defined such that the agent receives a positive reward if +at the destination, a high negative reward if it is intercepted by the player, and a small +negative reward for each action taken, including the scan action. +With side information +Without side information +GAIL +0 +25 +50 +75 +100 +−10 +0 +10 +20 +Time Steps +Mean accumulated reward +Figure 10: Representative results on the Evade example showing the reward of the policies under the true +reward function (Rφ +σ) versus the time steps. +As for the side information, we specify in temporal logic that while learning the +reward, the agent must reach an exit point with probability greater than 0.98. +Figure 10 shows that learning with side information provides higher reward than +without side information. Besides, there is less randomness in the policy with side +information compared to the policy without side information. Specifically, the standard +deviation of the policy with side information is significantly smaller than the policy +without side information. +We did not discuss the impact of different memory size policies in this example +since the performance of the memoryless policy is already near-optimal, as the policy +obtains the same reward as SARSOP (see Table 1 for a reference. Specifically, we +observe that the optimal policy on the underlying MDP yields comparable policies to +the optimal memoryless policy on the POMDP. As a consequence, we observe that the +information asymmetry between the expert and the agent does not hold here either, and +the learned policies obtain a similar performance. +31 + +Intercept Instance. Intercept[n, r, slip] is a variant of Evade where the agent must +intercept another player who is trying to exit the gridworld. The agent can move in 8 +directions and can only observe the player if it is within a fixed radius from the agent’s +current position when the action scan is performed. Besides, the agent has a camera +that enables it to observe all cells from west to east from the center of the gridworld. In +contrast, the player can only move in 4 directions. The parameters n, r, and slip specify +the dimension of the grid, the view radius, and the slippery probability, respectively. +We consider three feature functions to parameterize the unknown reward. The first +feature provides a positive reward to the agent upon intercepting the player. The second +feature penalizes the agent if the player exits the gridworld. The third feature imposes +a penalty cost for each action taken. +With side information +Without side information +GAIL +0 +25 +50 +75 +100 +−10 +0 +10 +20 +Time Steps +Mean accumulated reward +Figure 11: Representative results on the Intercept example showing the reward of the policies under the +true reward function (Rφ +σ) versus the time steps. +We encode the high-level side information as the temporal logic task specification +Eventually intercept the player with probability greater than 0.98, i.e., the agent should +eventually reach an observation where its location coincides with the player’s location. +Figure 11 demonstrates that side information does not improve the performance +of the policy. This result is because memoryless policies are optimal in this example, +and a combination of the given reward features can perfectly encode the temporal logic +specifications, similar to the Evade example. +B.3. Effects of Side Information +In this section, we provide additional experiments on how the side information +speeds up the learning process in terms of computation time and convergence to the +optimal policy and reward parameters. Then, we quantify the effects of the side infor- +mation by solving the POMDPs using only the task specifications and no demonstra- +tions. All these experiments are performed on the Maze example, which is a relatively +low-size POMDP example. +32 + +Convergence of the Learning With and Without Side Information. In the Maze ex- +periments, we empirically observe that side information enables the learning algorithm +to converge with eight times less number of iterations compared to learning without +side information. The number of iterations here denotes both the number of lineariza- +tions in the sequential convex scheme and the number of gradient steps during reward +updates. However, the gain in computation time is not as prominent as the gain in +the number of iterations. In fact, learning with side information is only approximately +three times faster than learning without side information due to how side information +almost doubles the number of variables in the convex optimization problem. +Effects of Side Information Without Any Demonstrations. +• Experiment 1. +We consider the exact setting of the Maze example with no +demonstrations and the LTL specification Prσ +M(G ¬ bad) ≥ 0.9. Essentially, +we seek policies that avoid the trapping states with high probability. Without any +additional reward, the optimal policy is exactly what we expect: High probabil- +ity for action enforcing no movements and low probability for the others. With +respect to the true reward, this is clearly suboptimal as the reward will keep de- +creasing due to no minimization of the amount of time spent in the environment. +Now, we optimize the problem for a policy that satisfies the LTL specifications +while penalizing spending time in the environment according to the ground truth +reward for taking more steps in the environment. The obtained policy has the op- +timal reward of 47.83, which corresponds to optimizing the ground truth reward +in the POMDP. Indeed, the fastest way to clear the Maze is to exit through a goal +state while not getting trapped. +• Experiment 2. +We consider the exact setting of the Maze example with no +demonstrations and the LTL specification Prσ +M(E target) ≥ 0.95. Essentially, +we seek policies that eventually reach the target state (exit of the Maze) with +high probability. Without any additional reward, the optimal policy is subopti- +mal with respect to the optimal policy on the POMDP, given the ground truth +reward. Indeed, the policy can reach the target with an optimal reward of 28.63 +due to the amount of time spent to reach the goal. By adding the reward on time +spent in the environment to the LTL specifications, we can obtain the optimal +reward on the POMDP again. +B.4. Summary of the Results +Side Information Alleviates the Information Asymmetry . As mentioned in the sub- +mitted manuscript, side information can indeed alleviate the information asymmetry. +Specifically, we observe that if there is an information asymmetry in the forward prob- +lem, i.e., the obtained reward from an optimal policy on the underlying POMDP is +lower than from an optimal policy on the underlying fully observable MDP, incor- +porating side information in temporal logic specifications alleviates the information +asymmetry between the expert and the agent. For example, we can see the effects of +such information asymmetry in the Maze, Rocks, Obstacle, and Avoid examples. In +33 + +these examples, having partial observability reduces the obtained reward in the for- +ward problem. The policies that do not incorporate side information into the learning +procedure also obtain a lower reward under information asymmetry. +Memory Leads to More Performance Policies. Similarly to the side information, we +also observe that if incorporating memory improves the performance of the learned +policies, if it also improves the obtained reward in the forward problem, as seen in the +Maze, Rocks, and Obstacle instances. In Table 1, we can also see that incorporating +memory helps to compute a better optimal policy in these examples, unlike computing +a memoryless policy. +34 + diff --git a/19AzT4oBgHgl3EQfRvso/content/tmp_files/load_file.txt b/19AzT4oBgHgl3EQfRvso/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f9c2f0fee96c06ab5ceac1f8b9158f3c9264ee7b --- /dev/null +++ b/19AzT4oBgHgl3EQfRvso/content/tmp_files/load_file.txt @@ -0,0 +1,1164 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf,len=1163 +page_content='Task-Guided IRL in POMDPs that Scales Franck Djeumou∗, Christian Ellis∗∗, Murat Cubuktepe∗, Craig Lennon, Ufuk Topcu∗ Abstract In inverse reinforcement learning (IRL), a learning agent infers a reward function en- coding the underlying task using demonstrations from experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, many ex- isting IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We address two limitations of existing IRL techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' First, they require an exces- sive amount of data due to the information asymmetry between the expert and the learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Second, most of these IRL techniques require solving the computationally in- tractable forward problem—computing an optimal policy given a reward function—in POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The developed algorithm reduces the information asymmetry while increas- ing the data efficiency by incorporating task specifications expressed in temporal logic into IRL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, the algorithm avoids a com- mon source of algorithmic complexity by building on causal entropy as the measure of the likelihood of the demonstrations as opposed to entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Nevertheless, the resulting problem is nonconvex due to the so-called forward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We solve the intrinsic nonconvexity of the forward problem in a scalable manner through a sequential linear programming scheme that guarantees to converge to a locally optimal policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In a series of examples, including experiments in a high-fidelity Unity simulator, we demonstrate that even with a limited amount of data and POMDPs with tens of thousands of states, our algorithm learns reward functions and policies that satisfy the task while inducing similar behavior to the expert by leveraging the provided side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Introduction A robot can satisfy certain human-specified tasks by describing desired behavior through a reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, the design of such a reward function is a non- trivial task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Inverse reinforcement learning (IRL) is an established technique that in- fers a reward function encoding the underlying task using expert demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' IRL ∗The University of Texas at Austin ∗∗The University of Massachusetts: Dartmouth United States Army Research Laboratory Email addresses: fdjeumou@utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='edu (Franck Djeumou), cellis3@umassd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='edu (Christian Ellis), mcubuktepe@utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='edu (Murat Cubuktepe), craig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='lennon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='civ@army.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='mil (Craig Lennon), utopcu@utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='edu (Ufuk Topcu) Preprint submitted to Elsevier January 4, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='01219v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='LG] 30 Dec 2022 techniques have found a wide range of applications in various domains such as ac- robatic helicopter flight [1], inferring future actions of people [2], human-autonomy interaction [3, 4], robotic surgery [5, 6], and robotic manipulation tasks [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Most existing work [1, 8, 9, 10, 3, 7] has focused on Markov decision processes (MDPs), assuming that the learner can fully observe the state of the environment and expert demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, the learner will not have access to full state observations in many applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, a robot will never know everything about its envi- ronment [11, 12, 13] and may not observe the internal states of a human with whom it works [14, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Such information limitations violate the intrinsic assumptions made in most existing IRL techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We investigate IRL in partially observable Markov decision processes (POMDPs), a widely used model for decision-making under imperfect information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Partial observ- ability brings two key challenges in IRL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The first challenge is due to the so-called information asymmetry between the expert and the learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The expert typically has either full or partial information about the environment, while the learner has only a partial view of the state and the expert’s demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Even in the hypothetical case in which the underlying reward function is known to the learner, its optimal pol- icy under limited information may not yield the same behavior as an expert with full information due to such information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The second challenge is due to the computational complexity of policy synthesis in POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Indeed, many standard IRL techniques rely on a subroutine that solves the so-called forward problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', computing an optimal policy for a given reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Solv- ing the forward problem for POMDPs is significantly more challenging than MDPs, both theoretically and practically [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Optimal policies for POMDPs may require infi- nite memory of observations [17], whereas memoryless policies are enough for MDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An additional limitation in existing IRL techniques is due to the limited expressiv- ity and often impracticability of state-based reward functions in representing complex tasks [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, it will be tremendously difficult to define a merely state-based reward function to describe requirements such as “do not steer off the road while reach- ing the target location and coming back to home” or “monitor multiple locations with a certain order”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, such requirements can be concisely and precisely speci- fied in temporal logic [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Therefore, recent work has demonstrated the utility of incorporating temporal logic specifications into IRL in MDPs [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In this work, we address these challenges and limitations in state-of-the-art IRL techniques by investigating the following problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Task-Guided IRL in POMDPs: Given a POMDP, a set of expert demonstrations, and, if available, a task specification expressed in temporal logic, learn a policy along with the underlying reward function that maximizes the causal entropy of the induced stochastic process, induces a behavior similar to the expert’s, and ensures the satisfaction of the specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We highlight two parts of the problem statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Using causal entropy as an opti- mization criterion instead of traditional entropy results in a least-committal policy that induces a behavior obtaining the same accumulated reward as the expert’s demonstra- tions while making no additional assumptions about the demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Task specifi- 2 cations given as task requirements guide the learning process by describing the feasible behaviors and allow the learner to learn performant policies with respect to the task re- quirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Such specifications can be interpreted as side information available to the learner a priori in addition to the demonstrations aimed at partially alleviating the information asymmetry between the expert and the learner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we tackle the IRL on POMDPs problem by a reformulation into a maximum causal entropy (MCE) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we develop a new solver for the MCE problem that improves computational tractability over existing approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The developed solver can enforce prior task knowledge expressed as temporal logic specifi- cations, which guides the learning, improves the data efficiency, and partially alleviates the information asymmetry problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Most existing work on IRL relies on entropy as a measure of the likelihood of the demonstrations, yet, when applied to stochastic MDPs, has to deal with nonconvex optimization problems [8, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, IRL techniques that adopt causal entropy as the measure of likelihood enjoy formulations based on convex optimiza- tion [9, 10, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We show similar algorithmic benefits in maximum-causal-entropy IRL carry over from MDPs to POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A major difference between MDPs and POMDPs in maximum-causal-entropy IRL is, though, due to the intrinsic nonconvexity of policy synthesis in POMDPs, which yields a formulation of the task-guided IRL problem as a nonconvex optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' It is known that this nonconvexity severely limits the scalability for syn- thesis in POMDPs [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We develop an iterative algorithm that solves the resulting nonconvex problem in a scalable manner by adapting sequential convex programming (SCP) [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In each iteration, it linearizes the underlying nonconvex problem around the solution from the previous iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The algorithm introduces several ex- tensions to alleviate the errors resulting from the linearization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' One of these extensions is a verification step not present in existing SCP schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We show that the proposed algorithm computes a sound and locally optimal solution to the task-guided problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Additionally, we empirically demonstrate that the algorithm scales to POMDPs with tens of thousands of states as opposed to tens of states in most existing work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In POMDPs, finite-memory policies that are functions of the history of the observa- tions outperform memoryless policies [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, computing a finite-memory pol- icy for a POMDP is equivalent to computing a memoryless policy on a larger product POMDP [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, we leverage the scalability of our algorithm to compute more per- formant policies that incorporate memory using finite-state controllers [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, the existing IRL techniques on POMDPs aforementioned cannot effectively utilize memory, as they do not scale to large POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We demonstrate the applicability of the approach through several examples, in- cluding a simulated wheeled ground robot operating in a high-fidelity, continuous, 3- D Unity simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We show that, without task specifications, the developed algo- rithm can compute more performant policies than a straight adaptation of the original GAIL [30] to POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we demonstrate that by incorporating task specifications into the IRL procedure, the learned reward function and policy accurately describe the behavior of the expert while outperforming the policy obtained without the task specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We observe that with more limited data, the performance gap becomes more prominent between the learned policies with and without using task specifica- 3 tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Most importantly, we empirically demonstrate the scalability of our approach for solving the forward problem through extensive comparisons with several state-of- the-art POMDP solvers and show that on larger POMDPs, the algorithm can compute more performant policies in significantly less time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Preliminaries The following section provides a review of prerequisite understanding for POMDPs, their accompanying policies and how a POMDP’s belief over states is updated using Bayesian techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We denote the set of nonnegative real numbers by R+, the set of all proba- bility distributions over a finite or countably infinite set X by Distr(X), the set of all (infinite or empty) sequences x0, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , x∞ with xi ∈ X by (X)∗ for some set X, and the expectation of a function g of jointly distributed random variables X and Y by EX,Y [g(X, Y )].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Partially Observable Markov Decision Process A partially observable Markov decision process (POMDP) is a framework for mod- eling sequential interaction between an agent and a partially observable environment, where the agent cannot perceive its underlying state but must infer it based on the given noisy observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We define a POMDP by a tuple M = (S, A, P, Z, O, R, µ0, γ), where S, A, and Z are finite sets of states, actions, and observations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The function µ0 : S �→ R+ provides the initial distribution of the agent’s state and γ ∈ [0, 1) is a discount factor over a possibly infinite planning horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' At each decision time, an agent selects an action α ∈ A and the transition function P : S × A �→ Distr(S) defines the probability P(s′|s, α) of reaching state s′ ∈ S given the current state s ∈ S and action α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' After the state transition, the agent receives an observation z′ ∈ Z according to the function O : S �→ Distr(Z), which defines the probability O(z′|s′) of perceiving z′ at state s′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The agent also receives a reward function R(s, α) from the function R : S × A �→ R encoding the task specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the following, without loss of generality, we consider infinite-horizon problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An observation-based policy σ : (Z × A)∗ × Z �→ Distr(A) for a POMDP M maps a sequence of observations and actions to a distribution over actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A M- finite-state controller (M-FSC) is a tuple C = (Q, qI, η, δ), where Q = {q1, q2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , qM} is a finite set of memory states, qI is the initial memory state, η : Q×Z �→ Distr(A) is a decision function, and δ : Q × Z × A �→ Distr(Q) is a memory transition function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The action mapping η(n, z) takes a FSC memory state n and an observation z ∈ Z, and returns a distribution over the POMDP actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The memory update δ(n, z, α) re- turns a distribution over memory states and is a function of the action α selected by η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An FSC induces an observation-based policy by following a joint execution of these two functions upon a trace of the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An FSC is memoryless if there is a single 4 memory state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Memoryless FSCs, denoted by σ: Z → Distr(A), are observation- based policies, where σ(α|z) = σz,α is the probability of taking the action α given solely observation z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Remark 1 (REDUCTION TO MEMORYLESS POLICIES).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the remainder of the pa- per, for ease of notation, we synthesize optimal M-FSCs for POMDPs (so-called for- ward problem) by computing memoryless policies σ on theoretically-justified larger POMDPs obtained from the so-called product of the memory update δ and the original POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Indeed, the authors of [27] provide product POMDPs, whose sizes grow polynomially only with the size of the domain of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Belief Update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a history on the POMDP M as the perceived observation and executed action sequence τ = {(z0, α0), (z1, α1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , (zT , αT )}, where zi ∈ Z, αi ∈ A, i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , T} and T is the length of the trajectory, the belief state specifies the probability of being in each state of the POMDP given an initial belief b0 = µ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Such a belief state can be updated at each time step using the following Bayes rule bt+1(s′) = O(zt|s′) � s∈S P(s′|s, αt)bt(s) � s′′∈S O(zt|s′′) � s∈S P(s′′|s, αt)bt(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (1) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Causal Entropy in POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For a POMDP M, a policy σ induces the stochastic processes Sσ 0:∞ := (Sσ 0 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , Sσ ∞), Aσ 0:∞ := (Aσ 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , Aσ ∞), and Zσ 0:∞ := (Zσ 0 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , Zσ ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' At each time index t, the ran- dom variables Sσ t , Aσ t , and Zσ t take values st ∈ S, αt ∈ A, and zt ∈ Z, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The probability P(A0:T ||S0:T ) of A0:T causally-conditioned on S0:T , given by [10, 31, 32] P(A0:T ||S0:T ) := �T t=0 P(At|S0:t, A0:t−1), defines a correlation be- tween the stochastic processes, where each variable At is conditionally influenced by only the earlier predicted variables S0:t, A0:t−1, and not the future variables St+1:T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Let H(A|S) ≜ EA,S[− log P(A|S)] be the conditional entropy of a random variable A given a random variable S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the finite-horizon setting, the causal entropy Hσ in- duced by a given policy σ is defined as Hσ := EAσ 0:T ,Sσ 0:T [− log P(Aσ 0:T ||Sσ 0:T )] = �T t=0 H(Aσ t |Sσ 0:t, Aσ 0:t−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, the causal entropy in the infinite-horizon setting, namely the discounted causal entropy [9, 33], is defined as Hγ σ := �∞ t=0 γtH(Aσ t |Sσ 0:t, Aσ 0:t−1) = �∞ t=0 γtEAσ t ,Sσ t [− log P(Aσ t |Sσ t )], (2) where the second equality is due to the Markov property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The entropy of POMDPs (or MDPs) involves the future policy decisions [8], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Sσ t+1:T , at a time index t, as opposed to the causal entropy in POMDPs (or MDPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, the authors of [8] show that the problem of computing a policy that maximizes the entropy is nonconvex, even in MDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Inverse reinforcement learning techniques that maximize the entropy of the policy rely on approximations or assume that the tran- sition function of the MDP is deterministic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, computing a policy that maximizes the causal entropy can be formulated as a convex optimization problem in MDPs [10, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' LTL Specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We use general linear temporal logic (LTL) to express complex task specifications on the POMDP M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a set AP of atomic propositions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Boolean variables with truth values for a given state s or observation z, LTL formulae are constructed inductively as following: ϕ := true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2, where a ∈ AP, ϕ, ϕ1, and ϕ2 are LTL formulae, ¬ and ∧ are the logic negation and conjunction, and X and U are the next and until temporal operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, temporal operators such as always (G) and eventually (F) are derived as Fϕ := trueUϕ and Gϕ := ¬F¬ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We denote by Prσ M(ϕ) the probability of satisfying the LTL formula ϕ when following the policy σ on the POMDP M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A detailed description of the syntax and semantics of LTL is beyond the scope of this paper and can be found in [20, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Problem Formulation In this section, we formulate the problem of task-guided inverse reinforcement learning (IRL) in POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a POMDP M with an unknown reward function R, we seek to learn a reward function R along with an underlying policy σ that in- duces a behavior similar to the expert demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We define an expert trajectory on the POMDP M as the perceived observation and executed action sequence τ = {(z0, α0), (z1, α1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , (zT , αT )}, where zi ∈ Z and αi ∈ A for all i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , T}, and T denotes the length of the trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Similarly to [34], we assume given or we can construct from τ (via Bayesian belief updates (1)) the belief trajectory bτ = {b0 := µ0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , bT }, where bi(s) is the estimated probability of being at state s at time index i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the following, we assume that we are given a set of belief trajectories D = {bτ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , bτN } from trajectories τ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , τN, where N denotes the total number of underlying trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We parameterize the unknown reward function R by a differentiable function (with respect to the parameter) Rθ : S × A �→ Rd, where θ ∈ RF is a parameter that defines uniquely the reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Such an encoding includes traditional representations of the reward such as Rθ(s, α) = gθ(φ(s, α)), where φ : S × A �→ Rd is a known vector of basis functions with components referred to as feature functions, d is the number of features, and gθ can be any function approximator such as neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, in the traditional linear encoding, we have gθ(z) = θTz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we seek for a parameter θ defining Rθ and a policy σ such that its discounted return expectation Rθ σ matches an empirical discounted return expectation ¯Rθ of the expert demonstration D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, we have that Rθ σ = ¯Rθ, where Rθ σ := ∞ � t=0 γtESσ t ,Aσ t [Rθ(Sσ t , Aσ t )|σ] and ¯Rθ = 1 N � bτ ∈D � bi∈bτ γi � s∈S bi(s)Rθ(s, αi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the case of linear encoding of the reward, the above condition is called feature match- ing expectation, and it can be simplified by replacing Rθ with the feature function φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6 Nevertheless, the problem is ill-posed and there may be infinitely many reward functions and policies that can satisfy the above matching condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' To resolve the ambiguities, we seek for a policy σ that also maximizes the discounted causal entropy Hγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We now define the problem of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a reward-free POMDP M, a demonstration set D, and a feature φ, compute a policy σ and weight θ such that (a) The matching condition holds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (b) The causal entropy Hγ σ given by (2) is maximized by σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Furthermore, we seek to incorporate, if available, a priori high-level side informa- tion on the task demonstrated by the expert in the design of the reward and policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a linear temporal logic formula ϕ, compute a policy σ and weight θ such that the constraints (a) and (b) in Problem 1 are satisfied, and Prσ M(ϕ) ≥ λ for a given parameter λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Although the parameter λ that specifies the threshold for satisfaction of ϕ is as- sumed to be given, the approach can easily be adapted to compute the optimal λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Nonconvex Formulation for IRL in POMDPs In this section, we formulate Problem 1 and Problem 2 as finding saddle points of a nonconvex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we propose an algorithm based on solving a nonconvex optimization problem to compute such saddle points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We emphasize (see Remark 1) that we compute M-FSC for POMDPs by computing memoryless policies σ on larger product POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Indeed, in the remainder of the paper, we reason directly on the product POMDP, which is the product of a POMDP and an FSC, and it yields a POMDP with state memory pairs [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Substituting Visitation Counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We eliminate the (infinite) time dependency in Hγ σ and the matching condition by a substitution of variables involving the policy-induced discounted state visitation count µγ σ : S �→ R+ and state-action visitation count νγ σ : S×A �→ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For a policy σ, state s, and action α, the discounted state and state-action visitation counts are defined by µγ σ(s) := ESt[ ∞ � t=1 γt1{St=s}|σ] and νγ σ(s, α) := EAt,St[ ∞ � t=1 γt1{St=s,At=α}|σ], where 1{·} is the indicator function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' From these definitions, it is straightforward to deduce that νγ σ(s, α) = πs,αµγ σ(s), where πs,α = P[At = a|St = s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' It is also straightforward to check that for all s ∈ S and α ∈ A, µγ σ(s) ≥ 0, νγ σ(s, α) ≥ 0, and µγ σ(s) = � α∈A νγ σ(s, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We first provide a concave expression for the discounted causal entropy Hγ σ as a 7 function of the visitation counts µγ σ and νγ σ: Hγ σ := �∞ t=0 γtESσ t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Aσ t [− log(πst,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='αt)] = �∞ t=0 � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A −(log πs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)πs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='αγtP[Sσ t = s] = � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A −(log πs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)πs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='αµγ σ(s) = � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A − log νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) µγ σ(s) νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (3) where the first equality is due to the definition of the discounted causal entropy Hγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' the second equality is obtained by expanding the expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The third and fourth equalities follow by the definition of the state visitation count µγ σ, and the state-action visitation count νγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We prove in the appendix that the above expression is indeed concave in the visitation counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Next, we obtain a linear expression in νγ σ for the discounted return expectation Rθ σ as: Rθ σ = ∞ � t=0 � (s,α)∈S×A Rθ(s, α)γtP[Sσ t = s, Aσ t = α] = � (s,α)∈S×A Rθ(s, α)νγ σ(s, α), (4) where the second equality is obtained by the definition of the visitation count νγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The following nonconvex constraint in µγ σ(s) and σz,α ensures observation-based policies: νγ σ(s, α) = µγ σ(s) � z∈Z O(z|s)σz,α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (5) Finally, the variables for the discounted visitation counts must satisfy the so-called Bellman flow constraint [9] to ensure that the policy is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For each state s ∈ S, µγ σ(s) = µ0(s) + γ � s′∈S � α∈A P(s|s′, α)νγ σ(s′, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (6) Saddle Point Formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Computing a policy σ that satisfies the return matching constraint Rθ σ = ¯Rθ might be infeasible due to ¯Rθ being an empirical estimate from the finite set of demonstrations D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Additionally, the feature matching constraint might also be infeasible due to the information asymmetry between the expert and the learner, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', the expert has full observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We build on a saddle point computation problem to incorporate the return matching constraints into the objective of the forward problem, similar to other IRL algorithms in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, the desired weight vector θ and policy σ of Problem 1 and Problem 2 are the solutions of minθ f(θ) := maxσ Hγ σ +(Rθ σ − ¯Rθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The function f corresponds to the inner optimization problem when the reward parameter is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, f(θ) computes a policy σ that maximizes the sum Hγ σ + Rθ σ of the causal 8 Algorithm 1 Compute the weight vector θ and policy σ solution of the Lagrangian relaxation of the IRL problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Input: Feature expectation ¯Rφ from D, initial weight θ0, step size η : N �→ R+, and (if available) a priori side information ϕ and λ ∈ [0, 1] imposing Prσ M(ϕ) ≥ λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1: σ0 ← uniform policy ▷ Initialize uniform policy 2: for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , do ▷ Compute θ via gradient descent 3: σk+1 ← SCPForward(θk, σk, ϕ, λ) ▷ Solve the forward problem (7)–(9) with optional ϕ and λ 4: θk+1 ← θk − η(k)∇θf(θk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' σk+1) ▷ Gradient step 5: end for 6: return σk, θk entropy and the current estimate of the reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In other words, f(θ) returns the solution to the forward problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', finding optimal policy on the POMDP when the entropy term is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Algorithm 1 updates the reward weights by using gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Initially, the policy σ0 is a random uniform variable and the weight θ0 is a nonzero vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' At iteration k ≥ 0, the policy σk+1 = arg maxσ Hγ σ + (Rθk σ − ¯Rθk) is the optimal policy on the POMDP under the current reward estimate Rθk given by θk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, σk+1 is the solution to the forward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, to update the weight θ, Algorithm 1 computes the gradient ∇θf with respect to θ as follows: ∇θf(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' σ) = � s,α∈S×A νγ σ(s, α)∇θRθ(s, α) − 1 N � bτ ∈D � bi∈bτ γi � s∈S bi(s)∇θRθ(s, αi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We develop the algorithm SCPForward, presented in next section, to solve the forward problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', computing σk+1 given θk, in an efficient and scalable manner while incorporating high-level task specifications to guide the learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Nonconvex Formulation of the Forward Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given a weight vector θk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' we take advantage of the obtained substitution by the expected visitation counts to formulate the forward problem associated to Problem 1 as the nonconvex optimization problem: maximize µγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='νγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A − log νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) µγ σ(s) νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) + � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A Rθk(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α)νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) (7) subject to (5) − (6),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ∀(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) ∈ S × A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' µγ σ(s) ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (8) ∀(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) ∈ S × A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' µγ σ(s) = � α∈A νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (9) where the source of nonconvexity is from (5),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' and we remove the constant − ¯Rθk from the cost function of the above optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Sequential Linear Programming Formulation We develop an algorithm, SCPForward, adapting a sequential convex program- ming (SCP) scheme to efficiently solve the nonconvex forward problem (7)–(9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In- deed, SCPForward involves a verification step to compute sound policies and visi- tation counts, which is not present in the existing SCP schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Additionally, we de- scribe in the next section how to take advantage of high-level task specification (Prob- lem 2) through slight modifications of the obtained optimization problem solved by SCPForward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Linearizing Nonconvex Optimization Problem SCPForward iteratively linearizes the nonconvex constraints in (5) around a pre- vious solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, the linearization may result in an infeasible or unbounded linear subproblem [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We first add slack variables to the linearized constraints to ensure feasibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The linearized problem may not accurately approximate the non- convex problem if the solutions to this problem deviate significantly from the previous solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, we utilize trust region constraints [25] to ensure that the linearization is accurate to the nonconvex problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' At each iteration, we introduce a verification step to ensure that the computed policy and visitation counts are not just approximations but actually satisfy the nonconvex policy constraint (5), improves the realized cost function over past iterations, and satisfy the temporal logic specifications, if available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Linearizing Nonconvex Constraints and Adding Slack Variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We linearize the nonconvex constraint (5), which is quadratic in µγ σ(s) and σz,α, around the previously computed solution denoted by ˆσ, µγ ˆσ, and νγ ˆσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, the linearized constraints may be infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We alleviate this drawback by adding slack variables ks,α ∈ R for (s, α) ∈ S × A, which results in the affine constraint: νγ σ(s, α) + ks,α = µγ ˆσ(s) � z∈Z O(z|s)σz,α + (10) � µγ σ(s) − µγ ˆσ(s) � � z∈Z O(z|s)ˆσz,α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Trust Region Constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The linearization may be inaccurate if the solution deviates significantly from the previous solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We add following trust region constraints to alleviate this drawback: ∀(z, α) ∈ Z × A, ˆσz,α/ρ ≤ σz,α ≤ ˆσz,αρ, (11) where ρ is the size of the trust region to restrict the set of allowed policies in the lin- earized problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We augment the cost function in (7) with the term −β � (s,α)∈S×A ks,α to ensure that we minimize the violation of the linearized constraints, where β is a large positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 10 Linearized Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, by differentiating x �→ x log x and y �→ x log(x/y), we obtain the coefficients required to linearize the convex causal entropy cost function in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, we obtain the following linear program (LP): maximize µγ σ,νγ σ,σ � (s,α)∈S×A − � βks,α − �νγ ˆσ(s, α) µγ ˆσ(s) � µγ σ(s) + � log νγ ˆσ(s, α) µγ ˆσ(s) + 1 � νγ σ(s, α) � + � (s,α)∈S×A Rθk(s, α)νγ σ(s, α) (12) subject to (6), (8) − (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Verification Step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' After each iteration, the linearization might be inaccurate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e, the resulting policy ˜σ and potentially inaccurate visitation counts ˜νγ ˜σ, ˜µγ ˜σ might not be fea- sible to the nonconvex policy constraint (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As a consequence of the potential infea- sibility, the currently attained (linearized) optimal cost might significantly differ from the realized cost by the feasible visiation counts for the ˜σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Additionally, existing SCP schemes linearizes the nonconvex problem around the previously inaccurate solutions for ˜νγ ˜σ, and ˜µγ ˜σ, further propagating the inaccuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The proposed verification step solves these issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Given the computed policy ˜σ, SCPForward computes the unique and sound solution for the visitation count µγ ˜σ by solving the corresponding Bellman flow constraints: µγ ˜σ(s) =µ0(s) + γ � s′∈S � α∈A P(s|s′, α)µγ ˜σ(s′) � z∈Z O(z|s)˜σz,α, (13) for all s ∈ S, and where µγ ˜σ ≥ 0 is the only variable of the linear program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, SCPForward computes νγ ˜σ(s, α) = µγ ˜σ(s′) � z∈Z O(z|s)˜σz,α and the realized cost at the current iteration is defined by C(˜σ, θk) = � (s,α)∈S×A − log νγ ˜σ(s, α) µγ ˜σ νγ ˜σ(s, α) + � (s,α)∈S×A Rθk(s, α)νγ ˜σ(s, α), (14) where we assume 0 log 0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, if the realized cost C(˜σ, θk) does not improve over the previous cost C(ˆσ, θk), the verification step rejects the obtained policy ˜σ, con- tracts the trust region, and SCPForward iterates with the previous solutions ˆσ, µγ ˆσ, and νγ ˆσ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Otherwise, the linearization is sufficiently accurate, the trust region is ex- panded, and SCPForward iterates with ˜σ, µγ ˜σ and νγ ˜σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' By incorporating this verifica- tion step, we ensure that SCPForward always linearizes the nonconvex optimization problem around a solution that satisfies the nonconvex constraint (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Incorporating High-Level Task Specifications Given high-level side information on the agent tasks as the LTL formula ϕ, we first compute the product of the POMDP and the ω-automaton representing ϕ to find the set T ⊆ S of states, called target or reach states, satisfying ϕ with probability 1 by 11 using standard graph-based algorithms as a part of preprocessing step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We refer the reader to [19] for a detailed introduction on how LTL specifications can be reduced to reachability specifications given by T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As a consequence, the probability of satisfying ϕ is the sum of the probability of reaching the target states s ∈ T , which are given by the undiscounted state visitation count µsp σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, Prσ M(ϕ) = � s∈T µsp σ (s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Unless γ = 1, µsp σ ̸= µγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, we introduce new variables µsp σ , νsp σ , and the adequate constraints in the linearized problem (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Incorporating Undiscounted Visitation Variables to Linearized Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We append new constraints, similar to (8), (9), and (10), into the linearized problem (12), where the variables µγ σ, νγ σ, ks,α, µγ ˆσ, νγ ˆσ are replaced by µsp σ , νsp σ , ksp s,α, µsp ˆσ , νsp ˆσ , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, we add the constraint µsp σ (s) = µ0(s) + � s′∈S\\T � α∈A P(s|s′, α)νsp σ (s′, α), (15) which is a modification of the Bellman flow constraints such that µsp σ (s) for all s ∈ T only counts transitions from non-target states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, we penalize the introduced slack variables for feasibility of the linearization by augmenting the cost function with the term −β � (s,α)∈S×A ksp s,α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Relaxing Specification Constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' To incorporate the probability of satisfying the specifications, We add the following constraint to the linearized problem: (spec) := � s∈T µsp σ (s) + Γsp ≥ λ, (16) where we introduce Γsp ≥ 0 as a slack variable ensuring that the linearized problem is always feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, we augment the cost function with −βspΓsp to penalize violating ϕ, where βsp is a positive hyperparameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Updating Verification Step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We modify the previously-introduced realized cost C(˜σ, θk) to penalize when the obtained policy does not satisfy the specification ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This cost also accounts for the linearization inaccuracy of the new policy constraint due to σ, µsp σ , and νsp σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' At each iteration, SCPForward computes the accurate µsp ˜σ of current pol- icy ˜σ through solving a feasibility LP with constraints given by the modified Bellman flow constraints (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, it augments Csp ˜σ = min{0, (� s∈T µsp ˜σ (s) − λ)βsp} to the realized cost to take the specification constraints into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Convergence to Local Optimum Solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The convergence guarantees of the pro- posed sequential convex scheme with trust regions follow straightforwardly from the general convergence of sequential convex programming (SCP) schemes as proved in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='14 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='7 of [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, weak convergence is ensured as the SCP algorithm generates a set of convergent subsequences, all of which satisfy the first-order conditions [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This is not convergence in its strict sense due to potential oscillation between several limit points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Still, surprisingly most of the convergence 12 Algorithm 2 SCPForward: Linear programming-based algorithm to solve the for- ward problem (7)–(9), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', compute a policy σk+1 that maximizes the causal entropy, considers the matching constraint, and satisfies the specifications, if available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Input: Current weight estimate θk, current best policy ˆσ = σk, side information ϕ and λ, trust region ρ > 1, penalization coefficients β, βsp ≥ 0, constant ρ0 to expand or contract trust region, and a threshold ρlim for trust region contraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1: Find µγ ˆσ via linear constraint (13) and νγ ˆσ = µγ ˆσ(s′) � z∈Z O(z|s)ˆσz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' given ˆσ ▷ Realized visitation counts 2: Find µsp ˆσ via linear constraint (15) with νsp ˆσ = µsp ˆσ (s′) � z∈Z O(z|s)ˆσz,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' given ˆσ ▷ If ϕ is available 3: Compute the realized cost C(ˆσ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' θk) ← (14) + Csp ˆσ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' given ˆσ ▷ Add specifications’ violation 4: while ρ > ρlim do ▷ Trust region threshold 5: Find optimal ˜σ to the augmented LP (12) via ˆσ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' µγ ˆσ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' νγ ˆσ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' µsp ˆσ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' νsp ˆσ ▷ We augment the LP with constraints (8),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (9),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (10),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (15),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' and (16) induced by µsp σ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' νsp σ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' and by adding −β � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A ksp s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α − βspΓsp to the cost (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6: Compute the realized µγ ˜σ, νγ ˜σ,µsp ˜σ , νsp ˜σ , and C(˜σ, θk) via ˜σ as in lines 1–3 7: {ˆσ ← ˜σ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ρ ← ρρ0} if C(˜σ, θk) ≥ C(ˆσ, θk) else {ρ ← ρ/ρ0} ▷ Verification step 8: end while 9: return σk+1 := ˆσ claims of nonlinear optimization schemes fall into this category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Furthermore, under the right regularity assumptions on the cost function, the authors of [25] proved that SCP schemes with trust regions can converge to a local optimum solution with a super- linear convergence rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Numerical Experiments We evaluate the proposed IRL algorithm on several POMDP instances from [35], and a simulated wheeled ground robot operating in a high-fidelity, continuous, and 3-D Unity simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We first compare our IRL algorithm with a straightforward variant of GAIL [30] adapted for POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we provide results on the data-efficiency of the proposed approach when taking advantage of side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, we demonstrate the scalability of the routine SCPForward for solving the forward prob- lem through comparisons with state-of-the-art solvers such as SolvePOMDP [36], SARSOP [37], PRISM-POMDP [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We provide the code for reproducibility of the results in this paper at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='com/wuwushrek/MCE IRL POMDPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Simulation on Hand-Crafted POMDP Instances We first evaluate the proposed IRL algorithm on several POMDP instances ex- tracted from the work [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 13 1 2 3 4 5 6 9 12 7 10 13 8 11 14 Figure 1: Some examples from the benchmark set provided in [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' From left to right, we have the Maze, Avoid, and Evade environments, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Benchmark Set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The POMDP instances are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Evade is a turn-based game where the agent must reach a destination without being intercepted by a faster player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In Avoid, the agent must avoid being detected by two other moving players following certain preset, yet unknown routes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In Intercept, the agent must intercept another player who is trying to exit a gridworld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In Rocks, the agents must sample at least one good rock over the several rocks without any failures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In Obstacle, an agent must find an exit in a gridworld without colliding with any static obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In these instances, the agent only observes a fixed radius around its current position, see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, in Maze, the agent must exit a maze as fast as possible while observing only the walls around it and should not get stuck in any of the trap states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Variants of Learned Policies and Experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We refer to four types of policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The type of policy depends on whether it uses side information from a temporal specifi- cation ϕ or not, and whether it uses a memory size M = 1 or M = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We also consider two types of experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The first expert has full information about the envi- ronment and computes an optimal policy in the underlying MDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The second expert has partial observation and computes a locally optimal policy in the POMDP with a memory size of M = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Recall that the agent always has partial information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' There- fore, the first type of expert corresponds to having information asymmetry between the learning agent and expert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, we consider as a baseline a variant of GAIL where we learn the policy on the MDP without side information, and extend it to POMDPs via an offline computation of the belief in the states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we find the optimal policy on the MDP by solving the convex optimization problem corresponding to the forward problem on MDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The resulting policy is a state-based policy that needs to be transformed in order to act on a POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The transformation is done by exploiting the expert demonstrations to construct a belief state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, the trajectories τ of the expert are used in a Bayesian belief updates (1) to estimate the probability of being in each state of the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, by combining the computed belief and the state-based policy, we obtain an observation-based policy for the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Doing so could provide a significant advantage to the GAIL variant since the state-based policy is the optimal policy on the MDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, despite the high performance in practice, the policy on the POMDP is generally suboptimal, even if the MDP policy were optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We discuss the effect of side information and memory in the corresponding policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' While we detail only on the Maze example, where the agent must exit a maze as fast as possible, we observe similar patterns for other examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Detailed results for the other examples are provided in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 14 A low state-space Avoid instance 0 1 2 3 4 5 x=0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='y=0 0 X=2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='y=2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='d=E X=0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='y=4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='d=E 1 west east 2 north south 3 adv placement 5 XA low state-space Evade instance 0 1 2 3 4 5 x=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='y=0 0 x=2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='y=3 1 scan adv 2 north east 3 placement west south 4 5 XNo information asymmetry Under information asymmetry GAIL 0 25 50 75 100 −20 0 20 40 60 Finite-memory policy Without side information Rθ σ 0 25 50 75 100 Memoryless policy 0 25 50 75 100 −20 0 20 40 60 Time Steps With side information Rθ σ 0 25 50 75 100 Time Steps Figure 2: Representative results on the Maze example;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' each sub-figure represents the average accumulated reward under the true reward function (Rθ σ) over 1000 runs as a function of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Compare the two rows: The policies in the top row that do not utilize side information suffer a performance drop under information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, in the bottom row, the performance of policies incorporating side information into learning does not decrease under information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Compare the two columns: The performance of the finite-memory policies in the left column is significantly better than memoryless policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Except for the memoryless policies without side information, our algorithm outperforms GAIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The expert reward on the MDP is in average 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='22, while we obtain the value 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 for an expert acting on the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Maze Example The POMDP M is specified by S = {s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , s14} corresponding to the cell labels in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An agent in the maze only observes whether or not there is a wall (in blue) in a neighboring cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' That is, the set of observations is O = {o1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' , o6, o7}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, o1 corresponds to observing west and north walls (s1), o2 to north and south walls (s2, s4), and o5 to east and west walls (s6, s7, s8, s9, s10, s11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The observations o6 and o7 denote the target state (s13) and bad states(s12, s14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The transition model is stochastic with a probability of slipping p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, the states s13 and s14 lead to the end of the simulation (trapping states).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the IRL experiments, we consider three feature functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We penalize taking more steps with φtime(s, α) = −1 for all s, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We provide a positive reward when reaching s13 with φtarget(s, α) = 1 if s = s13 and φtarget(s, α) = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We penalize bad states s12 and s14 with φbad(s, α) = −1 if s = s12 or s = s14, and φbad(s, α) = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, we have the LTL formula ϕ = G ¬ bad as the task specification, where bad is an atomic proposition that is true if the current state s = s12 or s = s14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We constrain the learned policy to satisfy Prσ M(G ¬ bad) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Side Information Alleviates the Information Asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 2 shows that if there is an information asymmetry between the learning agent and the expert, the policies that do not utilize side information suffer a significant performance drop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The policies 15 With side information Without side information GAIL 0 75 150 225 300 −20 0 20 40 Time Steps Total Reward Figure 3: Representative results on the Avoid example showing the reward of the policies under the true reward function (Rθ σ) versus the time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' that do not incorporate side information into learning obtain a lower performance by 57% under information asymmetry, as shown in the top row of Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, as seen in the bottom row of Figure 2, the performance of the policies that use side information is almost unaffected by the information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Memory Leads to More Performant Policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The results in Figure 2 demonstrate that incorporating memory into the policies improves the performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', the attained reward, in all examples, both in solving the forward problem and learning policies from expert demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Incorporating memory partially alleviates the effects of information asymmetry, as the performance of the finite-memory policy decreases by 18% under information asymmetry as opposed to 57% for the memoryless policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We see that in Table 1, incorporating memory into policy on the Maze and Rocks benchmarks, allows SCPForward to compute policies that are almost optimal, evi- denced by obtaining almost the same reward as the solver SARSOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Side Information Improves Data Efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 4 shows that even on a low data regime, learning with task specifications achieves significantly better performance than without the task specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 5 10 15 20 30 40 Number of trajectories Total reward Without LTL With LTL Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Rew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' POMDP 5 10 15 40 42 44 46 Number of trajectories Figure 4: We show the data efficiency of the proposed approach through the total reward obtained by the learned policies as a function of the number of expert demonstrations (No information asymmetry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The figure on the left shows the performance of learning memoryless policies, while the figure on the right shows the performance of a 5-FSC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 16 SCPForward SARSOP SolvePOMDP Problem |S| |S × O| |O| Rθ σ Time (s) Rθ σ Time (s) Rθ σ Time (s) Maze 17 162 11 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='24 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='33 Maze (3-FSC) 49 777 31 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='6 NA NA NA NA Maze (10-FSC) 161 2891 101 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='04 NA NA NA NA Obstacle[10] 102 1126 5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='71 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='79 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='02 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='05 3600 Obstacle[10](5-FSC) 679 7545 31 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='77 38 NA NA NA NA Obstacle[25] 627 7306 5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='59 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='22 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='05 3600 Rock 550 4643 67 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='68 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='05 − − Rock (3-FSC) 1648 23203 199 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='8 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 NA NA − − Rock (5-FSC) 2746 41759 331 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='82 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='84 NA NA − − Intercept[5, 2, 0] 1321 5021 1025 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='28 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='71 − − Intercept[5, 2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1] 1321 7041 1025 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='81 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='18 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='81 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='19 − − Evade[5, 2, 0] 2081 13561 1089 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='3 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='3 3600 − − Evade[5, 2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1] 2081 16761 1089 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='79 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='28 3600 − − Evade[10, 2, 0] 36361 341121 18383 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='97 3600 − − − − Avoid[4, 2, 0] 2241 5697 1956 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='86 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='74 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='86 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='19 − − Avoid[4, 2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1] 2241 8833 1956 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='86 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='63 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='86 210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='47 − − Avoid[7, 2, 0] 19797 62133 3164 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='72 3503 − − − − Table 1: Results for the benchmark sets for solving the forward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On larger benchmarks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Evade and Avoid), SCPForward can compute locally optimal policies, while the other solvers fail to provide solutions in the given time limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the environments Obstacle[n], Intercept[n, r, slip], Evade[n, r, slip], and Avoid[n, r, slip], the parameters n, r, and slip are the size of the gridworld, the view radius of the agent, and the probability of slippery, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We set the time-out to 3600 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' An empty cell (denoted by −) represents the solver failed to compute any policy before the time-out, while NA refers to not applicable due to the approach being based on belief updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Side Information Improves Performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, in a more complicated environ- ment such as Avoid, Figure 3 shows that task specifications are crucial to hope even to learn the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, Avoid[n, r, slip] is a turn-based game, where the agent must reach an exit point while avoiding being detected by two other moving players following certain predefined yet unknown routes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The agent can only observe the play- ers if they are within a fixed radius from the agent’s current position when the action scan is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, with the players’ speed being uncertain, their position in the routes can not be inferred by the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The parameters n, r, and slip specify the dimension of the grid, the view radius, and the slippery probability, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We consider four feature functions to parameterize the unknown reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The first feature provides a positive reward to the agent upon reaching the exit point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The second feature penalizes the agent if it collides with a player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The third feature penalizes the agent if it is detected by a player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The fourth feature imposes a penalty cost for each action taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We encode the side information as the temporal logic task specification avoid being detected until reaching the exit point with probability greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 3 shows that the algorithm is unable to learn without side information while side information induces a learned policy that is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, the learned policy without side information seems to only focus on avoiding being detected and collision as the corresponding learned features were close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 17 Figure 5: Left: A simulated Clearpath Warthog operating in a Unity simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Right: A demonstration provided by an expert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' SCPForward Yields Better Scalability We highlight three observations regarding the scalability of SCPForward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' First, the results in Table 1 show that only SARSOP is competitive with SCPForward on larger POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' SolvePOMDP runs out of time in all but the smallest benchmarks, and PrismPOMDP runs out of memory in all benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Most of these approaches are based on updating a belief over the states, which for a large state space can become extremely computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Second, in the benchmarks with smaller state spaces, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Maze and Rock, SARSOP can compute policies that yield better performance in less time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This is due to the effi- ciency of belief-based approaches on small-size problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, SARSOP does not scale to larger POMDPs with a larger number of states and observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, by increasing the number of transitions in Intercept benchmark from 5021 to 7041, the computation time for SARSOP increases by 516%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, the increase of the computation time of SCPForward is only 28%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Third, on the largest benchmarks, including tens of thousands of states and obser- vations, SARSOP fails to compute any policy before time-out, while SCPForward found a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, we also note that SCPForward can also compute a policy that maximizes the causal entropy and satisfies an LTL specification, unlike SARSOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Simulation on a Ground Robot We demonstrate an application of the proposed algorithm in a continuous 3-D Unity environment containing a ClearPath warthog operating in a semi-structured village.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A screen shot of the robot operating in this environment and its corresponding trajectory can be seen in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This environment contains a variety of obstacles including buildings, trees, and vehicles as well as three terrain types describing our features, φ, grass, gravel, and road.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The simulated environment operates in a state space consisting of 3350 states, 33254 transitions and 944 total observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This simulation is used to 18 0 5 10 15 20 25 30 0 10 20 30 grass gravel road unknown Figure 6: Gridworld representation of the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The figure shows the area of the unity environment where we applied the developed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' gather data for training, and test an agent’s ability to follow a policy from the learned reward function in two experimental scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In this experiment, we demonstrate the agent’s ability to learn a reward function from demonstrations that are sub-optimal with respect to a known, true reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We also show how the learned policies perform compared to the optimal policies with full and partial observations obtained by solving the MDP or POMDP problem with the true reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The ground vehicle contains an autonomy stack consisting of three main subsys- tems—mapping, perception, and planning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The mapping subsystem based on Omni- Mapper[?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ] performs simultaneous localization and mapping (SLAM) using LiDAR and IMU sensors, providing a map used during planning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The perception subsystem provides pixel level semantic segmentation for each image in a video stream from a RGB camera to an ontology of terrain and object classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Each semantic image is passed to a terrain projection algorithm which builds N binary occupancy feature maps of the known environment used for reward learning where N is the number of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The planning subsystem uses the maps produced from previous subsystems and the trajectory from a learned policy to autonomously navigate to a waypoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Expert Demonstrations and Reward Feature Encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We collected 10 demonstra- tions of an expert teleoperating a robot to a predetermined waypoint (see Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The expert has an implicit preference to traverse the road followed by grass, and lastly gravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Consequently, we encode the unknown reward function as a linear combination of known features: Rθ = θ1φroad + θ2φgravel + θ3φgrass + θ4φtime + θ5φgoal, where φi returns a value of 0 when the feature of the corresponding state is not feature i, or 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In order to incentivize the shortest path, the feature time penalizes the number of actions taken in the environment before reaching the waypoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further- 19 (a) The trajectories resulting from executing each policy with and without task specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The learner exploit- ing task specifications (orange) is able to reach one of the target states, while avoiding the gravel along the path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In contrast, the learner without side information (purple) fails to avoid the gravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 0 100 200 300 −20 0 20 Expert MDP Expert POMDP With LTL Without LTL (b) Evolution of the cumulative reward obtained by the learner as a function of the number of environment inter- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Expert MDP and Expert POMDP are the opti- mal policies on the MDP and POMDP, respectively for the ground truth reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 7: Impact of incorporating task specifications into reward learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' more, goal provides a positive reward upon reaching the waypoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For comparisons of the learned policy, we use the values θ = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2, −30, −2, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='5, 50] as the ground truth reward weight vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We emphasize that the demonstrations are sub-optimal with respect to the above ground truth reward as the vehicle often traverses gravel, corresponding to a high penalty reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Modeling Robot Dynamics as POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' From a ground truth map of the environment in the simulation, we obtain a high-level MDP abstraction of the learner’s behavior on the entire state space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we impose a partial observability of the robot as follows: The robot does not see the entire map of the world but only see a fixed radius r = 4 (in terms of the number of grid cells) around its current position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Furthermore, we also incorporate uncertainty on the sensor classification of terrain features such that with probability p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='9 the prediction is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Task Specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In addition to the expert demonstrations, we constrain the learned policy to satisfy Prσ M(¬ gravel U goal) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='9, where gravel is an atomic proposition that is true for states having gravel as its feature, and goal is an atomic proposition that is true at each target state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Note that this side information does not necessarily enforce that the learner should reach the set of target states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Instead, if the learner reaches the target state, it should not drive on gravel with probability at least Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 7a shows how the learner with side information avoids the gravel com- pared to the learner without side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 7b further illustrates this result by empirically demonstrating that the proposed approach can efficiently take advantage of side information to compute policies that matches the expert’s desired behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, Figure 7b shows that the gain in the total reward of a learner without side 20 information increases by 294% with respect to a learner with side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ad- ditionally, it is important to note in Figure 6 how the initial state distribution of the demonstrator trajectories is different from the initial state distribution during the eval- uation of the learned policies (Figure 7a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Nevertheless, despite these distinctions, the learned policies can effectively navigate toward points present in the expert demonstra- tions and then maximally mimic these trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Related work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The closest work to ours is by [34], where they extend classical maximum-margin- based IRL techniques for MDPs to POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, even on MDPs, maximum- margin-based approaches cannot resolve the ambiguity caused by suboptimal demon- strations, and they work well when there is a single reward function that is clearly better than alternatives [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In contrast, we adopt causal entropy that has been shown [39, 10] to alleviate these limitations on MDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, [34] rely on efficient off-the-shelf solvers to the forward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Instead, this paper also develops an algorithm that outperforms off-the-shelf solvers and can scale to POMDPs that are orders of magni- tude larger compared to the examples in [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, [34] do not incorporate task specifications in their formulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' One of the basic challenges in IRL, is that finding a reward function and a policy that induces a similar behavior to the expert is an ill-defined problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Prior work has addressed this challenge using maximum margin formulations [40, 41, 42], as well as probabilistic models to compute a likelihood of the expert demonstrations [43, 8, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We build on the latter approach and build on the maximum-causal-entropy IRL [9, 10, 23], which brings algorithmic benefits to IRL in POMDPs as mentioned in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We note that these maximum-causal-entropy IRL techniques assume that both the expert and the agent can fully observe the environment, and these approaches only apply for MDPs as opposed to POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' IRL under partial information has been studied in prior work [2, 44, 45, 46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Reference [44] considers the setting where the features of the reward function are par- tially specified as opposed to having partial information over the state of the environ- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The work in [2] considers a special case of POMDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' It only infers a distribution over the future trajectories of the expert given demonstrations as opposed to computing a policy that induces a similar behavior to the expert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The works in [45, 46, 47] assume that the states of the environment are either fully observable, or fully hidden to the learning agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Therefore, these approaches also consider a special case of POMDPs, like in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We also note that none of these methods incorporate side information into IRL and do not provide guarantees on the performance of the policy with respect to a task specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The idea of using side information expressed in temporal logic to guide and aug- ment IRL has been explored in some previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In [48, 22], the authors incor- porate side information as in temporal logic specification to learn policies that induce a behavior similar to the expert demonstrations and satisfies the specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Refer- ence [21] iteratively infers an underlying task specification that is consistent with the expert demonstrations and learns a policy and a reward function that satisfies the task 21 specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, these methods also assume full information for both the expert and the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Conclusion We develop an algorithm for inverse reinforcement learning under partial obser- vation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We empirically demonstrate that by incorporating task specifications into the learning process, we can alleviate the information asymmetry between the expert and the learner while increasing the data efficiency of the learning scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, we empirically demonstrate that our main routine SCPForward, used inside the IRL al- gorithm, solves the forward problem in a scalable manner and outperforms state-of- the-art POMDP solvers on instances with a large number of states, observations, and transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Work Limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This work assumes that the transition and observation functions of the POMDP are known to the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Future work will investigate removing this assumption and developing model-free-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We will also integrate the framework with more expressive neural-network-based reward functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='. Research was sponsored by the Army Research Laboratory and Office of Naval Research accomplished under cooperative agreement number(s) ARL W911NF-20-2-0132, ARL W911NF-19-2-0285 and ONR N00014-22-1-2254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' either expressed or implied, of the Army Research Laboratory, Office of Naval Research, or the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Government.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Government is authorized to reproduce and distribute reprints for Government purposed notwithstanding any copyright notation herein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' References [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Abbeel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Coates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ng, Autonomous Helicopter Aerobatics Through Apprenticeship Learning, The International Journal of Robotics Research 29 (13) (2010) 1608–1639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kitani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ziebart, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hebert, Activity Forecasting, in: European Conference on Computer Vision, Springer, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 201–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hadfield-Menell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Russell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Abbeel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Dragan, Cooperative Inverse Reinforcement Learning, in: NIPS, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Dragan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Srinivasa, A Policy-Blending Formalism for Shared Control, The International Journal of Robotics Research 32 (7) (2013) 790–805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Osa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Sugita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Mitsuishi, Online Trajectory Planning in Dynamic Envi- ronments for Surgical Task Automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', in: Robotics: Science and Systems, Citeseer, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 22 [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Osa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Sugita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Mitsuishi, Online Trajectory Planning and Force Control for Automation of Surgical Tasks, IEEE Transactions on Automation Science and Engineering 15 (2) (2017) 675–691.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Levine, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Abbeel, Guided Cost Learning: Deep Inverse Optimal Con- trol via Policy Optimization, in: International conference on machine learning, PMLR, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 49–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ziebart, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Maas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Dey, Maximum Entropy Inverse Reinforcement Learning, in: AAAI, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 8, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1433–1438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [9] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bloem, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bambos, Infinite Time Horizon Maximum Causal Entropy Inverse Reinforcement Learning, IEEE Transactions on Automatic Control 63 (9) (2017) 2787–2802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ziebart, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Dey, Modeling Interaction via the Principle of Maximum Causal Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Png, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hsu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Lee, Pomdps for robotic tasks with mixed observability, in: Robotics: Science and Systems, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 5, 2009, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bai, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hsu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Lee, Integrated Perception and Planning in the Continuous Space: A POMDP Approach, The International Journal of Robotics Research 33 (9) (2014) 1288–1302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Sinapov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wei, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Stone, Robot Behavioral Exploration and Mul- timodal Perception using POMDPs, in: AAAI Spring Symposium on Interactive Multisensory Object Perception for Embodied Agents, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [14] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Akash, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Polson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Reid, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Jain, Improving Human-Machine Collabora- tion Through Transparency-based Feedback–Part I: Human Trust and Workload Model, IFAC-PapersOnLine 51 (34) (2019) 315–321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [15] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Datta, Modeling Context Aware Dynamic Trust Using Hidden Markov Model, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 26, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Vlassis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Littman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Barber, On the computational complexity of stochastic controller optimization in pomdps, ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Theory 4 (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [17] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Madani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hanks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Condon, On the Undecidability of Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision Problems, in: AAAI, AAAI Press, 1999, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 541–548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Littman, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Topcu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Fu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Isbell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' MacGlashan, Environment- Independent Task Specifications via GLTL, arXiv preprint arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='04341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Baier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Katoen, Principles of Model Checking, The MIT Press, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 23 [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Pnueli, The Temporal Logic of Programs, in: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 18th Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Computer Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', USA, 1977, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 46–57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1109/ SFCS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Memarian, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wen, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Topcu, Active Task-Inference-Guided Deep Inverse Reinforcement Learning, in: 2020 59th IEEE Conference on Deci- sion and Control (CDC), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1932–1938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Papusha, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Topcu, Learning from Demonstrations with High-Level Side Information, in: Proceedings of the Twenty-Sixth International Joint Con- ference on Artificial Intelligence, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ziebart, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Dey, The Principle of Maximum Causal En- tropy for Estimating Interacting Processes, IEEE Transactions on Information Theory 59 (4) (2013) 1966–1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [24] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Yuan, Recent Advances in Trust Region Algorithms, Mathematical Pro- gramming 151 (1) (2015) 249–281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Mao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Szmuk, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ac¸ikmese, Successive convexification: A super- linearly convergent algorithm for non-convex optimal control problems, arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='06539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Yu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bertsekas, On Near Optimality of the Set of Finite-State Controllers for Average Cost POMDP, Mathematics of Operations Research 33 (1) (2008) 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Junges, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Jansen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wimmer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Quatmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Winterer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Katoen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Becker, Finite-State Controllers of POMDPs using Parameter Synthesis, in: Proceedings of UAI, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 519–529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [28] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Meuleau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kim, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kaelbling, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Cassandra, Solving POMDPs by searching the space of finite policies, in: UAI, 1999, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 417–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [29] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Amato, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bernstein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Zilberstein, Optimizing Fixed-Size Stochastic Con- trollers for POMDPs and Decentralized POMDPs, AAMAS 21 (3) (2010) 293– 320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ho, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ermon, Generative adversarial imitation learning, Advances in neural information processing systems 29 (2016) 4565–4573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [31] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Massey, Causality, feedback and directed information, in: Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Theory Applic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' (ISITA-90), Citeseer, 1990, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 303–305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [32] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kramer, Directed Information for Channels with Feedback, Citeseer, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [33] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hansen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Sargent, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Turmuhambetova, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Williams, Robust Control and Model Misspecification, Journal of Economic Theory 128 (1) (2006) 45–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Choi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kim, Inverse Reinforcement Learning in Partially Observable En- vironments, Journal of Machine Learning Research 12 (2011) 691–730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 24 [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Junges, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Jansen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Seshia, Enforcing almost-sure reachability in pomdps, in: International Conference on Computer Aided Verification, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [36] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Walraven, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Spaan, Accelerated Vector Pruning for Optimal POMDP Solvers, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 31, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [37] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kurniawati, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Hsu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Lee, Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', in: Robotics: Science and systems, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 2008, Citeseer, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [38] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Norman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Parker, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Zou, Verification and control of partially observable probabilistic systems, Real-Time Systems 53 (3) (2017) 354–402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [39] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Osa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Pajarinen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Neumann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Abbeel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Peters, An Algorithmic Perspective on Imitation Learning, Foundations and Trends in Robotics 7 (1-2) (2018) 1–179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [40] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ratliff, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bagnell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Zinkevich, Maximum Margin Planning, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 729–736.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Abbeel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ng, Apprenticeship Learning via Inverse Reinforcement Learn- ing, in: Proceedings of the 21st International Conference on Machine Learning, 2004, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Russell, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', Algorithms for Inverse Reinforcement Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', in: Proceedings of the 17th International Conference on Machine Learning, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1, 2000, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [43] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Ramachandran, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Amir, Bayesian Inverse Reinforcement Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', in: IJ- CAI, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 7, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 2586–2591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [44] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Boularias, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kr¨omer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Peters, Structured Apprenticeship Learning, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 227–242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [45] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bogert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Doshi, Multi-Robot Inverse Reinforcement Learning under Occlu- sion with Interactions, in: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, Citeseer, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 173–180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [46] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bogert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Doshi, Toward Estimating Others’ Transition Models under Occlu- sion for Multi-Robot IRL, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' [47] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bogert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Lin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Doshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Kulic, Expectation-Maximization for Inverse Reinforcement Learning with Hidden Data, in: Proceedings of the 2016 Inter- national Conference on Autonomous Agents & Multiagent Systems, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 1034–1042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 25 [48] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Papusha, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Wen, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Topcu, Inverse Optimal Control with Regular Language Specifications, in: 2018 Annual American Control Conference (ACC), IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 770–777.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Appendices In this appendix, we provide supplementary derivations for the results in the paper and more details on the numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Concavity of Causal Entropy and Derivations of the Bellman Constraints In this section, we first recall the obtained expression of the causal entropy Hγ σ as a function of the visitation counts µγ σ and νγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We then prove the concavity of the causal entropy, which enables convex-optimization-based formulation of the task-guided in- verse reinforcement learning (IRL) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we provide additional details on the derivation of the affine constraint implied by the Bellman flow constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Concave Causal Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We first recall the definitions of the state and state-action visitation counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For a policy σ, state s, and action α, the discounted state visitation counts are defined by µγ σ(s) ≜ ESt[�∞ t=1 γt1{St=s}] and the discounted state-action visitation counts are defined by νγ σ(s, α) ≜ EAt,St[�∞ t=1 γt1{St=s,At=α}], where 1{·} is the indicator function and t is the time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' From the definitions of the state and state-action visitation counts µγ σ and νγ σ, it is straightforward to deduce that νγ σ(s, α) = σs,αµγ σ(s), where σs,α = P[At = a|St = s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We use the visitation counts to prove in Section 4 that Hγ σ = � (s,α)∈S×A −(log πs,α)πs,αµγ σ(s) = � (s,α)∈S×A − log νγ σ(s, α) µγ σ(s) νγ σ(s, α), where the last inequality is obtained by using that πs,α = νγ σ(s, α)/µγ σ(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We claim that Hγ σ is a concave fucntion of the visitation counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Thus, we want to show that the function f(νγ σ, µγ σ) = � (s,α)∈S×A − log νγ σ(s,α) µγ σ(s) νγ σ(s, α) is concave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' To this end, consider any λ ∈ (0, 1) and the two sets of variables νγ σ, µγ σ and ¯νγ σ, ¯µγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' we have 26 the following result: f(λνγ σ + (1 − λ)¯νγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' λ¯µγ σ + (1 − λ)¯µγ σ) = � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A − log λνγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) + (1 − λ)¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) λµγ σ(s) + (1 − λ)¯µγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) (λνγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) + (1 − λ)¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α)) ≥ � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A −λνγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) log λνγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) λµγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) − (1 − λ)¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) log (1 − λ)¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) (1 − λ)¯µγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) = � (s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='α)∈S×A −λνγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) log νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) µγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) − (1 − λ)¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) log ¯νγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) ¯µγ σ(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' α) = λf(νγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' µγ σ) + (1 − λ)f(¯νγ σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ¯µγ σ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' where the first inequality is obtained by applying to the well-known log-sum inequality,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', x1 log x1 y1 + x2 log x2 y2 ≥ (x1 + x2) log x1 + x2 y1 + y2 , for nonnegative numbers x1, x2, y1, y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we apply the substitution x1 = λνγ σ, y1 = λµγ σ, x2 = (1 − λ)¯νγ σ, and y2 = (1 − λ)¯µγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Note that the inequality f(λνγ σ + (1 − λ)¯νγ σ, λ¯µγ σ + (1 − λ)¯µγ σ) ≥ λf(νγ σ, µγ σ) + (1 − λ)f(¯νγ σ, ¯µγ σ) implies that f(νγ σ, µγ σ) is concave in νγ σ, and µγ σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Bellman Flow Constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For the visitation count variables to correspond to a valid policy generating actions in the POMDP M , νγ σ and µγ σ must satisfy the bellman flow constraint given by µγ σ(s) = ESσ t � ∞ � t=0 γt1{Sσ t =s} � = µ0(s) + γESσ t � ∞ � t=0 γt1{Sσ t+1=s} � = µ0(s) + γ ∞ � t=0 � s′∈S � α∈A γtP(s|s′, α)P[Sσ t = s′, Aσ t = α] = µ0(s) + γ � s′∈S � α∈A P(s|s′, α)νγ σ(s′, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Experimental Tasks In this section, we first provide a detailed description of the POMDP models used in the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The simulations on the benchmark examples empirically demon- strate that side information alleviates the information asymmetry, and more memory leads to more performant policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we provide additional numerical simulations supporting the claim that SCPForward is sound and yields better scalability than off-the-shelf solvers for the forward problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', computing an optimal policy on a POMDP for a given reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 27 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Computation Resources and External Assets All the experiments of this paper were performed on a computer with an Intel Core i9-9900 CPU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1GHz ×16 processors and 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2 Gb of RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' All the implementations are written and tested in Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='8, and we attach the code with the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Required Tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Our implementation requires Stormpy of Storm [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ] and Gurobipy of Gurobi 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='1 [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On one hand, we use Storm, a tool for model checking, to parse POMDP file specifications, to compute the product POMDP with the finite state con- troller in order to reduce the synthesis problem to the synthesis of memoryless policies, and to compute the set T of target states satisfying a specification ϕ via graph prepro- cessing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' On the other hand, we use Gurobi to solve both the linearized problem in (7) and the feasible solution of the Bellman flow constraint needed for the verification step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Off-The-Shelf Solvers for Forward Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In order to show the scalability of the developed algorithm SCPForward, we compare it to state-of-the-art POMDP solvers SolvePOMDP [36], SARSOP [37], and PRISM-POMDP [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The solver SolvePOMDP implements both exact and approximate value iterations via incremen- tal pruning [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ] combined with state-of-the-art vector pruning methods [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, PrismPOMDP discretizes the belief state and adopts a finite memory strategy to find an approximate solution of the forward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For all the solvers above, we use the default settings except from the timeout enforced to be 3600 seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' These solvers are not provided with our implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, we provide the POMDP models that each of the solvers can straightforwardly use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further details are provided in the readme files of our implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Benchmark Set We evaluate the proposed learning algorithm on several POMDP instances adapted from [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We attached the modified instances in our code with the automatically generated models for each off-the-shelf solver that the reader can straightforwardly use to reproduce Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The reader can refer to Table 1 for the number of states, observations, and transitions of each environment of the benchmark set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In all the examples, we gather 10 trajectories from an expert that can fully observe its current state in the environment and an expert having partial observation of the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Our algorithm learns reward functions from these trajectories under different memory policies and high-level side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 28 Rocks Instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the environment Rocks, an agent navigates in a gridworld to sam- ple at least one valuable rock (if a valuable rock is in the grid) over the two possibly dangerous rocks, without any failures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' When at least one valuable rock has been col- lected, or the agent realizes that all the rocks are dangerous, it needs to get to an exit point to terminate the mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The partial observability is due to the agent can only observe if its current location is an exit point or a dangerous rock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Furthermore, the agent has noisy sensors enabling sampling neighbor cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We consider three feature functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The first feature provides a positive reward when reaching the exit point with at least one valuable rock or no rocks when all of them are dangerous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The second feature provides a negative reward when the agent is at the location of a dangerous rock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Finally, the third feature penalizes each action taken with a negative reward to promote reaching the exit point as soon as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' No information asymmetry Under information asymmetry GAIL 0 75 150 225 300 0 50 100 Finite-memory policy Without side information Rφ σ 0 75 150 225 300 0 50 100 Memoryless policy Rφ σ 0 75 150 225 300 0 50 100 Time Steps With side information Rφ σ 0 75 150 225 300 0 50 100 Time Steps Rφ σ Figure 8: Representative results on the Rock example showing the reward of the policies under the true reward function (Rφ σ) versus the time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We compare scenarios with no side information and the a priori knowledge on the task such as the agent eventually reaches an exit point with a probability greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 8 supports our claim that side information indeed alleviates the informa- tion asymmetry between the expert and the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Additionally, we also observe that incorporating memory leads to more performant policies in terms of the mean accumu- lated reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 29 Obstacle Instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the environment Obstacle[n], an agent must find an exit in a gridworld without colliding with any of the five static obstacles in the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The agent only observes whether the current position is an obstacle or an exit state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The parameter n specifies the dimension of the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Similar to the Rocks example, the agent receives a positive reward if it successfully exits the gridworld and a negative reward for every taken action or colliding with an obstacle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As for the side information, we specify in temporal logic that while learning the reward, the agent should not collide any obstacles until it reaches an exit point with a probability greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='No information asymmetry ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Under information asymmetry ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='−200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Finite-memory policy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Without side ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='information ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Rφ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='−200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Memoryless policy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Rφ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='−200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Time Steps ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='With side ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='information ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Rφ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='−200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Time Steps ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Rφ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='Figure 9: Representative results on the Obstacle example showing the reward of the policies under the true ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='reward function (Rφ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='σ) versus the time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Similar to the Maze and Rock examples, Figure 9 supports our claim that side in- formation alleviates the information asymmetry and memory leads to more performant policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 30 Evade Instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Evade[n, r, slip] is a turn-based game where the agent must reach a destination without being intercepted by a faster player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The player cannot access the top row of the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Further, the agent can only observe the player if it is within a fixed radius from its current location and upon calling the action scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The parameters n, r, and slip specify the dimension of the grid, the view radius, and the slippery probability, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The feature functions are defined such that the agent receives a positive reward if at the destination, a high negative reward if it is intercepted by the player, and a small negative reward for each action taken, including the scan action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' With side information Without side information GAIL 0 25 50 75 100 −10 0 10 20 Time Steps Mean accumulated reward Figure 10: Representative results on the Evade example showing the reward of the policies under the true reward function (Rφ σ) versus the time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As for the side information, we specify in temporal logic that while learning the reward, the agent must reach an exit point with probability greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 10 shows that learning with side information provides higher reward than without side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, there is less randomness in the policy with side information compared to the policy without side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, the standard deviation of the policy with side information is significantly smaller than the policy without side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We did not discuss the impact of different memory size policies in this example since the performance of the memoryless policy is already near-optimal, as the policy obtains the same reward as SARSOP (see Table 1 for a reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we observe that the optimal policy on the underlying MDP yields comparable policies to the optimal memoryless policy on the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As a consequence, we observe that the information asymmetry between the expert and the agent does not hold here either, and the learned policies obtain a similar performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 31 Intercept Instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Intercept[n, r, slip] is a variant of Evade where the agent must intercept another player who is trying to exit the gridworld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The agent can move in 8 directions and can only observe the player if it is within a fixed radius from the agent’s current position when the action scan is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Besides, the agent has a camera that enables it to observe all cells from west to east from the center of the gridworld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In contrast, the player can only move in 4 directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The parameters n, r, and slip specify the dimension of the grid, the view radius, and the slippery probability, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We consider three feature functions to parameterize the unknown reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The first feature provides a positive reward to the agent upon intercepting the player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The second feature penalizes the agent if the player exits the gridworld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The third feature imposes a penalty cost for each action taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' With side information Without side information GAIL 0 25 50 75 100 −10 0 10 20 Time Steps Mean accumulated reward Figure 11: Representative results on the Intercept example showing the reward of the policies under the true reward function (Rφ σ) versus the time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We encode the high-level side information as the temporal logic task specification Eventually intercept the player with probability greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='98, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', the agent should eventually reach an observation where its location coincides with the player’s location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Figure 11 demonstrates that side information does not improve the performance of the policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' This result is because memoryless policies are optimal in this example, and a combination of the given reward features can perfectly encode the temporal logic specifications, similar to the Evade example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Effects of Side Information In this section, we provide additional experiments on how the side information speeds up the learning process in terms of computation time and convergence to the optimal policy and reward parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Then, we quantify the effects of the side infor- mation by solving the POMDPs using only the task specifications and no demonstra- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' All these experiments are performed on the Maze example, which is a relatively low-size POMDP example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 32 Convergence of the Learning With and Without Side Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In the Maze ex- periments, we empirically observe that side information enables the learning algorithm to converge with eight times less number of iterations compared to learning without side information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The number of iterations here denotes both the number of lineariza- tions in the sequential convex scheme and the number of gradient steps during reward updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' However, the gain in computation time is not as prominent as the gain in the number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In fact, learning with side information is only approximately three times faster than learning without side information due to how side information almost doubles the number of variables in the convex optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Effects of Side Information Without Any Demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Experiment 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We consider the exact setting of the Maze example with no demonstrations and the LTL specification Prσ M(G ¬ bad) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Essentially, we seek policies that avoid the trapping states with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Without any additional reward, the optimal policy is exactly what we expect: High probabil- ity for action enforcing no movements and low probability for the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' With respect to the true reward, this is clearly suboptimal as the reward will keep de- creasing due to no minimization of the amount of time spent in the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Now, we optimize the problem for a policy that satisfies the LTL specifications while penalizing spending time in the environment according to the ground truth reward for taking more steps in the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The obtained policy has the op- timal reward of 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='83, which corresponds to optimizing the ground truth reward in the POMDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Indeed, the fastest way to clear the Maze is to exit through a goal state while not getting trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Experiment 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' We consider the exact setting of the Maze example with no demonstrations and the LTL specification Prσ M(E target) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Essentially, we seek policies that eventually reach the target state (exit of the Maze) with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Without any additional reward, the optimal policy is subopti- mal with respect to the optimal policy on the POMDP, given the ground truth reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Indeed, the policy can reach the target with an optimal reward of 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='63 due to the amount of time spent to reach the goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' By adding the reward on time spent in the environment to the LTL specifications, we can obtain the optimal reward on the POMDP again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Summary of the Results Side Information Alleviates the Information Asymmetry .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' As mentioned in the sub- mitted manuscript, side information can indeed alleviate the information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Specifically, we observe that if there is an information asymmetry in the forward prob- lem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=', the obtained reward from an optimal policy on the underlying POMDP is lower than from an optimal policy on the underlying fully observable MDP, incor- porating side information in temporal logic specifications alleviates the information asymmetry between the expert and the agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' For example, we can see the effects of such information asymmetry in the Maze, Rocks, Obstacle, and Avoid examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In 33 these examples, having partial observability reduces the obtained reward in the for- ward problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' The policies that do not incorporate side information into the learning procedure also obtain a lower reward under information asymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Memory Leads to More Performance Policies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' Similarly to the side information, we also observe that if incorporating memory improves the performance of the learned policies, if it also improves the obtained reward in the forward problem, as seen in the Maze, Rocks, and Obstacle instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' In Table 1, we can also see that incorporating memory helps to compute a better optimal policy in these examples, unlike computing a memoryless policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} +page_content=' 34' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19AzT4oBgHgl3EQfRvso/content/2301.01219v1.pdf'} diff --git a/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/2301.01224v1.pdf.txt b/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/2301.01224v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b92abeb9a8ec6805d7feb38fdb127461e2c7837d --- /dev/null +++ b/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/2301.01224v1.pdf.txt @@ -0,0 +1,1827 @@ +An Empirical Investigation into the Use of Image +Captioning for Automated Software Documentation +Kevin Moran†, Ali Yachnes∗, George Purnell∗, Junayed Mahmud†, +Michele Tufano‡, Carlos Bernal Cardenas‡, Denys Poshyvanyk∗, Zach H’Doubler∗ +†George Mason University, VA, USA, ∗William & Mary, VA, USA, ‡Microsoft, WA, USA +kpmoran@gmu.edu, ayachnes@email.wm.edu, gwpurnell@email.wm.edu, jmahmud@gmu.edu +michele.tufano@microsoft.com, carlosbe@microsoft.com, denys@cs.wm.edu, pzhdoubler@email.wm.edu +Abstract—Existing automated techniques for software docu- +mentation typically attempt to reason between two main sources +of information: code and natural language. However, this reason- +ing process is often complicated by the lexical gap between more +abstract natural language and more structured programming +languages. One potential bridge for this gap is the Graphical User +Interface (GUI), as GUIs inherently encode salient information +about underlying program functionality into rich, pixel-based +data representations. This paper offers one of the first com- +prehensive empirical investigations into the connection between +GUIs and functional, natural language descriptions of software. +First, we collect, analyze, and open source a large dataset of +functional GUI descriptions consisting of 45,998 descriptions +for 10,204 screenshots from popular Android applications. The +descriptions were obtained from human labelers and underwent +several quality control mechanisms. To gain insight into the +representational potential of GUIs, we investigate the ability of +four Neural Image Captioning models to predict natural language +descriptions of varying granularity when provided a screenshot +as input. We evaluate these models quantitatively, using common +machine translation metrics, and qualitatively through a large- +scale user study. Finally, we offer learned lessons and a discussion +of the potential shown by multimodal models to enhance future +techniques for automated software documentation. +Index Terms—Software Documentation, Image Captioning, +Deep Learning +I. INTRODUCTION & MOTIVATION +Proper documentation is generally considered to be an inte- +gral component of building and distributing modern software +systems. In fact, past studies have illustrated the general ben- +efits of documentation during the development lifecycle [1], +[2], [3], [4] and the importance of technical documentation +to software maintenance and evolution [5]. However, despite +the value of well-documented systems, modern development +processes and constraints often lead to the disregard or aban- +donment of a range of documentation tasks [6], [5], [2], [7], +[8], [1]. These difficulties have given rise to a wealth of +research on automated techniques that aim to ease the burden +on stakeholders by generating various types of documentation +for a given task. For example, existing approaches have been +developed to automatically generate natural language sum- +maries and documentation for code [9], [10], [11], [12], [13], +[14], [15], APIs [16], [17], unit tests [18], bug reports [19], +[20], release notes [21], [22], and commit messages [23], [24], +among other artifacts [25], [26]. +Generally, existing techniques for automated software doc- +umentation have been concerned with modeling relationships +that exist between two primary information modalities: code +and natural language (NL). Unfortunately, reasoning between +these two information sources is difficult due to the lexical +gap resulting from the often disparate conceptual associations +that connect source code lexicon and the more abstract words +and phrases used in NL descriptions +[27], [28]. Recently, +this lexical gap was acknowledged as an information inference +problem in a report made by Robillard et al. [29], wherein +key research challenges exist in (i) inferring undocumented +program properties, and (ii) discovering latent abstractions +and rationales. These challenges suggest that overcoming the +semantic disconnect between code and NL may require new +knowledge sources that encode distinct program properties +typically absent from traditional software or NL lexicon. +One source of information which has been left largely +unexplored for the purposes of automated documentation is +visual software data encoded into Graphical User Interfaces +(GUIs). GUI-based applications predominate modern user- +facing software, as can be readily seen in the popularity of +desktop and mobile apps [30]. Furthermore, high quality ap- +plications with well-designed GUIs allow technically-inclined +users to instinctively understand underlying program features. +Thus, intuitively, certain functional properties of applications +are encoded into the visual, pixel-based representation of the +GUI such that cognitive human processes can determine the +computing tasks provided by the interface. This suggests that +there are latent patterns that exist within visual GUI data +which indicate the presence of natural use cases capturing core +functionality [31]. +Given the inherent representational power of GUIs in con- +veying program related information, we set forth the following +hypothesis that serves as the basis for work in this paper: +The representational power of graphical user interfaces to +convey program-related information can be meaningfully +leveraged to support automated techniques for software doc- +umentation. +While most existing work on automated documentation con- +cerns itself with the dichotomy between code and NL, we posit +that the latent information encoded within GUIs can aid in +bridging the existing semantic documentation gap by providing +arXiv:2301.01224v1 [cs.SE] 3 Jan 2023 + +an additional source of knowledge that inherently reflects pro- +gram functionality. In fact, GUI-based representations of soft- +ware have the potential to address the two challenges set forth +by Robillard et al. [29]. More specifically, GUIs can aid in +inferring undocumented program properties that are inherently +represented within the design of GUI controls or widgets (e.g., +capturing a feature which is otherwise poorly represented by +low-quality code identifiers/comments). Further, GUIs could +be used as source to mine abstractions or rationales that +would otherwise remain obscure (e.g., providing a use case- +based explanation of a block of code connected to a GUI +screen). In overcoming these challenges, we see GUI-centric +documentation having an impact on the following types of +software documentation: +Technical Documentation: Developers utilize technical docu- +mentation, such as code comments or READMEs, in order +to learn about the functionality and interfaces of software +to support engineering tasks. Automatically generating such +documentation accurately is a challenging inference problem. +However, it has been shown that GUI-related code can com- +prise as much as half of the code in user facing programs [32]. +This means that graphical software data is connected in some +way to large portions of GUI-based software projects i.e., +through GUI-event handlers, or code stipulating GUI layouts +such as html. Therefore, if automated techniques are able to +effectively infer salient functionality from the GUIs, they could +be combined with existing techniques and leveraged to provide +automation to developers, such as comment generation or code +summarization with greater feature-based context awareness. +As we illustrate in this paper, GUI code/metadata appears to +encode orthogonal information compared to visual GUI data +(i.e., screenshots), which suggests that we may be able to infer +documentation information from visual GUI data that likely +can’t be inferred from GUI code alone. +User Documentation: Developers typically provide users with +documentation such as tutorials or walkthroughs to help +clearly illustrate software features. While some experienced +users can infer functionality directly from a GUI, end-users +exhibit a range of technological expertise, and many rely upon +various forms of end-user documentation [33]. Thus, building +techniques capable of automatically generating such documen- +tation would free up development effort for other critical tasks, +such as bug fixing. Beyond typical user facing software aids, +GUI-centric program documentation could also enable entirely +new classes of automated accessibility features, which are +sorely needed for mobile apps [34]. For example, rather than a +typical text-to-speech engine, one could envision a screen-to- +functionality engine that could aid a motor-impaired user with +navigating the software, without extra development effort. +To investigate the potential of automated GUI-centric soft- +ware documentation, we offer one of the first comprehensive +empirical investigations into this new research direction’s most +fundamental task: generating a natural language descrip- +tion given a screenshot (or screen-related information) of +a software GUI. Given that this task underlies the various +potential applications discussed above, we view this as a +logical first step towards investigating the feasibility of fu- +ture techniques. To accomplish this, we collect and analyze +a dataset for Comprehending visuaL semAntics to pRedict +applicatIon functionalTY (the CLARITY dataset) consisting +of 45,998 functional descriptions of 10,204 screenshots of +popular Android apps available on Google Play. We provide +a descriptive analysis of this dataset that investigates the +“naturalness” and semantic topics of the collected descriptions +by measuring cross-entropy compared to other corpora and +performing a topic modeling analysis. To learn functional +descriptions of the screens from this dataset, we customize, +train, and test four Deep Learning (DL) models for neural +image captioning—three that learn from image data and one +that learns from textual GUI metadata—to predict functional +descriptions of software at different granularities. We evaluate +the efficacy of these models both quantitatively, by measuring +the widely used BLEU metric, and qualitatively through a +large-scale user study. In summary, this paper’s contributions +are as follows: +• We collect the CLARITY dataset of GUIs annotated +with 45,998 functional, NL descriptions from 10,204 +screenshots of popular Android apps. The NL captions +were obtained from human labelers, underwent several +quality control mechanisms, and contain both high- and +low-level descriptions of screen functionality. While other +GUI datasets exist [35], [36], the CLARITY dataset differs +by providing an extensively labeled set of screens, akin +to Flickr8K [37] or MSCOCO [38]; +• We illustrate the underlying, natural patterns that exist in +the CLARITY dataset through topic modeling. +• We provide an extensive quantitative and qualitative eval- +uation of four tailored DL models for image captioning +using standard metrics and a large scale user study; +• We offer an online appendix with examples of model- +generated descriptions and experimental data [39]. Our +dataset, trained models, code, and evaluation scripts are +open source and accessible via the appendix. +II. BACKGROUND +A. The Connection between Images and NL +The task of image captioning is much more difficult than +that of classification or labeling, as an effective model must +be able to both learn salient features from images automati- +cally and semantically equate these features with the proper +NL words and grammar that describe them. This task of +semantically aligning two completely different modalities of +information has led to the development of multimodal DL +architectures that jointly embed NL and pixel-based infor- +mation in order to predict an appropriate description of a +given input image. These techniques are typically trained +on large-scale datasets that contain images annotated with +multiple captions, such as MSCOCO [38], and have largely +drawn inspiration from encoder-decoder neural language mod- +els traditionally applied to machine translation tasks. In this +2 + +… +… +… +Input Image +CNN or RCNN +BRNN + or LSTM +xt +yt +W +st +v +Image “Encoder” +NL “Decoder” +Fig. 1: Generalized overview of multimodal DL architectures +for image captioning (with RCNN) +paper, we adapt three recent architectures for image caption- +ing, neuraltalk2 [40], the im2txt [41], and the show, +attend and tell (SAT) [42] frameworks to predict func- +tional descriptions of software screenshots through the use of +custom pre-training and fine-tuning procedures. Additionally, +we explore the seq2seq neural language model. +DL models for image captioning build upon the success +of encoder-decoder neural language models. The im2txt +framework treats image captioning as a machine translation +problem, wherein the source “sentence” is an image, and +the target “translation” is a NL description. The generalized +architecture of such models is shown in Fig. 1. As illustrated, +these architectures replace the encoder RNN with a Convolu- +tional Neural Network (CNN), which have been shown to be +highly capable of learning rich image features [43], [44], [45]. +Google’s implementation of im2txt uses a Long-Short Term +Memory (LSTM) RNN [46] for the “decoder” module, which +has also proven extremely effective when applied to machine +translation tasks. The decoder module of the neuraltalk2 +architecture is composed of a Bidirectional RNN (BRNN) [47] +as opposed to an LSTM. Finally, the show, attend, & +tell (SAT) model [42] uses an LSTM decoder but with +the addition of an attention mechanism that can “attend” to +salient parts of the image representation by combining “hard” +and “soft” attention mechanisms. +III. OVERVIEW +In this section, we provide an “at-a-glance” overview of the +data-collection procedures and various analyses performed in +this paper. Figure 2 illustrates the four major components of +the paper. The first major task of our study is to derive a +suitable dataset of screenshot-caption pairs. We describe this +process in two parts: (i) the collection of screenshots (Sec. +IV-A), and (ii) the collection of captions from human workers +(Sec. IV-B). The result of this data-collection effort is the +CLARITY dataset, which contains 45,998 captions of 10,204 +Android screenshots. Next, we aim to understand the lexical +properties of our captions through an empirical analysis in +order to better understand how easily they might be modeled +(Sec. V). Thus, we perform both a comparison of the the +cross-entropy of language models trained our caption corpus +to other popular SE corpora, and perform an LDA-based +topic analysis. Next, we discuss the process of configuring +and training three neural image captioning models, and one +1 Clarity Dataset Collection +(Screenshots + GUI metadata + Captions) +2 Naturalness & Topic Analysis +Cross-Entropy +Analysis +LDA-based +Topic Analysis +… +… +… +Input Image +CNN or RCNN +BRNN + or LSTM +xt +yt +W +st +v +Image “Encoder” +NL “Decoder” +3 Train Image-Captioning and +Metadata Captioning Models +Image-Captioning +Models +Metadata-Captioning +Models +4 !antitative and !alitative +Model Evaluations +“Ground Truth” +Captions +“Predicted” +Captions ++ +Screens +Large-Scale +Human Evaluation +!antitative +Evaluation +with BLEU +Fig. 2: Overview of Dataset Collection and Analysis +sequence-based model to predict functional descriptions of +software GUIs (Sec. VI). Finally, we conclude our analysis +by measuring the accuracy of our trained models according to +both automated reference-based metrics (i.e., BLEU@n) and +via a large-scale human evaluation. (Sec. VII) +IV. DATASET COLLECTION +A. Screen & GUI Metadata Collection +The first step in deriving the CLARITY dataset is the +collection of a sizable and diverse dataset of screenshots and +GUI-metadata. We chose to focus this dataset derivation on the +Android platform for three main reasons: (i) Android is cur- +rently the most popular OS in the world [30], (ii) Android apps +are highly GUI-and gesture driven, making them a suitable +target for our investigation, and (iii) the Android screencap +and uiautomator tools facilitate the extraction of screenshots +and GUI-metadata from running apps. Fortunately, large-scale +datasets of Android screenshots and metadata are publicly +available in related literature [48], [35]. For this work, we took +advantage of the REDRAW [48], [36] dataset which contains +nearly 17k unique screenshots from 8,655 of the top-rated +apps from the Google Play Store. It should be noted that +another large-scale Android GUI dataset that contains a larger +number of screenshots, RICO, is also available [35]. However, +we chose to utilize the REDRAW dataset as it aligned with +one of our primary study objectives. That is, we aim to learn +latent feature information from both screenshots and GUI- +metadata. However, for the GUI-metadata to properly align +with the displayed content on a screen, the app must make use +of native Android components. Therefore, apps that primarily +display their information using web technologies, so-called +hybrid apps, would obscure the GUI-metadata and impact +our study findings. The REDRAW dataset contains a set of +screenshots that underwent several stages of filtering to remove +instances of hybrid apps along with other noise. Furthermore, +the REDRAW dataset contains a set of GUI-component images +3 + +2:04 +Q Search +Stories + Play All +Add +Your Story +George +Amanda +Colby +[因 +What's on your mind? +Photo +Guillermo Moreno with Josephine +Williams and 2 others. +Yesterday at 10:14 PM · +Good friends, good food and a lot of laughs +Colby Harris and 23 others +2 CommentsHello +4 +again! +Password +I forgot +ENTER +Don't have an account?Register +wordsearch +Animals-Countries-Cifies +PLAY +Uspresidents-Trademarks0000 +三12:34 +Kids A-Z +Teacher Username +No Username? Start Here!日# +12:27 +The Dollar in Mexico += +updated: Jun 19, 2017 +Order by: +Sell +V +Select the bank of your choice +BAsE +Banco +Buy: 17.4129 +Sell: 17.8129 + BANCODE MEXICO +Buy: 17.9895 +Sell: 17.9945 +*Interbank dollar to 48 hours +OBANCO AZTECA +Buy: +16.95 +Sell: +18.01 +HSBC +Buy: +17.68 +Sell: +18.17 +BANORTE +Buy: +16.85 +Sell: +18.25 +Ixe +Buy: +16.85 +Sell: +18.25 +monex +Buy: +17.67 +Sell: +18.28 +Banamex +Buy: +17.50 +Sell: +18.30 +INBURSA +Buy: +17.70 +Grupo Financierc +Sell: +18.30 + Santander +Buy: +17.50 +Sell: +18.30 +BBVA +Bancomer +Buy: +17.16 +Sell: +18.35 +B BANCO DEL BAJIO +Buy: +17.40 +Sell: +18.40 + Scotiabank +Buy: +16.80 +Sell: +18.42 +Bx+ +Buy: +17.50 +Sell: +18.50 +BANREGIO +Buy: +17.40 +Sell: +18.502:04 +Q Search +Stories + Play All +Add +Your Story +George +Amanda +Colby +[因 +What's on your mind? +Photo +Guillermo Moreno with Josephine +Williams and 2 others. +Yesterday at 10:14 PM · +Good friends, good food and a lot of laughs +Colby Harris and 23 others +2 Comments000 +AHigh Level Caption +The screen allows the user to +look at clothing categories +Low Level Captions +The top le! icon allows the user +to access the menu +The top right icon allows the +user to access the shopping cart +The center list of categories allows +the user to make a selection +The heart icon to the le! of the +shopping cart allows the user to +view favorites +Fig. 3: Example of captions from the CLARITY dataset. +labeled with their corresponding types (e.g., Button) which +we utilize later in our study (Sec. VI). The end result of this +filtering process was a total set of 17,203 candidate screens for +labeling. We refer readers to the REDRAW paper for complete +details of the filtering process [48]. +B. Collection of Functional Descriptions +Once we derived a suitable set of screens, we needed to +manually label these screens with functional captions. This +process occurred in two steps: (i) first, we conducted a pilot +labeling study in order to develop and prove out a tagging +methodology suitable for large scale caption collection; (ii) +second, we performed a full scale data collection study using +Amazon’s Mechanical Turk Crowd-worker platform to collect +over 10k screens with functional descriptions. +1) Caption Granularity: Intuitively, GUIs encode func- +tional information at multiple levels of granularity. For exam- +ple, if you were to ask a user or developer what the high- +level purpose of a given screen is, they might say “This +screen allows users to browse clothing categories”, as shown +in Fig. 3. These types of descriptions constitute the “high- +level” functionality of a given screen. However, a single screen +rarely implements only one functionality, and there may be +multiple functional properties that enable the screen’s high- +level functional purpose. User descriptions of these types +of functional properties are typically centered around the +interactive components of a screen, since these represent the +instances of actions (e.g., users “doing something”) that are +easily attributed to implemented functions. For example, in +the screen in Fig. 3, underlying functions include viewing +favorites, accessing a shopping cart, or selecting an item from +a list. These types of “low-level” screen properties centered +around GUI-components describe key constituent functional- +ity. Hence, in order to capture a holistic functional view of +each screen, we tasked participants with labeling each screen +with one “high-level” functional caption, and up to four “low- +level” functional captions. Fig. 3 shows these two categories +using actual captions collected as part of the CLARITY dataset. +2) Pilot Data Collection Study: We developed an initial +image caption collection platform using a Java-based web +application. Using this system, the authors manually labeled +743 screens with the caption granularities described earlier. +During this study, we discovered some instances of screens +with relatively little information displayed on them, making +it difficult to label them with functional attributes, even after +the filtering techniques discussed previously. Therefore, before +moving onto the large-scale caption collection with Mechani- +cal Turk (MTurk), at least one author manually inspected each +of the 17,203 candidate screens, and discarded those with a +severe lack of functionality. This resulted in a set of 16,311 +candidate screens for the next phase of the study. +3) Mechanical Turk Data Collection Study: To set up our +large-scale data-collection process, we adapted our web ap- +plication caption collection mechanism to work with MTurk’s +crowd worker platform. This involved configuring a Human +Intelligence Task (HIT) that provided workers with a set of +detailed instructions, displaying a screenshot from our dataset +alongside text entry boxes for one high-level functional caption +and up to four low-level functional captions (a limit was +imposed to normalize the amount of time workers would spend +on the HIT). This study was approved by the Institutional +Review Board of the authors’ affiliated institution. +Given that we aimed to collect high-quality functional +descriptions of screens in natural English, we targeted MTurk +users from primarily English speaking countries that had +completed at least 1,000 HITs and had a HIT approval rate +of at least 90%. We provided a detailed set of instructions +for labeling images with captions that clearly explained the +concept of high-level and low-level captions with examples, +and provided users with explicit instructions as well as DOs +and DONTs for the labeling task. The full set of instructions is +available in our online appendix [39]. With regard to caption +quality, we specifically had three major requirements: (i) that +the caption describes the perceived functionality of a screen +and not simply its appearance, (ii) that spatial references are +given for low-level captions (e.g., “the button in the top-left +corner of the screen”), and (iii) that captions be written in +complete English sentences with reasonably proper grammar. +We published batches of HIT tasks by sampling unique +screens from our set of 16,311 candidate screens, ensuring +that no user was assigned the same screen twice. The quality +of work from crowd-sourced tasks is not always optimal, +so as captions were submitted, they needed to be vetted for +quality. Thus, the captions for each screen were examined by +at least one author for the three quality attributes mentioned +above. If an author was unsure about whether a screen met +these quality attributes, it was reviewed by at least one other +author to reach a consensus. In total, 2,419 screens were +rejected and republished as new HITs due to quality issues. +In summary, 2,150 MTurk workers collected 45,998 captions +(across granularities) for 10,204 screens (≈5 screens per +participant), and over $2,400 was paid out. +V. EMPIRICAL DATASET ANALYSIS +The CLARITY dataset provides a rich source of data for +exploring the relationship between GUI-based and lexical +4 + +#? +日9:47 +asos +三 +HOME +CATEGORIES +NEWIN:CLOTHING +ACTIVEWEAR +TALL +JEANS +SHOES&SNEAKERS +-SHIRTS +SUNGIASSESTABLE I: LDA topics learned over high-level captions k = 15 +Assigned Label +Top 7 Words +”color options” +screen show app option color book differ +”login or create acccount” +user screen allow account log creat app +”select image from a list” +user screen allow select view list imag +”map search by location” +screen locat search map user show find +TABLE II: LDA Topics learned on low-level captions k = 25 +Assigned Label +Top 7 Words +”page button” +page button top center bottom side left +”select date” +avail date select one option theme present +”camera button” +video imag photo pictur bottom camera +”privacy policy banner” +titl just term blue banner privaci polici +software data. However, it is important to investigate the +semantic makeup of the collected captions in order to better +understand: (i) the latent topics they capture as well as (ii) +their naturalness and, hence, predictability. In this section we +carry out an empirical analysis of this phenomena guided by +the following two Research Questions (RQs): +• RQ1: What are the latent topics captured within the high- +and low-level captions in the CLARITY dataset? +• RQ2: How natural (i.e., predictable) are the high- and +low-level captions in the CLARITY dataset? +A. Analysis Methodology +1) RQ1: Investigating Dataset Topics: To investigate the +latent topics in the CLARITY dataset, we learned topic models +over caption corpora representing different granularities of +functional descriptions. More specifically, we applied Latent +Dirichlet Allocation (LDA) [49] to both segmented high- +and low- level captions from the CLARITY dataset. In our +analysis, the set of captions for a specific screenshot in the +CLARITY dataset represents a document, and the entire set +of captions across screenshots for a given granularity (i.e., +high or low level) constitutes a corpus. LDA has several +configurable hyper-parameters that impact the smoothing of +generated topics. These include k, the number of topics, +n which denotes the number of iterations of the sampling +algorithm (Gibbs sampling [50], in our case), as well as α +and β which impact topic distributions. We set α and β to +standard values for NL corpora, set n to 500, which proved to +be a sufficient for model convergence, and varied k between +15, 25, 50, and 75 topics. +2) RQ2: Analyzing the Naturalness of GUI Descriptions: +Past work has pioneered the notion of the naturalness of +software [51], which illustrated the fact that software, even +more so than NL, exhibits repetitive patterns that make it +predictable. This finding was recently further investigated and +the existence of certain natural patterns was confirmed [52]. To +illustrate naturalness, these past studies have learned statistical +n-gram language models over software corpora, and measured +the “perplexity” (or a log-transformed version, cross-entropy) +of these models, which represents the degree to which a model +is “surprised” by the patterns on a test corpus when trained on +a corpus from the same domain. A model with lower measured +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +N-gram order +Cross-Entropy +High-Level Captions +Low-Level Captions +Java Raw Code +Java w/o Syntax Tokens +Stack Overflow +Guntenberg +Fig. 4: Cross-entropy of the CLARITY dataset’s high and low- +Level captions compared to other corpora. +cross-entropy represents a higher predictive power, and thus, +a more natural underlying corpus. +We follow the methodology of these past studies to explore +the naturalness of the CLARITY dataset captions. Thus, similar +to the methodology for the previous RQ, we split the collected +captions into two corpora, one for the high-level descriptions, +and one for the low-level descriptions. We then learned inter- +polated n-gram models, using the mitlm [53] implementation +of Kneser-Ney smoothing [54], which has been shown to be +the most effective n-gram smoothing method [51], following +a ten-fold cross-validation procedure. We report the average +cross-entropy values across these experiments for both the high +and low-level corpora, compared to prior results [51], [52] for +other NL and software corpora. +B. Analysis Results +1) RQ1: Results of Dataset Topic Modeling: We present +selected results of some of the most representative topics in +Tables I & II, complete with descriptive labels that we provide +for readability, and include all the results in our appendix [39]. +These topics help to provide a descriptive illustration of some +of the latent patterns that exist in both the high and low level +CLARITY captions. The high-level captions illustrate several +screen-level topics, including searching on a map and adjusting +app settings. The low-level captions conversely capture topics +that describe component-level functionality, such as date selec- +tors, camera buttons, and back buttons. These results indicate +the existence of logical topics specific to the domain of GUIs +in our collected captions. +2) RQ2: The Naturalness of Clarity Descriptions: The +results of our naturalness analysis are illustrated in Figure 4. +This figure shows the average cross entropy of the high- and +low- level captions from the CLARITY dataset compared to +several other corpora as calculated by Rahman et al. [52]. +More specifically, the graph depicts the average ten-fold cross +entropy for: (i) The Gutenberg corpus containing over 3k +English books written by over a hundred different authors, +(ii) Java code from over 134 open source projects on GitHub, +(iii) Java without Syntax Tokens (i.e., separators, keywords, +and operators), and (iv) a Stack Overflow corpus consisting of +only the English descriptions from over 200k posts. +5 + +13 +high +12 +low +11 +javaraw +java withoutsyntaxtokens +10 +stack overflow +9 +gutenberg +entropy +8 +cross +6 +5 +4 +3 +2 +1 +1 +2 +m +4 +5 +6 +7 +8 +9 +10 +n-gram lengthAs described earlier, the lower the cross-entropy is for a +particular dataset, the more natural it is. That is, the corpora +that exhibit lower cross entropy tend to exhibit stronger latent +patterns that can be effectively modeled and predicted. As we +see from Fig. 4, the CLARITY high and low level captions are +more natural than every dataset excluding raw Java code. It +should be noted that, comparatively, there are several factors +that could account for the observed lower cross entropy of the +CLARITY captions. For instance, such factors could include +other corpora having a larger size or having a more diverse +set of human authors and writing styles. However, we mainly +provide entropy measures of other datasets to provide context +for the predictability of the CLARITY dataset compared to +other popular corpora. Regardless of dataset differences, the +average ≈ 5 bits of entropy measured for the two datasets of +CLARITY captions signals that our collected descriptions ex- +hibit strong semantic patterns that can be effectively modeled +for prediction. Additionally, we observe that the cross-entropy +for the high and low-level captions are surprisingly similar. +Intuitively, one might expect that the low-level CLARITY +captions would exhibit more prevalent patterns due to the +repetitive use cases of certain GUI-components such as menu +buttons. This indicates the tendency of both datasets to exhibit +patterns that can be appropriately modeled. However, as we +illustrate in Sec. VII the ability for GUI-related information +to predict captions differs according to granularity. +VI. DEEP LEARNING FUNCTIONAL DESCRIPTIONS FROM +SOFTWARE GUIS +The results of the analysis from the previous section demon- +strate the presence of the latent patterns in the CLARITY +dataset of screenshots and captions. In this section, we detail +our methodology for investigating the capability of different +customized DL models to learn these patterns to predict +functional descriptions from two GUI representations. +A. Clarity Dataset Segmentation +We collected two different granularities of captions from +users to derive the CLARITY dataset (Sec. IV-B). For the +experiments in this section, we want to explore the model’s +ability to learn both high- and low-level functional descrip- +tions. Thus, we split the CLARITY dataset into two groups, +one containing only high level captions, and one containing +only low level ones. We also created a third dataset combining +the high and low level captions, in order to explore whether the +predictive capabilities of the models improved by aggregating +multiple granularities. It should be noted that each low-level +caption was treated as a single caption (i.e. each low-level +caption was treated as a separate data point) as is convention +with datasets containing multiple captions [38]. Each screen +in the dataset has both an associated screenshot and a GUI- +metadata file. In order to make for a fair comparison of +performance across various model configurations, we created +consistent training, validation and test partitions (80%, 10%, +10% according to the number of images/GUI metadata files) to +be used across models. The NL text used as input to the models +TABLE III: Image Captioning Model Configs. used in Study +Model +Identifier +Caption Config. +Model Config. +im2txt-h-imgnet +High +im2txt-l-imgnet +Low +im2txt-c-imgnet +Combined +inception v3 trained on +imagenet +im2txt-h-comp +High +im2txt-l-comp +Low +im2txt-c-comp +Combined +Inception v3 fine-tuned on +Component Dataset +im2txt-h-fs +High +im2txt-l-fs +Low +im2txt +im2txt-c-fs +Combined +Inception v3 fine-tuned on +Full Screen Dataset +ntk2-h-imgnet +High +ntk2-l-imgnet +Low +ntk2-c-imgnet +Combined +VGGNet pre-trained on +ImageNet +ntk2-h-ft +High +ntk2-l-ft +Low +NeuralTalk 2 +ntk2-c-ft +Combined +VGGNet pre-trained on +ImageNet with Fine +Tuning +sat-h +High +sat-l +Low +SAT +sat-c +Combined +VGGNet pre-trained on +ImageNet +TABLE IV: Subset of Model Hyper-paramters +Hyperparameter +im2txt +NeuralTalk2 +SAT +Seq2Seq +Batch Size +64 +16 +17 +64 +Embedding Size +512 +512 +512 +128 +Decoder RNN Size/Units +512 +512 +1024 +128 +Optimizer +SGD +SGD +Adam +Adam +Initial Learning Rate +2 +2 +0.001 +0.0001 +Dropout Probability +0.7 +0.7 +0.3 +0.8 +was preprocessed according to the specific requirements for +each model implementation [55], [56], [57]. +B. Image Captioning Model Configurations +We customize, train, and test the three neural image +captioning models, im2txt, neuraltalk2, and show, +attend, & tell (SAT) (Sec. II-A), on the screenshots +and captions of the CLARITY dataset. We choose to explore +these three models due to their different underlying design +decisions related to the type of utilized CNNs and RNNs +(Sec. II-A), as these differences may affect their performance +in our domain. It should be noted that in the course of our +experiments, we make several customizations to these models +through adaptions to pre-training and fine-tuning procedures. +However, given the typical number of parameters that consti- +tute these models, the training time can be quite prohibitive, +even on modern hardware. Thus, to control our experimental +complexity and investigate a number of model configurations +that can be trained in a reasonable amount of time, we fix +the values of the hyper-parameters for each model in our +experiments. We derived our utilized hyper-parameter values +by conducting random searches for optimal values of certain +parameters, and chose optimal parameters reported in prior +work for others. While we fix the hyper-parameters for these +models, we instead customize the configurations of our image +captioning models at the architectural level. Specifically, we +investigate how training the “encoder” CNN using different +datasets and training procedures effects the efficacy of the +model predictions. This type of analysis allows us to more +effectively flush out broader patterns related to the benefits and +drawbacks of model design decisions. In the end, we trained +more than 15 different configurations of the models (see Table +III) over several machine months of computation. +1) im2txt +Model +Configurations +& +Training: +For +im2txt, we adapted Google’s open source implementa- +6 + +tion of the model in TensorFlow [55]. Given the incredibly +large number of parameters that need to be trained for the +im2txt model, performing even relatively simple hyper- +paramter searches proved to be computationally prohibitive +for our experiments. Therefore, for this model we utilized the +optimal set of parameters reported by Vinyals et al. [41] on +similarly sized datasets. A subset of these hyper-parameter +values are given in Table IV, whereas full configuration details +can be found in our appendix. The publicly available imple- +mentation of Google’s im2txt model utilizes the Inception +v3 [58] image captioning architecture as its encoder CNN. +In past work, the inception model weights were initialized +by training on the large-scale image classification dataset +ImageNet [59], which contains “commonplace” image cate- +goires. However, given that we are applying these models to +very particular domain (predicting descriptions of software) +it is unclear if an Inception v3 model trained on the broader +ImageNet dataset would capture subtle semantic patterns in +the CLARITY dataset. Therefore, we explored three different +model configurations to explore this phenomena: one with +Inception v3 pre-trained on ImageNet, and two with Inception +v3 fine-tuned on domain specific-datasets. The first domain +specific image dataset we utilize is the ReDraw cropped +image dataset outlined in Sec. IV-A, which contains over 190k +images of native Android GUI-components labeled with their +type (e.g., Button, TextView). The second domain specific +image dataset we use consists of the full screenshots from the +CLARITY dataset, labeled with their Google Play categories. +2) NeuralTalk2 Model Configurations & Training: For +neuraltalk2, we adapted Karpathy et al.’s implementation +written in Torch and lua [56]. We performed a brief random- +ized hyper-parameter search for this model, given its more +efficient training time, using the optimal im2txt parameters as +a starting point. The optimal values resulting from this search +are provided in Table IV. For its CNN decoder, neuraltalk2 +makes use of a VGGNet [44] architecture pre-trained on +the ImageNet [59] dataset. Unlike our im2txt configurations, +we explore the effect of jointly fine-tuning neuraltalk2’s +CNN and RNN. Thus, we explore two configurations of +neuraltalk2, one that jointly fine tunes the pre-trained +VGGNet on the CLARITY dataset, and one that does not +perform fine-tuning. We followed a training procedure similar +to that of our im2txt models, in that we trained our models +on the high, low, and combined CLARITY caption training +data for 500K iterations, saving model checkpoints every 2K +iterations. +3) Show, Attend and Tell Model Configurations & Train- +ing: For the SAT model, we adapted the open-source imple- +mentation of the model in Tensorflow [60]. The hyperparam- +eters that we used to train our model are shown in Table IV. +The implementation used VGG16 [44] as its encoder CNN. +We trained the SAT model on the CLARITY dataset for the +low, high and combined captions for 500K iterations and kept +the checkpoints after every 1K iterations. Note that due to +the prohibitive training cost of this model, we did not explore +using a fine-tuned VGGNet as we did with neuraltalk2. +TABLE V: Metadata Captioning Model Congfigurations +Model +Identifier +Caption Config. +Model Config. +seq2seq-h-type +High +seq2seq-l-type +Low +seq2seq-c-type +Combined +Trained on GUI +Component Types +seq2seq-h-text +High +seq2seq-l-text +Low +seq2seq-c-text +Combined +Trained on +GUI-Component Text +seq2seq-h-tt +High +seq2seq-l-tt +Low +seq2seq-c-tt +Combined +Trained on +GUI-Component Type + +Text +seq2seq-h-ttl +High +seq2seq-l-ttl +Low +Seq2Seq +seq2seq-c-ttl +Combined +Trained on +GUI-component Type + +Text + Location +C. Metadata Captioning Model Configurations +To explore the ability to translate between the lexical +representations of GUI-metadata and NL functional descrip- +tions, we train and test an encoder-decoder neural language +model using Google’s seq2seq [57] framework. Note that +recent work has proposed new models that take advantage of +structural text properties [61], however, implementations of +such models are generally not available, hence we leave the +study of more advanced models for future work. We chose +to utilize the default general-purpose architecture and hyper- +parameters for this model, as they have been shown to be +effective across a wide-range of machine translation tasks [62]. +More specifically, our encoder network consists of a BRNN +with Gated Recurrent Units (GRUs) and our decoder network +consists of an RNN with LSTM units; hyperparameters are +listed in Table IV. +To investigate the representative power of different attributes +included in Android GUI-metadata, we create four config- +urations of GUI-metadata consisting of different attribute +combinations (Table V). We chose to utilize these attribute +combinations as they represent (i) the attributes that are most +likely to have values, and (ii) represent a wide range of +information types (e.g., displayed text, component types, and +spatial information). Note that seq2seq did not consistently +converge for the high level caption dataset, thus we do not +report these results. Consistent with the training of the other +models, our implementation of the seq2seq model was +trained to 500k iterations, with checkpoints every 2k iterations. +VII. DEEP LEARNING MODEL EVALUATION +To explore our core hypothesis set forth at the beginning +of this paper, and evaluate our DL models described in +Sec. VI, we perform a comprehensive empirical evaluation +with two main goals: (i) intrinsically evaluate the predictive +power of the models according to a well accepted machine +translation effectiveness metric, and (ii) extrinsically evaluate +the models by examining and rating the quality of the pred- +icated functional NL descriptions. The quality focus of this +evaluation is our studied models’ ability to effectively predict +accurate, concise, and complete functional descriptions. To aid +in achieving our study goals, we define the following RQs: +• RQ3: How accurate are our model’s predicted NL de- +scriptions? +• RQ4: How accurate, complete, & understandable are our +model’s predicted NL descriptions from the viewpoint of +evaluators? +7 + +TABLE VI: BLEU Score Evaluation Results for Models +Model +Capt. +Model Type +Bc +B1 +B2 +B3 +B4 +High +im2txt-h-fs +12.4 +24.8 +12.6 +6.7 +5.3 +Low +im2txt-l-comp +27.0 +45.6 +31.8 +20.0 +10.1 +im2txt +Comb. +im2txt-c-comp +30.3 +51.7 +35.9 +22.1 +11.6 +High +ntk2-h-imgnet +13.3 +27.4 +13.5 +7.3 +5.3 +Low +ntk2-l-ft +27.4 +47.5 +32.8 +19.5 +9.6 +NeuralTalk2 +Comb. +ntk2-c-ft +30.1 +52.1 +36.0 +21.8 +10.8 +Low +seq2seq-l-type +18.1 +44.6 +17.0 +7.9 +0.24 +seq2seq +Comb. +seq2seq-c-type +16.9 +38.9 +14.7 +6.0 +0.08 +High +sat-h +17.7 +30.1 +18.3 +12.9 +9.8 +Low +sat-l +35.0 +52.5 +38.7 +28.1 +20.7 +SAT +Comb. +sat-c +37.7 +56.8 +42.0 +30.5 +22.0 +NeuralTalk2 +Trained on Flickr8K +34.0 +57.9 +38.3 +24.5 +16.0 +NeuralTalk2 +Trained on MSCOCO +40.7 +62.5 +45.0 +32.1 +23.0 +im2txt +42.6 +66.6 +46.1 +32.9 +24.6 +SAT +45.7 +71.8 +50.4 +35.7 +25.0 +A. Evaluation Methodology +1) RQ3: Empirically Evaluating Model Accuracy: To +evaluate the accuracy of our trained model’s generated cap- +tions, we follow past work [40], [41] and report BLEU +scores [63] of the predicted captions on the shared CLARITY +test set of images and GUI-metadata. The BLEU score is a +standard metric used in machine translation research that mea- +sures the textual similarity between a predicted caption (the +output from a model) and a reference caption (the collected +descriptions from humans in the CLARITY test set). The BLEU +score can be measured according to the similarity of different +subsequence lengths (i.e., BLEUn), and we report BLEU1 +through BLEU4, as well as a composite score calculated as the +average of these, as is convention [40], [41]. For the image +captioning models, we use the coco-caption implementation +of the BLEU score adapted for the CLARITY test set. For +each test image across all image captioning models, three +captions were generated using a beam width of 3 for the +beam search across candidate predictions. The seq2seq models +were evaluated in the same manner. We chose to utilize a +beam width of 3 as an initial qualitative examination of our +models’ predictions showed this size to achieve a reasonable +balance between prediction accuracy and model confidence. +For the high-level captions, the three candidate captions were +compared to the reference, and the overall average BLEUn +scores were calculated for each model. For the low-level and +combined captions, the predicted captions and reference cap- +tions were compared in a pairwise manner and overall average +BLEUn scores were calculated for each model configuration. +2) RQ4: Human Perceptions of Predicted Captions: To +qualitatively evaluate our studied model’s generated captions, +we performed a large-scale study involving an additional 220 +participants recruited from MTurk. We randomly sampled +220 screens from the CLARITY test set, and then predicted +high, low, and combined captions for them using the opti- +mal configurations of im2txt, NeuralTalk2, and seq2seq +according to the composite BLEU score for each model +and caption level combination. The SAT captions were not +included in this study due to time constraints related to the +model’s training. We created a HIT wherein each participant +viewed 11 screenshots paired with captions. Two of the 11 +captions were reference high and low to serve as a control, +while the other 9 captions came from the model predictions. +Screens and caption pairs were arranged into HITs such that +1) no single HIT had two of the same screenshot, 2) each +of the 11 types of captions (2 reference, 9 model) were +included only once per HIT. The order of these captions was +randomized per HIT to prevent bias introduced by identical +caption ordering between HITs. By this arrangement, each +screen-caption pair was evaluated by 11 participants. After +viewing these screenshot-caption pairs, participants were asked +to answer six evaluation questions. Three of these questions +(EQ1-EQ3) were adapted from prior work that assessed the +quality of automatically generated code summaries [21], and +inquired about accuracy, completeness, and understandability, +respectively. The three remaining questions (EQ4-EQ6), were +free response and asked participants to explain accuracies, +inaccuracies, and improvements. The full set of questions and +HIT are in our online appendix [39]. Similar to the CLARITY +dataset collection, each participant’s response was thoroughly +vetted by at least one author, and discarded if the answers +were incomplete. Responses were collected until 220 HITs +were completed by unique respondents. +B. Evaluation Results +1) RQ3 Results: Evaluating BLEU Scores: We illustrate +the BLEU score results for the most effective model config- +uration and checkpoint across all of our trained models in +Table VI, whereas the results for other model configurations +can be found in our online appendix [39] in addition to +caption examples. The cells highlighted in blue illustrate the +highest performing model configuration for each caption type. +In general we observe that SAT exhibits the highest overall +BLEU scores across all caption granularities. We speculate +that this is attributable to the addition of the advanced attention +mechanism in this model that is able to “focus” on varying +image regions or features to effectively handle multiple caption +granularities. In general, the seq2seq model performed quite +poorly across the varying caption types, indicating a lower +tendency for rich representation. Perhaps most interestingly, +we see that the optimal model configurations for the im2txt +framework were those where the CNN was conditioned on +domain specific datasets. More specifically, the best high-level +caption model was conditioned on full screenshots and the +best low-level caption was conditioned on the cropped GUI- +component screenshots. +Another general trend that emerges is the low-level and +combined caption models tend to exhibit higher overall BELU +scores compared to the high-level captions. This is somewhat +intuitive, as it indicates that there are more natural connections +between visual GUI and lexical patterns in the low-level +captions, compared to the high-level captions that reflect more +abstract functional descriptions. When examining the captions +generated by the optimal configurations of each model, it is +clear that im2txt and SAT produces a more diverse set of out- +put captions than neuraltalk2, which could be considered +as more useful in many software documentation tasks. +Finally, it is worth discussing how the BLEU scores of our +models compare to those of the same models trained on the +8 + +None +Some +A Lot +im2txt high +im2txt low +im2txt combined +Easy to Read +Somewhat +Readable +Hard to +Read +im2txt high +im2txt low +im2txt combined +EQ3: Understandability +EQ2: Unnecessary Information +im2txt high +im2txt low +im2txt combined +Strongly +Disagree + Disagree +Neutral +Agree +Strongly +Agree +EQ1: Accuracy +seq2seq high +seq2seq low +seq2seq combined +Fig. 5: Responses across models for EQ1-EQ3 +more traditional Flickr8k [37] and MSCOCO [38] datasets +given at the bottom of Table VI. Given the data-intensive +nature of our DL models, and the much larger size of the +MSCOCO dataset (≈123k images, each with 5 captions), we +did not expect our models trained on the CLARITY dataset to +outperform those trained on MSCOCO. Thus, unsurprisingly, +we observe that on average, im2txt, neuraltalk2, and SAT +models trained on the MSCOCO dataset outperform the same +models trained on the CLARITY datasets by ≈ 10 BLEU score +points for the combined and low level captions, and ≈ 27 +points on high-level captions. However, when we examine +the performance of Neuraltalk2 on the more similarly sized +Flickr8K dataset (≈ 8K images, each with 5 captions) we +observe comparable performance to the CLARITY low-level +and combined datasets, with the SAT model narrowly outper- +forming the Flickr8K neuraltalk2 model, with a slightly +bigger discrepancy for the high-level captions. Overall, these +results indicate that when compared with datasets of similar +size, DL models trained on the CLARITY dataset exhibit +similar performance. +2) RQ4 Results: Human Evaluations: The results of EQ1- +EQ3 for the model configurations with the best performance +during the human study, in addition to the seq2seq accuracy +scores, are summarized in Fig. 5. Complete results across all +model configurations can be found in our online appendix. The +responses to EQ4-EQ6 varied by the type of caption, and are +provided in our appendix in full. Generally, im2txt fared the +best in terms of accuracy, and was followed by neuraltalk2 +and seq2seq respectively. For im2txt, despite mixed reac- +tions from participants, in many cases respondents verified that +the caption was accurate (e.g., ”The description accurately +describes the screen, it is in fact a terms and conditions +screen.”) and suggested minor improvements similarly to the +reference captions (e.g., ”It could add specifics about what the +settings pertain to (i.e. security)”). As illustrated in Fig. 5 the +im2txt predictions were consistently rated as being readable +and containing relevant information. It is also interesting to +note that there appears to a mismatch between the performance +as indicated by BLEU scores, and human perceptions, with the +participants consistently rating the im2txt captions better +than other models across EQ1-EQ3, despite neuraltalk2 +achieving a higher BLEU score for two model configurations. +VIII. DISCUSSION & LEARNED LESSONS +Lesson 1: Functional Descriptions of GUIs exhibit a +high degree of naturalness and can be modeled using DL +techniques. We observed that DL models trained on the low- +level and combined datasets exhibit similar performance to +models trained on general image captioning datasets of similar +size (e.g., Flickr8K). This indicates that GUI screenshots could +be used to augment approaches for automated documentation. +Lesson 2: GUI-centric software documentation mod- +els benefit from being pre-trained on domain specific +GUI data, as opposed to general image datasets (e.g., +MSCOCO) The qualitative results of our model analysis +illustrate that for im2txt, the most effective configurations +were those trained on domain specific CNN datasets. This +suggests a perceptible difference between the utility of image +features learned from general datasets, compared to those +learned on datasets more specific to software. This suggests +that future work aiming to leverage DL models for GUI- +centric program documentation should look to collecting and +extracting features from large-scale GUI-related datasets. +Lesson 3: Future automated approaches for GUI-centric +program documentation would likely benefit from com- +bining the orthogonal semantics of screenshots and GUI- +metadata. Our evaluation in this paper illustrates that the rep- +resentational power of screenshots appears to be superior when +applied to a software documentation task. However, given stark +differences between these two modalities of information, we +also observed that they encode orthogonal semantic patterns +that could be combined for more effective documentation +generation. One property we observed of certain captions +generated by the image-based models was the effect of their +limited vocabulary. For example, certain predicted captions +similar to the following: “The screen allows the user to select +a ”, wherein the UNK token represents missing token, +which should be mapped to some unobserved app property, +such as a “album cover” or “store location”. However, such +predictions could be combined with the vocabulary present in +GUI metadata to help predict more complete, and accurate +descriptions. Thus, a promising direction for future work is to +jointly encode both screenshots and lexical GUI-metadata. +Lesson 4: Training image captioning models to predict +specific or diverse pieces of functionality is difficult. +Practical models for GUI-centric documentation should able +to predict both specific pieces of information (e.g. the func- +tionality of a particular button for a given method handler), +and diverse functionality (being able to generate descriptions +of functionality anywhere on a given screen). However, one +aspect we observed across our models is that the most +common observed types of functionality (e.g., back buttons, +menu buttons) corresponded to the functionalities that our +9 + +seq2seq high +seq2seq low +0 +0 +seq2seq combined +0 +0models predicted most often and most confidently on unseen +screenshots. This is somewhat expected, as the models saw the +most examples of such functionalities during training. Thus, +the diversity of predictions is an open problem for future +research. This problem can be partially mitigated by larger, +more diverse datasets with specifically curated descriptions +(such as extensions to the CLARITY dataset). However, it is +likely that domain-specific models, or ensembles of models, +may be required to more effectively predict diverse features. +Lesson 5: Future studies that evaluate automated GUI- +centric documentation approaches should include human +studies, as human perceptions of models may differ from +automated reference-based metrics. One of the more surpris- +ing results of our study is that there seems to be a mismatch +between humans perceptions of the captions generated by our +DL models and the BLEU score metrics typically used to asses +the accuracy of model predictions. This signifies that there are +aspects of human perception that are not effectively captured +in the BLEU metric, and possibly other translation metrics. +IX. LIMITATIONS & THREATS TO VALIDITY +Internal Validity. Threats to internal validity correspond to +unexpected factors in the experiments that may contribute to +observed results. To derive our dataset we rely on MTurk and +its workers to extract the high- and low-level descriptions per +each screenshot. It should be noted that we did not ask MTurk +workers to provide technical software documentation descrip- +tions, but rather general descriptions of screen functionality at +differing granularities. To minimize low quality captions we +published the jobs for workers with more than 1k HITS, from +English speaking countries, and HIT approval rate of more +than 90%. Also, each successfully completed HIT was vetted +by at least one of the authors to assure quality. If there was +any question related to caption quality, at least one of the other +authors stepped in to resolve the ambiguity. As a result 2,429 +HITs were rejected due to low quality descriptions. +External Validity. Threats to external validity concern the +generalization of the results. As with any collected dataset, +there is a threat to external validity about the generalizability +of the CLARITY dataset. However, we used a diverse set +of popular apps from the Android domain, extracted popular +screenshots from these apps, and the apps were captioned by +a large and diverse set of MTurk workers. During our data +collection process, we only collected 4 low-level captions per +each screen in order to make the task feasible for MTurk +workers as workers tend to abandon or perform poorly on long +tasks. This means that, for certain screens with many GUI- +components, some components may lack natural language +descriptions. However, given the size of our dataset and the +diversity of our screenshots and captions, we assert that our +low-level captions are reasonably representative. +X. RELATED WORK +DL for Image Captioning and GUIs. Hossain et al. [64] +recently performed a wide-ranging study on DL models for +image captioning, surveying the many different architectures +and datasets used to evaluate them. However, this survey +did not examine the ability of any image captioning model +to predict functional descriptions of software. There have +been a limited number of papers in the SE community that +have applied DL techniques to GUI related data. Chen et +al. [65] designed an approach that uses an NMT to translate +an Android screenshot into a GUI-skeleton. However, their +technique is able to predict GUI structure given an image, not +functional natural language descriptions. Recently, Zhang et. +al. [66] created a dataset of iOS image captions to train a +model for captioning accessibility data. However, the authors +do not make their dataset publicly available and target a +different goal of accessibility data compared our goal of +generating functional captions. Chen et al. investigated the +use of DL image captioning models for applying labels to +GUI-components in mobile apps [67], however, this approach +only aims to predict short labels for a limited subset of +GUI-components, whereas our study focuses upon predicting +functional descriptions consisting of complete sentences for +both individual GUI-components and entire screenshots. +GUI-based Analysis of Mobile Apps. GVT and GCat analyze +the visual properties of GUIs to detect design violations and +evolutionary changes [68], [69]. In contrast, we focus solely on +image captioning techniques to provide functional program de- +scriptions of screenshots. Approaches such as REMAUI [70], +REDRAW [48], and pix2code [71] aim to automatically +generate mobile app code given an app screenshot. Conversely, +we leverage DL techniques to generate functional descriptions +rather than source code using a pixel-based image as input. +Chen et al. [72] introduced StoryDroid, for automatically +generating visual storyboards of Android apps to help aid +in the app design process. However, their approach is not +capable of generating a functional description of an application +from GUI data. Furthermore, Deka et al. showed how the +Rico dataset could be navigated via semantic search using +autoencoders +[35]. UiRef [73] is an approach for resolving +security and privacy concerns by considering semantics of +GUI-components that request user’s inputs. Moreover, Liu et +al. [74] presented an approach for automatically classifying +mobile app icons according to semantic GUI patterns. Xiao et +al. proposed IconIntent that combines program analysis and +icon classification to detect privacy sensitive GUI-components +[75]. Different from this body of work, we aim to predict +functional descriptions of GUIs for software documentation. +XI. CONCLUSION +In this paper, we have conducted one of the first com- +prehensive empirical investigations into the connection be- +tween GUI-related information, and functional descriptions +of programs. We have derived the CLARITY dataset of GUI +screenshots/metadata and NL captions, trained DL models +on this dataset, and demonstrated their ability to bridge the +semantic gap between visual and lexical program information. +ACKNOWLEDGMENT +This work was supported by the NSF CCF-2007246 & +CCF-1955853 grants. Any opinions, findings, and conclusions +expressed herein are the authors’ and do not necessarily reflect +those of the sponsors. +10 + +REFERENCES +[1] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of +software development problem factors on software maintainability,” J. +Syst. Softw., vol. 82, pp. 981–992, June 2009. +[2] M. Kajko-Mattsson, “A survey of documentation practice within correc- +tive maintenance,” Empirical Software Engineering, vol. 10, pp. 31–55, +Jan 2005. +[3] B. Dagenais and M. P. Robillard, “Creating and evolving developer +documentation: Understanding the decisions of open source contribu- +tors,” in Proceedings of the Eighteenth ACM SIGSOFT International +Symposium on Foundations of Software Engineering, FSE ’10, (New +York, NY, USA), pp. 127–136, ACM, 2010. +[4] G. Garousi, V. Garousi-Yusifoglu, G. Ruhe, J. Zhi, M. Moussavi, and +B. Smith, “Usage and usefulness of technical software documentation: +An industrial case study,” Information and Software Technology, vol. 57, +pp. 664 – 682, 2015. +[5] A. Forward and T. C. Lethbridge, “The relevance of software documen- +tation, tools and technologies: A survey,” in Proceedings of the 2002 +ACM Symposium on Document Engineering, DocEng ’02, (New York, +NY, USA), pp. 26–33, ACM, 2002. +[6] “The agile manfiesto http://agilemanifesto.org.” +[7] J. Zhi, V. Garousi-Yusiflu, B. Sun, G. Garousi, S. Shahnewaz, and +G. Ruhe, “Cost, benefits and quality of software development docu- +mentation,” J. Sys. Sof., Jan. 2015. +[8] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co- +evolve? on the relation between source code and comment changes,” in +Proceedings of the 14th Working Conference on Reverse Engineering, +WCRE ’07, (Washington, DC, USA), pp. 70–79, 2007. +[9] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “JSummarizer: +An automatic generator of natural language summaries for Java classes,” +in 2013 21st International Conference on Program Comprehension, +ICPC’13, pp. 230–232, May 2013. +[10] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay- +Shanker, “Automatic generation of natural language summaries for Java +classes,” in 2013 21st International Conference on Program Compre- +hension, ICPC’13, pp. 23–32, May 2013. +[11] P. C. Rigby and M. P. Robillard, “Discovering Essential Code Elements +in Informal Documentation,” in Proceedings of the 2013 International +Conference on Software Engineering, ICSE’13, (San Francisco, CA, +USA), pp. 832–841, 2013. +[12] A. T. T. Ying and M. P. Robillard, “Selection and Presentation Prac- +tices for Code Example Summarization,” in Proceedings of the 22Nd +ACM SIGSOFT International Symposium on Foundations of Software +Engineering, FSE’14, (Hong Kong, China), pp. 460–471, 2014. +[13] A. T. T. Ying and M. P. Robillard, “Code Fragment Summarization,” in +Proceedings of the 2013 9th Joint Meeting on Foundations of Software +Engineering, FSE’13, pp. 655–658, 2013. +[14] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in +2017 32nd IEEE/ACM International Conference on Automated Software +Engineering, ASE’17, pp. 112–122, Oct. 2017. +[15] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Automati- +cally mining software-based, semantically-similar words from comment- +code mappings,” in 2013 10th Working Conference on Mining Software +Repositories, MSR’13, pp. 377–386, may 2013. +[16] C. Treude and M. P. Robillard, “Augmenting API Documentation with +Insights from Stack Overflow,” in Proceedings of the 38th International +Conference on Software Engineering, ICSE ’16, (New York, NY, USA), +pp. 392–403, 2016. +[17] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering Information +Explaining API Types Using Text Classification,” in Proceedings of +the 37th International Conference on Software Engineering - Volume +1, ICSE ’15, (Florence, Italy), pp. 869–879, 2015. +[18] B. Li, C. Vendome, M. Linares-V´asquez, D. Poshyvanyk, and N. A. +Kraft, “Automatically Documenting Unit Test Cases,” in 2016 IEEE In- +ternational Conference on Software Testing, Verification and Validation, +ICST’16, pp. 341–352, Apr. 2016. +[19] L. Moreno, W. Bandara, S. Haiduc, and A. Marcus, “On the Relationship +between the Vocabulary of Bug Reports and Source Code,” in 2013 IEEE +International Conference on Software Maintenance, ICSM’13, pp. 452– +455, Sept. 2013. +[20] K. Moran, M. Linares-V´asquez, C. Bernal-C´ardenas, and D. Poshy- +vanyk, “Auto-completing Bug Reports for Android Applications,” in +Proceedings of the 2015 10th Joint Meeting on Foundations of Software +Engineering, FSE’15, (Bergamo, Italy), pp. 673–686, 2015. +[21] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and +G. Canfora, “Arena: An approach for the automated generation of release +notes,” IEEE Transactions on Software Engineering, vol. 43, pp. 106– +127, Feb 2017. +[22] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and +G. Canfora, “Automatic Generation of Release Notes,” in Proceedings +of the 22Nd ACM SIGSOFT International Symposium on Foundations +of Software Engineering, FSE’14, pp. 484–495, 2014. +[23] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating +commit messages from diffs using neural machine translation,” in +2017 32nd IEEE/ACM International Conference on Automated Software +Engineering, ASE’17, pp. 135–146, oct 2017. +[24] L. F. Cort´es-Coy, M. Linares-V´asquez, J. Aponte, and D. Poshyvanyk, +“On automatically generating commit messages via summarization of +source code changes,” in 2014 IEEE 14th International Working Con- +ference on Source Code Analysis and Manipulation, SCAM’14, Sep. +2014. +[25] P. Chatterjee, B. Gause, H. Hedinger, and L. Pollock, “Extracting +Code Segments and Their Descriptions from Research Articles,” in +Proceedings of the 14th International Conference on Mining Software +Repositories, MSR ’17, (Buenos Aires, Argentina), pp. 91–101, 2017. +[26] M. Linares-V´asquez, B. Li, C. Vendome, and D. Poshyvanyk, “Doc- +umenting database usages and schema constraints in database-centric +applications,” in Proceedings of the 25th International Symposium on +Software Testing and Analysis, ISSTA 2016, (New York, NY, USA), +pp. 270–281, 2016. +[27] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “Program +understanding and the concept assignment problem,” Commun. ACM, +vol. 37, pp. 72–82, May 1994. +[28] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft- +ware traceability using deep learning techniques,” in Proceedings of +the 39th International Conference on Software Engineering, ICSE ’17, +(Piscataway, NJ, USA), pp. 3–14, 2017. +[29] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, +M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-V´asquez, G. C. +Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand Developer +Documentation,” in 2017 IEEE International Conference on Software +Maintenance and Evolution, ICSME’17, pp. 479–483, Sept. 2017. +[30] “Android inches ahead of windows as most popular os - https://www. +cnet.com/news/android-most-popular-os-beats-windows-statcounter/.” +[31] K. Moran, C. Bernal-C´ardenas, M. Linares-V´asquez, and D. Poshy- +vanyk, “Overcoming lanaguge dichotomies: Toward effective program +comprehension for mobile app development,” in 26th IEEE International +Conference on Program Compreehnsion, May 2018. To Appear. +[32] A. M. Memon, A comprehensive framework for testing graphical user +interfaces. Ph.D., 2001. Advisors: Mary Lou Soffa and Martha Pol- +lack; Committee members: Prof. Rajiv Gupta (University of Arizona), +Prof. Adele E. Howe (Colorado State University), Prof. Lori Pollock +(University of Delaware). +[33] A. Solem, “Designing computer documentation that will be used: Un- +derstanding computer user attitudes,” in Proceedings of the 4th Annual +International Conference on Systems Documentation, SIGDOC ’85, +(New York, NY, USA), p. 55–56, Association for Computing Machinery, +1986. +[34] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android +apps: State of affairs, sentiments, and ways forward,” in Proceedings +of the 42nd International Conference on Software Engineering, ICSE +2020, (New York, NY, USA), p. to appear, ACM, 2020. +[35] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, +J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building +data-driven design applications,” in Proceedings of the 30th Annual +Symposium on User Interface Software and Technology, UIST ’17, 2017. +[36] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshy- +vanyk, “The ReDraw Dataset: A Set of Android Screenshots, GUI Meta- +data, and Labeled Images of GUI Components,” Jan. 2019. Supported +by NSF Grant CCF-1815186. +[37] M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description +as a ranking task: Data, models and evaluation metrics,” J. Artif. Int. +Res., vol. 47, no. 1, pp. 853–899, 2013. +[38] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, +P. Doll´ar, and C. L. Zitnick, “Microsoft COCO: Common Objects in +Context,” in Lecture Notes in Computer Science (including subseries +Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- +matics), vol. 8693 LNCS, pp. 740–755, 2014. +11 + +[39] “Online appendix http://sagelab.io/Clarity/.” +[40] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for +generating image descriptions,” IEEE Trans. Pattern Anal. Mach. Intell., +vol. 39, pp. 664–676, Apr. 2017. +[41] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons +learned from the 2015 mscoco image captioning challenge,” IEEE Trans. +Pattern Anal. Mach. Intell., vol. 39, pp. 652–663, Apr. 2017. +[42] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. +Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption +generation with visual attention,” in ICML, 2015. +[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification +with Deep Convolutional Neural Networks,” in Advances in Neural In- +formation Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, +and K. Q. Weinberger, eds.), pp. 1097–1105, 2012. +[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for +large-scale image recognition,” International Conference on Learning +Represen., vol. abs/1409.1556, 2014. +[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, +V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” +in Computer Vision and Pattern Recognition, 2015. +[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural +Comput., vol. 9, no. 8, pp. 1735–1780, 1997. +[47] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” +Trans. Sig. Proc., vol. 45, pp. 2673–2681, Nov. 1997. +[48] K. P. Moran, C. Bernal-C´ardenas, M. Curcio, R. Bonett, and D. Poshy- +vanyk, “Machine learning-based prototyping of graphical user interfaces +for mobile apps,” IEEE Transactions on Software Engineering, pp. 1–1, +2018. +[49] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. +Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. +[50] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and +M. Welling, “Fast collapsed gibbs sampling for latent dirichlet al- +location,” in Proceedings of the 14th ACM SIGKDD International +Conference on Knowledge Discovery and Data Mining, KDD ’08, (New +York, NY, USA), pp. 569–577, 2008. +[51] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the +Naturalness of Software,” in International Conference on Software +Engineering, ICSE’12, pp. 837–847, 2012. +[52] M. Rahman, D. Palani, and P. Rigby, “Natural software revisted,” in Pro- +ceedings of the 41st International Conference on Software Engineering +Companion, ICSE ’19, (Montreal, QC Canada), p. to appear, 2019. +[53] “Mit language modeling toolkit https://github.com/mitlm/mitlm.” +[54] P. Koehn, Statistical Machine Translation. 1st ed., 2010. +[55] “Google’s im2txt implementation https://github.com/tensorflow/models/ +tree/master/research/im2txt.” +[56] “Neuraltalk2 implementation https://github.com/karpathy/neuraltalk2.” +[57] “Google seq2seq framework https://github.com/google/seq2seq.” +[58] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking +the inception architecture for computer vision,” in 2016 IEEE Confer- +ence on Computer Vision and Pattern Recognition, June 2016. +[59] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, +Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and +L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” +International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, +2015. +[60] “Show, attend and tell implementation https://github.com/coldmanck/ +show-attend-and-tell.” +[61] L. Sha, L. Mou, T. Liu, P. Poupart, S. Li, B. Chang, and Z. Sui, +“Order-planning neural text generation from structured data,” The +Thirty-Second AAAI Conference on Artificial Intelligence (AAAI’17), +vol. abs/1709.00155, 2017. +[62] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive Exploration of +Neural Machine Translation Architectures,” ArXiv e-prints, Mar. 2017. +[63] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for +automatic evaluation of machine translation,” in Proceedings of the 40th +Annual Meeting on Association for Computational Linguistics, ACL ’02, +(Stroudsburg, PA, USA), pp. 311–318, 2002. +[64] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A compre- +hensive survey of deep learning for image captioning,” ACM Comput. +Surv., vol. 51, pp. 118:1–118:36, Feb. 2019. +[65] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Storydroid: +Automated generation of storyboard for android apps,” in Proceedings of +the 41st International Conference on Software Engineering, ICSE ’19, +(Piscataway, NJ, USA), pp. 596–607, IEEE Press, 2019. +[66] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu, +Q. Shan, J. Nichols, J. Wu, C. Fleizach, A. Everitt, and J. P. Bigham, +Screen Recognition: Creating Accessibility Metadata for Mobile Appli- +cations from Pixels. New York, NY, USA: Association for Computing +Machinery, 2021. +[67] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, G. Li, and J. Wang, “Unblind +your apps: Predicting natural-language labels for mobile gui components +by deep learning,” in Proceedings of the 42nd International Conference +on Software Engineering, ICSE 2020, (New York, NY, USA), p. to +appear, ACM, 2020. +[68] K. Moran, C. Watson, J. Hoskins, G. Purnell, and D. Poshyvanyk, +“Detecting and summarizing gui changes in evolving mobile apps,” +in Proceedings of the 33rd ACM/IEEE International Conference on +Automated Software Engineering, ASE 2018, (New York, NY, USA), +pp. 543–553, 2018. +[69] K. Moran, B. Li, C. Bernal-C´ardenas, D. Jelf, and D. Poshyvanyk, +“Automated Reporting of GUI Design Violations in Mobile Apps,” in +Proceedings of the 40th International Conference on Software Engineer- +ing Companion, ICSE ’18, (Gothenburg, Sweden), p. to appear, 2018. +[70] T. A. Nguyen and C. Csallner, “Reverse Engineering Mobile Application +User Interfaces with REMAUI,” in Proceedings of the 2015 30th +IEEE/ACM International Conference on Automated Software Engineer- +ing, ASE’15, (Washington, DC, USA), pp. 248–259, 2015. +[71] T. Beltramelli, “Pix2code: Generating Code from a Graphical User +Interface Screenshot,” CoRR, vol. abs/1705.07962, 2017. +[72] Q. Chen and M. Zhou, “A neural framework for retrieval and summariza- +tion of source code,” in Proceedings of the 33rd ACM/IEEE International +Conference on Automated Software Engineering, ASE 2018, (New York, +NY, USA), pp. 826–831, ACM, 2018. +[73] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “UiRef: +analysis of sensitive user inputs in Android applications,” in Proceedings +of the 10th ACM Conference on Security and Privacy in Wireless and +Mobile Networks, WiSec’17, (New York, New York, USA), pp. 23–34, +2017. +[74] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar, “Learning +design semantics for mobile apps,” in The 31st Annual ACM Symposium +on User Interface Software and Technology, UIST ’18, (New York, NY, +USA), pp. 569–579, 2018. +[75] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, “Iconintent: Automatic +identification of sensitive ui widgets based on icon classification for +android apps,” in Proceedings of the 41st International Conference on +Software Engineering Companion, ICSE ’19, (Montreal, QC Canada), +p. to appear, 2019. +12 + diff --git a/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/load_file.txt b/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f9cffc4feb6eabc36a43b03f4d6c78503751d4a --- /dev/null +++ b/3NAzT4oBgHgl3EQfR_tE/content/tmp_files/load_file.txt @@ -0,0 +1,1241 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf,len=1240 +page_content='An Empirical Investigation into the Use of Image Captioning for Automated Software Documentation Kevin Moran†, Ali Yachnes∗, George Purnell∗, Junayed Mahmud†, Michele Tufano‡, Carlos Bernal Cardenas‡, Denys Poshyvanyk∗, Zach H’Doubler∗ †George Mason University, VA, USA, ∗William & Mary, VA, USA, ‡Microsoft, WA, USA kpmoran@gmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu, ayachnes@email.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='wm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu, gwpurnell@email.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='wm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu, jmahmud@gmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu michele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='tufano@microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com, carlosbe@microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com, denys@cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='wm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu, pzhdoubler@email.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='wm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='edu Abstract—Existing automated techniques for software docu- mentation typically attempt to reason between two main sources of information: code and natural language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, this reason- ing process is often complicated by the lexical gap between more abstract natural language and more structured programming languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This paper offers one of the first com- prehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The descriptions were obtained from human labelers and underwent several quality control mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large- scale user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Index Terms—Software Documentation, Image Captioning, Deep Learning I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' INTRODUCTION & MOTIVATION Proper documentation is generally considered to be an inte- gral component of building and distributing modern software systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In fact, past studies have illustrated the general ben- efits of documentation during the development lifecycle [1], [2], [3], [4] and the importance of technical documentation to software maintenance and evolution [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, despite the value of well-documented systems, modern development processes and constraints often lead to the disregard or aban- donment of a range of documentation tasks [6], [5], [2], [7], [8], [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These difficulties have given rise to a wealth of research on automated techniques that aim to ease the burden on stakeholders by generating various types of documentation for a given task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For example, existing approaches have been developed to automatically generate natural language sum- maries and documentation for code [9], [10], [11], [12], [13], [14], [15], APIs [16], [17], unit tests [18], bug reports [19], [20], release notes [21], [22], and commit messages [23], [24], among other artifacts [25], [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Generally, existing techniques for automated software doc- umentation have been concerned with modeling relationships that exist between two primary information modalities: code and natural language (NL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Unfortunately, reasoning between these two information sources is difficult due to the lexical gap resulting from the often disparate conceptual associations that connect source code lexicon and the more abstract words and phrases used in NL descriptions [27], [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Recently, this lexical gap was acknowledged as an information inference problem in a report made by Robillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [29], wherein key research challenges exist in (i) inferring undocumented program properties, and (ii) discovering latent abstractions and rationales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These challenges suggest that overcoming the semantic disconnect between code and NL may require new knowledge sources that encode distinct program properties typically absent from traditional software or NL lexicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' One source of information which has been left largely unexplored for the purposes of automated documentation is visual software data encoded into Graphical User Interfaces (GUIs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' GUI-based applications predominate modern user- facing software, as can be readily seen in the popularity of desktop and mobile apps [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Furthermore, high quality ap- plications with well-designed GUIs allow technically-inclined users to instinctively understand underlying program features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, intuitively, certain functional properties of applications are encoded into the visual, pixel-based representation of the GUI such that cognitive human processes can determine the computing tasks provided by the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This suggests that there are latent patterns that exist within visual GUI data which indicate the presence of natural use cases capturing core functionality [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Given the inherent representational power of GUIs in con- veying program related information, we set forth the following hypothesis that serves as the basis for work in this paper: The representational power of graphical user interfaces to convey program-related information can be meaningfully leveraged to support automated techniques for software doc- umentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' While most existing work on automated documentation con- cerns itself with the dichotomy between code and NL, we posit that the latent information encoded within GUIs can aid in bridging the existing semantic documentation gap by providing arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='01224v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SE] 3 Jan 2023 an additional source of knowledge that inherently reflects pro- gram functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In fact, GUI-based representations of soft- ware have the potential to address the two challenges set forth by Robillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' More specifically, GUIs can aid in inferring undocumented program properties that are inherently represented within the design of GUI controls or widgets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', capturing a feature which is otherwise poorly represented by low-quality code identifiers/comments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Further, GUIs could be used as source to mine abstractions or rationales that would otherwise remain obscure (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', providing a use case- based explanation of a block of code connected to a GUI screen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In overcoming these challenges, we see GUI-centric documentation having an impact on the following types of software documentation: Technical Documentation: Developers utilize technical docu- mentation, such as code comments or READMEs, in order to learn about the functionality and interfaces of software to support engineering tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Automatically generating such documentation accurately is a challenging inference problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, it has been shown that GUI-related code can com- prise as much as half of the code in user facing programs [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This means that graphical software data is connected in some way to large portions of GUI-based software projects i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', through GUI-event handlers, or code stipulating GUI layouts such as html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Therefore, if automated techniques are able to effectively infer salient functionality from the GUIs, they could be combined with existing techniques and leveraged to provide automation to developers, such as comment generation or code summarization with greater feature-based context awareness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As we illustrate in this paper, GUI code/metadata appears to encode orthogonal information compared to visual GUI data (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', screenshots), which suggests that we may be able to infer documentation information from visual GUI data that likely can’t be inferred from GUI code alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' User Documentation: Developers typically provide users with documentation such as tutorials or walkthroughs to help clearly illustrate software features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' While some experienced users can infer functionality directly from a GUI, end-users exhibit a range of technological expertise, and many rely upon various forms of end-user documentation [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, building techniques capable of automatically generating such documen- tation would free up development effort for other critical tasks, such as bug fixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Beyond typical user facing software aids, GUI-centric program documentation could also enable entirely new classes of automated accessibility features, which are sorely needed for mobile apps [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For example, rather than a typical text-to-speech engine, one could envision a screen-to- functionality engine that could aid a motor-impaired user with navigating the software, without extra development effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To investigate the potential of automated GUI-centric soft- ware documentation, we offer one of the first comprehensive empirical investigations into this new research direction’s most fundamental task: generating a natural language descrip- tion given a screenshot (or screen-related information) of a software GUI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Given that this task underlies the various potential applications discussed above, we view this as a logical first step towards investigating the feasibility of fu- ture techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To accomplish this, we collect and analyze a dataset for Comprehending visuaL semAntics to pRedict applicatIon functionalTY (the CLARITY dataset) consisting of 45,998 functional descriptions of 10,204 screenshots of popular Android apps available on Google Play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We provide a descriptive analysis of this dataset that investigates the “naturalness” and semantic topics of the collected descriptions by measuring cross-entropy compared to other corpora and performing a topic modeling analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To learn functional descriptions of the screens from this dataset, we customize, train, and test four Deep Learning (DL) models for neural image captioning—three that learn from image data and one that learns from textual GUI metadata—to predict functional descriptions of software at different granularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We evaluate the efficacy of these models both quantitatively, by measuring the widely used BLEU metric, and qualitatively through a large-scale user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In summary, this paper’s contributions are as follows: We collect the CLARITY dataset of GUIs annotated with 45,998 functional, NL descriptions from 10,204 screenshots of popular Android apps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The NL captions were obtained from human labelers, underwent several quality control mechanisms, and contain both high- and low-level descriptions of screen functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' While other GUI datasets exist [35], [36], the CLARITY dataset differs by providing an extensively labeled set of screens, akin to Flickr8K [37] or MSCOCO [38];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We illustrate the underlying, natural patterns that exist in the CLARITY dataset through topic modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We provide an extensive quantitative and qualitative eval- uation of four tailored DL models for image captioning using standard metrics and a large scale user study;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We offer an online appendix with examples of model- generated descriptions and experimental data [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Our dataset, trained models, code, and evaluation scripts are open source and accessible via the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' BACKGROUND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The Connection between Images and NL The task of image captioning is much more difficult than that of classification or labeling, as an effective model must be able to both learn salient features from images automati- cally and semantically equate these features with the proper NL words and grammar that describe them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This task of semantically aligning two completely different modalities of information has led to the development of multimodal DL architectures that jointly embed NL and pixel-based infor- mation in order to predict an appropriate description of a given input image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These techniques are typically trained on large-scale datasets that contain images annotated with multiple captions, such as MSCOCO [38], and have largely drawn inspiration from encoder-decoder neural language mod- els traditionally applied to machine translation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In this 2 … … … Input Image CNN or RCNN BRNN or LSTM xt yt W st v Image “Encoder” NL “Decoder” Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1: Generalized overview of multimodal DL architectures for image captioning (with RCNN) paper, we adapt three recent architectures for image caption- ing, neuraltalk2 [40], the im2txt [41], and the show, attend and tell (SAT) [42] frameworks to predict func- tional descriptions of software screenshots through the use of custom pre-training and fine-tuning procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Additionally, we explore the seq2seq neural language model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' DL models for image captioning build upon the success of encoder-decoder neural language models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The im2txt framework treats image captioning as a machine translation problem, wherein the source “sentence” is an image, and the target “translation” is a NL description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The generalized architecture of such models is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As illustrated, these architectures replace the encoder RNN with a Convolu- tional Neural Network (CNN), which have been shown to be highly capable of learning rich image features [43], [44], [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Google’s implementation of im2txt uses a Long-Short Term Memory (LSTM) RNN [46] for the “decoder” module, which has also proven extremely effective when applied to machine translation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The decoder module of the neuraltalk2 architecture is composed of a Bidirectional RNN (BRNN) [47] as opposed to an LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Finally, the show, attend, & tell (SAT) model [42] uses an LSTM decoder but with the addition of an attention mechanism that can “attend” to salient parts of the image representation by combining “hard” and “soft” attention mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' OVERVIEW In this section, we provide an “at-a-glance” overview of the data-collection procedures and various analyses performed in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Figure 2 illustrates the four major components of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The first major task of our study is to derive a suitable dataset of screenshot-caption pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We describe this process in two parts: (i) the collection of screenshots (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' IV-A), and (ii) the collection of captions from human workers (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' IV-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The result of this data-collection effort is the CLARITY dataset, which contains 45,998 captions of 10,204 Android screenshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Next, we aim to understand the lexical properties of our captions through an empirical analysis in order to better understand how easily they might be modeled (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, we perform both a comparison of the the cross-entropy of language models trained our caption corpus to other popular SE corpora, and perform an LDA-based topic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Next, we discuss the process of configuring and training three neural image captioning models, and one 1 Clarity Dataset Collection (Screenshots + GUI metadata + Captions) 2 Naturalness & Topic Analysis Cross-Entropy Analysis LDA-based Topic Analysis … … … Input Image CNN or RCNN BRNN or LSTM xt yt W st v Image “Encoder” NL “Decoder” 3 Train Image-Captioning and Metadata Captioning Models Image-Captioning Models Metadata-Captioning Models 4 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='antitative and !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='alitative Model Evaluations “Ground Truth” Captions “Predicted” Captions + Screens Large-Scale Human Evaluation !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='antitative Evaluation with BLEU Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2: Overview of Dataset Collection and Analysis sequence-based model to predict functional descriptions of software GUIs (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Finally, we conclude our analysis by measuring the accuracy of our trained models according to both automated reference-based metrics (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', BLEU@n) and via a large-scale human evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VII) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' DATASET COLLECTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Screen & GUI Metadata Collection The first step in deriving the CLARITY dataset is the collection of a sizable and diverse dataset of screenshots and GUI-metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We chose to focus this dataset derivation on the Android platform for three main reasons: (i) Android is cur- rently the most popular OS in the world [30], (ii) Android apps are highly GUI-and gesture driven, making them a suitable target for our investigation, and (iii) the Android screencap and uiautomator tools facilitate the extraction of screenshots and GUI-metadata from running apps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fortunately, large-scale datasets of Android screenshots and metadata are publicly available in related literature [48], [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For this work, we took advantage of the REDRAW [48], [36] dataset which contains nearly 17k unique screenshots from 8,655 of the top-rated apps from the Google Play Store.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It should be noted that another large-scale Android GUI dataset that contains a larger number of screenshots, RICO, is also available [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, we chose to utilize the REDRAW dataset as it aligned with one of our primary study objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' That is, we aim to learn latent feature information from both screenshots and GUI- metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, for the GUI-metadata to properly align with the displayed content on a screen, the app must make use of native Android components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Therefore, apps that primarily display their information using web technologies, so-called hybrid apps, would obscure the GUI-metadata and impact our study findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The REDRAW dataset contains a set of screenshots that underwent several stages of filtering to remove instances of hybrid apps along with other noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=" Furthermore, the REDRAW dataset contains a set of GUI-component images 3 2:04 Q Search Stories Play All Add Your Story George Amanda Colby [因 What's on your mind?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Photo Guillermo Moreno with Josephine Williams and 2 others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Yesterday at 10:14 PM · Good friends, good food and a lot of laughs Colby Harris and 23 others 2 CommentsHello 4 again!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=" Password I forgot ENTER Don't have an account?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Register wordsearch Animals-Countries-Cifies PLAY Uspresidents-Trademarks0000 三12:34 Kids A-Z Teacher Username No Username?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Start Here!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='日# 12:27 The Dollar in Mexico = updated: Jun 19, 2017 Order by: Sell V Select the bank of your choice BAsE Banco Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='4129 Sell: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8129 BANCODE MEXICO Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9895 Sell: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9945 Interbank dollar to 48 hours OBANCO AZTECA Buy: 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='95 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='01 HSBC Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='68 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='17 BANORTE Buy: 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='85 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='25 Ixe Buy: 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='85 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='25 monex Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='67 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='28 Banamex Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='50 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='30 INBURSA Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='70 Grupo Financierc Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='30 Santander Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='50 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='30 BBVA Bancomer Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='16 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='35 B BANCO DEL BAJIO Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='40 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='40 Scotiabank Buy: 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='80 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='42 Bx+ Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='50 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='50 BANREGIO Buy: 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='40 Sell: 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content="502:04 Q Search Stories Play All Add Your Story George Amanda Colby [因 What's on your mind?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Photo Guillermo Moreno with Josephine Williams and 2 others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Yesterday at 10:14 PM · Good friends, good food and a lot of laughs Colby Harris and 23 others 2 Comments000 AHigh Level Caption The screen allows the user to look at clothing categories Low Level Captions The top le!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' icon allows the user to access the menu The top right icon allows the user to access the shopping cart The center list of categories allows the user to make a selection The heart icon to the le!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' of the shopping cart allows the user to view favorites Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3: Example of captions from the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' labeled with their corresponding types (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', Button) which we utilize later in our study (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The end result of this filtering process was a total set of 17,203 candidate screens for labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We refer readers to the REDRAW paper for complete details of the filtering process [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Collection of Functional Descriptions Once we derived a suitable set of screens, we needed to manually label these screens with functional captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This process occurred in two steps: (i) first, we conducted a pilot labeling study in order to develop and prove out a tagging methodology suitable for large scale caption collection;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' (ii) second, we performed a full scale data collection study using Amazon’s Mechanical Turk Crowd-worker platform to collect over 10k screens with functional descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1) Caption Granularity: Intuitively, GUIs encode func- tional information at multiple levels of granularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For exam- ple, if you were to ask a user or developer what the high- level purpose of a given screen is, they might say “This screen allows users to browse clothing categories”, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These types of descriptions constitute the “high- level” functionality of a given screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, a single screen rarely implements only one functionality, and there may be multiple functional properties that enable the screen’s high- level functional purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' User descriptions of these types of functional properties are typically centered around the interactive components of a screen, since these represent the instances of actions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', users “doing something”) that are easily attributed to implemented functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For example, in the screen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3, underlying functions include viewing favorites, accessing a shopping cart, or selecting an item from a list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These types of “low-level” screen properties centered around GUI-components describe key constituent functional- ity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hence, in order to capture a holistic functional view of each screen, we tasked participants with labeling each screen with one “high-level” functional caption, and up to four “low- level” functional captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3 shows these two categories using actual captions collected as part of the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) Pilot Data Collection Study: We developed an initial image caption collection platform using a Java-based web application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Using this system, the authors manually labeled 743 screens with the caption granularities described earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' During this study, we discovered some instances of screens with relatively little information displayed on them, making it difficult to label them with functional attributes, even after the filtering techniques discussed previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Therefore, before moving onto the large-scale caption collection with Mechani- cal Turk (MTurk), at least one author manually inspected each of the 17,203 candidate screens, and discarded those with a severe lack of functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This resulted in a set of 16,311 candidate screens for the next phase of the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3) Mechanical Turk Data Collection Study: To set up our large-scale data-collection process, we adapted our web ap- plication caption collection mechanism to work with MTurk’s crowd worker platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This involved configuring a Human Intelligence Task (HIT) that provided workers with a set of detailed instructions, displaying a screenshot from our dataset alongside text entry boxes for one high-level functional caption and up to four low-level functional captions (a limit was imposed to normalize the amount of time workers would spend on the HIT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This study was approved by the Institutional Review Board of the authors’ affiliated institution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Given that we aimed to collect high-quality functional descriptions of screens in natural English, we targeted MTurk users from primarily English speaking countries that had completed at least 1,000 HITs and had a HIT approval rate of at least 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We provided a detailed set of instructions for labeling images with captions that clearly explained the concept of high-level and low-level captions with examples, and provided users with explicit instructions as well as DOs and DONTs for the labeling task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The full set of instructions is available in our online appendix [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' With regard to caption quality, we specifically had three major requirements: (i) that the caption describes the perceived functionality of a screen and not simply its appearance, (ii) that spatial references are given for low-level captions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', “the button in the top-left corner of the screen”), and (iii) that captions be written in complete English sentences with reasonably proper grammar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We published batches of HIT tasks by sampling unique screens from our set of 16,311 candidate screens, ensuring that no user was assigned the same screen twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The quality of work from crowd-sourced tasks is not always optimal, so as captions were submitted, they needed to be vetted for quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, the captions for each screen were examined by at least one author for the three quality attributes mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' If an author was unsure about whether a screen met these quality attributes, it was reviewed by at least one other author to reach a consensus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In total, 2,419 screens were rejected and republished as new HITs due to quality issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In summary, 2,150 MTurk workers collected 45,998 captions (across granularities) for 10,204 screens (≈5 screens per participant), and over $2,400 was paid out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' EMPIRICAL DATASET ANALYSIS The CLARITY dataset provides a rich source of data for exploring the relationship between GUI-based and lexical 4 #?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='日9:47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='asos ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='三 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='HOME ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='CATEGORIES ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='NEWIN:CLOTHING ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ACTIVEWEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='TALL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='JEANS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SHOES&SNEAKERS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SHIRTS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SUNGIASSESTABLE I: LDA topics learned over high-level captions k = 15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Assigned Label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Top 7 Words ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='color options” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='screen show app option color book differ ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='login or create acccount” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='user screen allow account log creat app ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='select image from a list” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='user screen allow select view list imag ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='map search by location” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='screen locat search map user show find ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='TABLE II: LDA Topics learned on low-level captions k = 25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Assigned Label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Top 7 Words ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='page button” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='page button top center bottom side left ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='select date” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='avail date select one option theme present ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='camera button” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='video imag photo pictur bottom camera ”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='privacy policy banner” ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='titl just term blue banner privaci polici ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='software data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, it is important to investigate the semantic makeup of the collected captions in order to better understand: (i) the latent topics they capture as well as (ii) their naturalness and, hence, predictability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In this section we carry out an empirical analysis of this phenomena guided by the following two Research Questions (RQs): RQ1: What are the latent topics captured within the high- and low-level captions in the CLARITY dataset?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' RQ2: How natural (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', predictable) are the high- and low-level captions in the CLARITY dataset?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Analysis Methodology 1) RQ1: Investigating Dataset Topics: To investigate the latent topics in the CLARITY dataset, we learned topic models over caption corpora representing different granularities of functional descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' More specifically, we applied Latent Dirichlet Allocation (LDA) [49] to both segmented high- and low- level captions from the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In our analysis, the set of captions for a specific screenshot in the CLARITY dataset represents a document, and the entire set of captions across screenshots for a given granularity (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', high or low level) constitutes a corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' LDA has several configurable hyper-parameters that impact the smoothing of generated topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These include k, the number of topics, n which denotes the number of iterations of the sampling algorithm (Gibbs sampling [50], in our case), as well as α and β which impact topic distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We set α and β to standard values for NL corpora, set n to 500, which proved to be a sufficient for model convergence, and varied k between 15, 25, 50, and 75 topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) RQ2: Analyzing the Naturalness of GUI Descriptions: Past work has pioneered the notion of the naturalness of software [51], which illustrated the fact that software, even more so than NL, exhibits repetitive patterns that make it predictable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This finding was recently further investigated and the existence of certain natural patterns was confirmed [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To illustrate naturalness, these past studies have learned statistical n-gram language models over software corpora, and measured the “perplexity” (or a log-transformed version, cross-entropy) of these models, which represents the degree to which a model is “surprised” by the patterns on a test corpus when trained on a corpus from the same domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A model with lower measured 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 N-gram order Cross-Entropy High-Level Captions Low-Level Captions Java Raw Code Java w/o Syntax Tokens Stack Overflow Guntenberg Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 4: Cross-entropy of the CLARITY dataset’s high and low- Level captions compared to other corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' cross-entropy represents a higher predictive power, and thus, a more natural underlying corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We follow the methodology of these past studies to explore the naturalness of the CLARITY dataset captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, similar to the methodology for the previous RQ, we split the collected captions into two corpora, one for the high-level descriptions, and one for the low-level descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We then learned inter- polated n-gram models, using the mitlm [53] implementation of Kneser-Ney smoothing [54], which has been shown to be the most effective n-gram smoothing method [51], following a ten-fold cross-validation procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We report the average cross-entropy values across these experiments for both the high and low-level corpora, compared to prior results [51], [52] for other NL and software corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Analysis Results 1) RQ1: Results of Dataset Topic Modeling: We present selected results of some of the most representative topics in Tables I & II, complete with descriptive labels that we provide for readability, and include all the results in our appendix [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These topics help to provide a descriptive illustration of some of the latent patterns that exist in both the high and low level CLARITY captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The high-level captions illustrate several screen-level topics, including searching on a map and adjusting app settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The low-level captions conversely capture topics that describe component-level functionality, such as date selec- tors, camera buttons, and back buttons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' These results indicate the existence of logical topics specific to the domain of GUIs in our collected captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) RQ2: The Naturalness of Clarity Descriptions: The results of our naturalness analysis are illustrated in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This figure shows the average cross entropy of the high- and low- level captions from the CLARITY dataset compared to several other corpora as calculated by Rahman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' More specifically, the graph depicts the average ten-fold cross entropy for: (i) The Gutenberg corpus containing over 3k English books written by over a hundred different authors, (ii) Java code from over 134 open source projects on GitHub, (iii) Java without Syntax Tokens (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', separators, keywords, and operators), and (iv) a Stack Overflow corpus consisting of only the English descriptions from over 200k posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 5 13 high 12 low 11 javaraw java withoutsyntaxtokens 10 stack overflow 9 gutenberg entropy 8 cross 6 5 4 3 2 1 1 2 m 4 5 6 7 8 9 10 n-gram lengthAs described earlier, the lower the cross-entropy is for a particular dataset, the more natural it is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' That is, the corpora that exhibit lower cross entropy tend to exhibit stronger latent patterns that can be effectively modeled and predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As we see from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 4, the CLARITY high and low level captions are more natural than every dataset excluding raw Java code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It should be noted that, comparatively, there are several factors that could account for the observed lower cross entropy of the CLARITY captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For instance, such factors could include other corpora having a larger size or having a more diverse set of human authors and writing styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, we mainly provide entropy measures of other datasets to provide context for the predictability of the CLARITY dataset compared to other popular corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Regardless of dataset differences, the average ≈ 5 bits of entropy measured for the two datasets of CLARITY captions signals that our collected descriptions ex- hibit strong semantic patterns that can be effectively modeled for prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Additionally, we observe that the cross-entropy for the high and low-level captions are surprisingly similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Intuitively, one might expect that the low-level CLARITY captions would exhibit more prevalent patterns due to the repetitive use cases of certain GUI-components such as menu buttons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This indicates the tendency of both datasets to exhibit patterns that can be appropriately modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, as we illustrate in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VII the ability for GUI-related information to predict captions differs according to granularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' DEEP LEARNING FUNCTIONAL DESCRIPTIONS FROM SOFTWARE GUIS The results of the analysis from the previous section demon- strate the presence of the latent patterns in the CLARITY dataset of screenshots and captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In this section, we detail our methodology for investigating the capability of different customized DL models to learn these patterns to predict functional descriptions from two GUI representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Clarity Dataset Segmentation We collected two different granularities of captions from users to derive the CLARITY dataset (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' IV-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For the experiments in this section, we want to explore the model’s ability to learn both high- and low-level functional descrip- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, we split the CLARITY dataset into two groups, one containing only high level captions, and one containing only low level ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We also created a third dataset combining the high and low level captions, in order to explore whether the predictive capabilities of the models improved by aggregating multiple granularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It should be noted that each low-level caption was treated as a single caption (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' each low-level caption was treated as a separate data point) as is convention with datasets containing multiple captions [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Each screen in the dataset has both an associated screenshot and a GUI- metadata file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In order to make for a fair comparison of performance across various model configurations, we created consistent training, validation and test partitions (80%, 10%, 10% according to the number of images/GUI metadata files) to be used across models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The NL text used as input to the models TABLE III: Image Captioning Model Configs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' used in Study Model Identifier Caption Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Model Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-h-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-l-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-c-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='inception v3 trained on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='imagenet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-h-comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-l-comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-c-comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Inception v3 fine-tuned on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Component Dataset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-h-fs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-l-fs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt-c-fs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Inception v3 fine-tuned on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Full Screen Dataset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-h-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-l-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-c-imgnet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='VGGNet pre-trained on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ImageNet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-h-ft ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-l-ft ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='NeuralTalk 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ntk2-c-ft ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='VGGNet pre-trained on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ImageNet with Fine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Tuning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='sat-h ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='sat-l ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Low ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='sat-c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Combined ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='VGGNet pre-trained on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='ImageNet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='TABLE IV: Subset of Model Hyper-paramters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Hyperparameter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='im2txt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='NeuralTalk2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Seq2Seq ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Batch Size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Embedding Size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Decoder RNN Size/Units ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='512 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1024 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Optimizer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SGD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='SGD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Adam ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Adam ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='Initial Learning Rate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0001 Dropout Probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 was preprocessed according to the specific requirements for each model implementation [55], [56], [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Image Captioning Model Configurations We customize, train, and test the three neural image captioning models, im2txt, neuraltalk2, and show, attend, & tell (SAT) (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' II-A), on the screenshots and captions of the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We choose to explore these three models due to their different underlying design decisions related to the type of utilized CNNs and RNNs (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' II-A), as these differences may affect their performance in our domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It should be noted that in the course of our experiments, we make several customizations to these models through adaptions to pre-training and fine-tuning procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, given the typical number of parameters that consti- tute these models, the training time can be quite prohibitive, even on modern hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, to control our experimental complexity and investigate a number of model configurations that can be trained in a reasonable amount of time, we fix the values of the hyper-parameters for each model in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We derived our utilized hyper-parameter values by conducting random searches for optimal values of certain parameters, and chose optimal parameters reported in prior work for others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' While we fix the hyper-parameters for these models, we instead customize the configurations of our image captioning models at the architectural level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Specifically, we investigate how training the “encoder” CNN using different datasets and training procedures effects the efficacy of the model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This type of analysis allows us to more effectively flush out broader patterns related to the benefits and drawbacks of model design decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In the end, we trained more than 15 different configurations of the models (see Table III) over several machine months of computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1) im2txt Model Configurations & Training: For im2txt, we adapted Google’s open source implementa- 6 tion of the model in TensorFlow [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Given the incredibly large number of parameters that need to be trained for the im2txt model, performing even relatively simple hyper- paramter searches proved to be computationally prohibitive for our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Therefore, for this model we utilized the optimal set of parameters reported by Vinyals et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [41] on similarly sized datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A subset of these hyper-parameter values are given in Table IV, whereas full configuration details can be found in our appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The publicly available imple- mentation of Google’s im2txt model utilizes the Inception v3 [58] image captioning architecture as its encoder CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In past work, the inception model weights were initialized by training on the large-scale image classification dataset ImageNet [59], which contains “commonplace” image cate- goires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, given that we are applying these models to very particular domain (predicting descriptions of software) it is unclear if an Inception v3 model trained on the broader ImageNet dataset would capture subtle semantic patterns in the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Therefore, we explored three different model configurations to explore this phenomena: one with Inception v3 pre-trained on ImageNet, and two with Inception v3 fine-tuned on domain specific-datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The first domain specific image dataset we utilize is the ReDraw cropped image dataset outlined in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' IV-A, which contains over 190k images of native Android GUI-components labeled with their type (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', Button, TextView).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The second domain specific image dataset we use consists of the full screenshots from the CLARITY dataset, labeled with their Google Play categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) NeuralTalk2 Model Configurations & Training: For neuraltalk2, we adapted Karpathy et al.’s implementation written in Torch and lua [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We performed a brief random- ized hyper-parameter search for this model, given its more efficient training time, using the optimal im2txt parameters as a starting point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The optimal values resulting from this search are provided in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For its CNN decoder, neuraltalk2 makes use of a VGGNet [44] architecture pre-trained on the ImageNet [59] dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Unlike our im2txt configurations, we explore the effect of jointly fine-tuning neuraltalk2’s CNN and RNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, we explore two configurations of neuraltalk2, one that jointly fine tunes the pre-trained VGGNet on the CLARITY dataset, and one that does not perform fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We followed a training procedure similar to that of our im2txt models, in that we trained our models on the high, low, and combined CLARITY caption training data for 500K iterations, saving model checkpoints every 2K iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3) Show, Attend and Tell Model Configurations & Train- ing: For the SAT model, we adapted the open-source imple- mentation of the model in Tensorflow [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The hyperparam- eters that we used to train our model are shown in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The implementation used VGG16 [44] as its encoder CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We trained the SAT model on the CLARITY dataset for the low, high and combined captions for 500K iterations and kept the checkpoints after every 1K iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Note that due to the prohibitive training cost of this model, we did not explore using a fine-tuned VGGNet as we did with neuraltalk2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' TABLE V: Metadata Captioning Model Congfigurations Model Identifier Caption Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Model Config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' seq2seq-h-type High seq2seq-l-type Low seq2seq-c-type Combined Trained on GUI Component Types seq2seq-h-text High seq2seq-l-text Low seq2seq-c-text Combined Trained on GUI-Component Text seq2seq-h-tt High seq2seq-l-tt Low seq2seq-c-tt Combined Trained on GUI-Component Type + Text seq2seq-h-ttl High seq2seq-l-ttl Low Seq2Seq seq2seq-c-ttl Combined Trained on GUI-component Type + Text + Location C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Metadata Captioning Model Configurations To explore the ability to translate between the lexical representations of GUI-metadata and NL functional descrip- tions, we train and test an encoder-decoder neural language model using Google’s seq2seq [57] framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Note that recent work has proposed new models that take advantage of structural text properties [61], however, implementations of such models are generally not available, hence we leave the study of more advanced models for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We chose to utilize the default general-purpose architecture and hyper- parameters for this model, as they have been shown to be effective across a wide-range of machine translation tasks [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' More specifically, our encoder network consists of a BRNN with Gated Recurrent Units (GRUs) and our decoder network consists of an RNN with LSTM units;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' hyperparameters are listed in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To investigate the representative power of different attributes included in Android GUI-metadata, we create four config- urations of GUI-metadata consisting of different attribute combinations (Table V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We chose to utilize these attribute combinations as they represent (i) the attributes that are most likely to have values, and (ii) represent a wide range of information types (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', displayed text, component types, and spatial information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Note that seq2seq did not consistently converge for the high level caption dataset, thus we do not report these results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Consistent with the training of the other models, our implementation of the seq2seq model was trained to 500k iterations, with checkpoints every 2k iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' DEEP LEARNING MODEL EVALUATION To explore our core hypothesis set forth at the beginning of this paper, and evaluate our DL models described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VI, we perform a comprehensive empirical evaluation with two main goals: (i) intrinsically evaluate the predictive power of the models according to a well accepted machine translation effectiveness metric, and (ii) extrinsically evaluate the models by examining and rating the quality of the pred- icated functional NL descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The quality focus of this evaluation is our studied models’ ability to effectively predict accurate, concise, and complete functional descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To aid in achieving our study goals, we define the following RQs: RQ3: How accurate are our model’s predicted NL de- scriptions?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' RQ4: How accurate, complete, & understandable are our model’s predicted NL descriptions from the viewpoint of evaluators?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 7 TABLE VI: BLEU Score Evaluation Results for Models Model Capt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Model Type Bc B1 B2 B3 B4 High im2txt-h-fs 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 Low im2txt-l-comp 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 im2txt Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' im2txt-c-comp 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 High ntk2-h-imgnet 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 Low ntk2-l-ft 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 NeuralTalk2 Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ntk2-c-ft 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 Low seq2seq-l-type 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='24 seq2seq Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' seq2seq-c-type 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='08 High sat-h 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 Low sat-l 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 SAT Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' sat-c 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 NeuralTalk2 Trained on Flickr8K 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 NeuralTalk2 Trained on MSCOCO 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 im2txt 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='6 SAT 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='4 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='7 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='0 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Evaluation Methodology 1) RQ3: Empirically Evaluating Model Accuracy: To evaluate the accuracy of our trained model’s generated cap- tions, we follow past work [40], [41] and report BLEU scores [63] of the predicted captions on the shared CLARITY test set of images and GUI-metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The BLEU score is a standard metric used in machine translation research that mea- sures the textual similarity between a predicted caption (the output from a model) and a reference caption (the collected descriptions from humans in the CLARITY test set).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The BLEU score can be measured according to the similarity of different subsequence lengths (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', BLEUn), and we report BLEU1 through BLEU4, as well as a composite score calculated as the average of these, as is convention [40], [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For the image captioning models, we use the coco-caption implementation of the BLEU score adapted for the CLARITY test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For each test image across all image captioning models, three captions were generated using a beam width of 3 for the beam search across candidate predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The seq2seq models were evaluated in the same manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We chose to utilize a beam width of 3 as an initial qualitative examination of our models’ predictions showed this size to achieve a reasonable balance between prediction accuracy and model confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For the high-level captions, the three candidate captions were compared to the reference, and the overall average BLEUn scores were calculated for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For the low-level and combined captions, the predicted captions and reference cap- tions were compared in a pairwise manner and overall average BLEUn scores were calculated for each model configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) RQ4: Human Perceptions of Predicted Captions: To qualitatively evaluate our studied model’s generated captions, we performed a large-scale study involving an additional 220 participants recruited from MTurk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We randomly sampled 220 screens from the CLARITY test set, and then predicted high, low, and combined captions for them using the opti- mal configurations of im2txt, NeuralTalk2, and seq2seq according to the composite BLEU score for each model and caption level combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The SAT captions were not included in this study due to time constraints related to the model’s training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We created a HIT wherein each participant viewed 11 screenshots paired with captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Two of the 11 captions were reference high and low to serve as a control, while the other 9 captions came from the model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Screens and caption pairs were arranged into HITs such that 1) no single HIT had two of the same screenshot, 2) each of the 11 types of captions (2 reference, 9 model) were included only once per HIT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The order of these captions was randomized per HIT to prevent bias introduced by identical caption ordering between HITs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' By this arrangement, each screen-caption pair was evaluated by 11 participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' After viewing these screenshot-caption pairs, participants were asked to answer six evaluation questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Three of these questions (EQ1-EQ3) were adapted from prior work that assessed the quality of automatically generated code summaries [21], and inquired about accuracy, completeness, and understandability, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The three remaining questions (EQ4-EQ6), were free response and asked participants to explain accuracies, inaccuracies, and improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The full set of questions and HIT are in our online appendix [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Similar to the CLARITY dataset collection, each participant’s response was thoroughly vetted by at least one author, and discarded if the answers were incomplete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Responses were collected until 220 HITs were completed by unique respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Evaluation Results 1) RQ3 Results: Evaluating BLEU Scores: We illustrate the BLEU score results for the most effective model config- uration and checkpoint across all of our trained models in Table VI, whereas the results for other model configurations can be found in our online appendix [39] in addition to caption examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The cells highlighted in blue illustrate the highest performing model configuration for each caption type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In general we observe that SAT exhibits the highest overall BLEU scores across all caption granularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We speculate that this is attributable to the addition of the advanced attention mechanism in this model that is able to “focus” on varying image regions or features to effectively handle multiple caption granularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In general, the seq2seq model performed quite poorly across the varying caption types, indicating a lower tendency for rich representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Perhaps most interestingly, we see that the optimal model configurations for the im2txt framework were those where the CNN was conditioned on domain specific datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' More specifically, the best high-level caption model was conditioned on full screenshots and the best low-level caption was conditioned on the cropped GUI- component screenshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Another general trend that emerges is the low-level and combined caption models tend to exhibit higher overall BELU scores compared to the high-level captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This is somewhat intuitive, as it indicates that there are more natural connections between visual GUI and lexical patterns in the low-level captions, compared to the high-level captions that reflect more abstract functional descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' When examining the captions generated by the optimal configurations of each model, it is clear that im2txt and SAT produces a more diverse set of out- put captions than neuraltalk2, which could be considered as more useful in many software documentation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Finally, it is worth discussing how the BLEU scores of our models compare to those of the same models trained on the 8 None Some A Lot im2txt high im2txt low im2txt combined Easy to Read Somewhat Readable Hard to Read im2txt high im2txt low im2txt combined EQ3: Understandability EQ2: Unnecessary Information im2txt high im2txt low im2txt combined Strongly Disagree Disagree Neutral Agree Strongly Agree EQ1: Accuracy seq2seq high seq2seq low seq2seq combined Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 5: Responses across models for EQ1-EQ3 more traditional Flickr8k [37] and MSCOCO [38] datasets given at the bottom of Table VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Given the data-intensive nature of our DL models, and the much larger size of the MSCOCO dataset (≈123k images, each with 5 captions), we did not expect our models trained on the CLARITY dataset to outperform those trained on MSCOCO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, unsurprisingly, we observe that on average, im2txt, neuraltalk2, and SAT models trained on the MSCOCO dataset outperform the same models trained on the CLARITY datasets by ≈ 10 BLEU score points for the combined and low level captions, and ≈ 27 points on high-level captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, when we examine the performance of Neuraltalk2 on the more similarly sized Flickr8K dataset (≈ 8K images, each with 5 captions) we observe comparable performance to the CLARITY low-level and combined datasets, with the SAT model narrowly outper- forming the Flickr8K neuraltalk2 model, with a slightly bigger discrepancy for the high-level captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Overall, these results indicate that when compared with datasets of similar size, DL models trained on the CLARITY dataset exhibit similar performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2) RQ4 Results: Human Evaluations: The results of EQ1- EQ3 for the model configurations with the best performance during the human study, in addition to the seq2seq accuracy scores, are summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Complete results across all model configurations can be found in our online appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' The responses to EQ4-EQ6 varied by the type of caption, and are provided in our appendix in full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Generally, im2txt fared the best in terms of accuracy, and was followed by neuraltalk2 and seq2seq respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For im2txt, despite mixed reac- tions from participants, in many cases respondents verified that the caption was accurate (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', ”The description accurately describes the screen, it is in fact a terms and conditions screen.”) and suggested minor improvements similarly to the reference captions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', ”It could add specifics about what the settings pertain to (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' security)”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 5 the im2txt predictions were consistently rated as being readable and containing relevant information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It is also interesting to note that there appears to a mismatch between the performance as indicated by BLEU scores, and human perceptions, with the participants consistently rating the im2txt captions better than other models across EQ1-EQ3, despite neuraltalk2 achieving a higher BLEU score for two model configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' DISCUSSION & LEARNED LESSONS Lesson 1: Functional Descriptions of GUIs exhibit a high degree of naturalness and can be modeled using DL techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We observed that DL models trained on the low- level and combined datasets exhibit similar performance to models trained on general image captioning datasets of similar size (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', Flickr8K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This indicates that GUI screenshots could be used to augment approaches for automated documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lesson 2: GUI-centric software documentation mod- els benefit from being pre-trained on domain specific GUI data, as opposed to general image datasets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', MSCOCO) The qualitative results of our model analysis illustrate that for im2txt, the most effective configurations were those trained on domain specific CNN datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This suggests a perceptible difference between the utility of image features learned from general datasets, compared to those learned on datasets more specific to software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This suggests that future work aiming to leverage DL models for GUI- centric program documentation should look to collecting and extracting features from large-scale GUI-related datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lesson 3: Future automated approaches for GUI-centric program documentation would likely benefit from com- bining the orthogonal semantics of screenshots and GUI- metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Our evaluation in this paper illustrates that the rep- resentational power of screenshots appears to be superior when applied to a software documentation task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, given stark differences between these two modalities of information, we also observed that they encode orthogonal semantic patterns that could be combined for more effective documentation generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' One property we observed of certain captions generated by the image-based models was the effect of their limited vocabulary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' For example, certain predicted captions similar to the following: “The screen allows the user to select a ”, wherein the UNK token represents missing token, which should be mapped to some unobserved app property, such as a “album cover” or “store location”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, such predictions could be combined with the vocabulary present in GUI metadata to help predict more complete, and accurate descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, a promising direction for future work is to jointly encode both screenshots and lexical GUI-metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lesson 4: Training image captioning models to predict specific or diverse pieces of functionality is difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Practical models for GUI-centric documentation should able to predict both specific pieces of information (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' the func- tionality of a particular button for a given method handler), and diverse functionality (being able to generate descriptions of functionality anywhere on a given screen).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, one aspect we observed across our models is that the most common observed types of functionality (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', back buttons, menu buttons) corresponded to the functionalities that our 9 seq2seq high seq2seq low 0 0 seq2seq combined 0 0models predicted most often and most confidently on unseen screenshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This is somewhat expected, as the models saw the most examples of such functionalities during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Thus, the diversity of predictions is an open problem for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This problem can be partially mitigated by larger, more diverse datasets with specifically curated descriptions (such as extensions to the CLARITY dataset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, it is likely that domain-specific models, or ensembles of models, may be required to more effectively predict diverse features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lesson 5: Future studies that evaluate automated GUI- centric documentation approaches should include human studies, as human perceptions of models may differ from automated reference-based metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' One of the more surpris- ing results of our study is that there seems to be a mismatch between humans perceptions of the captions generated by our DL models and the BLEU score metrics typically used to asses the accuracy of model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This signifies that there are aspects of human perception that are not effectively captured in the BLEU metric, and possibly other translation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' LIMITATIONS & THREATS TO VALIDITY Internal Validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Threats to internal validity correspond to unexpected factors in the experiments that may contribute to observed results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To derive our dataset we rely on MTurk and its workers to extract the high- and low-level descriptions per each screenshot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' It should be noted that we did not ask MTurk workers to provide technical software documentation descrip- tions, but rather general descriptions of screen functionality at differing granularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To minimize low quality captions we published the jobs for workers with more than 1k HITS, from English speaking countries, and HIT approval rate of more than 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Also, each successfully completed HIT was vetted by at least one of the authors to assure quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' If there was any question related to caption quality, at least one of the other authors stepped in to resolve the ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As a result 2,429 HITs were rejected due to low quality descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' External Validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Threats to external validity concern the generalization of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' As with any collected dataset, there is a threat to external validity about the generalizability of the CLARITY dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, we used a diverse set of popular apps from the Android domain, extracted popular screenshots from these apps, and the apps were captioned by a large and diverse set of MTurk workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' During our data collection process, we only collected 4 low-level captions per each screen in order to make the task feasible for MTurk workers as workers tend to abandon or perform poorly on long tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' This means that, for certain screens with many GUI- components, some components may lack natural language descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, given the size of our dataset and the diversity of our screenshots and captions, we assert that our low-level captions are reasonably representative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' RELATED WORK DL for Image Captioning and GUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hossain et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [64] recently performed a wide-ranging study on DL models for image captioning, surveying the many different architectures and datasets used to evaluate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, this survey did not examine the ability of any image captioning model to predict functional descriptions of software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' There have been a limited number of papers in the SE community that have applied DL techniques to GUI related data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [65] designed an approach that uses an NMT to translate an Android screenshot into a GUI-skeleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, their technique is able to predict GUI structure given an image, not functional natural language descriptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Recently, Zhang et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [66] created a dataset of iOS image captions to train a model for captioning accessibility data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, the authors do not make their dataset publicly available and target a different goal of accessibility data compared our goal of generating functional captions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' investigated the use of DL image captioning models for applying labels to GUI-components in mobile apps [67], however, this approach only aims to predict short labels for a limited subset of GUI-components, whereas our study focuses upon predicting functional descriptions consisting of complete sentences for both individual GUI-components and entire screenshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' GUI-based Analysis of Mobile Apps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' GVT and GCat analyze the visual properties of GUIs to detect design violations and evolutionary changes [68], [69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' In contrast, we focus solely on image captioning techniques to provide functional program de- scriptions of screenshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Approaches such as REMAUI [70], REDRAW [48], and pix2code [71] aim to automatically generate mobile app code given an app screenshot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Conversely, we leverage DL techniques to generate functional descriptions rather than source code using a pixel-based image as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [72] introduced StoryDroid, for automatically generating visual storyboards of Android apps to help aid in the app design process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' However, their approach is not capable of generating a functional description of an application from GUI data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Furthermore, Deka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' showed how the Rico dataset could be navigated via semantic search using autoencoders [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' UiRef [73] is an approach for resolving security and privacy concerns by considering semantics of GUI-components that request user’s inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreover, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [74] presented an approach for automatically classifying mobile app icons according to semantic GUI patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xiao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' proposed IconIntent that combines program analysis and icon classification to detect privacy sensitive GUI-components [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Different from this body of work, we aim to predict functional descriptions of GUIs for software documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' XI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' CONCLUSION In this paper, we have conducted one of the first com- prehensive empirical investigations into the connection be- tween GUI-related information, and functional descriptions of programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' We have derived the CLARITY dataset of GUI screenshots/metadata and NL captions, trained DL models on this dataset, and demonstrated their ability to bridge the semantic gap between visual and lexical program information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ACKNOWLEDGMENT This work was supported by the NSF CCF-2007246 & CCF-1955853 grants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Any opinions, findings, and conclusions expressed herein are the authors’ and do not necessarily reflect those of the sponsors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 10 REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Huang, “An empirical analysis of the impact of software development problem factors on software maintainability,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Softw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 82, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 981–992, June 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Kajko-Mattsson, “A survey of documentation practice within correc- tive maintenance,” Empirical Software Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 31–55, Jan 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Dagenais and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Creating and evolving developer documentation: Understanding the decisions of open source contribu- tors,” in Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE ’10, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 127–136, ACM, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Garousi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Garousi-Yusifoglu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ruhe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moussavi, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Smith, “Usage and usefulness of technical software documentation: An industrial case study,” Information and Software Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 57, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 664 – 682, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Forward and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lethbridge, “The relevance of software documen- tation, tools and technologies: A survey,” in Proceedings of the 2002 ACM Symposium on Document Engineering, DocEng ’02, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 26–33, ACM, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [6] “The agile manfiesto http://agilemanifesto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='org.” [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Garousi-Yusiflu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sun, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Garousi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Shahnewaz, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ruhe, “Cost, benefits and quality of software development docu- mentation,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fluri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wursch, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gall, “Do code and comments co- evolve?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' on the relation between source code and comment changes,” in Proceedings of the 14th Working Conference on Reverse Engineering, WCRE ’07, (Washington, DC, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 70–79, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pollock, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vijay-Shanker, “JSummarizer: An automatic generator of natural language summaries for Java classes,” in 2013 21st International Conference on Program Comprehension, ICPC’13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 230–232, May 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Aponte, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sridhara, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pollock, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vijay- Shanker, “Automatic generation of natural language summaries for Java classes,” in 2013 21st International Conference on Program Compre- hension, ICPC’13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 23–32, May 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [11] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Rigby and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Discovering Essential Code Elements in Informal Documentation,” in Proceedings of the 2013 International Conference on Software Engineering, ICSE’13, (San Francisco, CA, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 832–841, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ying and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Selection and Presentation Prac- tices for Code Example Summarization,” in Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE’14, (Hong Kong, China), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 460–471, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ying and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Code Fragment Summarization,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, FSE’13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 655–658, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [14] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ratol and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Detecting fragile comments,” in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE’17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 112–122, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Howard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gupta, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pollock, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vijay-Shanker, “Automati- cally mining software-based, semantically-similar words from comment- code mappings,” in 2013 10th Working Conference on Mining Software Repositories, MSR’13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 377–386, may 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Treude and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, “Augmenting API Documentation with Insights from Stack Overflow,” in Proceedings of the 38th International Conference on Software Engineering, ICSE ’16, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 392–403, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Petrosyan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' De Mori, “Discovering Information Explaining API Types Using Text Classification,” in Proceedings of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15, (Florence, Italy), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 869–879, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [18] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vendome, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshyvanyk, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Kraft, “Automatically Documenting Unit Test Cases,” in 2016 IEEE In- ternational Conference on Software Testing, Verification and Validation, ICST’16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 341–352, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bandara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Haiduc, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, “On the Relationship between the Vocabulary of Bug Reports and Source Code,” in 2013 IEEE International Conference on Software Maintenance, ICSM’13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 452– 455, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernal-C´ardenas, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshy- vanyk, “Auto-completing Bug Reports for Android Applications,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, FSE’15, (Bergamo, Italy), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 673–686, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [21] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bavota, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Penta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Oliveto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Canfora, “Arena: An approach for the automated generation of release notes,” IEEE Transactions on Software Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 43, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 106– 127, Feb 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bavota, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Di Penta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Oliveto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Canfora, “Automatic Generation of Release Notes,” in Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE’14, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 484–495, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Jiang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Armaly, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' McMillan, “Automatically generating commit messages from diffs using neural machine translation,” in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE’17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 135–146, oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Cort´es-Coy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Aponte, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshyvanyk, “On automatically generating commit messages via summarization of source code changes,” in 2014 IEEE 14th International Working Con- ference on Source Code Analysis and Manipulation, SCAM’14, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chatterjee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gause, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hedinger, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pollock, “Extracting Code Segments and Their Descriptions from Research Articles,” in Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17, (Buenos Aires, Argentina), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 91–101, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vendome, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshyvanyk, “Doc- umenting database usages and schema constraints in database-centric applications,” in Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 270–281, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Biggerstaff, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mitbander, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Webster, “Program understanding and the concept assignment problem,” Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 37, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 72–82, May 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Cheng, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Cleland-Huang, “Semantically enhanced soft- ware traceability using deep learning techniques,” in Proceedings of the 39th International Conference on Software Engineering, ICSE ’17, (Piscataway, NJ, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3–14, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Robillard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Marcus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Treude, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bavota, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chaparro, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ernst, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gerosa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Godfrey, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lanza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Murphy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moreno, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Shepherd, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wong, “On-demand Developer Documentation,” in 2017 IEEE International Conference on Software Maintenance and Evolution, ICSME’17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 479–483, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [30] “Android inches ahead of windows as most popular os - https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' cnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/news/android-most-popular-os-beats-windows-statcounter/.” [31] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernal-C´ardenas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Linares-V´asquez, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshy- vanyk, “Overcoming lanaguge dichotomies: Toward effective program comprehension for mobile app development,” in 26th IEEE International Conference on Program Compreehnsion, May 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' To Appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Memon, A comprehensive framework for testing graphical user interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Advisors: Mary Lou Soffa and Martha Pol- lack;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Committee members: Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Rajiv Gupta (University of Arizona), Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Adele E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Howe (Colorado State University), Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lori Pollock (University of Delaware).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Solem, “Designing computer documentation that will be used: Un- derstanding computer user attitudes,” in Proceedings of the 4th Annual International Conference on Systems Documentation, SIGDOC ’85, (New York, NY, USA), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 55–56, Association for Computing Machinery, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Alshayban, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ahmed, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Malek, “Accessibility issues in android apps: State of affairs, sentiments, and ways forward,” in Proceedings of the 42nd International Conference on Software Engineering, ICSE 2020, (New York, NY, USA), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' to appear, ACM, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Deka, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Franzen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hibschman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Afergan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Nichols, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Kumar, “Rico: A mobile app dataset for building data-driven design applications,” in Proceedings of the 30th Annual Symposium on User Interface Software and Technology, UIST ’17, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [36] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernal-Cardenas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Curcio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bonett, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshy- vanyk, “The ReDraw Dataset: A Set of Android Screenshots, GUI Meta- data, and Labeled Images of GUI Components,” Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Supported by NSF Grant CCF-1815186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hodosh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Young, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hockenmaier, “Framing image description as a ranking task: Data, models and evaluation metrics,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Artif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 47, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 853–899, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [38] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Lin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Maire, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Belongie, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hays, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Perona, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ramanan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Doll´ar, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zitnick, “Microsoft COCO: Common Objects in Context,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- matics), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 8693 LNCS, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 740–755, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 11 [39] “Online appendix http://sagelab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='io/Clarity/.” [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Karpathy and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fei-Fei, “Deep visual-semantic alignments for generating image descriptions,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 39, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 664–676, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [41] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vinyals, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Toshev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bengio, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Erhan, “Show and tell: Lessons learned from the 2015 mscoco image captioning challenge,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pattern Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Intell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 39, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 652–663, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [42] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ba, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Kiros, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Cho, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Courville, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Salakhutdinov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zemel, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” in ICML, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [43] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Krizhevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sutskever, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural In- formation Processing Systems 25 (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Pereira, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Burges, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bottou, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Weinberger, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' ), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1097–1105, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [44] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Simonyan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zisserman, “Very deep convolutional networks for large-scale image recognition,” International Conference on Learning Represen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' abs/1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='1556, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [45] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Szegedy, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Jia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sermanet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Reed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Anguelov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Erhan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vanhoucke, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Rabinovich, “Going Deeper with Convolutions,” in Computer Vision and Pattern Recognition, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hochreiter and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Schmidhuber, “Long short-term memory,” Neural Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1735–1780, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [47] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Schuster and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Paliwal, “Bidirectional recurrent neural networks,” Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 45, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2673–2681, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [48] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernal-C´ardenas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Curcio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bonett, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshy- vanyk, “Machine learning-based prototyping of graphical user interfaces for mobile apps,” IEEE Transactions on Software Engineering, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1–1, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [49] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Blei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ng, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Jordan, “Latent dirichlet allocation,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 993–1022, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [50] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Porteous, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Newman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ihler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Asuncion, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Smyth, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Welling, “Fast collapsed gibbs sampling for latent dirichlet al- location,” in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 569–577, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hindle, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Barr, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Su, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gabel, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Devanbu, “On the Naturalness of Software,” in International Conference on Software Engineering, ICSE’12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 837–847, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [52] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Rahman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Palani, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Rigby, “Natural software revisted,” in Pro- ceedings of the 41st International Conference on Software Engineering Companion, ICSE ’19, (Montreal, QC Canada), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' to appear, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [53] “Mit language modeling toolkit https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/mitlm/mitlm.” [54] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Koehn, Statistical Machine Translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [55] “Google’s im2txt implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/tensorflow/models/ tree/master/research/im2txt.” [56] “Neuraltalk2 implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/karpathy/neuraltalk2.” [57] “Google seq2seq framework https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/google/seq2seq.” [58] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Szegedy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Vanhoucke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ioffe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Shlens, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wojna, “Rethinking the inception architecture for computer vision,” in 2016 IEEE Confer- ence on Computer Vision and Pattern Recognition, June 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [59] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Russakovsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Deng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Krause, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Satheesh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Karpathy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Khosla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Berg, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 115, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [60] “Show, attend and tell implementation https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='com/coldmanck/ show-attend-and-tell.” [61] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sha, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Liu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poupart, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sui, “Order-planning neural text generation from structured data,” The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI’17), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' abs/1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='00155, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [62] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Britz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Goldie, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Luong, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Le, “Massive Exploration of Neural Machine Translation Architectures,” ArXiv e-prints, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [63] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Papineni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Roukos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Ward, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhu, “Bleu: A method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, (Stroudsburg, PA, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 311–318, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [64] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hossain, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Sohel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Shiratuddin, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Laga, “A compre- hensive survey of deep learning for image captioning,” ACM Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Surv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 51, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 118:1–118:36, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [65] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Su, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Liu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xu, “Storydroid: Automated generation of storyboard for android apps,” in Proceedings of the 41st International Conference on Software Engineering, ICSE ’19, (Piscataway, NJ, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 596–607, IEEE Press, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [66] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' de Greef, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Swearngin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' White, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Murray, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Yu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Shan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Nichols, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Fleizach, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Everitt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bigham, Screen Recognition: Creating Accessibility Metadata for Mobile Appli- cations from Pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' New York, NY, USA: Association for Computing Machinery, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [67] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xing, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wang, “Unblind your apps: Predicting natural-language labels for mobile gui components by deep learning,” in Proceedings of the 42nd International Conference on Software Engineering, ICSE 2020, (New York, NY, USA), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' to appear, ACM, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [68] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Watson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Hoskins, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Purnell, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshyvanyk, “Detecting and summarizing gui changes in evolving mobile apps,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 543–553, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [69] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Moran, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Bernal-C´ardenas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Jelf, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Poshyvanyk, “Automated Reporting of GUI Design Violations in Mobile Apps,” in Proceedings of the 40th International Conference on Software Engineer- ing Companion, ICSE ’18, (Gothenburg, Sweden), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' to appear, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [70] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Nguyen and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Csallner, “Reverse Engineering Mobile Application User Interfaces with REMAUI,” in Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineer- ing, ASE’15, (Washington, DC, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 248–259, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [71] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Beltramelli, “Pix2code: Generating Code from a Graphical User Interface Screenshot,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' abs/1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content='07962, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [72] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Chen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Zhou, “A neural framework for retrieval and summariza- tion of source code,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 826–831, ACM, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [73] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Andow, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Acharya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Enck, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Singh, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xie, “UiRef: analysis of sensitive user inputs in Android applications,” in Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec’17, (New York, New York, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 23–34, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [74] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Craft, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Situ, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Yumer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Mech, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Kumar, “Learning design semantics for mobile apps,” in The 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, (New York, NY, USA), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 569–579, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' [75] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Xiao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Wang, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' Gao, “Iconintent: Automatic identification of sensitive ui widgets based on icon classification for android apps,” in Proceedings of the 41st International Conference on Software Engineering Companion, ICSE ’19, (Montreal, QC Canada), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' to appear, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} +page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NAzT4oBgHgl3EQfR_tE/content/2301.01224v1.pdf'} diff --git a/59AyT4oBgHgl3EQf2fl-/vector_store/index.pkl b/59AyT4oBgHgl3EQf2fl-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5f2a43445d26fde2dea7a388995894dff4c0ba9d --- /dev/null +++ b/59AyT4oBgHgl3EQf2fl-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:822b9e4c15fb82315031971c642ab1d6b0e8408dc11577eec11f886b5df38249 +size 231937 diff --git a/69E5T4oBgHgl3EQfPw7T/content/2301.05508v1.pdf b/69E5T4oBgHgl3EQfPw7T/content/2301.05508v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4bed2357918570ec9723e964354dbd137dd3cd08 --- /dev/null +++ b/69E5T4oBgHgl3EQfPw7T/content/2301.05508v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:581e91aaecbf299e62728ada4709d56eac549f36caf731506a73172c0d11a8c1 +size 293173 diff --git a/69E5T4oBgHgl3EQfPw7T/vector_store/index.pkl b/69E5T4oBgHgl3EQfPw7T/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4fc9175fe4231b373fb13e8ab4556703ac8ecf46 --- /dev/null +++ b/69E5T4oBgHgl3EQfPw7T/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b5598c7d1ac76fa45c072c6d8a8df2ea74a6e087873402e8c4ca5015284dede8 +size 132698 diff --git a/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/2301.01227v1.pdf.txt b/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/2301.01227v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e133de65c452b696ae3a228c73d67d17622f912e --- /dev/null +++ b/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/2301.01227v1.pdf.txt @@ -0,0 +1,3183 @@ +Semantic Units + +1 +Semantic Units: Organizing knowledge +graphs into semantically meaningful units +of representation + +Vogt, Lars1; Kuhn, Tobias2; Hoehndorf, Robert3 + +1 TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167 Hanover, +Germany, +orcid.org/0000-0002-8280-0487 +2 Department of Computer Science, Vrije Universiteit Amsterdam, Netherlands, +orcid.org/0000- +0002-1267-0234 +3 Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences & +Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, 23955 Thuwal, +Saudi Arabia, +orcid.org/0000-0001-8149-5890 +Correspondence to lars.m.vogt@googlemail.com + + + +Semantic Units + +2 +Abstract +Background: Knowledge graphs and ontologies are becoming increasingly important as technical +solutions for Findable, Accessible, Interoperable, and Reusable data and metadata (FAIR Guiding +Principles). We discuss four challenges that impede the use of FAIR knowledge graphs. +Results: Semantic units have the potential to solve the challenges by structuring a knowledge graph +into identifiable and semantically meaningful subgraphs. Each semantic unit is represented by its own +resource, instantiates a corresponding semantic unit class, and can be implemented as a FAIR Digital +Object and a nanopublication in RDF/OWL and property graphs. We distinguish statement and +compound units as basic categories of semantic units. Statement units represent smallest, +independent propositions that are semantically meaningful for a human reader. They consist of one +or more triples and mathematically partition a knowledge graph. We distinguish assertional, +contingent (prototypical), and universal statement units as basic types of statement units and propose +representational schemes and formal semantics for them (including for absence statements, +negations, and cardinality restrictions) that do not involve blank nodes and that translate back to OWL. +Compound units, on the other hand, represent semantically meaningful collections of semantic units +and we distinguish various types of compound units, representing different levels of representational +granularity, different types of granularity trees, and different frames of reference. +Conclusions: Semantic units support making statements about statements, can be used for graph- +alignment, subgraph-matching, knowledge graph profiling, and for managing access restrictions to +sensitive data. Organizing the graph into semantic units supports the separation of ontological, +diagnostic (i.e., referential), and discursive information, and it also supports the differentiation of +multiple frames of reference. + +Keywords: FAIR data and metadata, knowledge graph, OWL, RDF, semantic unit, assertional +statement, contingent statement, prototypical statement, universal statement, negation + + + +Semantic Units + +3 +Background +In times of ever-increasing amounts of data being created every day (1–3), new technical and societal +challenges arise (4) that ask for innovative ways of representing and managing data in science and +industry. Being able to collect, integrate, and analyze large amounts of data from various sources also +represents one of the requirements for facing biodiversity loss and climate change, two major global +challenges we are currently facing (5). Solutions to these problems will be driven by sharing data across +many stakeholders, needing an effort to help interlink data providers from a diverse range of different +areas, often requiring a truly interdisciplinary approach (6), in which data stewardship remains in the +hands of the domain experts or institutions, thus ensuring their technical autonomy (following Barend +Mons’ data visiting as opposed to data sharing (7)). +From a data management and data representation perspective, this requires data and metadata +to be FAIR, i.e., readily Findable, Accessible, Interoperable, and Reusable for machines and humans +alike (8). If this is not the case, Big Data ultimately turns into Dark Data (9). The establishment of the +FAIR Guiding Principles as a general standard in science and industry would also contribute to a +solution for the reproducibility crisis in science (10) and the question of the trustworthiness of +information in general (see also TRUST Principles of Transparency, Responsibility, User Focus, +Sustainability, and Technology (11)). Therefore, we must build something along the lines of the +Internet of FAIR Data and Services (12) that scales with Big Data, through which all relevant data-rich +institutions, research projects, and citizen-science projects can make their data and metadata +accessible following the FAIR Guiding Principles (13,14). This requires providing rich machine- +actionable data and metadata with human-readable interface outputs and search capabilities, and +organizing this data into FAIR Digital Objects (15,16), each of which possesses its own Unique +Persistent and Resolvable Identifier (UPRI) for referencing it individually. +In this context, knowledge graphs can substantially contribute to the needed technical solutions, +providing a suitable framework for managing and representing FAIR data and metadata (17). +Knowledge graphs are becoming increasingly popular (18), especially after the 2012 announcement +of the Google Knowledge Graph (19) which was followed by further announcements of knowledge +graphs being developed from industry and by a growing number of scientific publications on +knowledge graphs (20). Besides general applications in industry and research, knowledge graphs are +thereby particularly applied in the context of semantic search based on entities and relations, deep +reasoning, disambiguation of natural language, machine reading, and entity consolidation for Big Data +and text analytics (21). + +Semantic Units + +4 +The graph-based abstractions employed in knowledge graphs have several benefits compared to +relational or other NoSQL models, including (i) an intuitive way for modelling relations, (ii) allowing +postponing specifications of definitions for data schema so that they can flexibly evolve, which is +especially important when dealing with incomplete knowledge, (iii) employing machine-actionable +knowledge representation formalisms such as ontologies and rules, (iv) applying graph analytics and +machine learning, and (v) utilizing the specialized graph query languages of knowledge graphs that +support, in addition to standard relational operators such as joins, unions, and projections, also +navigational operators for recursively searching for entities through arbitrary-length paths (20,22–27). +Moreover, due to their inherent semantic transparency, knowledge graphs can improve the +transparency of data-based decision-making and improve communication in research and science in +general. +However, although providing a suitable technical framework, using a knowledge graph for +documenting data and metadata does not necessarily result in FAIR data and metadata, but requires +following specific guidelines such as consistently applying adequate semantic data models and +organizing data into FAIR Digital Objects (15,16). Moreover, as it is often the case with new +technologies, knowledge graphs bring their own specific technical, conceptual, and societal +challenges. This already begins with the concept of a knowledge graph, which is somewhat fuzzy (20) +and covers different technical and conceptual incarnations, including property graphs such as Neo4J +(https://neo4j.com/) and approaches based on the Resource Description Framework (RDF), the use of +RDF-stores, and, with the Web Ontology Language (OWL), also applications of Description Logics. +Here, we first briefly discuss four of these challenges, and then we introduce the idea of +partitioning and structuring a knowledge graph into identifiable and semantically meaningful units +of representation (short: semantic units). The concept of semantic units can significantly contribute +to solutions for the four challenges. We introduce the two basic categories of semantic units, i.e., +statement units and compound units, as new elements in FAIR knowledge graphs in addition to the +well-known triples and the graph as a whole. Statement and compound units can be employed to +organize the data graph into five levels of representational granularity, ranging from the level of +individual triples to the level of the graph as a whole. We introduce additional subcategories of +semantic units that can be used to further organize the data graph. We continue arguing that because +each semantic unit can be organized as a FAIR Digital Object that possesses its own UPRI, semantic +units can be referred to within triple statements, thus providing a very efficient way of making +statements about statements. With the introduction of semantic units, we follow a user-centric +approach and add another layer of triples on top of the well established RDF and OWL layer for +knowledge graphs (Fig. 1). By simplifying the semantic modelling of empirical data and reducing their + +Semantic Units + +5 +representational complexity and by providing representations (i.e., patterns) and formal semantics for +statements for which in OWL no formal semantics exist, semantic units increase the usability of +knowledge graphs for domain-experts and developers alike. +Figure 1: Semantic units add further layers to a knowledge graph on top of the RDF/OWL layer of triples. The layer of triples +is mathematically partitioned into a layer of statement units, so that each triple belongs to exactly one statement unit and +each statement unit comprises one or more triples. Statement units can be organized into different types of semantically +meaningful collections (i.e., compound units) with which various additional layers can be defined to further structure and +organize the knowledge graph in semantically meaningful ways. +Box 1 | Conventions +In this paper, we refer to FAIR knowledge graphs as machine-actionable semantic graphs for documenting, organizing, +and representing assertional (e.g., empirical data), universal, and contingent statements and thus a mixture of ABox and +TBox expressions (thereby contrasting knowledge graphs with ontologies, with the latter containing mainly universal +statements and thus TBox expressions). We want to point out that we discuss semantic units against the background of +RDF-based triple stores, OWL, and Description Logics as a formal framework for inferencing, and labeled property graphs +as an alternative to triple stores, because these are the main technologies and logical frameworks used in knowledge +graphs that are supported by a broad community of users and developers and for which accepted standards exist. We are +aware of the fact that alternative technologies and frameworks exist that support an n-tuples syntax and more advanced +logics (e.g., First Order Logic) (28,29), but supporting tools and applications are missing or are not widely used to turn +them into well-supported, scalable, and easily usable knowledge graph applications. +Throughout this text we use regular underlined to indicate ontology classes, italicsUnderlined when referring to +properties (i.e., relations in Neo4j), and use ID numbers to specify each. ID numbers are composed of the ontology prefix +followed by a colon and a number, e.g., isAbout (IAO:0000136). If the term is not yet covered in any ontology, we indicate +it with *, e.g., the class *metric measurement statement unit*. We use ‘regular underlined’ to indicate instances of classes, + +SemanticUnits +Knowledge +different types of +Graph +Compound Units +StatementUnits +RDF/OWL +Knowledge +Triples +GraphSemantic Units + +6 +with the label referring to the class label and the ID number to the class. Moreover, when we use the term resource, we +understand it to be something that is uniquely designated (e.g., a Uniform Resource Identifier, URI) and about which you +want to say something. It thus stands for something and represents something you want to talk about. In RDF, the Subject +and the Predicate in a triple statement are always resources, whereas the Object can be either a resource or a literal. +Resources can be either properties, instances, or classes, with properties taking the Predicate position in a triple and with +instances referring to individuals (=particulars) and classes to universals. +For reasons of clarity, in the text and in all figures, we represent resources not with their UPRIs but with human- +readable labels, with the implicit assumption that every property, every instance, and every class has its own UPRI. +Challenge 1: FAIR empirical data must specify the graph patterns used +for their modelling to prevent schematic interoperability conflicts +FAIR is often understood to mean that for data and metadata statements to be interoperable and +reusable, all concepts used in them must have identifiers, which in turn are provided by controlled +vocabularies such as ontologies. What is frequently overlooked is the fact that to be FAIR, not only the +concepts must be standardized (i.e., terminological interoperability), but also the way they are related +to one another in data and metadata statements and thus the statements’ underlying semantic graph +patterns (i.e., schematic interoperability)―especially when stored and managed in a knowledge +graph. In case of universal statements, in RDF-based knowledge graphs this graph pattern is typically +well-defined using OWL-specific object properties in class axioms (see also Figure 5B), resulting in TBox +expressions. +With empirical data, the situation is different. Empirical data should be modelled as ABox +expressions (30). However, due to the high general expressivity of RDF and OWL, in a knowledge +graph, any given empirical data statement can be modelled in many, usually not directly interoperable +ways. A machine would have a hard time to identify two differently structured ABox expressions that +actually model the same underlying data statement. As a result, we must deal with such schematic +interoperability conflicts, whenever data are modelled using different graph patterns (cf. Fig. 2 and +Fig. 3). + +Semantic Units + +7 +Figure 2: Comparison of a human-readable statement with its machine-actionable representation as an ABox semantic +graph following the RDF syntax. Top: A human-readable statement about the observation that ObjectX weighs 5 kilograms. +Bottom: A representation of the same statement as a graph, using RDF and following the general pattern for measurement +data from the Ontology for Biomedical Investigations (OBI; http://obi-ontology.org/) (31) of the Open Biological and +Biomedical Ontology Foundry (OBO; http://www.obofoundry.org/). + +Figure 3: Alternative machine-actionable representation of the data statement from Fig. 2, following the RDF syntax and +the graph-model from the Extensible Observation Ontology (OBOE). This graph represents the same data statement as +shown in Figure 2 Top, but applies a different semantic graph model for its representation, which is based on OBOE +(http://bioportal.bioontology.org/ontologies/OBOE), an ontology frequently used in the ecology community. +Therefore, for an ABox representation of an empirical data statement to be FAIR, one must know +which graph pattern has been used for its semantic modelling. Only instance-based graphs (i.e., graphs +with instance resources in the Subject and Object positions of their triples; ABoxes) that are modelled +using the same template in the form of a graph pattern, for instance specified as a shape using SHACL +(32), are guaranteed to meet the minimum requirement for interoperability. Ideally, statements of +the same type, e.g., all weight measurements, use the same graph pattern to be potentially +interoperable. Therefore, we need identifiers for such graph patterns, and if an empirical datum is +documented in the form of an ABox, its metadata should reference the corresponding graph-pattern +identifier. With this information, one can identify potentially interoperable ABox expressions by their +commonly shared graph-pattern identifiers. + +Observation: +ObjectX weighs 5 kilograms +Observation Graph: +bfo:material entity +pato:weight +iao:scalar measurement datum +obi:scalar value specification +uo:kilogram +rdf:type +rdf:type +rdf:type +rdf:type +rdf:type +ro:has quality +lao:isquality +objectx +weight +measured as +scalar measurement datum +obi: has value +scalar value specification +iao:hasmeasurement +specification +unit label +kilogram +ro:quality of +iao:is quality +measurementof +iao: has +measurement +obi:specifies value of +value +class +instance +value +5.00bfo:material entity +oboe:observation +oboe:measurement +rdf:type +rdf:type +rdf:type +objectx +oboe:ofentity +observation +oboe:hasmeasurement +measurement +oboe:hasvalue +5.00 +oboe:ofcharacteristic +oboe:uses standard +weight +kilogram +class +instance +value +rdf:type +rdf:type +pato:weight +uo:kilogramSemantic Units + +8 +Practically, this implies (i) that all statements in a knowledge graph must be classified into +statement classes, with each class having an associated graph pattern specified (e.g., in the form of a +shape specification) and (ii) that the subgraph belonging to a particular statement must be identifiable. +Only if these two criteria are met, ABox representations of data and metadata truly comply with the +FAIR Guiding Principles. Semantic units provide a means to meet these two criteria. +Challenge 2: Many software developers do not see the benefit of +graph query languages +Most knowledge graphs are either directed labeled graphs that are based on RDF/OWL and stored in +tuple stores, or they are labeled property graphs such as Neo4j. Directly interacting with these graphs, +i.e., conducting CRUD operations for creating (=writing), reading (= searching), updating, and deleting +statements in the knowledge graph, requires the use of a query language. For RDF/OWL, this is for +example SPARQL (https://www.w3.org/TR/rdf-sparql-query/), and for Neo4j, it is Cypher +(https://neo4j.com/developer/cypher/). +Whereas these query languages allow detailed and very complex queries, writing queries in +SPARQL or Cypher is demanding. Users of knowledge graph applications usually lack the required +background for writing such queries themselves. Unfortunately, our personal experiences are that +even most developers are not familiar with these languages and struggle with their complexity when +attempting to learn them. In other words, having to write SPARQL or Cypher queries represents an +entry barrier for interacting with a knowledge graph and hinders their broader usage (33). We thus +need technical solutions to mitigate this challenge, such as openly available and reusable query +patterns that link to specific graph patterns. +The concept of semantic units can contribute to such solutions by allowing experts in Semantics +to provide generic CRUD queries for each type of semantic unit that domain experts as users and +developers of knowledge graphs that apply semantic units can employ without having to write the +queries themselves. Queries of different types of semantic units can be combined via union or +intersection to form more complex queries. +Challenge 3: Making statements about statements can be challenging +The RDF triple syntax of Subject, Predicate, and Object does not natively provide a good method for +making statements about statements. In RDF, a statement about a statement is a triple that relates a +statement consisting of one or more triples to some value, resource, or some other such statement. + +Semantic Units + +9 +Unfortunately, if you wanted to represent empirical data or the contents of for instance a +scholarly publication in a FAIR knowledge graph, you frequently have to model statements about +statements. For example, if you want to provide detailed metadata for a measurement datum, you +would actually have to relate two subgraphs to one another: the graph representing the measurement +itself, documented in a set of triples (e.g., see Fig. 2) and the graph documenting the underlying +measuring process, which also involves several triples (e.g., see Fig. 4). +In case we only want to refer to a single triple statement in another triple, RDF reification can be +used. In RDF reification, a resource is defined to represent a particular triple by describing it via three +additional triples that specify its Subject, Predicate, and Object. Alternatively, one can also use the +RDF-star approach (34,35). In RDF-star, however, all statements involving the same subject, predicate, +and object are understood to reference the same triple and are thus not distinguished, with the +consequence that one cannot distinguish different instances of the same statement. Moreover, while +using RDF-star is feasible for referring to a single triple, it becomes very inefficient and complicated to +query when having to refer to sets of multiple triple statements and thus larger subgraphs. If you +wanted to make a statement about the entire graph as depicted in Figure 4 using reification, you would +first have to specify a statement for each triple in the graph. Since the graph comprises more than 20 +triples, you would end up having to create more than 60 triples in this first step. However, because +you want to refer to the graph as a whole and not to each of its triples individually, you would have to +create more than 20 additional triples that link the resource representing the entire subgraph with +the resources you created in the first step for representing each individual triple. While this is +technically feasible, it is neither elegant nor easily queried. +In cases like this, using Named Graphs is much more efficient than applying RDF reification or +RDF-star. Named Graphs can be used in RDF-based knowledge graphs. A Named Graph resource +identifies a set of triple statements by adding the UPRI of the subgraph and thus the statement as a +fourth element to each triple, turning the triples into quads. Moreover, Named Graphs have the +additional benefit to outperform other metadata representation models when conducting more +complex queries (36). +In labeled property graphs, on the other hand, assigning a resource for identifying subgraphs +within the overall data graph is straightforward and can be achieved by adding the resource identifier +as the value of a respective property-value pair and add this value pair to all relations and nodes that +belong to the same subgraph. + + +Semantic Units + +10 +Figure 4: A detailed machine-actionable representation of the metadata relating to a weight measurement datum +documented as an RDF ABox graph. The representation takes the form of an ABox semantic graph following the RDF syntax. +The graph documents a mass measurement process using a balance. It relates an instance of mass measurement assay +(OBI:0000445) with instances of various other classes from different ontologies, specifying who conducted the +measurement, where and when it took place, following which protocol and using which device (i.e., balance). The graph +furthermore specifies the particular material entity that served as subject and thus as input of the measurement process +(i.e., ‘objectX’), and it specifies the data that is the output of the observation, which is contained in a particular weight +measurement assertion. +Organizing the overall data graph into different semantic units and thus semantically meaningful +subgraphs at different levels of representational granularity provides an efficient way of structuring +the graph to allow users to intuitively make statements about statements, and also provides a clear +and straightforward implementation schema that is beneficial for developing relevant search +schemata. +Challenge 4: Conceptual gap between RDF/OWL and property graphs +and problems of distinguishing universal, contingent, and assertional +statements +Some knowledge graphs are based on RDF/OWL, others on labeled property graphs. Each technology +has its specific advantages and shortcomings (see table 1). + + + +WHO? +obi:assay +INPUT:MATERIALENTITY +OUTPUT:DATA +rdfs:subClassOf +obi:investigation +objectx +weightmeasurement +agentrole +obi:massmeasurementassay +assertion +rdf:type +rdf:type +ro:has specified input +rdf:type +investigation agent role +|mass measurement +ro:has specified output +weightmeasurement +bfo:realizes +assertion +ro:has role +ro: has participant +URIof researcher +contributingthespecified +output +bfo:existsat +bfo:realizes +ro:has participant +bfo:realizes +obi:device setting +bfo:occurrsin +rdf: type +device setting +ro: has quality +| site +ti:has interval + time interval +startdate +protocol +URIof some + statement_unit_Y’) or two statement units to each other (e.g., ‘statement_unit_X +-hasMetadata-> statement_unit_Z’), relations between the three layers can be easily documented. +For instance, an item group unit documents the contents of a particular scholarly publication. Because +scholarly publications can be considered in general to represent reports about a scientific investigation +or some other research activity, the item group unit will contain information about a research activity + +Semantic Units + +44 +as a process that may have some material entities (i.e., substances, instruments, specimens, etc.) and +research agents (i.e., experimenters, patients, test persons, etc.) or some data as its input and some +research result as its output. Moreover, the research activity usually realizes a specific plan (i.e., +research method) and achieves a specific research objective, which is part of the plan (see Fig. 15). +This general model can be applied like a Matryoshka, the russian stacking doll: research activities can +have research activities as their parts, i.e., differentiated steps in the overall research process, that +again have their own inputs and outputs and realize their own research methods and achieve their +own objectives. + +Figure 15: A data scheme for modelling the contents of scholarly publications. The relation between a research activity, its +input and output and its underlying process plan specification in the form of a research method and research objective +(model adapted from (79)). +This model can be applied to a knowledge graph of scholarly publications and be adopted to +semantic units. The item group unit of the publication is about an instance of *research activity* and +has an item unit of the research activity associated with it, of which that *research activity* instance +is the subject. The research activity item unit has a research result item unit associated with it that has +an instance of *research result* as its subject. The research activity resource is linked to the research +result resource via the property hasSpecifiedOutput (OBI:0000299). Now, the research result item unit +can be linked to a description item unit that contains several assertional statement units about a +particular multicellular organism—the publication describes the anatomy of a specific multicellular +organism. This is documented through a triple that relates the *research result item unit* to the +*description item unit* via the property *hasLinkedSemanticUnit*. The ‘description’ (SIO:000136) +resource is the subject of the *description item unit* and is related to the multicellular organism item +unit through the property hasPart (BFO:0000051) and the multicellular organism item unit to the +instance +of +multicellular +organism +(UBERON:0000468) +through +the +property +*hasSemanticUnitSubject*. The resulting set of semantic units thereby cover at least three different +frames of reference: the publication itself, the research activity, which the publication is reporting on, + +bfo:has.part +researchoutput= +material entity +-hasachievedresult +research objective +bfo:haspart +research method +and/ordataitem +obi:achieves +bfo: has part +bfo: has part +obi:hasspecified +planned +bfo:realizes +objective +researchparticipant= +obi:hasspecified +researchinput= +researchagent +ro:hasparticipant +researchactivity +material entity +input +and/orinstrument +and/ordataitem +bfo: has +instance +occurrent +bfo:haspart +part +bfo:has partSemantic Units + +45 +and the assertional statements about the research subject, i.e., the multicellular organism, with their +boundaries being indicated by the two is-about statements. In Figure 16, you can see how the resulting +discursive and the ontological layers, as well as the different frames of reference, are interconnected. + +Figure 16: Detail from the graph belonging to an item group unit about the contents of a scholarly publication, represented +in an ABox RDF graph. The content is modelled according to a specific data schema (see Fig. 15) that has been adapted to +semantic units. All content from the published journal article is organized in its own item group unit instance via various +associated semantic units. The publication itself is represented in the data graph as an instance of journal article +(IAO:0000013). The item group unit has several item units about the research activity associated with it, that in turn are +connected to each other via the property *hasLinkedSemanticUnit*. The item unit describing the research activity has an +instance of investigation (OBI:0000066) as its subject, which has as its output an instance of data set (IAO:0000100) that has +an instance of description (SIO:000136) as its part. That description instance has the item unit that describes the multicellular +organism as its part, the latter of which has an instance of multicellular organism (UBERON:0000468) as its subject. The blue +arrow indicates that the data graph (dark blue box without borders) is represented by this item unit (bordered box in the +same color). It has a head item unit linked to it, which has an instance of head (UBERON:0000033) as its subject, which is a +part of the multicellular organism. The data graphs of the semantic units form the ontological layer, whereas their semantic- +units graphs form the discursive layer. Three different context units separate the reference frame of a publication from that +of a research-activity and that of a research-subject, with is-about statements marking their borders. For reasons of clarity +of presentation, the associated statement units are not shown in the discursive layer. +Whereas the resources of the semantic units represent and organize the discursive layer, their +data graphs represent the ontological (and diagnostic) layer. The same applies to all semantic unit +resources. The organization of a knowledge graph into these different layers and into different frames +of reference may provide a new framework for the development of innovative visualization and graph +exploration methods. + +item group unit +context unit +class +instance +rdf:type +rdf:type +rdf:type +publication +research activity +rdf:type +research subject +contextunit +contextunit +contextunit +itemunit +has associated +has associated +has associated +discursive +semantic unit +has associated +semantic unit +semantic unit +has associated +has associated +has associated +semanticunit +rdt:typo +rdf:type +has associated +semantic unit +semanticunit +semanticunit +rdf:type +rdf:type +layer +has associated +semanticunit +semanticunit +rdf:type +publication +has asspclated +research activity +has linked +research result +has linked +description +has linked +multicellular organism +has linked +head +itemgroupunit +semanticunit +itemunit +semantic unit +itemunit +semantic unit +itemunit +semantic uni +itemunit +semantic unit +itemunit +lao:isabout +has semantic +iao:is about +has semantic +has semantic +has semantic +has semantic +has semantic +unit subject +unit subject +unit subject +unit subject +bfo: +haspart +layer +obi:has +obi:has +publication +paupads +researchactivity +specified +researchresult +bfo:haspart- +description +multicellularorganism +-bfo:haspart- +head +output +output +rdf:type +rdf:type +rdf:type +rdf:type +rdf:type +rdf:type +lao:journal article +obi:investigation +lao:data set +sio:description +uberon:mutticellular organism +uberon:head +publication +research-activity +research-subject +referenceframe +reference frame +referenceframeSemantic Units + +46 +Modelling negations, cardinality restrictions, and disagreement +OWL and Description Logics based information systems adhere to what is called the Open World +Assumption (OWA). OWA assumes incomplete information by default. Therefore, absence of +information about an entity or a fact does not necessarily imply information about the absence of that +entity or the negation of that fact. As a consequence, if you for instance want to state that a particular +object is a fruit but not a pome fruit, that a particular head of an insect does not possess any antenna, +or that this head possesses exactly three eyes, it is not enough to mention that the object is a fruit, +the head possesses three eyes, or to not mention any antenna, because due to OWA the fruit could +still be a pome fruit and the head could still possess antenna, and it could still possess a fourth eye. +Instead, you must explicitly state all these things. +Unfortunately, in RDF/OWL, these types of negation and cardinality statements pose tricky +modelling challenges, because they cannot be directly expressed as relations between instances and +thus ABox expressions. Instead, you must model them in the form of class-expressions as a TBox, e.g., +by using OWL Manchester Syntax (51). +Regarding negations, one can distinguish two different types of negation statements: negations +involving references to classes and negations of relations between instances. An example of the +former is the statement ‘this fruit is not a pome fruit’ (Fig. 17A). This can be characterized following +the Manchester Syntax as the expression ‘not (type pome fruit)’ (Fig. 17B), which translates to OWL +mapped to RDF to a graph in which the given particular entity is an instance of the class fruit +(PO:0009001) and an instance of a class that is the complement of the class pome fruit (PO:0030110) +(Fig. 17C). Analog to this case are negations that are part of a class axiom. +Semantic units can provide an alternative modelling solution by introducing a general *negation +unit* class (in Neo4j this could be simply modelled by adding the label ‘:Negation’ to the respective +semantic unit node, indicating that this resource is an instance of the class ‘negation’). The statement +‘this fruit is not a pome fruit’ can be modelled by two semantic units, both of which would be instances +of *named-individual identification unit* and *assertional statement unit*. However, the semantic +unit stating that its subject is a pome fruit (PO:0030110) is also an instance of *negation unit*, thereby +negating the contents of its data graph (see Fig. 17D). + + + + +Semantic Units + +47 +Figure +17: +Modelling +negations +involving +instances by applying semantic units. A) A +human-readable statement that this fruit is not a +pome fruit. The statement can be modelled in two +different ways. As an OWL expression that can be +specified using B) Manchester Syntax, where the +fruit is an instance of a class that is defined as all +of its instances are not instances of pome fruit +(PO:0030110). Note, how this Manchester Syntax +expression translates into C) an OWL expression +mapped to RDF, where fruit x is an instance of +fruit (PO:0009001) but also of a class that is the +complement to +pome fruit +(PO:0030110). +Alternatively, the statement can be modelled as +an instance-based graph using semantic units D). +The data graph in the blue box states that the +entity is a fruit. The data graph belonging to the +statement unit stating the negation (red box with borders, here shown with its dynamic label), on the other hand, is shown +in the red box without borders and states that the entity is a pome fruit. However, since the latter statement unit not only +instantiates the classes *assertional statement unit* and *named-individual identification unit* but also *negation unit*, it +actually negates the statement in the data graph, therewith indicating that it is not a pome fruit. +Absence statements are another example of negations involving reference to classes. The +observation ‘this head has no antenna’ translates to the statement that the head is an instance of a +class that is characterized following the Manchester expression as ‘not (‘has part’ some antenna)’, +which translates to OWL to a more complex class axiom (see Fig. 18A-C). +The same statement can be modelled as the union6 of the subgraphs of two semantic units, with +the one having the ‘head x’ (UBERON:0000033) as its subject being an instance of *has-part statement +unit*, *assertional statement unit*, and *negation unit*, whereas the one having the ‘some antenna’ +(UBERON:0000972) as its subject only being an instance of *some-instance identification unit* (see +Fig. 18D). In general, when modelling absence statements this way, all instance resources in the +assertion that are supposed to represent types of entities that are absent, would be modelled this +way, relating to the respective class via the property *some instance of* within their corresponding +some-instance identification units. This notation would be simpler and easier to use and to implement +in knowledge graph applications than the OWL-based notation of using a more complex class +expression. + +6 The union of the subgraphs, but, semantically, the intersection of the statements. + +A)Statement +Thisfruitisnotapomefruit +B)OWLManchesterSyntaxexpression +typenegationclassaxiom: +not(typepomefruit) +C)ConventionaloWLmodel +PO:fruit +PO:pome fruit +owl:class +rdf:type +owl:complement +rdf:type +of +fruitx +df:type +classification +owl:subclass +of +blank node +negationclass +class +owlspecific +class +instance +D)Assertionalstatementunitsmodel +assertional statementunit +named-individual +identificationunit +rdf:type +rdf:type +Fruitxis notapomefruit +-rdf:type +negation unit +hassemantic +unit subject +PO:fruit +rdf:type +fruitx +rdf:type +PO:pome fruitSemantic Units + +48 +Figure 18: Relation between an +absence +observation, +the +corresponding assertions, and +two alternative ways to model +them in a knowledge graph. A) +A human-readable statement +about the observation that a +given head has no antenna. B) +Absence statements cannot be +expressed as relations between +instances. +Therefore, +the +observation from A) must be +expressed +using +a +class +expression, +which +can +be +formulated using Manchester +syntax. Following this notation, +the head would be an instance +of a class that is defined to have +only instances that have no +antenna as their parts (‘not’ and +‘some’ being used as mathematical expressions). C) The translation of the assertion from A) and B) into an OWL expression +mapped to RDF. Note how *absence phenotype* is defined as a set of relations of subclass and complement restrictions +involving two blank nodes. D) The same statement can be modelled using two semantic units. One of them is modelling the +has-part relation and negates it (red box with borders and its dynamic label, with its data graph in the red box without +borders). It is therefore an instance of *has-part statement unit* as well as *assertional statement unit* and *negation unit*. +The other semantic unit is an instance of *some-instance identification unit* and relates ‘some antenna’ to antenna +(UBERON:0000972) via the property *some instance of*. Its data graph is shown in the blue box. Together, they model the +observation from A). This notation is comparable to E). E) An alternative notation of the statement ‘this head has no antenna’ +and the observation from A). The notation uses Peirce’s predicate logic system of existential graphs. The identity line ― +between the two phrases ‘head x’ and ‘has part antenna’ states that head x has some antenna as its part, whereas the red +circle surrounding the latter phrase expresses its negation by crossing the line of identity. For reason of clarity of +representation, the relation between ‘head x’ and head (UBERON:0000033) is not shown in C) and D). +The same approach can also be applied to the case of negations of relations between two +instances. The fact that a given fruit is not part of a particular orange plant could be modelled analog +to the other negation statements (see Fig. 19). + +A)Observation +Thisheadhasnoantenna(negatedparthoodassertion) +B)OWLManchesterSyntaxexpression +absencephenotypeclassaxiom: +not(haspartsomeantenna) +C)ConyentionalOwLmodel +headx +owl:class +owl:restriction +bfo:has part +rdf:type +rdf:type +owl:on +rdf:type +-property +owl:complement +owl:some +absencephenotype +owl:subclassof- +blanknode +blank node +values +uberon:antenna +of +from +D)Assertionalstatementunitsmodel +assertional +has-part +statement unit +statementunit +class +instance +rdf:type +rdf:type +owlspecific +class +object property +Headxhasnoantenna +rdf:type +negation unit +hassemantic +unitsubject +head x +bfo:haspart +someantenna +someinstanceof +uberon:antenna +E)Peirce'spredicatelogicsystemofexistentialgraphs +head x +haspartantennaSemantic Units + +49 +Figure +19: +Modelling +negating +relations +between +instances +by +applying semantic units. A) A human- +readable statement that this fruit is +not part of this organge plant. The +statement can be modelled in two +different ways: B) as an OWL +expression mapped to RDF. Note, how +the statement is translated into a +negated assertion statement with +source, +property, +and +target +specification, relating an instance +‘fruit x’ (PO:0009001) to an instance +‘orange plant y’ (FOODON:03411339) +involving a blank node; or C) using +three semantic units. The two named- +individual identification units, with +their data graphs shown in the blue boxes, state that one of the objects is a fruit and the other one an orange plant, whereas +the part-of statement unit (red bordered box and its dynamic label, with its data graph shown in the red box without borders) +states that fruit x is not part of orange plant y as it instantiates both *part-of statement unit*, *assertional statement unit*, +and *negation unit*. +From all these examples, it becomes clear that negations, including absence statements, can be +efficiently represented via semantic units by classifying the corresponding semantic unit as a +*negation unit*. This general notation can be compared to Peirce’s existential relational graphs +(80,81), where a line of identity ‘―’ can be used to express that ‘something is A’ by notating it as ‘―A’. +The line of identity can be understood to represent an existential quantifier (Ǝx). By interrupting this +line with a circle that encloses A, you express that ‘something is not A’ (see Fig. 18E). The resulting +existential relational graphs are sufficiently general to represent full first-order logic with equality (81). +Expressing cardinality restrictions is, for the same reasons, also challenging using RDF/OWL and +requires the use of a class expression that indicates the cardinality as a class restriction. Instead of +using a rather complex class axiom to describe for instance that a given head possesses exactly three +eyes (Fig. 20B), the same information could be modelled by two semantic units and allowing for +extending the some-instance identification unit to include cardinality restrictions via linking its subject +to, for instance, the value 3 via the property qualified cardinality (OWL:qualifiedCardinality) (Fig. 20C). +Instead of a simple integer value, a float value range with a unit specification that is constrained to +count unit (UO:0000189) and percent (UO:0000187) would even allow the specification of frequencies + +A)Statement +Thisfruitisnotpartofthisorangeplant +class +instance +owlspecific +objectproperty +class +B)ConventionalOWLmodel +owl:negativepropertyassertion +fruitx +rdf:type +PO:fruit +rdf:type +owl:source individual +blank node +owl:assertionproperty +bfo:partof +owl:target individual +orangeplanty +rdf:type +FOODON:orangeplant +C)Assertionalstatementunitsmodel +part-of +assertional +statement unit +statement unit +rdf:type +rdf:type +Fruitxisnotapartof +orangeplanty +rdf:type +negation unit +hassemantic +unitsubject +PO:fruit ++rdf:type +fruitx +bfo:partof +orangeplanty +"rdf:type" +FOODON:orangeplantSemantic Units + +50 +and ranges. The has-part statement unit relates the ‘head x’ to the subject of a semantic unit that +instantiates both *some-instance identification unit* and *cardinality restriction unit*. +Figure +20: +Modelling +cardinality +restrictions +involving +instances +by +applying semantic units. A) A human- +readable statement that this head has +exactly three eyes. The statement can be +modelled in two different ways: B) as an +OWL expression mapped to RDF. Note, +how ‘has exactly three eyes’ is translated +into being an instance of a class that has a +cardinality +restriction +on +the +has +component property (RO:0002180) and +the class eye (UBERON:0000970) with a +cardinality value of 3, thereby involving +one blank node; or C) using two semantic +units, one of which models the has-part +relationship, with its data graph shown in +the dark blue box. The other semantic unit +(light blue bordered box and its dynamic +label, with its data graph shown in the light +blue box without borders) instantiates +*assertional statement unit*, *some-instance identification unit*, and *cardinality restriction unit*. +Analog to the approach for modelling negations, semantic units can also be applied for modelling +disagreement in a knowledge graph. For instance, if person A asserts ‘This fruit is a pome fruit’ through +a named-individual identification unit, and person B disagrees with this statement, the disagreement +can be modelled as a semantic unit that instantiates both *assertional statement unit* and +*disagreement unit* and its data graph states that the named-individual identification unit asserted +by person A instantiates *negation unit* (see Fig. 21). +Whereas the here suggested notations result in simpler graphs than their OWL-based RDF +equivalents, and these graphs are easier to query due to the lack of blank nodes, reasoners that +directly use semantic units would still have to be developed; however, through the translation to OWL +(see section Logical semantics of semantic units), standard OWL reasoners will be able to reason over +semantic units, including negations, cardinality restrictions, and disagreements. + + + +A)Statement +Thisheadhasexactly3eyes +B)ConventionalOwLmodel +owl: restriction +ro:hascomponent +rdf: type +owl: on +property +three-eyed head +blank node +owl:qualified +owl:subclassof- +cardinality +3 +rdf:type +owl: on class +head x +uberon:eye +class +instance +owlspecific +class +objectproperty +C)Assertionalstatementunitsmode +assertional +some-instance +cardinality +statement unit +identification unit +restriction unit +rdf:type +rdf:type +rdf:type +exactly +3eyes +hassemantic +unit subject +owl:qualified +3 +cardinality +head x +bfo:haspart +someeye +some +uberon:eye +instanceofSemantic Units + +51 + + + +Figure 21: Modelling disagreement by applying semantic units. +A) Person A states that this is a pome fruit and person B +disagrees. B) The assertional statement unit (blue bordered box +and its dynamic label, with its data graph shown in the blue box +without borders) models the statement of person A. C) The +disagreement unit (red bordered box and its dynamic label, with +its data graph shown in the red box without borders) models the +statement of person B and instantiates *assertional statement +unit* and *disagreement unit*. Its data graph states that the +statement of person A instantiates *negation unit*. +Logical semantics of semantic units +Semantically, we treat semantic units as translations between ABox and TBox statements, or, +alternatively, as translations between logic programs and OWL axioms. For example, ‘Lars’ right hand’ +(FMA:9712) has-part (BFO:0000051) ‘Lars’ right thumb’ (FMA:24938) is an ABox statement. It includes, +as part of the representation, the information that this expresses a “has part” type axiom (has-part +statement unit). Semantically, we treat these statement units as expressions of particular forms of +ontology design patterns, where the ABox statement is translated into TBox axioms based on an +ontology design pattern dependent on the type of statement unit. We can formalize these translations +using expressions of relational ontology design patterns (82), which are OWL axioms involving +variables for arbitrary entities. For example, the *’has-part assertional statement unit’* can be +translated, in general, as + +?X SubClassOf: has-part some ?Y, + where ?X is filled by the subject and ?Y by the object of the statement. We can add the pattern +as literal, i.e., either as a datatype property or annotation property, to the statement unit class. This +will allow use of an OWL reasoner, or, alternatively, a SPARQL query, to retrieve all statements that +can be rewritten based on this design pattern; however, it will be more convenient to specify them +separately and use a dual formalism. +The dual representation of complex axioms as ABox statements and the translation into TBox (or +ABox) axioms enables a dual kind of reasoning. Through the translation to TBox axioms, it becomes +possible to apply OWL reasoning and therefore use any OWL reasoner (or reasoners for OWL profiles) + +A)Statements +PersonA:"This fruit isapomefruit" +PersonB:"IdisagreewithPersonA,thatthisfruitisapomefruit +B)TypeAssertionModelforStatementofPersonA +personA +class +instance +asserted by +named-individual +identification unit +Fruitxisapomefruit +'rdf:type +assertional +statement unit +hassemantic +unit subject +fruit x +PO:pome fruit +C)DisagreementAssertionModelforStatementofPersonB +person B +asserted by +assertional +df:type +statement unit +Fruitxisnotapomefruit +rdf:type +disagreement unit +has semantic +unit subject +Fruitxisapomefruit +rdf:type +negation unitSemantic Units + +52 +to test consistency of the knowledge graph or perform inferences. However, the ABox representation +of the axioms as abbreviated patterns also enables a form of reasoning directly on the ABox +statements, using the semantics of logic programming; this form of reasoning can exceed the +semantics of OWL (83). In particular, it becomes possible to add non-monotonic statements which +allow us to model contingent statements, or “defaults”, which may have an exception (84). For +example, the statement ‘Typically, a hand has a thumb as part’ can be modelled through a logic +program that states that, if there is an instance x of Hand (FMA:9712) and it is not provable that x does +not have some instance of Thumb (FMA:24938) as part, then x has some instance of Thumb as part. +Formally, this can be expressed as an answer set program such as +has-part(x, Thumb) :- rdf:type(x, Hand), not lacks-part(x, Thumb). +However, such a statement has several unusual features that need to be explained. First, it is not +based on OWL semantics and therefore does not, initially, interact with axioms in the OWL ontology; +in particular, the statement unit is not translated into an OWL axiom but rather into a logic rule that +is applied to the statement units themselves. Second, under answer set semantics, “not” is weak +negation with the intended meaning that lacks-part(x, Thumb) is not provable. It therefore encodes a +kind of default knowledge and using this statement results in non-monotonic inference: adding a new +statement, such as lacks-part(x, Thumb), will invalidate the previous inference (has-part(x, Thumb)); +this is in contrast to the standard semantics of OWL which is monotonic (where adding a new +statement will never invalidate an inference). Third, the symbols Hand and Thumb are used here as +symbols for individuals and instanceOf is an explicit relation between entities, whereas Hand and +Thumb would be classes in OWL (corresponding to unary predicates) and instanceOf is a built-in +primitive that relates individuals to classes. +To relate the logic programs to OWL, we assume that the logic program is able to use all OWL +entities (class symbols, individual symbols, and relation symbols) as individuals. An atomic formula +takes the form P (a1 , ..., an ) where P is a predicate symbol and each ai is either an individual symbol +or a variable symbol. A formula is called ground if it contains no variable symbol. Several efficient +grounders, such as Clingo (85), as well as answer set solvers such as DLV (86) or clasp (87) are available, +and allow computation of fully ground answer sets (or stable models of answer set programs). We +treat the predicate symbols in the answer set program as ontology design patterns that are translated +into a set of OWL axioms. Applying patterns in a forward manner is decidable and can be implemented +in a straightforward manner by computing the fully grounded stable models of the answer set program +and then applying the forward translation of the design pattern. We can also implement an inverse +translation from OWL into these patterns by querying, for each defined ontology design pattern, + +Semantic Units + +53 +whether the pattern is entailed by the OWL axioms; using an OWL reasoner, we can query for the +pattern within the deductive closure O⊢ of ontology O and iterating through all OWL entities. However, +for a pattern with n variables and |E| entities in the OWL ontology, the complexity will be O(|E|n). +Using this approach, a semantic unit is specified by two parts, a statement that takes the form of a +logic program, and a pattern to convert predicates into OWL statements. For example, we can express +a named-individual identification unit (Figure 8) as: +Logic program: +rdf:type(Lars’RightHand, fma:hand) +Pattern: + +rdf:type(Lars’RightHand, fma:hand) +In the case of a named-individual identification unit, both statements are identical. More +generally, we can formulate all named-individual identification units using a logic program such as: +named-individual-identification-unit(x), has-semantic-subject(x,y), rdf:type(y, z), rdfs:label(y, +l), owl:named_individual(y); +and a pattern that translates each predicate into their corresponding OWL statement. +A some-instance identification unit is semantically identical to a named-individual identification +unit but does not introduce, explicitly, a name for the individual. This corresponds to the use of an +existential quantifier which we can eliminate through “Skolemization”, i.e., we can introduce a new +individual name that is not explicitly referred to in the language of the semantic units but exists in the +semantic space. +The every-instance identification unit requires more elaborate translation into OWL. Here, *every +instance of X* refers to the collection of all instances of X, and we may rely on a theory of collections +and collectives (88); the example in Figure 8 will then be translated into: +• rdf:type(everyHand, Collection) +• owl:SubClassOf(fma:Hand, owl:SomeValuesFrom(member-of, owl:oneOf({everyHand}))) +• owl:SubClassOf(owl:oneOf(everyHand), owl:AllValuesFrom(has-member, fma:Hand)) +In other words, *‘everyHand’* refers to a collection that has as its members all instances of the +class Hand (FMA:9712), and that has only instances of that class as members. Analogously, we can +translate cardinality restrictions (cardinality restriction units); the example in Figure 20, for example, +would be expressed using the following (general) logic program: +cardinality-restriction-unit(x), has-semantic-unit-subject(x,y), owl:qualified-cardinality(y,z), +some-instance-of(y, w). + +Semantic Units + +54 +with a translation of this pattern into OWL of + +rdf:type(cX, owl:intersectionOf(Collection, owl:cardinality(has-member, 3, uberon:eye))) +where cX is a new individual name (i.e., a name not used elsewhere). This will then be combined with +the ‘part-of assertional statement unit’ for ‘head X’ in the same example to assert the ABox statement + +part-of(`head X’, cX). +We can use a similar translation to formalize other statements. An assertional statement unit +(Fig. 9) is translated directly into an ABox statement, and a universal statement unit follows a similar +translation; the statement in Figure 9 will be translated into the OWL ABox axiom +hasPart(everyHand, someThumb). +Based on OWL semantics and the axioms to formalize *‘everyHand’* and *‘someThumb’* gives +rise to the inference of the OWL axiom +owl: SubClassOf(fma:Hand, owl:SomeValuesFrom(has-part, Thumb) +as expected. The contingent statement unit in Figure 9 is similarly translated into an OWL ABox +axiom. However, our formalism also allows us to express a different type of contingent statement, i.e., +a statement about prototypes (prototypical contingent statement unit). Such a statement can be used +to formulate expressions such as ‘normally, a hand has a thumb as its part’, allowing for the possibility +of an exception (such as in the case of loss of a thumb due to an accident). The following statement +expresses this prototypical statement: +hasPart(x, thumb) :- hasPart(hand, thumb), instanceOf(x, hand), not -hasPart(x, thumb). +The use of the logic programming paradigm also allows us to formalize complex statements such +as shown in Figure 13 which are not directly expressible in OWL, and the translation into OWL through +translation patterns enables inferences within OWL when combined with other OWL axioms. +We are also able to model (classical) negation through the use of negation units (Figure 17). A +negation is directly added to a semantic unit, and we can use this to define a negated assertional +statement unit: + +NegatedAssertionalStatementUnit(x) :- NegationUnit(x), AssertionalStatementUnit(x) +and then a translation into OWL for NegatedAssertionalStatementUnit with the following logic +program as precondition: + +Semantic Units + +55 +NegatedAssertionalStatementUnit(x), has-semantic-unit-subject(x,y), rdf:type(y,z) +and the OWL translation + +rdf:type(y, owl:complementOf(z)). +This +example +shows +the +flexibility +of +our +use +of +logic +programming, +as +the +NegatedAssertionalStatementUnit predicate is inferred from the two assertions added to the +statement unit and does not have to be asserted. However, this kind of inference, in particular when +using negation units, leads to one additional challenge because multiple patterns may apply to +statements, and it may not always be clear which translation pattern to apply. For example, in the +example in Figure 17, if we ignore the negation unit, we will conclude that the pattern for assertional +statement units should apply; applying translations for both statement units will result in an +inconsistency. The easiest way to prevent this is to add the weakly negated condition to the logic +programs for assertional statement units: not NegatedAssertionalStatementUnit(x), or, even simpler, +not NegationUnit(x); this condition will prevent the translation pattern from being triggered in the +presence of a negation unit. +Furthermore, the logic programming paradigm can be used to translate between statements (treated +as individuals) and their content (treated as propositions). The statements, as shown in Figure 21, are +units in their own right (assertional statement units) which can be translated to OWL axioms using the +patterns we already described. Additionally, the statements are individuals within logic programs +where relations between statements can be modelled, which additionally can enable the use of +answer set programming to represent arguments (89,90). +Semantic units provide a new framework for knowledge graph +alignment +Semantic units that instantiate the same semantic unit ontology class contain semantically similar +information. Therefore, semantic units of the same type are in principle comparable throughout all +their instances. Consequently, aligning and comparing different knowledge graphs that are based on +the same set of semantic unit ontology classes can be conducted in a step-by-step procedure along +the different levels of representational granularity. In a first step, the data graphs belonging to item +group units are aligned based on their *hasSemanticUnitSubject* relations to different types of +subjects and based on their *hasAssociatedSemanticUnit* relations to different types of associated +semantic units. In a next step, for each pair of item group units the data graphs belonging to their +associated item units are aligned based on their types of subjects and their types of associated + +Semantic Units + +56 +statement units, which in turn can be aligned by class, and finally their individual triples can be aligned. +This would provide a new framework to improve methods for knowledge graph alignment, subgraph- +matching, graph comparison, and graph similarity measures. +Managing restricted access to sensitive data +Statement units and their classification into corresponding ontology classes provide a framework for +identifying subgraphs within a knowledge graph that can contain sensitive data to which access must +be restricted. For example, all information relating to location data of occurrences of endangered +species should not be publicly available, and access should be restricted and managed by adequate +rules. Respective statement units can be identified by class, and the need to restrict access to them +can be based on the threat level of the respective species. If a species is endangered, access to these +types of statement units would be automatically restricted, while all other semantic units referring to +that species would still be openly accessible. Similarly, any personal data fall under privacy policy +restrictions and access to corresponding statement units should depend on specific access rights. This +would follow EOSC’s principle of ‘as Open as possible, as closed as necessary’ (16). +Conclusions and Future Work +With semantic units, we introduce a type of resource that is new to knowledge graphs and that +significantly increases their overall expressivity. Semantic units structure a knowledge graph into +identifiable and semantically meaningful subgraphs and thus represent an additional type of +representational entity (91) besides instances, classes, and properties. Semantic units represent +resources of a higher level of abstraction than the low-level abstraction of the resources used in +conventional individual triples. Technically, semantic unit resources are instances of respective +ontology classes, but semantically they represent the contents of their data graphs and thus +statements or sets of semantically and ontologically related statements. With semantic units, one can +thus extract semantically meaningful entities from a knowledge graph that are more abstract than +the resources typically used in conventional triples. +Regarding the four challenges discussed in the introduction, we can conclude that because every +statement is organized in its own statement unit which, in turn, instantiates a corresponding +statement unit ontology class, a data schema (e.g., as a shape) and corresponding CRUD query +patterns can be specified for each such class. By linking the data schema to the corresponding +statement unit class, the UPRI of each statement unit and its affiliation with a corresponding + +Semantic Units + +57 +statement unit class would also reference the underlying data schema and thus contribute to the +FAIRness of their data by guaranteeing schematic interoperability. Because statement units partition +the knowledge graph so that every triple belongs to exactly one statement unit, all data in the +knowledge graph would have information about their underlying data schema. Reference to the +underlying data schema represents valuable metadata that guarantees the interoperability of all +instances of statement units of the same class because they are all based on the same data schema +(Challenge 1). +The set of CRUD query patterns would not only provide read queries for domain experts for +searching instances of the corresponding class in the overall data graph, but also create, update, and +delete queries for developers, who could use them and thus do not have to learn graph query +languages anymore (Challenge 2). +By organizing the overall data graph into different semantic units and thus semantically +meaningful subgraphs at different levels of representational granularity, semantic units also provide +a solution to the problem that making statements about statements is challenging in knowledge +graphs (Challenge 3). Semantic units provide an efficient way of structuring the graph to allow users +to intuitively make statements about statements, and also provides a clear and straightforward +implementation schema that supports the development of corresponding queries and related tools. +Moreover, contrary to RDF-star, semantic units also allow distinguishing different instances of the +same statement by organizing them as different semantic units that instantiate the same semantic +unit class. They would have identical subjects and objects, but would differ by their respective +semantic unit resource. +Finally, by distinguishing between assertional, contingent (including prototypical), and universal +statement units as top-level categories of statement units, by introducing some-instance and every- +instance resources, and by introducing a notation that does not involve blank nodes and that is less +complex than the equivalent OWL notation when mapped to RDF, semantic units provide a conceptual +framework with which the conceptual gap between RDF/OWL and property graphs can be bridged, +formal semantics for contingent and prototypical statements can be provided, and universal +statements and thus also particular class axioms can become part of the domain of discourse of a +knowledge graph (Challenge 4). In other words, semantic units substantially increase the overall +expressivity of knowledge graphs. +In the future, we want to expand the concept of a semantic unit to include for each semantic unit +class corresponding data schemata and query patterns. Together with further features, this results in +what we call a Knowledge Graph Building Block (KGBB) (see also knowledge graph cells (79) for a first + +Semantic Units + +58 +discussion of a similar idea). A KGBB is a small module that is associated with a semantic unit ontology +class. Each semantic unit class requires its own associated KGBB. A KGBB provides all information +required for managing data belonging to the corresponding type of semantic unit. Each KGBB provides +a graph model for storing the data of its associated type of semantic unit, from which CRUD query +patterns can be derived, resulting in FAIR data and metadata. KGBBs decouple data storage from data +access by providing data access in various formats, and they also decouple data display from data +storage by providing different display templates. Ultimately, the idea for KGBBs is that each KGBB +functions independently of other KGBBs, that it is made openly available in a repository so that it can +be reused by others, and that domain experts can combine multiple KGBBs and define their possible +interactions with as little effort as possible to set up their own knowledge graph application, without +being a programmer or having knowledge in semantics. A KGBB editor will enable domain experts +without background in semantics, in programming, or in graph query languages to describe new +KGBBs. A KGBB application engine will use the information provided by the various KGBBs of a +knowledge graph application and communicate through respective APIs with the persistence-layer +and the presentation-layer, thereby decoupling not only human-readable data display from data +storage, but also data access from data storage, and data storage from storage technology. +One of the authors has developed a first minimum viable product for how KGBBs and semantic +units can be used to manage a knowledge graph (92). It is based on Neo4j and gets its contents through +a web interface and user input. It is a small knowledge graph application for documenting assertions +from scholarly publications and allows users in an exemplary way to describe some contents that can +be found in a scholarly publication (it does not focus on describing the publication’s bibliographic +metadata). Each described paper is represented as its own item group unit, with the assertions +covered by statement units that are associated with item units and granularity tree units. The +showcase +is +based +on +Python +and +flask/Jinja2 +and +is +openly +available +through +https://github.com/LarsVogt/Knowledge-Graph-Building-Blocks. +We believe that the combination of semantic units with Knowledge Graph Building Blocks will +contribute a framework for sharing data across many stakeholders, helping to interlink data providers +from a diverse range of different areas, with data stewardship remaining in the hands of the domain +experts or institutions, thus ensuring their technical autonomy (following Barend Mons’ data visiting +as opposed to data sharing (7)). We also think that due to its modular character, the framework can +increase the accessibility of knowledge graphs for software developers and domain experts who lack +the expertise in semantics, thus supporting the FAIRification of data and metadata in +general―something desperately needed to make all data FAIR, which we believe would increase our +chances to fight climate change and biodiversity loss. + +Semantic Units + +59 +Acknowledgements +We thank Werner Ceusters, Nico Matentzoglu, Manuel Prinz, Marcel Konrad, Philip Strömert, Roman +Baum, Björn Quast, Peter Grobe, István Míko, Manfred Jeusfeld, Manolis Koubarakis, Javad +Chamanara, and Kheir Eddine for discussing some of the presented ideas. Lars Vogt received funding +by the ERC H2020 Project ‘ScienceGraph’ (819536). We are solely responsible for all the arguments +and statements in this paper. +Author’s contributions +LV: developed the concept of semantic units and wrote the manuscript. TC: contributed to the chapter +about nanopublications. RH: contributed the formal semantics. All authors: reviewed the manuscript. +References +1. Adam, K., Hammad, I., Adam, M., et al. (2015) Big Data Analysis and Storage. Proceedings of the +2015 international conference on operations excellence and service engineering, Orlando, +Florida, USA, 10-11 Sept 2015, pp. 648–659. +2. Marr, B. (2018) How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone +Should Read. How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone +Should Read; (2018) . +3. Data never sleeps 5.0 . +4. Idrees, S.M., Alam, M.A. and Agarwal, P. (2018) A study of big data and its challenges. Int. J. Inf. +Technol., 11, 841–846. +5. General Assembly, U.N. (2015) Transforming our world: the 2030 Agenda for Sustainable +Development. Transforming our world: the 2030 Agenda for Sustainable Development; (2015) ; +pp. 1–35. +6. International Science Council (ISC) (2019) Science as a global public good: ISC Action Plan, 2019- +2021. Science as a global public good: ISC Action Plan, 2019-2021; International Science Council, +(2019) . +7. Mons, B. (2019) Message from the CODATA President, Barend Mons. Message from the CODATA +President, Barend Mons; (2019) . +8. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al. (2016) The FAIR Guiding Principles for +scientific data management and stewardship. Sci. Data, 3, 160018. +9. P. Bryan Heidorn (2008) Shedding Light on the Dark Data in the Long Tail of Science. Libr. Trends, +57, 280–299. +10. Baker, M. (2016) 1,500 scientists lift the lid on reproducibility. Nature, 533, 452–454. +11. Lin, D., Crabtree, J., Dillo, I., et al. (2020) The TRUST Principles for digital repositories. Sci. Data, +7, 144. + +Semantic Units + +60 +12. The Internet of FAIR Data & Services . +13. Ayris, P., Berthou, J.-Y., Bruce, R., et al. (2016) Realising the European Open Science Cloud. +Realising the European Open Science Cloud; (2016) ; p. 24. +14. Hasnain, A. and Rebholz-Schuhmann, D. (2018) Assessing FAIR Data Principles Against the 5-Star +Open Data Principles. In Gangemi, A., Gentile, A. L., Nuzzolese, A. G., et al. (eds.), The Semantic +Web: ESWC 2018 Satellite Events. ESWC 2018. Lecture Notes in Computer Science, vol 11155., +Springer, pp. 469–477. +15. European Commission. Directorate General for Research and Innovation. and EOSC Executive +Board (2021) EOSC interoperability framework: report from the EOSC Executive Board Working +Groups FAIR and Architecture. EOSC interoperability framework: report from the EOSC Executive +Board Working Groups FAIR and Architecture.; Publications Office, LU, (2021) . +16. European Commission Expert Group on FAIR Data (2018) Turning FAIR into reality. Turning FAIR +into reality; (2018) . +17. Vogt, L., Baum, R., Bhatty, P., et al. (2019) SOCCOMAS: a FAIR web content management system +that uses knowledge graphs and that is based on semantic programming. Database, 2019, 1–22. +18. Blumauer, A. (2018) Knowledge Graphs—Connecting the Dots in an Increasingly Complex World. +Knowledge Graphs—Connecting the Dots in an Increasingly Complex World; (2018) . +19. Singhal, A. (2012) Introducing the Knowledge Graph: things, not strings. Introducing the +Knowledge Graph: things, not strings (2012) . +20. Hogan, A., Blomqvist, E., Cochez, M., et al. (2021) Knowledge Graphs. ACM Comput. Surv., 54, 1– +37. +21. Bonatti, P.A., Decker, S., Polleres, A., et al. (2019) Knowledge graphs: new directions for +knowledge representation on the semantic web. Rep. Dagstuhl Semin., 8, 29–111. +22. Abiteboul, S. (1997) Querying semi-structured data. In Afrati, F., Kolaitis, P. (eds.), Database +Theory — ICDT ’97, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–18. +23. Angles, R. and Gutierrez, C. (2008) Survey of graph database models. ACM Comput. Surv., 40, 1– +39. +24. Angles, R., Arenas, M., Barceló, P., et al. (2017) Foundations of Modern Query Languages for +Graph Databases. ACM Comput. Surv., 50, 1–40. +25. Hitzler, P., Krötzsch, M., Parsia, B., et al. (2012) OWL 2 Web Ontology Language Primer (Second +Edition), W3C Recommendation 11 December 2012. OWL 2 Web Ontology Language Primer +(Second Edition), W3C Recommendation 11 December 2012. (2012) . +26. Stutz, P., Strebel, D. and Bernstein, A. (2016) Signal/Collect12: Processing large graphs in +seconds. Semantic Web, 7, 139–166. +27. Wang, Q., Mao, Z., Wang, B., et al. (2017) Knowledge Graph Embedding: A Survey of Approaches +and Applications. IEEE Trans. Knowl. Data Eng., 29, 2724–2743. +28. Ceusters, W. (2020) The place of Referent Tracking in Biomedical Informatics. Terminology, +Ontology and their Implementations, Springer Nature, p. 50. +29. Ceusters, W., Elkin, P. and Smith, B. (2007) Negative findings in electronic health records and +biomedical ontologies: A realist approach. Int. J. Med. Inf., 76, S326–S333. +30. Vogt, L. (2021) FAIR data representation in times of eScience: a comparison of instance-based +and class-based semantic representations of empirical data using phenotype descriptions as +example. J. Biomed. Semant., 12, 20. + +Semantic Units + +61 +31. Bandrowski, A., Brinkman, R., Brochhausen, M., et al. (2016) The Ontology for Biomedical +Investigations. PLoS ONE, 11, 1–19. +32. Knublauch, H. and Kontokostas, D. (2017) Shapes Contraint Language (SHACL) - W3C +Recommendation 20 July 2017. Shapes Contraint Language (SHACL) - W3C Recommendation 20 +July 2017; (2017) . +33. Booth, D. and Wallace, E. (2019) Session X: EasyRDF. Session X: EasyRDF. 2nd US Semantic +Technol. Symp. 2019 (2019) . +34. Hartig, O. (2017) Foundations of RDF* and SPARQL*. CEUR Workshop Proceedings 1912. +35. Arndt, D., Broekstra, J., DuCharme, B., et al. RDF-star and SPARQL-star Draft Community Group +Report 01 July 2021. RDF-star and SPARQL-star Draft Community Group Report 01 July 2021. +36. Frey, J., Müller, K., Hellmann, S., et al. (2019) Evaluation of metadata representations in RDF +stores. Semantic Web J., 10, 205–229. +37. Mungall, C.J. (2019) Proposed strategy for semantics in RDF* and Property Graphs. Proposed +strategy for semantics in RDF* and Property Graphs (2019) . +38. Mungall, C.J. (2017) Shadowboxing : Mirroring the TBox in the ABox. Shadowboxing : Mirroring +the TBox in the ABox (2017) . +39. Hogan, A., Arenas, M., Mallea, A., et al. (2014) Everything you always wanted to know about +blank nodes. J. Web Semant., 27–28, 42–69. +40. Neumann, T. and Moerkotte, G. (2011) Characteristic sets: Accurate cardinality estimation for +RDF queries with multiple joins. 2011 IEEE 27th International Conference on Data Engineering, +IEEE, Hannover, Germany, pp. 984–994. +41. Papastefanatos, G., Meimaris, M. and Vassiliadis, P. (2021) Relational schema optimization for +RDF-based knowledge graphs. Inf. Syst., 101754. +42. Collarana, D., Galkin, M., Traverso-Ribón, I., et al. (2017) MINTE: Semantically integrating RDF +graphs. Proceedings of the 7th International Conference on Web Intelligence, Mining and +Semantics - WIMS ’17, ACM Press, New York, New York, USA, pp. 1–11. +43. Endris, K.M., Galkin, M., Lytra, I., et al. (2018) Querying Interlinked Data by Bridging RDF +Molecule Templates. Querying Interlinked Data by Bridging RDF Molecule Templates (2018) . +44. Vogt, L. (2019) Organizing phenotypic data—a semantic data model for anatomy. J. Biomed. +Semant., 10, 12. +45. Smith, B., Almeida, M., Bona, J., et al. (2015) Basic Formal Ontology 2.0. . +46. Schulz, S. and Jansen, L. (2013) Formal ontologies in biomedical knowledge representation. IMIA +Yearb. Med. Inform. 2013, 8, 132–46. +47. Schulz, S., Stenzhorn, H., Boekers, M., et al. (2009) Strengths and limitations of formal ontologies +in the biomedical domain. Electron. J. Commun. Inf. Innov. Health, 3, 31–45. +48. Rector, A., Stevens, R. and Drummond, N. (2009) What causes pneumonia? The case for a +standard semantics for “may” in OWL. CEUR Workshop Proc., 432. +49. Dodds, L. and Davis, I. (2011) Linked Data Patterns: A pattern catalogue for modelling, +publishing, and consuming Linked Data. Linked Data Patterns: A pattern catalogue for modelling, +publishing, and consuming Linked Data; (2011) . +50. Stevens, R. and Sattler, U. (2014) Walking your fingers through the trees in OWL: why there are +things you want to say but can’t. Walking your fingers through the trees in OWL: why there are +things you want to say but can’t. Ontog. - Knowl. Blog (2014) . + +Semantic Units + +62 +51. W3C: OWL 2 Web Ontology Language Manchester Syntax (Second Edition) . +52. Balhoff, J.P., Mikó, I., Yoder, M.J., et al. (2013) A semantic model for species description applied +to the ensign wasps (Hymenoptera: Evaniidae) of New Caledonia. Syst. Biol., 62, 639–659. +53. Bittner, T. and Smith, B. (2001) A taxonomy of granular partitions. In Montello, D. R. (ed.), +Spatial Information Theory: Foundations of Geographic Information Science, volume 2205 of +Lecture Notes in Computer Science, Springer, Berlin, p. 16. +54. Smith, B. and Bittner, T. (2001) A unified theory of granularity, vagueness and approximation. +Proceedings of COSIT Workshop on Spatial Vagueness, Uncertainty, and Granularity., Vol. 102, p. +39. +55. Bittner, T. and Smith, B. (2003) A theory of granular partitions. In Duckham, M., Goodchild, M. +F., Worboys, M. F. (eds.), Foundations of geographic information science, Taylor & Francis Books, +London, pp. 117–149. +56. Keet, C.M. (2008) A Formal Theory of Granularity - Toward enhancing biological and applied life +sciences information system with granularity. PhD Thesis, Free University of Bozen - Bolzano, +Bozen. +57. Vogt, L. (2010) Spatio-structural granularity of biological material entities. BMC Bioinformatics, +11. +58. Vogt, L. (2019) Levels and building blocks—toward a domain granularity framework for the life +sciences. J. Biomed. Semant., 10, 1–29. +59. Gayo, J.E.L., Prud’hommeaux, E., Staworko, S., et al. (2015) Towards an RDF validation language +based on regular expression derivatives. CEUR Workshop Proc., 1330, 197–204. +60. Staworko, S., Boneva, I., Gayo, J.E.L., et al. Complexity and Expressiveness of ShEx for RDF. 18. +61. Lupp, D.P., Hodkiewicz, M. and Skjæveland, M.G. (2020) Template Libraries for Industrial Asset +Maintenance: A Methodology for Scalable and Maintainable Ontologies. 13th International +Conference on Scalable Semantic Web Knowledge Base Systems (SSWS 2020), colocated with the +International Semantic Web Conference (ISWC 2020), pp. 49–64. +62. Skjæveland, M.G., Lupp, D.P., Karlsen, L.H., et al. (2018) Practical Ontology Pattern Instantiation, +Discovery, and Maintenance with Reasonable Ontology Templates. In Vrandečić, D., Bontcheva, +K., Suárez-Figueroa, M. C., et al. (eds.), The Semantic Web – ISWC 2018, Lecture Notes in +Computer Science, Springer International Publishing, Cham, Vol. 11136, pp. 477–494. +63. Mons, B. and Velterop, J. (2009) Nano-Publication in the e-science era Nano-Publication in the e- +science era. Workshop on Semantic Web Applications in Scientific Discourse (SWASD 2009). +64. Groth, P., Gibson, A. and Velterop, J. (2010) The Anatomy of a Nano-publication. Inf. Serv. Use, +30, 51–56. +65. Kuhn, T., Taelman, R., Emonet, V., et al. (2021) Semantic micro-contributions with decentralized +nanopublication services. PeerJ Comput. Sci., 7, e387. +66. Giachelle, F., Dosso, D. and Silvello, G. (2021) Search, access, and explore life science +nanopublications on the Web. PeerJ Comput. Sci., 7, e335. +67. Kuhn, T., Willighagen, E., Evelo, C., et al. (2017) Reliable Granular References to Changing Linked +Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial +Intelligence and Lecture Notes in Bioinformatics), Vol. 10587 LNCS, pp. 436–451. +68. Clark, T., Ciccarese, P.N. and Goble, C.A. (2014) Micropublications: a semantic model for claims, +evidence, arguments and annotations in biomedical communications. J. Biomed. Semant., 5, 28. + +Semantic Units + +63 +69. Pinker, S. (1997) How the Mind Works. How the Mind Works; W.W. Norton & Company, Inc., +(1997) . +70. Herre, H. (2010) The Ontology of Mereological Systems: A Logical Approach. Theory and +Applications of Ontology: Philosophical Perspectives, Springer Netherlands, Dordrecht, pp. 57– +82. +71. Azzam, A., Polleres, A., Fernández, J.D., et al. (2022) smart-KG : Partition-Based Linked Data +Fragments for Querying Knowledge Graphs. Semantic Web - Interoperability Usability Appl., +under revi. +72. Vogt, L. (2011) Signs and terminology: science caught between language and perception. +Bionomina, 4, 1–41. +73. Smith, B., Kusnierczyk, W., Schober, D., et al. (2006) Towards a Reference Terminology for +Ontology Research and Development in the Biomedical Domain. In Bodenreider, O. (ed.), +Proceedings of KR-MED 2006, Studies in Health Technology and Informatics, Vol. 124, IOS Press, +pp. 57–66. +74. Vogt, L., Mikó, I. and Bartolomaeus, T. (2022) Anatomy and the type concept in biology show +that ontologies must be adapted to the diagnostic needs of research. J. Biomed. Semant., 13, 27. +75. Marconi, D. (1995) On the Structure of Lexical Competence. Proc. Aristot. Soc., 95, 131–150. +76. Smith, B. (2004) The Logic of Biological Classification and the Foundations of Biomedical +Ontology. Spat. Cogn. Comput., 25, 25–29. +77. Stamos, D.N. (2005) Pre-Darwinian Taxonomy and Essentialism – A Reply to Mary Winsor. Biol. +Philos., 20, 79–96. +78. Johansson, I. (2006) Bioinformatics and biological reality. J. Biomed. Inform., 39, 274–287. +79. Vogt, L., D’Souza, J., Stocker, M., et al. (2020) Toward Representing Research Contributions in +Scholarly Knowledge Graphs Using Knowledge Graph Cells. Proceedings of the ACM/IEEE Joint +Conference on Digital Libraries in 2020, ACM, Virtual Event China, pp. 107–116. +80. Peirce, C.S. Existential graphs - CP 4.372-417. Existential graphs - CP 4.372-417. +81. Sowa, J.F. (2011) Peirce’s tutorial on existential graphs. Semiotica, 2011. +82. Hoehndorf, R., Oellrich, A., Dumontier, M., et al. (2010) Relations as patterns: bridging the gap +between OBO and OWL. BMC Bioinformatics, 11, 441. +83. Lifschitz, V. (2019) Answer Set Programming. Answer Set Programming; Springer International +Publishing, Cham, (2019) . +84. Hoehndorf, R., Loebe, F., Kelso, J., et al. (2007) Representing default knowledge in biomedical +ontologies: application to the integration of anatomy and phenotype ontologies. BMC +Bioinformatics, 8, 377. +85. Gebser, M., Kaminski, R., Kaufmann, B., et al. (2019) Multi-shot ASP solving with clingo. Theory +Pract. Log. Program., 19, 27–82. +86. Adrian, W.T., Alviano, M., Calimeri, F., et al. (2018) The ASP System DLV: Advancements and +Applications. KI - Künstl. Intell., 32, 177–179. +87. Gebser, M., Kaufmann, B., Neumann, A., et al. (2007) clasp: A Conflict-Driven Answer Set Solver. +Logic Programming and Nonmonotonic Reasoning, Springer Berlin Heidelberg, Berlin, +Heidelberg, pp. 260–265. +88. Wood, Z. and Galton, A. (2009) A taxonomy of collective phenomena. Appl. Ontol., 4, 267–292. +89. Egly, U., Alice Gaggl, S. and Woltran, S. (2010) Answer-set programming encodings for + +Semantic Units + +64 +argumentation frameworks. Argum. Comput., 1, 147–177. +90. Toni, F. and Sergot, M. (2011) Argumentation and Answer Set Programming. pp. 164–180. +91. Rector, A., Schulz, S., Rodrigues, J.M., et al. (2019) On beyond Gruber: “Ontologies” in today’s +biomedical information systems and the limits of OWL. J. Biomed. Inform. X, 2, 1–15. +92. Vogt, L. (2022) FAIR Knowledge Graphs with Semantic Units―a Prototype. FAIR Knowledge +Graphs with Semantic Units―a Prototype (2022) . + + diff --git a/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/load_file.txt b/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..dafd498426ee5bd6a291c3dc0179fa3e1082af56 --- /dev/null +++ b/7tAzT4oBgHgl3EQfSPsA/content/tmp_files/load_file.txt @@ -0,0 +1,2530 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf,len=2529 +page_content='Semantic Units 1 Semantic Units: Organizing knowledge graphs into semantically meaningful units of representation Vogt, Lars1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Kuhn, Tobias2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Hoehndorf, Robert3 1 TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167 Hanover, Germany, orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/0000-0002-8280-0487 2 Department of Computer Science, Vrije Universiteit Amsterdam, Netherlands, orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/0000- 0002-1267-0234 3 Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, 23955 Thuwal, Saudi Arabia, orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/0000-0001-8149-5890 Correspondence to lars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='vogt@googlemail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='com Semantic Units 2 Abstract Background: Knowledge graphs and ontologies are becoming increasingly important as technical solutions for Findable, Accessible, Interoperable, and Reusable data and metadata (FAIR Guiding Principles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We discuss four challenges that impede the use of FAIR knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Results: Semantic units have the potential to solve the challenges by structuring a knowledge graph into identifiable and semantically meaningful subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Each semantic unit is represented by its own resource, instantiates a corresponding semantic unit class, and can be implemented as a FAIR Digital Object and a nanopublication in RDF/OWL and property graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We distinguish statement and compound units as basic categories of semantic units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Statement units represent smallest, independent propositions that are semantically meaningful for a human reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' They consist of one or more triples and mathematically partition a knowledge graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We distinguish assertional, contingent (prototypical), and universal statement units as basic types of statement units and propose representational schemes and formal semantics for them (including for absence statements, negations, and cardinality restrictions) that do not involve blank nodes and that translate back to OWL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Compound units, on the other hand, represent semantically meaningful collections of semantic units and we distinguish various types of compound units, representing different levels of representational granularity, different types of granularity trees, and different frames of reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Conclusions: Semantic units support making statements about statements, can be used for graph- alignment, subgraph-matching, knowledge graph profiling, and for managing access restrictions to sensitive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Organizing the graph into semantic units supports the separation of ontological, diagnostic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', referential), and discursive information, and it also supports the differentiation of multiple frames of reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Keywords: FAIR data and metadata, knowledge graph, OWL, RDF, semantic unit, assertional statement, contingent statement, prototypical statement, universal statement, negation Semantic Units 3 Background In times of ever-increasing amounts of data being created every day (1–3), new technical and societal challenges arise (4) that ask for innovative ways of representing and managing data in science and industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Being able to collect, integrate, and analyze large amounts of data from various sources also represents one of the requirements for facing biodiversity loss and climate change, two major global challenges we are currently facing (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Solutions to these problems will be driven by sharing data across many stakeholders, needing an effort to help interlink data providers from a diverse range of different areas, often requiring a truly interdisciplinary approach (6), in which data stewardship remains in the hands of the domain experts or institutions, thus ensuring their technical autonomy (following Barend Mons’ data visiting as opposed to data sharing (7)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' From a data management and data representation perspective, this requires data and metadata to be FAIR, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', readily Findable, Accessible, Interoperable, and Reusable for machines and humans alike (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' If this is not the case, Big Data ultimately turns into Dark Data (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The establishment of the FAIR Guiding Principles as a general standard in science and industry would also contribute to a solution for the reproducibility crisis in science (10) and the question of the trustworthiness of information in general (see also TRUST Principles of Transparency, Responsibility, User Focus, Sustainability, and Technology (11)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Therefore, we must build something along the lines of the Internet of FAIR Data and Services (12) that scales with Big Data, through which all relevant data-rich institutions, research projects, and citizen-science projects can make their data and metadata accessible following the FAIR Guiding Principles (13,14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' This requires providing rich machine- actionable data and metadata with human-readable interface outputs and search capabilities, and organizing this data into FAIR Digital Objects (15,16), each of which possesses its own Unique Persistent and Resolvable Identifier (UPRI) for referencing it individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In this context, knowledge graphs can substantially contribute to the needed technical solutions, providing a suitable framework for managing and representing FAIR data and metadata (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Knowledge graphs are becoming increasingly popular (18), especially after the 2012 announcement of the Google Knowledge Graph (19) which was followed by further announcements of knowledge graphs being developed from industry and by a growing number of scientific publications on knowledge graphs (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Besides general applications in industry and research, knowledge graphs are thereby particularly applied in the context of semantic search based on entities and relations, deep reasoning, disambiguation of natural language, machine reading, and entity consolidation for Big Data and text analytics (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Semantic Units 4 The graph-based abstractions employed in knowledge graphs have several benefits compared to relational or other NoSQL models,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' including (i) an intuitive way for modelling relations,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' (ii) allowing postponing specifications of definitions for data schema so that they can flexibly evolve,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' which is especially important when dealing with incomplete knowledge,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' (iii) employing machine-actionable knowledge representation formalisms such as ontologies and rules,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' (iv) applying graph analytics and machine learning,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' and (v) utilizing the specialized graph query languages of knowledge graphs that support,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' in addition to standard relational operators such as joins,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' unions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' and projections,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' also navigational operators for recursively searching for entities through arbitrary-length paths (20,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='22–27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Moreover, due to their inherent semantic transparency, knowledge graphs can improve the transparency of data-based decision-making and improve communication in research and science in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' However, although providing a suitable technical framework, using a knowledge graph for documenting data and metadata does not necessarily result in FAIR data and metadata, but requires following specific guidelines such as consistently applying adequate semantic data models and organizing data into FAIR Digital Objects (15,16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Moreover, as it is often the case with new technologies, knowledge graphs bring their own specific technical, conceptual, and societal challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' This already begins with the concept of a knowledge graph, which is somewhat fuzzy (20) and covers different technical and conceptual incarnations, including property graphs such as Neo4J (https://neo4j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='com/) and approaches based on the Resource Description Framework (RDF), the use of RDF-stores, and, with the Web Ontology Language (OWL), also applications of Description Logics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Here, we first briefly discuss four of these challenges, and then we introduce the idea of partitioning and structuring a knowledge graph into identifiable and semantically meaningful units of representation (short: semantic units).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The concept of semantic units can significantly contribute to solutions for the four challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We introduce the two basic categories of semantic units, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', statement units and compound units, as new elements in FAIR knowledge graphs in addition to the well-known triples and the graph as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Statement and compound units can be employed to organize the data graph into five levels of representational granularity, ranging from the level of individual triples to the level of the graph as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We introduce additional subcategories of semantic units that can be used to further organize the data graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We continue arguing that because each semantic unit can be organized as a FAIR Digital Object that possesses its own UPRI, semantic units can be referred to within triple statements, thus providing a very efficient way of making statements about statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' With the introduction of semantic units, we follow a user-centric approach and add another layer of triples on top of the well established RDF and OWL layer for knowledge graphs (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' By simplifying the semantic modelling of empirical data and reducing their Semantic Units 5 representational complexity and by providing representations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', patterns) and formal semantics for statements for which in OWL no formal semantics exist, semantic units increase the usability of knowledge graphs for domain-experts and developers alike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Figure 1: Semantic units add further layers to a knowledge graph on top of the RDF/OWL layer of triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The layer of triples is mathematically partitioned into a layer of statement units, so that each triple belongs to exactly one statement unit and each statement unit comprises one or more triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Statement units can be organized into different types of semantically meaningful collections (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', compound units) with which various additional layers can be defined to further structure and organize the knowledge graph in semantically meaningful ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Box 1 | Conventions In this paper, we refer to FAIR knowledge graphs as machine-actionable semantic graphs for documenting, organizing, and representing assertional (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', empirical data), universal, and contingent statements and thus a mixture of ABox and TBox expressions (thereby contrasting knowledge graphs with ontologies, with the latter containing mainly universal statements and thus TBox expressions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We want to point out that we discuss semantic units against the background of RDF-based triple stores, OWL, and Description Logics as a formal framework for inferencing, and labeled property graphs as an alternative to triple stores, because these are the main technologies and logical frameworks used in knowledge graphs that are supported by a broad community of users and developers and for which accepted standards exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We are aware of the fact that alternative technologies and frameworks exist that support an n-tuples syntax and more advanced logics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', First Order Logic) (28,29), but supporting tools and applications are missing or are not widely used to turn them into well-supported, scalable, and easily usable knowledge graph applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Throughout this text we use regular underlined to indicate ontology classes, italicsUnderlined when referring to properties (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', relations in Neo4j), and use ID numbers to specify each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' ID numbers are composed of the ontology prefix followed by a colon and a number, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', isAbout (IAO:0000136).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' If the term is not yet covered in any ontology, we indicate it with *, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', the class *metric measurement statement unit*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We use ‘regular underlined’ to indicate instances of classes, SemanticUnits Knowledge different types of Graph Compound Units StatementUnits RDF/OWL Knowledge Triples GraphSemantic Units 6 with the label referring to the class label and the ID number to the class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Moreover, when we use the term resource, we understand it to be something that is uniquely designated (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', a Uniform Resource Identifier, URI) and about which you want to say something.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' It thus stands for something and represents something you want to talk about.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In RDF, the Subject and the Predicate in a triple statement are always resources, whereas the Object can be either a resource or a literal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Resources can be either properties, instances, or classes, with properties taking the Predicate position in a triple and with instances referring to individuals (=particulars) and classes to universals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' For reasons of clarity, in the text and in all figures, we represent resources not with their UPRIs but with human- readable labels, with the implicit assumption that every property, every instance, and every class has its own UPRI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Challenge 1: FAIR empirical data must specify the graph patterns used for their modelling to prevent schematic interoperability conflicts FAIR is often understood to mean that for data and metadata statements to be interoperable and reusable, all concepts used in them must have identifiers, which in turn are provided by controlled vocabularies such as ontologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' What is frequently overlooked is the fact that to be FAIR, not only the concepts must be standardized (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', terminological interoperability), but also the way they are related to one another in data and metadata statements and thus the statements’ underlying semantic graph patterns (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', schematic interoperability)―especially when stored and managed in a knowledge graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In case of universal statements, in RDF-based knowledge graphs this graph pattern is typically well-defined using OWL-specific object properties in class axioms (see also Figure 5B), resulting in TBox expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' With empirical data, the situation is different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Empirical data should be modelled as ABox expressions (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' However, due to the high general expressivity of RDF and OWL, in a knowledge graph, any given empirical data statement can be modelled in many, usually not directly interoperable ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' A machine would have a hard time to identify two differently structured ABox expressions that actually model the same underlying data statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' As a result, we must deal with such schematic interoperability conflicts, whenever data are modelled using different graph patterns (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Semantic Units 7 Figure 2: Comparison of a human-readable statement with its machine-actionable representation as an ABox semantic graph following the RDF syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Top: A human-readable statement about the observation that ObjectX weighs 5 kilograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Bottom: A representation of the same statement as a graph, using RDF and following the general pattern for measurement data from the Ontology for Biomedical Investigations (OBI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' http://obi-ontology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/) (31) of the Open Biological and Biomedical Ontology Foundry (OBO;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obofoundry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Figure 3: Alternative machine-actionable representation of the data statement from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 2, following the RDF syntax and the graph-model from the Extensible Observation Ontology (OBOE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' This graph represents the same data statement as shown in Figure 2 Top, but applies a different semantic graph model for its representation, which is based on OBOE (http://bioportal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bioontology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/ontologies/OBOE), an ontology frequently used in the ecology community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Therefore, for an ABox representation of an empirical data statement to be FAIR, one must know which graph pattern has been used for its semantic modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Only instance-based graphs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', graphs with instance resources in the Subject and Object positions of their triples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' ABoxes) that are modelled using the same template in the form of a graph pattern, for instance specified as a shape using SHACL (32), are guaranteed to meet the minimum requirement for interoperability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Ideally, statements of the same type, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', all weight measurements, use the same graph pattern to be potentially interoperable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Therefore, we need identifiers for such graph patterns, and if an empirical datum is documented in the form of an ABox, its metadata should reference the corresponding graph-pattern identifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' With this information, one can identify potentially interoperable ABox expressions by their commonly shared graph-pattern identifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='Observation: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ObjectX weighs 5 kilograms ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='Observation Graph: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:material entity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='pato:weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='iao:scalar measurement datum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:scalar value specification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='uo:kilogram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:has quality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='lao:isquality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='objectx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='measured as ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='scalar measurement datum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi: has value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='scalar value specification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='iao:hasmeasurement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='specification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='unit label ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='kilogram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:quality of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='iao:is quality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='measurementof ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='iao: has ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='measurement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:specifies value of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='class ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='instance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='00bfo:material entity oboe:observation oboe:measurement rdf:type rdf:type rdf:type objectx oboe:ofentity observation oboe:hasmeasurement measurement oboe:hasvalue 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='00 oboe:ofcharacteristic oboe:uses standard weight kilogram class instance value rdf:type rdf:type pato:weight uo:kilogramSemantic Units 8 Practically, this implies (i) that all statements in a knowledge graph must be classified into statement classes, with each class having an associated graph pattern specified (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', in the form of a shape specification) and (ii) that the subgraph belonging to a particular statement must be identifiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Only if these two criteria are met, ABox representations of data and metadata truly comply with the FAIR Guiding Principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Semantic units provide a means to meet these two criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Challenge 2: Many software developers do not see the benefit of graph query languages Most knowledge graphs are either directed labeled graphs that are based on RDF/OWL and stored in tuple stores, or they are labeled property graphs such as Neo4j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Directly interacting with these graphs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', conducting CRUD operations for creating (=writing), reading (= searching), updating, and deleting statements in the knowledge graph, requires the use of a query language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' For RDF/OWL, this is for example SPARQL (https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='w3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='org/TR/rdf-sparql-query/), and for Neo4j, it is Cypher (https://neo4j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='com/developer/cypher/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Whereas these query languages allow detailed and very complex queries, writing queries in SPARQL or Cypher is demanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Users of knowledge graph applications usually lack the required background for writing such queries themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Unfortunately, our personal experiences are that even most developers are not familiar with these languages and struggle with their complexity when attempting to learn them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In other words, having to write SPARQL or Cypher queries represents an entry barrier for interacting with a knowledge graph and hinders their broader usage (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' We thus need technical solutions to mitigate this challenge, such as openly available and reusable query patterns that link to specific graph patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The concept of semantic units can contribute to such solutions by allowing experts in Semantics to provide generic CRUD queries for each type of semantic unit that domain experts as users and developers of knowledge graphs that apply semantic units can employ without having to write the queries themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Queries of different types of semantic units can be combined via union or intersection to form more complex queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Challenge 3: Making statements about statements can be challenging The RDF triple syntax of Subject, Predicate, and Object does not natively provide a good method for making statements about statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In RDF, a statement about a statement is a triple that relates a statement consisting of one or more triples to some value, resource, or some other such statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Semantic Units 9 Unfortunately, if you wanted to represent empirical data or the contents of for instance a scholarly publication in a FAIR knowledge graph, you frequently have to model statements about statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' For example, if you want to provide detailed metadata for a measurement datum, you would actually have to relate two subgraphs to one another: the graph representing the measurement itself, documented in a set of triples (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 2) and the graph documenting the underlying measuring process, which also involves several triples (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In case we only want to refer to a single triple statement in another triple, RDF reification can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In RDF reification, a resource is defined to represent a particular triple by describing it via three additional triples that specify its Subject, Predicate, and Object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Alternatively, one can also use the RDF-star approach (34,35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In RDF-star, however, all statements involving the same subject, predicate, and object are understood to reference the same triple and are thus not distinguished, with the consequence that one cannot distinguish different instances of the same statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Moreover, while using RDF-star is feasible for referring to a single triple, it becomes very inefficient and complicated to query when having to refer to sets of multiple triple statements and thus larger subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' If you wanted to make a statement about the entire graph as depicted in Figure 4 using reification, you would first have to specify a statement for each triple in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Since the graph comprises more than 20 triples, you would end up having to create more than 60 triples in this first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' However, because you want to refer to the graph as a whole and not to each of its triples individually, you would have to create more than 20 additional triples that link the resource representing the entire subgraph with the resources you created in the first step for representing each individual triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' While this is technically feasible, it is neither elegant nor easily queried.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In cases like this, using Named Graphs is much more efficient than applying RDF reification or RDF-star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Named Graphs can be used in RDF-based knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' A Named Graph resource identifies a set of triple statements by adding the UPRI of the subgraph and thus the statement as a fourth element to each triple, turning the triples into quads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Moreover, Named Graphs have the additional benefit to outperform other metadata representation models when conducting more complex queries (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' In labeled property graphs, on the other hand, assigning a resource for identifying subgraphs within the overall data graph is straightforward and can be achieved by adding the resource identifier as the value of a respective property-value pair and add this value pair to all relations and nodes that belong to the same subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Semantic Units 10 Figure 4: A detailed machine-actionable representation of the metadata relating to a weight measurement datum documented as an RDF ABox graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The representation takes the form of an ABox semantic graph following the RDF syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The graph documents a mass measurement process using a balance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' It relates an instance of mass measurement assay (OBI:0000445) with instances of various other classes from different ontologies, specifying who conducted the measurement, where and when it took place, following which protocol and using which device (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', balance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' The graph furthermore specifies the particular material entity that served as subject and thus as input of the measurement process (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=', ‘objectX’), and it specifies the data that is the output of the observation, which is contained in a particular weight measurement assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Organizing the overall data graph into different semantic units and thus semantically meaningful subgraphs at different levels of representational granularity provides an efficient way of structuring the graph to allow users to intuitively make statements about statements, and also provides a clear and straightforward implementation schema that is beneficial for developing relevant search schemata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Challenge 4: Conceptual gap between RDF/OWL and property graphs and problems of distinguishing universal, contingent, and assertional statements Some knowledge graphs are based on RDF/OWL, others on labeled property graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' Each technology has its specific advantages and shortcomings (see table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' WHO?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:assay ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='INPUT:MATERIALENTITY ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='OUTPUT:DATA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdfs:subClassOf ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:investigation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='objectx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='weightmeasurement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='agentrole ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:massmeasurementassay ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='assertion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:has specified input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf:type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='investigation agent role ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='|mass measurement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:has specified output ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='weightmeasurement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:realizes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='assertion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:has role ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro: has participant ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='URIof researcher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='contributingthespecified ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='output ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:existsat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:realizes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro:has participant ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:realizes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='obi:device setting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='bfo:occurrsin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='rdf: type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='device setting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ro: has quality ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='| site ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='ti:has interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='time interval ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='startdate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='protocol ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content='URIof some ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tAzT4oBgHgl3EQfSPsA/content/2301.01227v1.pdf'} +page_content=' 0, then u¯g = u. +Proof. Let u be a solution of (1.1). From the above, one can see easily, that u = u˜g. +Conversely, if u¯g is a solution of (3.1), we can clearly see that +� +det (D2u¯g) = f > 0 +∆u¯g ≥ 0. +It follows that u¯g is convex and satisfies (1.1). +□ +Remark 10. We notice that according to the result in [26], we have equivalence of viscosity and +weak solutions for the Poisson problem. This motivates us to build a convergent scheme to the +viscosity solution of Poisson problem +� +P˜g� +through the discretization of the (MAD) problem. The +viscosity solution u˜g of +� +P˜g� +will be equivalent to the weak solution of (MAD) problem in the +distributional sense. +4. Discretization of the problem (3.1) +Let us consider a regular and uniform cartesian grid, consider the stencil at the reference point +x0 consist of the neighbors x1, ..., xN (as in Figure 1). We can define vi in polar coordinates by +vi = xi − x0 = hivθi. + +6 +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +We assume that the stencil is symetric and we define the local spatial resolution and the directional +resolution respectively by +¯h (x0) = max +i +hi +and +dθ = max +θ∈[−π,π] min +i +|θ − θi|. +First, the problem (3.1) can be written as function of the eigenvalues of the Hessian. We will +then start by discretizing λ1 and λ2. Hence by a simple substitution we obtain the scheme for (3.1). +We recall that the smallest and the largest eigenvalues of a symmetric matrix can be represented +respectively by the Rayleigh-Ritz formula +(4.1) +λ1 +� +D2u +� +(x) = min +θ +d2u +dν2 +θ +, +λ2 +� +D2u +� +(x) = max +θ +d2u +dν2 +θ +, +where νθ = (cos θ, sin θ)is the unit vector in the direction of the angle θ. +This formula was used in [22] to build a monotone scheme in two dimension for the (MAD). +We begin by building monotone schemes for λ1 and λ2 on a wide stencil uniform grid. These +operators are used to give schemes for all formulations in this paper. +We discretize the eigenvalues of the Hessian by the following formula. +(4.2) +λh,dθ +1 +� +D2ug� +(x) = min +i +ug (x + vi) − 2ug (x) + ug (x − vi) +|vi|2 +and +(4.3) +λh,dθ +2 +� +D2ug� +(x) = max +i +ug (x + vi) − 2ug (x) + ug (x − vi) +|vi|2 +. +Lemma 11. The schemes (4.2) and (4.3) are degenerate elliptic. +Proof. We follow the same as in [22]. +Since each discrete second derivative in the direction vi is the average of the terms which have +the form ug +j − ug +i , they are non-decreasing in ug +j − ug +i . Taking a minimum (or maximum) of non- +decreasing functions furnishes a non-decreasing function. +□ +We finally substitute (4.2) and (4.3) in (3.1) to obtain the wide stencil finite difference scheme +of (3.1) +(4.4) +� +Find a positive function gi, such that +λh,dθ +1 +� +D2ugi� +× λh,dθ +2 +� +D2ugi� += f i, + +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +7 +with +� +λh,dθ +1 +� +D2ugi� ++ λh,dθ +2 +� +D2ugi� += 2 +� +f i + gi. +ug +|Γ += ϕ. +Where f i = f (xi) and gi = g (xi) . +Lemma 12. The scheme (4.4) is degenerate elliptic. +Proof. From the properties of nondecreasing functions, obtained in [22], +that if G : R2 → R is a nondecreasing function, and if F1 and F2 are degenerate elliptic finite +difference schemes, then so is F = G (F1, F2) . It is also clear that the discretization f i = f (xi) +and gi = g (xi) does affect the ordering properties. We conclude that (4.4) is degenerate elliptic. +□ +In the following, for simplicity, we omit the index i when there is no ambiguity. +Definition 13. We say the scheme Hh,dθ is consistent with the equation (MAD) at x0 if for every +twice continuously differentiable function ϕ (x) defined in a neighborhood of x0, Hh,dθ(ϕ) (x0) → +H (ϕ) (x0) as h, dθ → 0. The global scheme defined on Ω is consistent if the limit above holds +uniformly for all x ∈ Ω. (The domain is assumed to be closed and bounded). +Lemma 14. The consistency holds for (4.2) and (4.3) and so for (4.4). +Proof. Let x0 be a reference point with neighbors x1, ..., xN, and direction vectors vi = xi − x0, for +i = 1, ..., N, arranged symmetrically, if vi is a direction vector, then so is −vi. By Taylor series one +has +ug (x0 + vi) − 2ug (x0) + ug (x0 − vi) +|vi|2 += d2ug +dv2 +i ++ O +� +h2 +i +� +. +Let M given symetric 2 × 2 matrix, that we can take it diagonal. Set vθ a unit vector. It follows +from [22] (Lemma 3) that +min +θ∈{θ1,...,θN} vT +θ Mvθ = λ1 + (λ2 − λ1) O +� +θ2� +. +Which implies that +λ1 (ϕ) (x0) − λh,dθ +1 +(ϕ) (x0) = O +�¯h2 + (λ2 − λ1) dθ2� +and thus consistency holds for (4.2). +Similar argument gives consistency for (4.3) and so for +(4.4). +□ +Theorem 15. Suppose that unique viscosity solutions exist for the equation (3.1) Then the finite +difference scheme given by (4.4) converges uniformly on compacts subsets of Ω to the unique +viscosity solution of the equation. +Proof. We need to verify consistency and monotonicity. Consistency follows from Lemma 14 and +monotonicity follows from Lemma 12. +□ + +8 +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +Finally, the scheme yields a fully nonlinear equation defined on grid functions. We perform the +iteration (2.1) and by Theorem 7 will converge to a fixed point which is a solution of the equation. +This approach is used in [22]. +5. TWO METHODS OF FIXED POINT +5.1. The first method (Method B). Notice that from Lemma 9 if u is a solution of (1.1) +u (x, y) = u˜g (x, y) it follows that det (D2u) = det +� +D2u˜g� +, where u˜g is the solution of (1.2) for +˜g ∈ L2. +By writing +△u˜g = 2 +� +f + ˜g = +� +(∆u˜g)2 + 2 (f − det (D2u˜g)) +and expanding +� +∆u˜g�2 = +� +u˜g +xx +�2 + +� +u˜g +yy +�2 + 2u˜g +xxu˜g +yy we have +△u˜g = +�� +u˜g +xx +�2 ++ +� +u˜g +yy +�2 ++ 2 +� +u˜g +xy +�2 ++ 2f = 2 +� +f + ˜g +Let us define the operator Q : L2 (Ω) → L2 (Ω) for Ω ⊂ R2 by +Q (g) := +� +(ug +xx)2 + (ug +yy)2 + 2 (ug +xy)2 + 2f − 2 +� +f, +with ug solution of (Pg) . So, one has +Lemma 16. ˜g is a fixed point of Q. +Proof. It follows from above expansions. +□ +5.1.1. The scheme. We consider the following scheme +gn+1 = Q (gn) = +� +(ugn +xx)2 + (ugn +yy)2 + 2 (ugn +xy)2 + 2f − 2 +� +f. +With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) . +Remark 17. The advantage of this method by comparing it to that in [19] and [2] is that it +guarantees, at least, at each iteration that tr (D2ugn (x)) > 0, which is necessary to check the +convexity. +Although this method turns out to be simple to implement is well suited in the case where ug +is in H2 (Ω) . If not, the method may not converge. +5.1.2. Algorithm. +• g0 ≥ 0 (close to 0), solve (P g0) , ((ug)0 = ug0being known), +• For n ≥ 0, compute gn+1 and (ug)n+1 as follows +gn+1 = Q (gn) , +(ug)n+1 solution of +� +P gn+1� +. + +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +9 +Where, the method involves simply discretising the second derivatives using standard central dif- +ferences on a uniform Cartesian grid, as a result +D2 +xxuij += +1 +h2 (ui+1,,j + ui−1,j−, 2ui,,j) , +D2 +yyuij += +1 +h2 (ui,,j+1 + ui,,j−1 − 2ui,,j) , +D2 +xxuij += +1 +4h2 (ui+1,,j+1 + ui−1,,j−1 − ui−1,,j+1 − ui+1,,j−1) . +5.2. The second method (Method C). In the same setting we define the next operator. +Definition 18. Let Ω a bounded domain in R2. Define the operator F : L2 (Ω) → L2 (Ω) , +by +(5.1) +F (g) = +� +|det [D2ug] − f| + g, +where ug is a solution of +(5.2) +(Pg) +� +∆u = 2√f + g, +u|Γ = ϕ. +For g ∈ L2 (Ω), the operator F is well defined and it is easy to verify that +Lemma 19. �g is a fixed point of the operator F. +Proof. Let u a smooth solution of (1.1). It follows from Lemma 9 that u = u�g. Which implies that +det +� +D2u�g� += det [D2u] = f and therefore, F (�g) = �g. +□ +5.3. The scheme. We define the following scheme +gn+1 = F (gn) = +� +|det [D2ugn] − f| + gn. +With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) . +Remark 20. The method is advantageous, it simply involves evaluating derivatives and solving the +Poisson equation that preserves the convexity constraint. +5.3.1. Algorithm. +• g0 ≥ 0 (close to 0), solve (P g0) , ((ug)0 = ug0being known), +• For n ≥ 0, compute gn+1 and (ug)n+1 as follows +gn+1 = α +� +|det [D2ugn] − f| + gn, +with 0 < α < 1. +(ug)n+1 solution of +� +P gn+1� +. +As in the above method, second derivatives are descretized using standard central differences on a +uniform Cartesian grid. + +10 +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +N +Results in [19] +Method A +Method B +Method C +31 +2.44 × 10−4 +2.965 × 10−4 +4.226 × 10−4 +18 × 10−4 +45 +1.52 × 10−4 +3.052 × 10−4 +2.202 × 10−4 +18 × 10−4 +63 +9.06 × 10−5 +2.801 × 10−4 +1.190 × 10−4 +17 × 10−4 +89 +5.32 × 10−5 +8.035 × 10−4 +6.494 × 10−5 +17 × 10−4 +127 +3.06 × 10−5 +2.015 × 10−4 +3.888 × 10−5 +17 × 10−4 +Table 1. Errors +��u − uN�� +∞ for the exact solution of the first example on an N ×N +grid. We include results from the wide stencil methods of [19] on seventeen point +stencils. +−1 +−0.5 +0 +0.5 +1 +−1 +−0.5 +0 +0.5 +1 +1 +1.5 +2 +2.5 +3 +30 +40 +50 +60 +70 +80 +90 +100 +110 +120 +130 +0 +20 +40 +60 +80 +100 +120 +140 +160 +180 +N +CPU Time + + +Method A +Method B +Method C +Figure 6.1. Results for example 1 on an N × N grid and total CPU time versus +N for the methods A, B and C. +6. Numerical experiments +The three methods are tested on three different examples (smooth or singular solutions). The +discretization is done in the wide stencil Finite Difference method with 17- points (see Figure 2.2). +The number of noeuds meshing is equal to N ∗ N with N = 31, 45, 63, 89, 127, the step of meshing +h = L/N, with L is the length of the side of the rectangular domain Ω. The results obtained are +compared with those in [19]. +In the first example we study the regular solution given by : +u (x, y) = exp +�(x2 + y2) +2 +� +with f (x, y) = +� +x2 + y2 + 1 +� +exp +� +x2 + y2� +. +The Table 1 summarizes the obtained results for different meshing. +In Figure 6 we show the surface plot of the solution and the total CPU time versus N for the +methods A, B and C. + +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +11 +N +Results in [19] +Method A +Method B +Method C +31 +1.22 × 10−3 +5.806 × 10−4 +6.853 × 10−4 +8.794 × 10−4 +45 +5.9 × 10−4 +4.92 × 10−4 +6.719 × 10−4 +8.727 × 10−4 +63 +4.2 × 10−4 +4.914 × 10−4 +2.733 × 10−4 +8.601 × 10−4 +89 +2.6 × 10−4 +4.085 × 10−4 +2.09 × 10−5 +8.173 × 10−4 +127 +2.0 × 10−4 +4.056 × 10−4 +1.08 × 10−5 +8.164 × 10−4 +Table 2. Errors +��u − uN�� +∞ for the exact solution of the second example on an +N × N grid. We include results from the wide stencil methods of [19] on seventeen +point stencils. +0 +0.2 +0.4 +0.6 +0.8 +1 +0 +0.5 +1 +0 +0.05 +0.1 +0.15 +0.2 +30 +40 +50 +60 +70 +80 +90 +100 +110 +120 +130 +0 +50 +100 +150 +200 +250 +300 +N +CPU Time + + +Method A +Method B +Method C +Figure 6.2. Results for example 2 on an N × N grid and total CPU time versus +N for the methods A, B and C. +As a second example, which is C1 , we take the one considered in [19] which is given by +u(x, y) = 1 +2(( +� +(x − 0.5)2 + (y − 0.5)2 − 0.2)+)2 with f(x, y) = (1 − +0.2 +� +(x − 0.5)2 + (y − 0.5)2)+. +The results are in Table 2. +Finally, we consider a third example which is singular at the bord of the domain Ω = [0, 1] × +[0.1] ,defined by +u(x, y) = − +� +(2 − x2 − y2) where f(x, y) = +2 +(2 − x2 − y2)2. +. +The results are illustrated in Table 3 and + +12 +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +N +Results in [19] +Method A +Method B +Method C +31 +1.74 × 10−3 +1.7 × 10−3 +5.1 × 10−3 +5.7 × 10−3 +45 +9.8 × 10−4 +1.5 × 10−3 +4.8 × 10−3 +5.5 × 10−3 +63 +5.9 × 10−4 +8.9 × 10−4 +3.9 × 10−3 +5.5 × 10−3 +89 +3.5 × 10−4 +8.9 × 10−4 +3.1 × 10−3 +5.5 × 10−3 +127 +2.0 × 10−4 +8.2 × 10−4 +2.4 × 10−3 +5.5 × 10−3 +Table 3. Errors +��u − uN�� +∞ for the exact solution of the third example on an N ×N +grid. We include results from the wide stencil methods of [19] on seventeen point +stencils. +0 +0.2 +0.4 +0.6 +0.8 +1 +0 +0.5 +1 +−1.5 +−1 +−0.5 +0 +30 +40 +50 +60 +70 +80 +90 +100 +110 +120 +130 +0 +200 +400 +600 +800 +1000 +1200 +1400 +1600 +1800 +N +CPU Time + + +Method A +Method B +Method C +Figure 6.3. Results for example 2 on an N × N grid and total CPU time versus +N for the methods A, B and C. +Acknowledgments +We are indebted to Pr. Pierre-Emmanuelle Jabin for his relevant remarks and his impressive +comments which have greatly improved this work. +References +[1] Guy Barles and Panagiotis E. Souganidis. Convergence of approximation schemes for fully nonlinear second +order equations. Asymptotic Anal., 4(3):271–283, 1991. +[2] Jean-David Benamou, Brittany D. Froese, and Adam M. Oberman. Two numerical methods for the elliptic +Monge-Ampère equation. ESAIM: Math. Model. Numer. Anal., 44(4), 2010. +[3] Fethi Ben Belgacem, Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia, Vol. +38, Issu 4 (2018), 1285-1295. +[4] C. J. Budd and J. F. Williams. Moving mesh generation using the parabolic Monge-Ampère equation. SIAM +J. Sci. Comput., 31(5):3438–3465, 2009. +[5] Eugenio Calabi, Complete affine hyperspheres. I, Symposia Mathematica, Vol. X (Convegno di Geometria +Differenziale, INDAM, Rome, 1971), Academic Press, London, 1972, pp. 19–38. MR0365607 (51 #1859) + +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +13 +[6] Shiu Yuen Cheng and Shing-Tung Yau, Complete affine hypersurfaces. I. The com- pleteness of affine metrics, +Comm. Pure Appl. Math. 39 (1986), no. 6, 839–866, DOI 10.1002/cpa.3160390606. MR859275 (87k:53127) +[7] Cristian E. Gutiérrez. The Monge-Ampère equation. Progress in Nonlinear Differential Equations and their +Applications, 44. Birkhäuser Boston Inc., Boston, MA, 2001. +[8] G. L. Delzanno, L. Chacón, J. M. Finn, Y. Chung, and G. Lapenta. An optimal robust equidistribution +method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys., +227(23):9841–9864, 2008 +[9] +J. M. Finn, G. L. Delzanno, and L. Chacón. Grid generation and adaptation by Monge- Kantorovich opti- +mization in two and three dimensions. In Proceedings of the 17th Interna- tional Meshing Roundtable, pages +551–568, 2008 +[10] E. J. Dean and R. Glowinski. An augmented Lagrangian approach to the numerical solution of the Dirichlet +problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal., 22:71–96 +(electronic), 2006. +[11] E. J. Dean and Roland Glowinski. On the numerical solution of the elliptic Monge- Ampère equation in +dimension two: a least-squares approach. In Partial differential equations, volume 16 of Comput. Methods +Appl. Sci., pages 43–63. Springer, Dordrecht, 2008. +[12] G. De Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal trans- portation, Bull. +Amer. Math. Soc. (N.S.) 51 (2014), no. 4, 527–580. MR3237759 +[13] T. Glimm and V. Oliker. Optical design of single reflector systems and the Monge-Kantorovich mass transfer +problem. J. Math. Sci. (N. Y.), 117(3):4096–4108, 2003. Nonlinear problems and function theory. +[14] Grégoire Loeper and Francesca Rapetti. Numerical solution of the Monge-Ampére equation by a Newton’s +algorithm. C. R. Math. Acad. Sci. Paris, 340(4):319–324, 2005. +[15] T. ur Rehman, E. Haber, G. Pryor, J. Melonakos, and A. Tannenbaum. 3D nonrigid regis- tration via optimal +mass transport on the GPU. Med Image Anal, 13(6):931–40, 12 2009. +[16] +Steven Haker, Allen Tannenbaum, and Ron Kikinis. Mass preserving mappings and image registration. In +MICCAI ’01: Proceedings of the 4th International Conference on Medical Image Computing and Computer- +Assisted Intervention, pages 120–127, London, UK, 2001. Springer-Verlag +[17] . Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport for registration +and warping. Int. J. Comput. Vision, 60(3):225–240, 2004. +[18] X. Feng and Michael Neilan. Mixed finite element methods for the fully nonlinear Monge-Ampère equation +based on the vanishing moment method. SIAM J. Numer. Anal., 47(2):1226–1250, 2009. +[19] B. D. Froese and A. M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic +Monge-Ampère equation in dimensions two and higher, SIAM J. Numer. Anal. 49 (2011), no. 4, 1692–1714. +MR2831067 +[20] Adam M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton- +Jacobi equations and free boundary problems. SIAM J. Numer. Anal., 44(2):879–895 (electronic), 2006. +[21] Adam M. Oberman. Computing the convex envelope using a nonlinear partial differential equation. Math. +Models Methods Appl. Sci., 18(5):759–780, 2008. +[22] Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions +of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B, 10(1):221–238, 2008 +[23] Adam M. Oberman and Luis Silvestre. The Dirichlet problem for the convex envelope. Trans. Amer. Math. +Soc. (to appear), 2010 http://arxiv.org/abs/1007.0773 +[24] V. I. Oliker and L. D. Prussner. On the numerical solution of the equation (∂ 2 z/∂x 2 )(∂ 2 z/∂y 2 ) − (∂ 2 +z/∂x∂y) 2 = f and its discretizations, I. Numer. Math., 54(3):271– 293, 1988. +[25] A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972), no. 1, 33–46. +MR0319126 (47 #7672) + +14 +CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM +[26] Siltakoski, J. Equivalence of viscosity and weak solutions for the normalized p(x)-Laplacian. Calc. Var. 57, 95 +(2018). https://doi.org/10.1007/s00526-018-1375-1 +[27] Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersur- faces, Invent. Math. +140 (2000), no. 2, 399–422, DOI 10.1007/s002220000059. MR1757001 (2001h:53016) +[28] Neil S. Trudinger and Xu-Jia Wang, Affine complete locally convex hypersurfaces, Invent. Math. 150 (2002), +no. 1, 45–60, DOI 10.1007/s00222-002-0229-8. MR1930881 (2003h:53012) +[29] Neil S. Trudinger and Xu-Jia Wang, The affine Plateau problem, J. Amer. Math. Soc. 18 (2005), no. 2, 253–289, +DOI 10.1090/S0894-0347-05-00475-3. MR2137978 (2006e:53071) +[30] V. Zheligovsky, O. Podvigina, and U. Frisch. The Monge-Ampère equation: Various forms and numerical +solution. J. Comput. Phys., 229(13):5043–5061, 2010. +. + +40 +50 +60 +70 +80 +90 +100 +110 +N + +40 +50 +60 +70 +80 +90 +100 +110 +N + +40 +50 +60 +70 +80 +90 +100 +110 +N + +40 +50 +60 +70 +80 +90 +100 +110 +N + +10 +20 +30 +40 +50 +60 +70 + +40 +50 +60 +70 +80 +90 +100 +110 +N + +40 +50 +60 +70 +80 +90 +100 +110 +N + +20 +40 +60 +80 +100 + +20 +40 +60 +80 +100 + +40 +50 +60 +70 +80 +90 +100 +110 +N + diff --git a/8NFAT4oBgHgl3EQfox1h/content/tmp_files/load_file.txt b/8NFAT4oBgHgl3EQfox1h/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..52eec5a151f27bef5058b07e40a3e3276fe7eba4 --- /dev/null +++ b/8NFAT4oBgHgl3EQfox1h/content/tmp_files/load_file.txt @@ -0,0 +1,620 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf,len=619 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='08636v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='NA] 20 Jan 2023 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM Hajri Imen 1 Fethi Ben Belgacem 2 Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In this article, we introduce and study three numerical methods for the Dirichlet Monge-Ampère equation in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The approaches consist in considering new equivalent problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The latter are discretized by a wide stencil finite difference discretization and monotone schemes are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Hence, we apply the Barles-Souganidis theory to prove the convergence of the schemes and the Damped Newtons method is used to compute the solutions of the schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Finally, some numerical results are illustrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Monge-Ampere, Monotone scheme, Newton method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Introduction We are interested in the numerical solution of the Monge-Ampère equation with Dirichlet bound- ary condition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) (MAD) \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 det � D2u (x) � = f (x) , for x in Ω, u (x) = ϕ (x) , for x on ∂Ω, u is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Where Ω is a convex bounded domain in R2, with boundary ∂Ω, (D2u) , is the Hessian of the function u, f and ϕ are given functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We take the simplest boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For more general operator of Monge-Ampère and other boundary conditions, we mention for instance [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The convexity constraint is crucial for the (MAD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It is required for the Monge-Ampère equation to be degenerate elliptic and for (MAD) to have a unique solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It is also needed for numerical stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The Monge-Ampère equation, has extensive applications, it is strictly related to the “prescribed Gauss curvature” problem, see for instance [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It appears also in affine geometry, precisely, in the affine sphere problem and the affine maximal surfaces problem, this was discussed in [5, 6, 25, 27, 28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Other applications appear in fluid mechanics, geometric optics, and meteorology : for example, in semigeostrophic equations, the Monge-Ampère equation is coupled with a transport equation, this is pointed out in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The analysis of the regularity of the Monge-Ampere equation is essential in the study 1Higher Institute of Applied Studies in Humanities of Mahdia,5121 Mahdia, Tunisia, Email:hajri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='imene2017@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 2Laboratory of partial differential equations (LR03ES04), ISIMM, University of Monastir, El Manar, TUNISIA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Email: fethi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='benbelgacem@isimm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='rnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='tn 1 2 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM of the regularity of the transp ort problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' This, latter, has been employed in many areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We only briefly mention [8, 9, 4] for mesh geneartion,[15, 16, 17]for image registration, and [12] for reflector design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Developing an efficient numerical method has aroused a lot of interest, and large standard techniques have been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' A first method to do so was introduced in [24] by using a discretization of the geometric Alexandrov-Bakelman interpretation of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Variational approaches have been presented in [10, 11], more precisely, the augmented Lagrangian approach and the least-squares approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' But these methods needed more regularity than can be predicted for solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' A different approach was studied in [18], using the vanishing moment method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The periodic case was treated in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Although, the standard techniques, mentioned above, work well for smooth solutions, and they fail for singular solutions, for more details, see, for instance, the discussion in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' To overcome these difficulties, we have to use the notion of viscosity solution or Alexsandrov solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In two dimension, a numerical method was introduced in [24], which is geometric in nature, and converges to the Alexsandrov solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The method introduced in [22]„ in two dimension and improved in [19] for higher dimension, uses the wide stencil scheme that converges to the viscosity solution, which we briefly describe for this reason in the end of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The following variant of the AM-GM inequalities, is the keystone of our formulation introduced here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For A and B two symmetric matrices, such that, A, B ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We have the following inequality 2 � det (AB) ≤ Tr (AB) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Where for symmetric matrices M ≥ 0 means xT Mx ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We can deduce from the above inequality that for a smooth convex solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1), one can deduce the following inequality ∆u − 2 � f ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let us define the function ˜g := ∆u − 2 � f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It is then straightforward to check that if u is a smooth solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1), then is indeed a solution of the linear Dirichlet Poisson problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) � P˜g� � ∆u = 2√f + ˜g, u|Γ = ϕ, which can be easily descretized by any method of choice if the function ˜g is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We finish this remark by mentioning that the convexity constraint is essential to ensure unique- ness (for example, u and −u are both solution of the Monge Ampère equation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For viscosity solution, this constraint can be required by the equation (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) λ1 � D2u � ≥ 0, CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 3 in the viscosity sense, see for instance [21, 22], where λ1 (D2u) is the smallest eigenvalue of the Hessian of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' However, for a twice continuously differentiable function u, the convexity restriction is equivalent to requiring that the eigenvalues of the Hessian, D2u, are positives, which is approved by considering the linear Poisson Dirichlet problem � P˜g� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The approaches that we follow, in the present paper, are inspired by the idea developed in [3] and the wide stencil finite difference discretization introduced in [22] and [19] for viscosity solution of M-A equation in two and higher dimensions that relies on a framework developed in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For clarity, we recall the full result in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Viscosity solution and convergence theory of approximation schemes 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Degenerate elliptic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let F (x, r, p, X) be a continuous real valued function de- fined on Ω × R × Rn × Sn, with Sn being the space of symmetric n × n matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Consider the nonlinear, partial differential equation with Dirichlet boundary conditions, � F (x, u (x) , Du (x) , D2u (x)) (x) = 0 for x in Ω u (x) = g (x) for x in ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Where Ω is a domain in Rn, Du and D2u denote the gradient and Hessian of u, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [19]The equation F is degenerate elliptic if F (x, r, p, X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Where Y ≤ X means that Y − X is a nonnegative definite symmetric matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The viscosity solution for the Monge-Ampère equation is defined in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let u ∈ C (Ω) be convex and f ≥ 0 be continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The function u is a viscosity subsolution (supersolution) of the Monge-Ampère equation in Ω if whenever convex ϕ ∈ C2 (Ω) and x0 ∈ Ω are such that (u − ϕ) (x) ≤ (≥) (u − ϕ) (x0) for all x in a neighborhood of x0, then we must have det � D2φ (x0) � ≥ (≤) f (x0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The function u is a viscosity solution if it is both a viscosity subsolution and supersolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For the existence and uniqueness of viscosity solution for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1), we mention the next result in [7], Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let Ω ⊆ Rd be abounded and strictly convex, g ∈ C (∂Ω) , f ∈ C (Ω) , with f ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Then there exists a unique convex viscosity solution u ∈ C � ¯Ω � of the problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The advantage of considering viscosity solutions come from the following fundamental theorem, obtained in [1], which gives conditions for convergence of approximation schemes to viscosity solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 4 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (Convergence of Approximation Schemes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Consider a degenerate elliptic equation, for which there exist unique viscosity solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' A consistent, stable approximation scheme con- verges uniformly on compact subsets to the viscosity solution, provided it is monotone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' By the previous theorem, we need just a way to build a monotone finite difference schemes, which represents a new challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In the sequel, we recall here the basic framework introduced in [20], for building a monotone scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Firstly, a finite difference equation take the form F i [u] = F i (ui, ui − uj|i̸=j) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We say that a scheme is degenerate elliptic if the following holds [20]: Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The scheme F is degenerate elliptic if F i is non-decreasing in each variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We are now ready to present the following theorem in [20]: Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Under mild analytic conditions, degenerate elliptic schemes are monotone, and non- expansive in the uniform norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The iteration (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) um+1 = um + dtF (um) , is a contraction in L∞ provided dt ≤ K (F)−1 , where K (F) is the Lipschitz constant of the scheme, regarded as a function from RN −→ RN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We end this paragraphre by the next result, proven in [20] Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' A proper, locally Lipschitz continuous degenerate elliptic scheme has a unique solu- tion which is stable in the l∞ norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Wide stencil schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We finish this section by noting that wide stencil schemes are re- quired to build consistent, monotone schemes of degenerate second order PDEs (see discussion in [22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Wide stencil schemes were built for the two-dimensional Monge-Ampère equation in [22] and for the convex envelope in [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Each approach considered here is a function of eigenvalues of the Hessian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' To fully discretize the equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) for the eigenvalues of the Hessian on a finite difference grid, we approximate the second derivatives by centered finite differences;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' this is the spatial discretization, with parameter h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We consider also a finite number of possible directions ν that lie on the grid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' this is the directional discretization, with parameter dθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The spatial resolution is improved by using more grid points, the directional resolution is improved by increasing the size of the stencil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' So, a wide stencil is needed (see Fig 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' First Formulation of the (MAD) in two dimensions (method A) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' An equivalent problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let us begin with a simple approach to illustrate the ideas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We can rephrase, for instance, the (MAD) as the following: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) � Find a positive function g, such that det (D2ug) = λ1 [D2ug] × λ2 [D2ug] = f, CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 5 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Grid for wide stencil 17 points, in two dimension where: ug is the solution of� ∆ug = λ1 [D2ug] + λ2 [D2ug] = 2√f + g, ug |Γ = ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We are now ready to state a first example of our approches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Lemma 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Provided the solution, u, of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) is in H2, there exists a unique positive function ˜g ∈ L2, such that u = u˜g, where u˜g is the solution of (P˜g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Conversely, if u¯g is solution of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) for some ¯g > 0, then u¯g = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let u be a solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' From the above, one can see easily, that u = u˜g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Conversely, if u¯g is a solution of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1), we can clearly see that � det (D2u¯g) = f > 0 ∆u¯g ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It follows that u¯g is convex and satisfies (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ Remark 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We notice that according to the result in [26], we have equivalence of viscosity and weak solutions for the Poisson problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' This motivates us to build a convergent scheme to the viscosity solution of Poisson problem � P˜g� through the discretization of the (MAD) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The viscosity solution u˜g of � P˜g� will be equivalent to the weak solution of (MAD) problem in the distributional sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Discretization of the problem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) Let us consider a regular and uniform cartesian grid, consider the stencil at the reference point x0 consist of the neighbors x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', xN (as in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We can define vi in polar coordinates by vi = xi − x0 = hivθi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 6 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM We assume that the stencil is symetric and we define the local spatial resolution and the directional resolution respectively by ¯h (x0) = max i hi and dθ = max θ∈[−π,π] min i |θ − θi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' First, the problem (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) can be written as function of the eigenvalues of the Hessian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We will then start by discretizing λ1 and λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Hence by a simple substitution we obtain the scheme for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We recall that the smallest and the largest eigenvalues of a symmetric matrix can be represented respectively by the Rayleigh-Ritz formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) λ1 � D2u � (x) = min θ d2u dν2 θ , λ2 � D2u � (x) = max θ d2u dν2 θ , where νθ = (cos θ, sin θ)is the unit vector in the direction of the angle θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' This formula was used in [22] to build a monotone scheme in two dimension for the (MAD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We begin by building monotone schemes for λ1 and λ2 on a wide stencil uniform grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' These operators are used to give schemes for all formulations in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We discretize the eigenvalues of the Hessian by the following formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) λh,dθ 1 � D2ug� (x) = min i ug (x + vi) − 2ug (x) + ug (x − vi) |vi|2 and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) λh,dθ 2 � D2ug� (x) = max i ug (x + vi) − 2ug (x) + ug (x − vi) |vi|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The schemes (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) are degenerate elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We follow the same as in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Since each discrete second derivative in the direction vi is the average of the terms which have the form ug j − ug i , they are non-decreasing in ug j − ug i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Taking a minimum (or maximum) of non- decreasing functions furnishes a non-decreasing function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ We finally substitute (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) to obtain the wide stencil finite difference scheme of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4) � Find a positive function gi, such that λh,dθ 1 � D2ugi� × λh,dθ 2 � D2ugi� = f i, CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 7 with � λh,dθ 1 � D2ugi� + λh,dθ 2 � D2ugi� = 2 � f i + gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' ug |Γ = ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Where f i = f (xi) and gi = g (xi) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Lemma 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The scheme (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4) is degenerate elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' From the properties of nondecreasing functions, obtained in [22], that if G : R2 → R is a nondecreasing function, and if F1 and F2 are degenerate elliptic finite difference schemes, then so is F = G (F1, F2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It is also clear that the discretization f i = f (xi) and gi = g (xi) does affect the ordering properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We conclude that (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4) is degenerate elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ In the following, for simplicity, we omit the index i when there is no ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Definition 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We say the scheme Hh,dθ is consistent with the equation (MAD) at x0 if for every twice continuously differentiable function ϕ (x) defined in a neighborhood of x0, Hh,dθ(ϕ) (x0) → H (ϕ) (x0) as h, dθ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The global scheme defined on Ω is consistent if the limit above holds uniformly for all x ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (The domain is assumed to be closed and bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Lemma 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The consistency holds for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) and so for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let x0 be a reference point with neighbors x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', xN, and direction vectors vi = xi − x0, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', N, arranged symmetrically, if vi is a direction vector, then so is −vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' By Taylor series one has ug (x0 + vi) − 2ug (x0) + ug (x0 − vi) |vi|2 = d2ug dv2 i + O � h2 i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let M given symetric 2 × 2 matrix, that we can take it diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Set vθ a unit vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It follows from [22] (Lemma 3) that min θ∈{θ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=',θN} vT θ Mvθ = λ1 + (λ2 − λ1) O � θ2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Which implies that λ1 (ϕ) (x0) − λh,dθ 1 (ϕ) (x0) = O �¯h2 + (λ2 − λ1) dθ2� and thus consistency holds for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Similar argument gives consistency for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3) and so for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ Theorem 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Suppose that unique viscosity solutions exist for the equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) Then the finite difference scheme given by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4) converges uniformly on compacts subsets of Ω to the unique viscosity solution of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We need to verify consistency and monotonicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Consistency follows from Lemma 14 and monotonicity follows from Lemma 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ 8 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM Finally, the scheme yields a fully nonlinear equation defined on grid functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We perform the iteration (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) and by Theorem 7 will converge to a fixed point which is a solution of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' This approach is used in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' TWO METHODS OF FIXED POINT 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The first method (Method B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Notice that from Lemma 9 if u is a solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) u (x, y) = u˜g (x, y) it follows that det (D2u) = det � D2u˜g� , where u˜g is the solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) for ˜g ∈ L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' By writing △u˜g = 2 � f + ˜g = � (∆u˜g)2 + 2 (f − det (D2u˜g)) and expanding � ∆u˜g�2 = � u˜g xx �2 + � u˜g yy �2 + 2u˜g xxu˜g yy we have △u˜g = �� u˜g xx �2 + � u˜g yy �2 + 2 � u˜g xy �2 + 2f = 2 � f + ˜g Let us define the operator Q : L2 (Ω) → L2 (Ω) for Ω ⊂ R2 by Q (g) := � (ug xx)2 + (ug yy)2 + 2 (ug xy)2 + 2f − 2 � f, with ug solution of (Pg) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' So, one has Lemma 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' ˜g is a fixed point of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It follows from above expansions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We consider the following scheme gn+1 = Q (gn) = � (ugn xx)2 + (ugn yy)2 + 2 (ugn xy)2 + 2f − 2 � f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Remark 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The advantage of this method by comparing it to that in [19] and [2] is that it guarantees, at least, at each iteration that tr (D2ugn (x)) > 0, which is necessary to check the convexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Although this method turns out to be simple to implement is well suited in the case where ug is in H2 (Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' If not, the method may not converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' g0 ≥ 0 (close to 0), solve (P g0) , ((ug)0 = ug0being known), For n ≥ 0, compute gn+1 and (ug)n+1 as follows gn+1 = Q (gn) , (ug)n+1 solution of � P gn+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 9 Where, the method involves simply discretising the second derivatives using standard central dif- ferences on a uniform Cartesian grid, as a result D2 xxuij = 1 h2 (ui+1,,j + ui−1,j−, 2ui,,j) , D2 yyuij = 1 h2 (ui,,j+1 + ui,,j−1 − 2ui,,j) , D2 xxuij = 1 4h2 (ui+1,,j+1 + ui−1,,j−1 − ui−1,,j+1 − ui+1,,j−1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The second method (Method C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In the same setting we define the next operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Definition 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let Ω a bounded domain in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Define the operator F : L2 (Ω) → L2 (Ω) , by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1) F (g) = � |det [D2ug] − f| + g, where ug is a solution of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2) (Pg) � ∆u = 2√f + g, u|Γ = ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' For g ∈ L2 (Ω), the operator F is well defined and it is easy to verify that Lemma 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' �g is a fixed point of the operator F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Let u a smooth solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' It follows from Lemma 9 that u = u�g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Which implies that det � D2u�g� = det [D2u] = f and therefore, F (�g) = �g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We define the following scheme gn+1 = F (gn) = � |det [D2ugn] − f| + gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' With initial value g0 > 0 close to zero and ug0 is the solution of (P g0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Remark 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The method is advantageous, it simply involves evaluating derivatives and solving the Poisson equation that preserves the convexity constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' g0 ≥ 0 (close to 0), solve (P g0) , ((ug)0 = ug0being known), For n ≥ 0, compute gn+1 and (ug)n+1 as follows gn+1 = α � |det [D2ugn] − f| + gn, with 0 < α < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (ug)n+1 solution of � P gn+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' As in the above method, second derivatives are descretized using standard central differences on a uniform Cartesian grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 10 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM N Results in [19] Method A Method B Method C 31 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='44 × 10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='965 × 10−4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='226 × 10−4 18 × 10−4 45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='52 × 10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='052 × 10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='202 × 10−4 18 × 10−4 63 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='06 × 10−5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='801 × 10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='190 × 10−4 17 × 10−4 89 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='32 × 10−5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='035 × 10−4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='494 × 10−5 17 × 10−4 127 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='06 × 10−5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='015 × 10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='888 × 10−5 17 × 10−4 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Errors ��u − uN�� ∞ for the exact solution of the first example on an N ×N grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We include results from the wide stencil methods of [19] on seventeen point stencils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' −1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 1 −1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 3 30 40 50 60 70 80 90 100 110 120 130 0 20 40 60 80 100 120 140 160 180 N CPU Time Method A Method B Method C Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Results for example 1 on an N × N grid and total CPU time versus N for the methods A, B and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numerical experiments The three methods are tested on three different examples (smooth or singular solutions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The discretization is done in the wide stencil Finite Difference method with 17- points (see Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The number of noeuds meshing is equal to N ∗ N with N = 31, 45, 63, 89, 127, the step of meshing h = L/N, with L is the length of the side of the rectangular domain Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The results obtained are compared with those in [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In the first example we study the regular solution given by : u (x, y) = exp �(x2 + y2) 2 � with f (x, y) = � x2 + y2 + 1 � exp � x2 + y2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The Table 1 summarizes the obtained results for different meshing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In Figure 6 we show the surface plot of the solution and the total CPU time versus N for the methods A, B and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 11 N Results in [19] Method A Method B Method C 31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='22 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='806 × 10−4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='853 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='794 × 10−4 45 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='9 × 10−4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='92 × 10−4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='719 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='727 × 10−4 63 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 × 10−4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='914 × 10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='733 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='601 × 10−4 89 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='6 × 10−4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='085 × 10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='09 × 10−5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='173 × 10−4 127 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='0 × 10−4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='056 × 10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='08 × 10−5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='164 × 10−4 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Errors ��u − uN�� ∞ for the exact solution of the second example on an N × N grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We include results from the wide stencil methods of [19] on seventeen point stencils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 30 40 50 60 70 80 90 100 110 120 130 0 50 100 150 200 250 300 N CPU Time Method A Method B Method C Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Results for example 2 on an N × N grid and total CPU time versus N for the methods A, B and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' As a second example, which is C1 , we take the one considered in [19] which is given by u(x, y) = 1 2(( � (x − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5)2 + (y − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5)2 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2)+)2 with f(x, y) = (1 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 � (x − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5)2 + (y − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5)2)+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The results are in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Finally, we consider a third example which is singular at the bord of the domain Ω = [0, 1] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1] ,defined by u(x, y) = − � (2 − x2 − y2) where f(x, y) = 2 (2 − x2 − y2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The results are illustrated in Table 3 and 12 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM N Results in [19] Method A Method B Method C 31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='74 × 10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='7 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='7 × 10−3 45 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='8 × 10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='8 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−3 63 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='9 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='9 × 10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='9 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−3 89 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='9 × 10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−3 127 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='0 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 × 10−4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4 × 10−3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 × 10−3 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Errors ��u − uN�� ∞ for the exact solution of the third example on an N ×N grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' We include results from the wide stencil methods of [19] on seventeen point stencils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='8 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 1 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 −1 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='5 0 30 40 50 60 70 80 90 100 110 120 130 0 200 400 600 800 1000 1200 1400 1600 1800 N CPU Time Method A Method B Method C Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Results for example 2 on an N × N grid and total CPU time versus N for the methods A, B and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Acknowledgments We are indebted to Pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Pierre-Emmanuelle Jabin for his relevant remarks and his impressive comments which have greatly improved this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' References [1] Guy Barles and Panagiotis E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Souganidis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Convergence of approximation schemes for fully nonlinear second order equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Asymptotic Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 4(3):271–283, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [2] Jean-David Benamou, Brittany D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Froese, and Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Two numerical methods for the elliptic Monge-Ampère equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' ESAIM: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 44(4), 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [3] Fethi Ben Belgacem, Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 38, Issu 4 (2018), 1285-1295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Budd and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Moving mesh generation using the parabolic Monge-Ampère equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 31(5):3438–3465, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [5] Eugenio Calabi, Complete affine hyperspheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' I, Symposia Mathematica, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), Academic Press, London, 1972, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 19–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR0365607 (51 #1859) CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM 13 [6] Shiu Yuen Cheng and Shing-Tung Yau, Complete affine hypersurfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The com- pleteness of affine metrics, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 39 (1986), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 6, 839–866, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1002/cpa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='3160390606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR859275 (87k:53127) [7] Cristian E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Gutiérrez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The Monge-Ampère equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Progress in Nonlinear Differential Equations and their Applications, 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Birkhäuser Boston Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', Boston, MA, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Delzanno, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Chacón, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Finn, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Chung, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Lapenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 227(23):9841–9864, 2008 [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Finn, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Delzanno, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Chacón.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Grid generation and adaptation by Monge- Kantorovich opti- mization in two and three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In Proceedings of the 17th Interna- tional Meshing Roundtable, pages 551–568, 2008 [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Dean and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Glowinski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 22:71–96 (electronic), 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Dean and Roland Glowinski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' On the numerical solution of the elliptic Monge- Ampère equation in dimension two: a least-squares approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In Partial differential equations, volume 16 of Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', pages 43–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Springer, Dordrecht, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' De Philippis and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Figalli, The Monge-Ampère equation and its link to optimal trans- portation, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=') 51 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 4, 527–580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR3237759 [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Glimm and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oliker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' ), 117(3):4096–4108, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Nonlinear problems and function theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [14] Grégoire Loeper and Francesca Rapetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numerical solution of the Monge-Ampére equation by a Newton’s algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Paris, 340(4):319–324, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' ur Rehman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Haber, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Pryor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Melonakos, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Tannenbaum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 3D nonrigid regis- tration via optimal mass transport on the GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Med Image Anal, 13(6):931–40, 12 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [16] Steven Haker, Allen Tannenbaum, and Ron Kikinis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Mass preserving mappings and image registration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' In MICCAI ’01: Proceedings of the 4th International Conference on Medical Image Computing and Computer- Assisted Intervention, pages 120–127, London, UK, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Springer-Verlag [17] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Optimal mass transport for registration and warping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Vision, 60(3):225–240, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [18] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Feng and Michael Neilan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 47(2):1226–1250, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [19] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Froese and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 49 (2011), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 4, 1692–1714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR2831067 [20] Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton- Jacobi equations and free boundary problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 44(2):879–895 (electronic), 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [21] Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Computing the convex envelope using a nonlinear partial differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Models Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 18(5):759–780, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [22] Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Discrete Contin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' B, 10(1):221–238, 2008 [23] Adam M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oberman and Luis Silvestre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The Dirichlet problem for the convex envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' (to appear), 2010 http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='org/abs/1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='0773 [24] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Oliker and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Prussner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' On the numerical solution of the equation (∂ 2 z/∂x 2 )(∂ 2 z/∂y 2 ) − (∂ 2 z/∂x∂y) 2 = f and its discretizations, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 54(3):271– 293, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 1, 33–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR0319126 (47 #7672) 14 CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM [26] Siltakoski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Equivalence of viscosity and weak solutions for the normalized p(x)-Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Calc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 57, 95 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1007/s00526-018-1375-1 [27] Neil S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersur- faces, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 140 (2000), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 2, 399–422, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1007/s002220000059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR1757001 (2001h:53016) [28] Neil S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Trudinger and Xu-Jia Wang, Affine complete locally convex hypersurfaces, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 150 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 1, 45–60, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1007/s00222-002-0229-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR1930881 (2003h:53012) [29] Neil S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Trudinger and Xu-Jia Wang, The affine Plateau problem, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 18 (2005), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 2, 253–289, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content='1090/S0894-0347-05-00475-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' MR2137978 (2006e:53071) [30] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Zheligovsky, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Podvigina, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Frisch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' The Monge-Ampère equation: Various forms and numerical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=', 229(13):5043–5061, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} +page_content=' 40 50 60 70 80 90 100 110 N 40 50 60 70 80 90 100 110 N 40 50 60 70 80 90 100 110 N 40 50 60 70 80 90 100 110 N 10 20 30 40 50 60 70 40 50 60 70 80 90 100 110 N 40 50 60 70 80 90 100 110 N 20 40 60 80 100 20 40 60 80 100 40 50 60 70 80 90 100 110 N' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NFAT4oBgHgl3EQfox1h/content/2301.08636v1.pdf'} diff --git a/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/2301.11595v1.pdf.txt b/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/2301.11595v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..6746672417956e94ad91701a867ef02d641af57b --- /dev/null +++ b/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/2301.11595v1.pdf.txt @@ -0,0 +1,1617 @@ +arXiv:2301.11595v1 [math-ph] 27 Jan 2023 +Exact solutions of Maxwell equations in homogeneous +spaces with group of motions G3(IX) +V. V. Obukhov +Institute of Scietific Research and Development, Tomsk State Pedagogical University +(TSPU). Tomsk State Pedagogical University, 60 Kievskaya St., Tomsk, 634041, Russia; +Laboratory for Theoretical Cosmology, International Center of Gravity and Cosmos, Tomsk +State University of Control Systems and Radio Electronics (TUSUR), 36, Lenin Avenue, Tomsk, +634050, Russia +Keywords: Maxwell equations, Klein-Gordon-Fock equation, algebra of symmetry operators, +theory of symmetry, linear partial differential equations. +Exact solutions of Maxwell equations in homogeneous spaces with group of motions G3(IX) +1 +Introduction +All known methods of integration of main differential equations of mathematical physics are +based on complete reduction of these equations to a system of ordinary differential equations. +Reduction is carried out using symmetry operators. For the equations of motion of classical +or quantum sample particle in external electromagnetic and gravitational fields the symmetry +operators are integrals of motion. It is known that a necessary condition for the existence of +integrals of motion is the existence of spacetime symmetry given by the Killing fields. +Thus the problem of exact integration is closely related to the study of space-time symmetry. +At present two methods of exact integration of equations of motion are known. These are +methods of commutative (CIM) and noncommutative (NCIM) integration. The first method is +based on the theory of complete separation of variables, and it is applicable in stackel spaces. +Stackel spaces admit complete sets consisting of mutually commuting Killing fields. Theory +of Stackel spaces was developed in [1], [2], [3], [4], [5], [6],[7]. +A description of the theory +and a detailed bibliography can be found in [8], [9] [10], [13] (see also [12]). Solutions of field +equations, which are still used widely in the theory of gravitation, have been constructed on +the basis of Stackel spaces. These solutions are often used in the study of various effects in +gravitational fields (see, for example,[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], +[26]). +The second method (NCI method) is based on the use of noncommutative algebras of +symmetry operators linear in moments and constructed using vector Killing fields. The method +was proposed in [27]. The development of the method and its application to gravity theory can +be found in [28], [29], [30], [31]. +1 + +As in stackel spaces in the spaces with a noncommutative group of motions the equations +of motion of a test particle admit the complete reduction to a system of ordinary differential +equations. +Therefore, we will call space-time manifolds admitting noncommutative groups +Gr, r ≥ 3 as post-Stackel spaces (PSS). +By analogy with stackel spaces we will call the PSS non-isotropic if a group Gr (or its +subgroup of rank 3) acts transitive on a non-isotropic hypersurface of spacetime, or isotropic, +if the hypersurface is isotropic. For non-isotropic post-stackel spaces we will also use the term +”homogeneous post-stackel space (HPSS)”. +The same classification problems can be considered for the PSS as for the stackel spaces. +For example, in the papers [9] [10], [11] a complete classification is given for the case when +the Hamilton-Jacobi equation for a charged test particle admits the complete separation of +variables in the external electromagnetic field. A similar classification problem has been solved +for PSS-spaces as well. In [32] PSS-spaces with transitive four-parameter groups of motions +are considered; in [33] HPSS-spaces are considered (see also [34]); in [35] PSS-spaces with +groups acting on isotropic hypersurfaces of transitivity are considered. PSS-spaces with four- +parameter groups of motions are considered in [36], provided that these groups have transitive +three-parameter subgroups. Thus, one has found the potentials of all admissible electromag- +netic fields, for which the Hamilton-Jacobi and Klein-Gordon-Fock equations have algebras of +symmetry operators given by groups of motions of post-stackel spaces. It was proved, that +the Klein-Gordon-Fock equation admits the algebra of symmetry operators given by groups of +motions of PSS if and only if the Hamilton-Jacobi equations admits the appropriate algebra of +integrals of motion. +Next classification problem is the classification of electrovacuum solutions of the Einstein- +Maxwell equations for the case, when CIM and NCIM methods are applicable. During the +century-long history of General relativity, many exact solutions of the vacuum and electrovac- +uum Einstein equations have been found (see, for example,[42] ). Nevertheless, this problem has +not lost its relevance up to now. The main purpose of the classification is not so much to find +new exact solutions, as to list all gravitational and electromagnetic fields, in which equations +of motion of test particles can be exactly integrated or at least reduced to systems of ordinary +differential equations. This problem divided into two stages. +At the first stage all non-equivalent classes of solutions of the vacuum Maxwell equations for +the potentials of admissible electromagnetic fields are found. At the second stage the obtained +classification is used to classify the corresponding electrovacuum spaces. Historically, for Stackel +spaces this problem was solved before the problem of the first stage (see the bibliography given +in [9], [10], [11]). The present article is devoted to solving the first stage of this classification +problem. All non-equivalent solutions of empty Maxwell equations in homogeneous spaces of +type IX according to Bianchi’s classification are found. +2 +Admissible electromagnetic fields in homogeneous spaces +There are two definitions of homogeneous spaces. +According to the first a spacetime +V4 +is homogeneous if its subspace +V3, +endowed with the Euclidean space signature, admits +coordinate transformations (forming the group G3(N) of motions of spaces V4), that allow to +connect any two points in +V3 +(see [38]). This definition directly implies that metric of the +2 + +V4 in the semi-geodesic coordinate system +[ui] +can be represented as follows: +ds2 = −du02 + ηabla +αlb +βduαduβ, +gij = −δ0 +i δ0 +j + δa +i δb +jea +αeb +βηab(u0), +det|ηab| > 0 +ea +α,0 = 0. +(1) +The coordinate indices of the variables of the semi-geodesic coordinate system are denoted +by lower case Latin letters: +i, j, k = 0, 1 . . . 3. +The coordinate indices of the variables of the +local coordinate system on the hypersurface +V3 +are denoted by lower case Greek letters: +α, β, γ = 1, . . . 3. +the time variable is denoted by a 0 index. Group indices and indices of +nonholonomic frame are denoted by +a, b, c = 1, . . . 3. +Summation is performed over repeated +upper and lower indices within the index range. +The 1-form +ea +αduα +is invariant under the acting of the group G3(N). The vectors of the +frame ea +α define a non-holonomic coordinate system in V3. The dual triplet of vectors +eα +a, +eα +aeb +α = δb +a, +eα +aea +β = δα +β +defines the operators of the group algebra: +ˆYa = eα +a∂a, +[ ˆYa, ˆYb] = Cc +ab ˆYc. +(2) +According to another definition, space-time +V4 +is homogeneous if it admits a three-parameter +group of motions +G3(N), +whose hypersurface +V3 +of transitivity has the Euclidean space +signature. The Killing vector fields ξα +a +and their dual vector fields +ξa +α +form another frame +of the space V3 and another representation of the algebra of the group G3. The vector fields +ξα +a +satisfy the Killing equations: +gαβ +,γ ξγ +a = gαγξβ +a,γ + gβγξα +a,γ, +(3) +and sets the infinitesimal group operators of the algebra G3 +ˆXa = ξα +a ∂α, +[ ˆXa, ˆXb] = Cc +ab ˆXc. +(4) +Let us consider electromagnetic field with potential Ai. For a charged test particle, moving in +this external electromagnetic field, it has been proved, that the Hamilton-Jacobi equation: +gijPiPj = m, +Pi = pi + Ai. +(5) +and the Klein-Gordon-Fock equation: +ˆHϕ = (gij ˆPi ˆPj)ϕ = m2ϕ, +ˆPk = ˆpk + Ak. +(6) +admit the integrals of motion, which are given by Killing vectors: +˜Xα = ξi +αpi +(or +ˆ˜Xα = ξi +αˆpi), +if and only if the conditions: +ξα +a ( ˜A),α = Cc +ab ˜A +(7) +are satisfied (see papers [33]). Here +pi = ∂iϕ; +ˆpk = −ı ˆ∇k; +( ˆ∇k is the covariant deriva- +tive operator corresponding to the partial derivative operator - +ˆ∂i +in the coordinate field +ui), +ϕ +is a scalar function of particle with mass +m; +˜Aa = ξα +a Aα. +3 + +The electromagnetic field whose potential satisfies condition (7) is called admissible. All +admissible electromagnetic fields for groups of motion +Gr(N) +(r ≤ 4), +acting transitively +on hypersurfaces of the spacetime, have been found in [33], [35], [36]. +Solutions of the set of equations (7) for HPSS of type IX have the form: +Aα = αa(u0)la +α ⇒ Aa = lα +aAα = αa(u0). +(8) +To prove this let’s find the frame vector. We will use the metric tensor of IX-type space by +Bianchi, found in Petrov’s book [39]. As it is known, the Bianchi type IX metric contains as +a special case the space of constant positive curvature and therefore is of special interest for +cosmology. +ds2 = du12[a11 − (a12 cos 2u3 + a22 sin 2u3)] + 2du1du3((a13 cos u3 − a23 sin u3)+ +(9) ++2du1du2[(a13 cos u3 − a23 sin u3) cos u1 + (a12 cos 2u3 − a22 sin 2u3) sin u1] ++du22[a33cos u12 + (a23 cos u3 + a13 sin u3) sin 2u1 + (a12 sin 2u3 + a22 cos 2u3 + a11)sin u12] +2du2du3(a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1) + du32a33 + edu02. +aab are arbitrary functions on u0. +To obtain the functions +lα +a +, it is sufficient to consider the components +g13, g23 +from the system (3). The solution has the form: +la +α = δp +αla +p(u1, u3) + δ3 +αδa +3 +. +From the equations: +g13 = a13 cos u3 − a23 sin u3 = η3ala +1, +g23 = a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1 = η3ala +1 +it follows: +la +α = +� +� +cos u3 +− sin u3 +0 +sin u1 sin u3 +sin u1 cos u3 +cos u1 +0 +0 +1 +� +� , lα +a = +� +� +cos u3 +sin u3 +sin u1 +−cos u1 sin u3 +sin u1 +− sin u3 +cos u3 +sin u1 +−cos u1 cos u3 +sin u1 +0 +0 +1 +� +� , +(10) +la +αlα +b = δa +b . +The lower index numbers the lines. One can show that the vector fields (10) satisfy the +equations (1), (2): We present the components of the vectors ξα +a in the form of a matrix: +||ξα +a || = +� +� +0 +1 +0 +cos u2 +−cos u1 sin u2 +sin u1 +sin u2 +sin u1 +− sin u2 +−cos u1 cos u2 +sin u1 +cos u2 +sin u1 +� +� +The components ˜Aα can be expressed through Aα as follows: +˜Aa = Zb +aAb, +4 + +where +||Zb +a = ξα +a lb +α|| = +� +� +sin u1 sin u3 +sin u1 cos u3 +cos u1 +(cos u2 cos u3 − sin u2 sin u3 cos u1) +−(cos u2 sin u3 + sin u2 cos u3 cos u1) +sin u1 sin u2 +−(sin u2 cos u3 + cos u2 sin u3 cos u1) +(sin u2 sin u3 − cos u2 cos u3 cos u1) +cos u2 sin u1 +� +� . +It can be shown by direct calculation that the elements of the matrix Zb +a satisfy the equation: +Zb +a|c = Ca1 +caZb +a1, +|a = lα +a∂α. +(11) +Therefore, the equation (7) can be reduced to the form: +ξα +a Ab,α = 0 ⇒ Aa = αa(u0). +(12) +3 +Maxwell’s equations with zero electromagnetic field +sources in a homogeneous spacetime +All exact solutions of vacuum Maxwell equations for solvable groups have been found in the +papers [40], [41]. In the present paper the problem is solved for the group G3(IX). +We will use the first definition of homogeneous spaces. Note, that for the space-time with +the groups of motions G3(I) − G3(V I), G3(IX) both definitions are equivalent +Consider the Maxwell equations with zero electromagnetic field sources in homogeneous +space in the presence of an electromagnetic field invariant with respect to the group Gr: +1 +√−g(√−gF ij),j = 0, +(13) +The metric tensor is defined by relations (1), the electromagnetic potential by the relations (7). +When i = 0, from the set of equations (13) it follows: +1 +√−g(√−ggαβF0β)α = 1 +l (llα +aηab ˙αb),α = ηabρa ˙αb = 0. +(14) +Here it is denoted g = − det ||gαβ|| = −(ηl)2, +where +η2 = det ||ηαβ||, +l = det ||la +α||, +ρa = +lα +a,α + l|a/l, +the dots means the time derivatives. Let +i = α. +Then from the equation (13) +it follows: +1 +η(ηgαβF0β),0 = 1 +l (lgνβgαγFβγ),ν ⇒ 1 +η(ηηablα +a ˙αb),0 = 1 +l (llν +alβ +b ηablα +˜alγ +˜b η˜a˜bFβγ),ν ⇒ +(15) +(ηηab ˙αb),0 = ηla +α +l (llβ +b lα +˜a1lγ +˜b Fβγ)|a1ηa1bη˜a˜b. +(16) +Let us find components of Fαβ, using the relations (8). +Fαβ = (la +β,α − la +β,α)αa = lc +βlγ +c ld +αlν +d(la +γ,ν − la +ν,γ)αa = lb +βla +αlc +γ(lγ +a|b − lγ +b|a)αc = lb +βla +αCc +baαc. +(17) +Then +(lF αβ),β = ηabη˜a˜bCd +˜bbαd((llα +a)|˜a + llα +alγ +˜a,γ). +(18) +5 + +Structural constants of a group +G3 +can be present in the form: +Cc +ab = Cc +12ε12 +˜a˜b + Cc +13ε13 +˜a˜b + Cc +23ε23 +˜a˜b, +εAB +ab = δA +a δB +b − δA +b δB +a . +(19) +Using the notations: +σ1 = Ca +23αa, +σ2 = Ca +31αa, +σ3 = Ca +12αa, +γ1 = σ1η11 + σ2η12 + σ3η13, +γ2 = σ1η12 + σ2η22 + σ3η23, +γ3 = σ1η13 + σ2η23 + σ3η33, +let us reduce Maxwell’s equations (13) to the form: +η(ηab ˙αb),0 = δa +1(γ1(C1 +32) − γ2(C1 +31 + ρ3) + γ3(C1 +21 + ρ2)) + δa +2(γ1(C2 +32 + ρ3)+ +(20) +γ2C2 +13 − γ3(C2 +12ρ1)) + δa +3(−γ1(C3 +23 + ρ2) + γ2(C3 +13 + ρ1) + γ3C3 +21), +The order of the equations (20) can be decreased by introducing a new independent functions: +βa = βa = ηηab ˙αb +⇒ +η ˙αa = ηabβb. +(21) +Let us consider the Maxwell equations for the group G3(IX). As in this case +non zero +structural constants are following: +C3 +12 = C2 +31 = C1 +23 = 1, +functions +σa, γ1 +have the form: +σ1 = α1, +σ2 = α2, +σ3 = α3. +γ1 = α1η11 + α2η12 + α3η13, +γ2 = α1η12 + α2η22 + α3η23, +γ1 = α1η13 + α2η23 + α3η33. +Using these relations, we obtain Maxwell’s equations (14), (20) as a system of linear algebraic +equations on the unknown functions +nab: +nab = ηab +η ⇒ η = +1 +det nab +. +(22) +ˆW ˆn = ˆω, +(23) +where +ˆW = +� +� +� +� +� +� +� +� +α1 +α2 +α3 +0 +0 +0 +β1 +β2 +β3 +0 +0 +0 +0 +α1 +0 +α2 +α3 +0 +0 +β1 +0 +β2 +β3 +0 +0 +0 +α1 +0 +α2 +α3 +0 +0 +β1 +0 +β2 +β3 +� +� +� +� +� +� +� +� +, +(24) +ˆnT = (n11, n12, n13, n22, n23, n33); +ˆωT = (− ˙β1, ˙α1, − ˙β2, ˙α2, − ˙β3, ˙α3), +6 + +index T means the transposition of a matrix. Let us find the algebraic complement of the +matrix ˆW : +ˆV = +� +� +� +� +� +� +� +� +β1V 2 +1 +−α1V 2 +1 +β2V 2 +1 +−α2V 2 +1 +β3V 2 +1 +−α3V 2 +1 +β1V1V2 +−α1V1V2 +β2V1V2 +−α2V1V2 +β3V1V2 +−α3V1V2 +β1V1V3 +−α1V1V3 +β2V1V3 +−α2V1V3 +β3V1V3 +−α3V1V3 +β1V 2 +2 +−α1V 2 +2 +β2V 2 +2 +−α2V 2 +2 +β3V 2 +2 +−α3V 2 +2 +β1V2V3 +−α1V2V3 +β2V2V3 +−α2V2V3 +β3V2V3 +−α3V2V3 +β1V 2 +3 +−α1V 2 +3 +β2V 2 +3 +−α2V 2 +3 +β3V 2 +3 +−α3V 2 +3 +� +� +� +� +� +� +� +� +(25) +As ˆW is singular matrix, ˆV is the annulling matrix for ˆW: +ˆV ˆW = 0. +(26) +Therefore, one of the equations from the system (23) can be replaced by the equation: +δab( ˙αa ˙αb + ˙βa ˙βb) ⇒ δab(αaαb + βaβb) = c2 = const. +(27) +Depending on the rank of the matrix ˆW, one or more functions nab are independent. The +remaining functions nab can be expressed through them and through the functions αa, βa. For +classification it is necessary to find non-equivalent solutions of the system (23). Obviously, this +system are symmetric with respect to the transposition +lα +1 ↔ lα +2 . Therefore the reference +indices a = 1 and a = 2 can be interchanged. Taking this observation into account, let us +consider all non-equivalent options. +4 +Solutions of Maxwell equations +1. +a1V1 ̸= 0 ⇒ the minor ˆW12 and its inverse matrix ˆΩ = ˆW −1 +12 have the form: +ˆW12 = +� +� +� +� +� +� +α2 +α3 +0 +0 +0 +α1 +0 +α2 +α3 +0 +β1 +0 +β2 +β3 +0 +0 +α1 +0 +α2 +α3 +0 +β1 +0 +β2 +β3 +� +� +� +� +� +� +, +(28) +ˆΩ1 = +� +� +� +� +� +� +� +� +� +− V2 +α1V1 +− α3β2 +α1V1 +α2α3 +α1V1 +− α3β3 +α1V1 +α2 +3 +α1V1 +− V3 +α1V1 +α2β2 +α1V1 +− α2 +2 +α1V1 +α2β3 +α1V1 +−α2α3 +α1V1 +− V 2 +2 +α1V 2 +1 +(α3β1V1−α2β3V3) +α1V 2 +1 +α3(α2V2−α1V1) +α1V 2 +1 +−α3β3V2 +α1V 2 +1 +α2 +2V2 +α1V 2 +1 +− V2V3 +α1V 2 +1 +α2β2V2 +α1V 2 +1 +− α2 +2V2 +α1V 2 +1 +−α3β3‘V3 +α1V 2 +1 +α2 +3V3 +α1V 2 +1 +− V 2 +3 +α1V 2 +1 +α2β2V3 +α1V 2 +1 +− α2 +2V3 +α1V 2 +1 +(α3β2V3−α2β1V1) +α1V 2 +1 +α2(α1V1−α3V3) +α1V 2 +1 +� +� +� +� +� +� +� +� +� +(29) +Then the solution of equation (23) can be represented as: +ˆn1 = ˆΩ1ˆω1, +(30) +were +ˆnT +1 = (n12, n13, n22, n23, n33); +ˆωT +1 = (−( ˙β1 + α1n11), − ˙β2, ˙α2, −β3, ˙α3), +7 + +Function +n11, +as well as the functions +αa, +βa +are arbitrary functions of +u0, +that +obey the condition (27). +2. +α2V1 ̸= 0, ⇒ α1 = 0 ⇒ the minor ˆW −1 +14 and its inverse matrix ˆΩ2 = ˆW −1 +14 have the +form: +ˆW14 = +� +� +� +� +� +� +α2 +α3 +0 +0 +0 +β2 +β3 +0 +0 +0 +0 +0 +α2 +α3 +0 +0 +0 +0 +α2 +α3 +0 +β1 +0 +β2 +β3 +� +� +� +� +� +� +, +ˆΩ2 = +� +� +� +� +� +� +� +� +β3 +V1 +−α3 +V1 +0 +0 +0 +− β2 +V1 +α2 +V1 +0 +0 +0 +a2 +3β1β2 +α2V 2 +1 +−α2 +3β1 +V 2 +1 +1 +α2 +− α3β3 +α2V1 +a2 +3 +α2V1 +−a3β1β2 +V 2 +1 +α2α3β1 +V 2 +1 +0 +β3 +V1 +− a3 +V1 +a2β1β2 +V1 +−α2 +2β1 +V1 +0 +− β2 +V1 +α2 +V1 +� +� +� +� +� +� +� +� +(31) +Solution of the equation (23) can be represented as: +ˆn2 = ˆΩˆω2, +(32) +were +ˆnT +2 = (n12, n13, n22, n23, n33); +ˆω2 = (− ˙β1, −β1n11, − ˙β2, − ˙β3, ˙α3) +Function +n11, +as well as the functions +αa, +βa +are arbitrary functions of +u0, +that +obey the condition (27). +3. +a3V1 ̸= 0, ⇒ a1 = a2 = 0 ⇒ the minor ˆW −1 +16 and its inverse matrix ˆΩ3 = ˆW −1 +16 have the +form: +ˆW16 = +� +� +� +� +� +� +0 +a3 +0 +0 +0 +β2 +β3 +0 +0 +0 +0 +0 +0 +a3 +0 +β1 +0 +β2 +β3 +0 +0 +0 +0 +0 +a3 +� +� +� +� +� +� +, +ˆΩ3 = +� +� +� +� +� +� +� +− β3 +a3β2 +1 +β3 +0 +0 +0 +1 +a3 +0 +0 +0 +0 +β1β3 +a3β2 +2 +− β1 +β2 +2 +− β3 +β2a3 +1 +β2 +0 +0 +0 +1 +a3 +0 +0 +0 +0 +0 +0 +1 +a3 +� +� +� +� +� +� +� +(33) +Then the solution of equation (23) can be represented as: +ˆn3 = ˆΩ3ˆω3, +(34) +were +ˆnT +3 = (n12, n13, n22, n23, n33); +ˆωT +3 = (− ˙β1, −β1n11, − ˙β2, 0, − ˙β3) +Function +n11, +as well as the functions +α3, +βa +are arbitrary functions of +u0, +that +obey the condition (27). +4. +a1V3 ̸= 0. ⇒ V1 = V2 = 0, +otherwise, we get a solution equivalent to the previous +ones. As +V3 ̸= 0 ⇒ +α3 = β3 = 0. +The minor ˆW62 and its inverse matrix ˆΩ4 = ˆW −1 +62 have +8 + +the form: +ˆW26 = +� +� +� +� +� +� +α1 +α2 +0 +0 +0 +0 +α1 +0 +a2 +0 +0 +β1 +0 +β2 +0 +0 +0 +α1 +0 +α2 +0 +0 +β1 +0 +β2 +� +� +� +� +� +� +, +ˆΩ4 = +� +� +� +� +� +� +� +1 +α1 +− α2β2 +α1V3 +α2 +2 +α1V3 +0 +0 +0 +β2 +V3 +−α2 +V3 +0 +0 +0 +0 +0 +β2 +V3 +−α2 +V3 +0 +− β1 +V3 +α1 +V3 +0 +0 +0 +0 +0 +− β1 +V3 +α1 +V3 +� +� +� +� +� +� +� +(35) +Then the solution of equation (23) can be represented as: +ˆn4 = ˆΩ4ˆω4. +(36) +were +ˆnT +4 = (n11, n12, n13, n22, n23); +ˆωT +4 = (− ˙β1, − ˙β2, ˙α2, 0, 0). +Function +n33, +as well as the functions +α1, +α2 +βa +are arbitrary functions of +u0, +that obey the condition (27). +5. +Va = 0. +Let us represent the system of Maxwell equations in the form: +ˆQIˆnI = ˆωI +were +ˆQ = +� +� +� +� +� +� +� +� +α1 +α2 +α3 +0 +0 +0 +0 +α1 +0 +α2 +α3 +0 +0 +0 +α1 +0 +α2 +α3 +β1 +β2 +β3 +0 +0 +0 +0 +β1 +0 +β2 +β3 +0 +0 +0 +β1 +0 +β2 +β3 +� +� +� +� +� +� +� +� +, +(37) +ˆωI = (ˆωβ, ˆωα); +ˆωβ = −( ˙β1, ˙β2, ˙β3), +ˆωα = ( ˙α1, ˙α2, ˙α3) +ˆnI = (ˆnα, ˆnβ); +ˆnα = (n11, n12, n13), +ˆnβ = (n22, n23, n33). +To provide the classification, it is sufficient to consider the options: +1) +a1 ̸= 0, +2) +a3 ̸= +0, +a1 = a2 = 0. +a) a1 ̸= 0 ⇒ βa = αaβ1 +α1 . +ˆWIˆnα = (ˆωβ − ˆQ1ˆnβ) ⇒ ˆnα = ˆW −1 +I (ˆωβ − ˆQ1ˆnβ), +β1 ˆWIˆnα = α1ˆωα − β1 ˆQ1ˆnβ ⇒ β1ˆωβ − α1ˆωα = 0 ⇒ +� +� +� +α1 ˙α2 + β1 ˙β2 = 0, +α1 ˙α3 + β1 ˙β3 = 0, +α1 ˙α1 + β1 ˙β1 = 0. +⇒ +� +� +� +α1 = e sin ϕ, +β1 = e cos ϕ, +e = const, +α2 = ec2 sin ϕ, +β1 = ec2 cos ϕ, +e, c2 = const, +α3 = ec3 sin ϕ, +β1 = ec3 cos ϕ, +e, c3 = const. +(38) +9 + +Here: +ˆWI = +� +� +α1 +α2 +α3 +0 +α1 +0 +0 +0 +α1 +� +� , ˆW −1 +I += +� +� +1 +α1 +−α2 +α2 +1 +−α3 +α2 +1 +0 +1 +α1 +0 +0 +0 +1 +α1 +� +� , ˆQI = +� +� +0 +0 +0 +α2 +α3 +0 +0 +α2 +α3, +� +� +α1 = e sin ϕ, +β1 = e cos ϕ, +e, ca = const, +Then matrices ˆWI, ˆW −1 +I , ˆQI and lines ˆωT take the form: +ˆWI = sin ϕ ˆP, +ˆW −1 +I += +1 +sin ϕ +ˆP −1, +ˆQI = sin ϕ ˆQ. +ˆP = +� +� +1 +c2 +c3 +0 +1 +0 +0 +0 +1 +� +� , +ˆP −1 = +� +� +1 +−c2 +−c3 +0 +1 +0 +0 +0 +1 +� +� , +ˆQ = +� +� +0 +0 +0 +c2 +c3 +0 +0 +c2 +c3, +� +� +ˆωT +α = ˆωT +β = ˙ϕ sin ϕ ˆCT = ˙ϕ sin ϕ(1, c2, c3), +ˆnα = ˆw−1( ˙ϕ ˆCT − ˆQˆnβ) +Function +n22, n23, n33, +as well as the function +ϕ +are arbitrary functions of +u0. +b) Va = 0, +α3 ̸= 0. +⇒ β1 = β2 = 0. +The system of Maxwell equations has the form: +α3n13 = α3n23 = 0, +α3n33 = − ˙β3, +β3n33 = ˙α3. +a3 ˙a3 + β3 ˙β3 = 0 ⇒ a3 = c sin ϕ, +β3 = cos ϕ +From here: +n33 = ˙ϕ, +n13 = n23 = α1 = α2 = β1 = β2 = 0, +α3 = c sin ϕ, +β3 = c cos ϕ. +Functions +ϕ, +n11, +n12, +n22 - are arbitrary functions on +u0, +c = const. +5 +Conclusion +It is known that homogeneous spaces of IV and IX types according to Bianchi classification +include as special cases the spaces of constant curvature.This causes a special interest to them +in cosmology. In the Universe with the metric of homogeneous space all physical fields are +invariant with respect to the group of motions of the space-time. Therefore, exactly such fields +should be considered in the first place when solving the self-consistent Einstein equations, +in particular the Einstein-Maxwell equations. +The final goal of classification of PSS with +admissible electromagnetic fields is to enumerate all electrovacuum solutions of the Einstein- +Maxwell equations. In [40], [41] the complete classification of vacuum solutions of the Maxwell +equations for homogeneous spaces with solvable groups of motions has been carried out. In the +present paper the same problem is solved for HPSS of IX-type. For the final decision of the +first stage of the classification problem it remains to consider HPSS V III-type, which will be +10 + +done in the next paper. The results obtained will be used in the second stage for integration +of the corresponding Einstein-Maxwell equations. +FUNDING: The work is supported by Russian Science Foundation, project number N 23- +21-00275. +INSTITUTIONAL REVIEW BOARD STATEMENT: Not applicable. +INFORMED CONSENT STATEMENT: Not applicable. +DATA AVAILABILITY STATEMENT: The data that support the findings of this study +are available within the article. +CONFLICTS OF INTEREST: The author declares no conflict of interest. +References +[1] Stackel. P. Uber die intagration der Hamiltonschen differentialechung mittels separation +der variablen. Math. Ann. 1897. 49, (145-147 pp.); +[2] Eisenhart L.P. Separable systems of stackel. Ann.Math. 1934, 35, (284-305 pp).; +[3] Levi-Civita T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione +Di Variabili. Math.Ann. 1904 59, (383-397 pp.); +[4] Jarov-Jrovoy +M.S. +Integration +of +Hamilton-Jacobi +equation +by +complete +sep- +aration +of +variables +method. +J.Appl.Math.Mech.. +1963, +27, +No +6, +(173-219 +pp).https://doi.org/10.1016/0021-8928(63)90122-9; +[5] Carter B. New family of Einstein spaces. Phys.Lett. 1968, A.25, No 9 (399-400pp.), +doi.org/10.1016/0375-9601(68)90240-5 +[6] Shapovalov V.N., Symmetry and separation of variables in the Hamilton-Jacobi equation. +Sov. Phys.J.. 1978, 21, 1124-1132pp. doi: 10.1007/BF00894560; +[7] Shapovalov V.N., +Stackel‘s spaces. Sib. Math. J. 1979, +20, +(1117-1130pp.), +doi: +org/10.1007/BF00971844; +[8] W. +Miller. +Symmetry +And +Separation +Of +Variables. +Cambridge +University +Press:Cambridge. 1984, (318 p.p.); +[9] Obukhov V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space +of type (2.0). Symmetry, 12, 2020, 12891291. doi: 10.3390/sym12081289. +[10] Obukhov V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel +space of type (2.1).Int. J. Geom. Meth. Mod. Phys, 2020, 17, 14, 2050186. doi: +10.1142/S0219887820501868. +[11] Obukhov V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equa- +tions for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. +Mod. Phys.2021, 18, 03, (2150036); doi:10.1142/S0219887821500365 +11 + +[12] Odintsov, S.D. Editorial for Special Issue Feature Papers 2020. Symmetry. 2023, 15, 8. +doi.org/10.3390/sym15010008 +[13] McLenaghan R. G., Rastelli G. and Valero C. Complete separability of the Hamilton- +Jacobi equation for the charged particle orbits in a Lienard-Wiehert field /em J. Math. +Phys., /bf2020,61, (122903). doi.org/10.1063/5.0030305. +[14] Mitsopoulos A., Tsamparlis M., Leon G. A.Paliathanasis. A.Paliathanasis. New conserva- +tion laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar +field. Symmetry. 2021, 13(8):1364, doi: 10.3390/sym13081364 +[15] Claudio Dappiaggi, Benito A. Juarez-Aubry, Alessio Marta Ground. State for the Klein- +Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions. +Phys. Rev. D. 2022, 105, 105017 doi.org/10.1103/PhysRevD.105.105017. +[16] Francisco Astorga, J Felix Salazar and Thomas Zannias On the integrability of the geodesic +flow on a Friedmann-Robertson-Walker spacetime Physica Scripta, 2018, 93, 8, 93 085205 +doi. 10.1088/1402-4896/aacd44 +[17] Capozziello S., De Laurentis M., Odintsov D. Hamiltonian dynamics and Noether sym- +metries in extended gravity cosmology. Eur.Phys.J. 2012, C72, 2068 (22 pp.), doi: +10.1140/epjc/s10052-012-2068-0; +[18] Salih +Kibaroglu, +Oktay +Cebecioglu. +Generalized +cosmological +constant +from +gauging +Maxwell-conformal +algebra, +Phys.Lett.B, +2020, +803, +135295. +doi.org/10.1016/j.physletb.2020.135295 +[19] Nojiri +Shin’ichi, +Odintsov +Sergei +D., +Faraoni +Valerio, +Searching +for +dynamical +black +holes +in +various +theories +of +gravity. +Phys.Rev.D. +2021, +103, +4, +044055. +doi:10.1103/PhysRevD.103.044055 +[20] Epp V. Pervukhina O. The Stormer problem for an aligned rotator. MNRAS, 2018 474, +(5330-5339) doi.org/10.1093/mnras/stx3102. +[21] Epp V., Masterova M.A. Effective potential energy for relativistic particles in the field +of inclined rotating magnetized sphere. Astrophys Space Sci, 2014, 353, (473-483). +doi.org/10.1007/s10509-014-2066-9. +[22] Kumaran Y.; Ovgun A. Deflection angle and shadow of the reissner-nordstrom black +hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields. Symmetry. +2022, 14, 2054. https://doi.org/10.3390/sym14102054 +[23] Osetrin K.; Osetrin E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. +https://doi.org/10.3390/SYM12081372. +[24] Osetrin E.; Osetrin K.; Filippov A. Plane Gravitational Waves in Spatially-Homogeneous +Models of type-(3.1) Stackel Spaces. Russian Physics Journal 2019, 62, +292-301. +https://doi.org/10.1007/s11182-019-01711-1. +12 + +[25] Osetrin K., Osetrin E. and Osetrina E. Geodesic deviation and tidal acceleration in the +gravitational wave of the Bianchi type IV universe. Eur. Phys. J. Plus. 2022, 137, (856). +https://doi.org/10.1140/epjp/s13360-022-03061-3 +[26] Osetrin, K.; Osetrin, E.; Osetrina, E. Gravitational wave of the Bianchi VII universe: +Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C 2022, +82, 1–16. doi.org/10.1140/epjc/s10052-022-10852-6. +[27] Shapovalov, A.V., Shirokov I.V. Noncommutative integration method for linear partial +differential equations. functional algebras and dimensional reduction. Theoret. And Math. +Phys. 1996, 106:1, (1-10). doi.org/10.4213/tmf1093. +[28] Shapovalov, A.; Breev, A. Harmonic Oscillator Coherent States from the Standpoint of +Orbit Theory.Symmetry 2023, 15, 282. doi.org/10.3390/sym15020282 +[29] Breev, A.I., Shapovalov, A.V. Non-commutative integration of the Dirac equation in ho- +mogeneous spaces. Symmetry 2020, 12, 1867. +[30] Breev, A.I.; Shapovalov, A.V. Yang–Mills gauge fields conserving the symmetry algebra of +the Dirac equation in a homogeneous space. J. Phys.: Conf. Ser. 2014, 563, 012004. +[31] Magazev +A.A.,Boldyreva +M.N. +Schrodinger +equations +in +electromagnetic +fields: +symmetries +and +noncommutative +integration, +Symmetry. +2021, +13, +(1527). +https://doi.org/10.3390/sym13081527 +[32] Magazev A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic +field on Lie groups. Theor.and Math.Phys., 2012, 173:3, (1654-1667). doi: 10.1007/s11232- +012-0139-x, arxiv.org/abs/1406.5698; +[33] Obukhov V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symme- +try. 2021, 13, 727 (15p.). https://doi.org/10.3390/sym13040727. +[34] Odintsov, +S.D. Editorial for Feature Papers 2021-2022. Symmetry. 2023, 15, 32. +doi.org/10.3390/sym15010032 +[35] Obukhov V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for +the case when groups of motions G3 act transitively on null subsurfaces of spacetime. +Symmetry. 2022, 14, (346). https://doi.org/10.3390/sym14020346 +[36] Obukhov V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein- +Gordon-Fock equations in spacetime with a four-parameter groups of motions in the +presence of an external electromagnetic field J. Math. Phys. 2022, 63, +Issue 2. +https://doi.org/10.1063/5.0080703 +[37] Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E. Exact Solu- +tions of Einstein’s Field Equations (2nd ed., Cambridge Monographs on Mathematical +Physics).2003 Cambridge: Cambridge University Press. doi:10.1017/CBO9780511535185 +[38] Landau L.D., Lifshits E.M. Theoretical physics, Field theory. 7th ed. Moskow.(vol. II): +Science. Ch. ed. Phys.-Math. lit., 1988. - (512 p). ISBN 5-02-014420-7 +13 + +[39] Petrov A. Z. Einstein Spaces, Oxford, 1969. +[40] Obukhov V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic +Fields.Universe. 2022, 8, (245). https://doi.org/10.3390/universe8040245 +[41] Obukhov, V.V. Maxwell Equations in Homogeneous Spaces with Solvable Groups of Mo- +tions. Symmetry. 2022, 14, (2595).https://doi.org/10.3390/sym14122595 +[42] Stephani H., Kramer D., MacCallum M. A. H., Hoenselaers C., Herlt E. Exact Solu- +tions of Einstein’s Field Equations Second Edition, 2003, Cambrige university press. +doi.org/10.1017/CBO9780511535185 +14 + diff --git a/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/load_file.txt b/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7e59c271715ade05d7f5955e1a41a6458e835ba3 --- /dev/null +++ b/9NFJT4oBgHgl3EQfoSxe/content/tmp_files/load_file.txt @@ -0,0 +1,666 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf,len=665 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='11595v1 [math-ph] 27 Jan 2023 Exact solutions of Maxwell equations in homogeneous spaces with group of motions G3(IX) V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Obukhov Institute of Scietific Research and Development, Tomsk State Pedagogical University (TSPU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Tomsk State Pedagogical University, 60 Kievskaya St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Tomsk, 634041, Russia;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Laboratory for Theoretical Cosmology, International Center of Gravity and Cosmos, Tomsk State University of Control Systems and Radio Electronics (TUSUR), 36, Lenin Avenue, Tomsk, 634050, Russia Keywords: Maxwell equations, Klein-Gordon-Fock equation, algebra of symmetry operators, theory of symmetry, linear partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Exact solutions of Maxwell equations in homogeneous spaces with group of motions G3(IX) 1 Introduction All known methods of integration of main differential equations of mathematical physics are based on complete reduction of these equations to a system of ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Reduction is carried out using symmetry operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For the equations of motion of classical or quantum sample particle in external electromagnetic and gravitational fields the symmetry operators are integrals of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' It is known that a necessary condition for the existence of integrals of motion is the existence of spacetime symmetry given by the Killing fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Thus the problem of exact integration is closely related to the study of space-time symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' At present two methods of exact integration of equations of motion are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' These are methods of commutative (CIM) and noncommutative (NCIM) integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The first method is based on the theory of complete separation of variables, and it is applicable in stackel spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Stackel spaces admit complete sets consisting of mutually commuting Killing fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Theory of Stackel spaces was developed in [1], [2], [3], [4], [5], [6],[7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' A description of the theory and a detailed bibliography can be found in [8], [9] [10], [13] (see also [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Solutions of field equations, which are still used widely in the theory of gravitation, have been constructed on the basis of Stackel spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' These solutions are often used in the study of various effects in gravitational fields (see, for example,[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The second method (NCI method) is based on the use of noncommutative algebras of symmetry operators linear in moments and constructed using vector Killing fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The method was proposed in [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The development of the method and its application to gravity theory can be found in [28], [29], [30], [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1 As in stackel spaces in the spaces with a noncommutative group of motions the equations of motion of a test particle admit the complete reduction to a system of ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Therefore, we will call space-time manifolds admitting noncommutative groups Gr, r ≥ 3 as post-Stackel spaces (PSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' By analogy with stackel spaces we will call the PSS non-isotropic if a group Gr (or its subgroup of rank 3) acts transitive on a non-isotropic hypersurface of spacetime, or isotropic, if the hypersurface is isotropic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For non-isotropic post-stackel spaces we will also use the term ”homogeneous post-stackel space (HPSS)”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The same classification problems can be considered for the PSS as for the stackel spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For example, in the papers [9] [10], [11] a complete classification is given for the case when the Hamilton-Jacobi equation for a charged test particle admits the complete separation of variables in the external electromagnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' A similar classification problem has been solved for PSS-spaces as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' In [32] PSS-spaces with transitive four-parameter groups of motions are considered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' in [33] HPSS-spaces are considered (see also [34]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' in [35] PSS-spaces with groups acting on isotropic hypersurfaces of transitivity are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' PSS-spaces with four- parameter groups of motions are considered in [36], provided that these groups have transitive three-parameter subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Thus, one has found the potentials of all admissible electromag- netic fields, for which the Hamilton-Jacobi and Klein-Gordon-Fock equations have algebras of symmetry operators given by groups of motions of post-stackel spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' It was proved, that the Klein-Gordon-Fock equation admits the algebra of symmetry operators given by groups of motions of PSS if and only if the Hamilton-Jacobi equations admits the appropriate algebra of integrals of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Next classification problem is the classification of electrovacuum solutions of the Einstein- Maxwell equations for the case, when CIM and NCIM methods are applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' During the century-long history of General relativity, many exact solutions of the vacuum and electrovac- uum Einstein equations have been found (see, for example,[42] ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Nevertheless, this problem has not lost its relevance up to now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The main purpose of the classification is not so much to find new exact solutions, as to list all gravitational and electromagnetic fields, in which equations of motion of test particles can be exactly integrated or at least reduced to systems of ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' This problem divided into two stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' At the first stage all non-equivalent classes of solutions of the vacuum Maxwell equations for the potentials of admissible electromagnetic fields are found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' At the second stage the obtained classification is used to classify the corresponding electrovacuum spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Historically, for Stackel spaces this problem was solved before the problem of the first stage (see the bibliography given in [9], [10], [11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The present article is devoted to solving the first stage of this classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' All non-equivalent solutions of empty Maxwell equations in homogeneous spaces of type IX according to Bianchi’s classification are found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2 Admissible electromagnetic fields in homogeneous spaces There are two definitions of homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' According to the first a spacetime V4 is homogeneous if its subspace V3, endowed with the Euclidean space signature, admits coordinate transformations (forming the group G3(N) of motions of spaces V4), that allow to connect any two points in V3 (see [38]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' This definition directly implies that metric of the 2 V4 in the semi-geodesic coordinate system [ui] can be represented as follows: ds2 = −du02 + ηabla αlb βduαduβ, gij = −δ0 i δ0 j + δa i δb jea αeb βηab(u0), det|ηab| > 0 ea α,0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (1) The coordinate indices of the variables of the semi-geodesic coordinate system are denoted by lower case Latin letters: i, j, k = 0, 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The coordinate indices of the variables of the local coordinate system on the hypersurface V3 are denoted by lower case Greek letters: α, β, γ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' the time variable is denoted by a 0 index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Group indices and indices of nonholonomic frame are denoted by a, b, c = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Summation is performed over repeated upper and lower indices within the index range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The 1-form ea αduα is invariant under the acting of the group G3(N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The vectors of the frame ea α define a non-holonomic coordinate system in V3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The dual triplet of vectors eα a, eα aeb α = δb a, eα aea β = δα β defines the operators of the group algebra: ˆYa = eα a∂a, [ ˆYa, ˆYb] = Cc ab ˆYc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (2) According to another definition, space-time V4 is homogeneous if it admits a three-parameter group of motions G3(N), whose hypersurface V3 of transitivity has the Euclidean space signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The Killing vector fields ξα a and their dual vector fields ξa α form another frame of the space V3 and another representation of the algebra of the group G3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The vector fields ξα a satisfy the Killing equations: gαβ ,γ ξγ a = gαγξβ a,γ + gβγξα a,γ, (3) and sets the infinitesimal group operators of the algebra G3 ˆXa = ξα a ∂α, [ ˆXa, ˆXb] = Cc ab ˆXc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (4) Let us consider electromagnetic field with potential Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For a charged test particle, moving in this external electromagnetic field, it has been proved, that the Hamilton-Jacobi equation: gijPiPj = m, Pi = pi + Ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (5) and the Klein-Gordon-Fock equation: ˆHϕ = (gij ˆPi ˆPj)ϕ = m2ϕ, ˆPk = ˆpk + Ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (6) admit the integrals of motion, which are given by Killing vectors: ˜Xα = ξi αpi (or ˆ˜Xα = ξi αˆpi), if and only if the conditions: ξα a ( ˜A),α = Cc ab ˜A (7) are satisfied (see papers [33]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Here pi = ∂iϕ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆpk = −ı ˆ∇k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ( ˆ∇k is the covariant deriva- tive operator corresponding to the partial derivative operator - ˆ∂i in the coordinate field ui), ϕ is a scalar function of particle with mass m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˜Aa = ξα a Aα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 3 The electromagnetic field whose potential satisfies condition (7) is called admissible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' All admissible electromagnetic fields for groups of motion Gr(N) (r ≤ 4), acting transitively on hypersurfaces of the spacetime, have been found in [33], [35], [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Solutions of the set of equations (7) for HPSS of type IX have the form: Aα = αa(u0)la α ⇒ Aa = lα aAα = αa(u0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (8) To prove this let’s find the frame vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' We will use the metric tensor of IX-type space by Bianchi, found in Petrov’s book [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' As it is known, the Bianchi type IX metric contains as a special case the space of constant positive curvature and therefore is of special interest for cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ds2 = du12[a11 − (a12 cos 2u3 + a22 sin 2u3)] + 2du1du3((a13 cos u3 − a23 sin u3)+ (9) +2du1du2[(a13 cos u3 − a23 sin u3) cos u1 + (a12 cos 2u3 − a22 sin 2u3) sin u1] +du22[a33cos u12 + (a23 cos u3 + a13 sin u3) sin 2u1 + (a12 sin 2u3 + a22 cos 2u3 + a11)sin u12] 2du2du3(a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1) + du32a33 + edu02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' aab are arbitrary functions on u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' To obtain the functions lα a , it is sufficient to consider the components g13, g23 from the system (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The solution has the form: la α = δp αla p(u1, u3) + δ3 αδa 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' From the equations: g13 = a13 cos u3 − a23 sin u3 = η3ala 1, g23 = a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1 = η3ala 1 it follows: la α = � � cos u3 − sin u3 0 sin u1 sin u3 sin u1 cos u3 cos u1 0 0 1 � � , lα a = � � cos u3 sin u3 sin u1 −cos u1 sin u3 sin u1 − sin u3 cos u3 sin u1 −cos u1 cos u3 sin u1 0 0 1 � � , (10) la αlα b = δa b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The lower index numbers the lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' One can show that the vector fields (10) satisfy the equations (1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (2): We present the components of the vectors ξα a in the form of a matrix: ||ξα a || = � � 0 1 0 cos u2 −cos u1 sin u2 sin u1 sin u2 sin u1 − sin u2 −cos u1 cos u2 sin u1 cos u2 sin u1 � � The components ˜Aα can be expressed through Aα as follows: ˜Aa = Zb aAb,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 4 where ||Zb a = ξα a lb α|| = � � sin u1 sin u3 sin u1 cos u3 cos u1 (cos u2 cos u3 − sin u2 sin u3 cos u1) −(cos u2 sin u3 + sin u2 cos u3 cos u1) sin u1 sin u2 −(sin u2 cos u3 + cos u2 sin u3 cos u1) (sin u2 sin u3 − cos u2 cos u3 cos u1) cos u2 sin u1 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' It can be shown by direct calculation that the elements of the matrix Zb a satisfy the equation: Zb a|c = Ca1 caZb a1, |a = lα a∂α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (11) Therefore, the equation (7) can be reduced to the form: ξα a Ab,α = 0 ⇒ Aa = αa(u0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (12) 3 Maxwell’s equations with zero electromagnetic field sources in a homogeneous spacetime All exact solutions of vacuum Maxwell equations for solvable groups have been found in the papers [40], [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' In the present paper the problem is solved for the group G3(IX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' We will use the first definition of homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Note, that for the space-time with the groups of motions G3(I) − G3(V I), G3(IX) both definitions are equivalent Consider the Maxwell equations with zero electromagnetic field sources in homogeneous space in the presence of an electromagnetic field invariant with respect to the group Gr: 1 √−g(√−gF ij),j = 0, (13) The metric tensor is defined by relations (1), the electromagnetic potential by the relations (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' When i = 0, from the set of equations (13) it follows: 1 √−g(√−ggαβF0β)α = 1 l (llα aηab ˙αb),α = ηabρa ˙αb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (14) Here it is denoted g = − det ||gαβ|| = −(ηl)2, where η2 = det ||ηαβ||, l = det ||la α||, ρa = lα a,α + l|a/l, the dots means the time derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Let i = α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Then from the equation (13) it follows: 1 η(ηgαβF0β),0 = 1 l (lgνβgαγFβγ),ν ⇒ 1 η(ηηablα a ˙αb),0 = 1 l (llν alβ b ηablα ˜alγ ˜b η˜a˜bFβγ),ν ⇒ (15) (ηηab ˙αb),0 = ηla α l (llβ b lα ˜a1lγ ˜b Fβγ)|a1ηa1bη˜a˜b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (16) Let us find components of Fαβ, using the relations (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Fαβ = (la β,α − la β,α)αa = lc βlγ c ld αlν d(la γ,ν − la ν,γ)αa = lb βla αlc γ(lγ a|b − lγ b|a)αc = lb βla αCc baαc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (17) Then (lF αβ),β = ηabη˜a˜bCd ˜bbαd((llα a)|˜a + llα alγ ˜a,γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (18) 5 Structural constants of a group G3 can be present in the form: Cc ab = Cc 12ε12 ˜a˜b + Cc 13ε13 ˜a˜b + Cc 23ε23 ˜a˜b, εAB ab = δA a δB b − δA b δB a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (19) Using the notations: σ1 = Ca 23αa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' σ2 = Ca 31αa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' σ3 = Ca 12αa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' γ1 = σ1η11 + σ2η12 + σ3η13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' γ2 = σ1η12 + σ2η22 + σ3η23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' γ3 = σ1η13 + σ2η23 + σ3η33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' let us reduce Maxwell’s equations (13) to the form: η(ηab ˙αb),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='0 = δa 1(γ1(C1 32) − γ2(C1 31 + ρ3) + γ3(C1 21 + ρ2)) + δa 2(γ1(C2 32 + ρ3)+ (20) γ2C2 13 − γ3(C2 12ρ1)) + δa 3(−γ1(C3 23 + ρ2) + γ2(C3 13 + ρ1) + γ3C3 21),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The order of the equations (20) can be decreased by introducing a new independent functions: βa = βa = ηηab ˙αb ⇒ η ˙αa = ηabβb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (21) Let us consider the Maxwell equations for the group G3(IX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' As in this case non zero structural constants are following: C3 12 = C2 31 = C1 23 = 1, functions σa, γ1 have the form: σ1 = α1, σ2 = α2, σ3 = α3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' γ1 = α1η11 + α2η12 + α3η13, γ2 = α1η12 + α2η22 + α3η23, γ1 = α1η13 + α2η23 + α3η33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Using these relations, we obtain Maxwell’s equations (14), (20) as a system of linear algebraic equations on the unknown functions nab: nab = ηab η ⇒ η = 1 det nab .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (22) ˆW ˆn = ˆω, (23) where ˆW = � � � � � � � � α1 α2 α3 0 0 0 β1 β2 β3 0 0 0 0 α1 0 α2 α3 0 0 β1 0 β2 β3 0 0 0 α1 0 α2 α3 0 0 β1 0 β2 β3 � � � � � � � � , (24) ˆnT = (n11, n12, n13, n22, n23, n33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆωT = (− ˙β1, ˙α1, − ˙β2, ˙α2, − ˙β3, ˙α3), 6 index T means the transposition of a matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Let us find the algebraic complement of the matrix ˆW : ˆV = � � � � � � � � β1V 2 1 −α1V 2 1 β2V 2 1 −α2V 2 1 β3V 2 1 −α3V 2 1 β1V1V2 −α1V1V2 β2V1V2 −α2V1V2 β3V1V2 −α3V1V2 β1V1V3 −α1V1V3 β2V1V3 −α2V1V3 β3V1V3 −α3V1V3 β1V 2 2 −α1V 2 2 β2V 2 2 −α2V 2 2 β3V 2 2 −α3V 2 2 β1V2V3 −α1V2V3 β2V2V3 −α2V2V3 β3V2V3 −α3V2V3 β1V 2 3 −α1V 2 3 β2V 2 3 −α2V 2 3 β3V 2 3 −α3V 2 3 � � � � � � � � (25) As ˆW is singular matrix,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆV is the annulling matrix for ˆW: ˆV ˆW = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (26) Therefore, one of the equations from the system (23) can be replaced by the equation: δab( ˙αa ˙αb + ˙βa ˙βb) ⇒ δab(αaαb + βaβb) = c2 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (27) Depending on the rank of the matrix ˆW, one or more functions nab are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The remaining functions nab can be expressed through them and through the functions αa, βa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For classification it is necessary to find non-equivalent solutions of the system (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Obviously, this system are symmetric with respect to the transposition lα 1 ↔ lα 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Therefore the reference indices a = 1 and a = 2 can be interchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Taking this observation into account, let us consider all non-equivalent options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 4 Solutions of Maxwell equations 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' a1V1 ̸= 0 ⇒ the minor ˆW12 and its inverse matrix ˆΩ = ˆW −1 12 have the form: ˆW12 = � � � � � � α2 α3 0 0 0 α1 0 α2 α3 0 β1 0 β2 β3 0 0 α1 0 α2 α3 0 β1 0 β2 β3 � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='(28) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='ˆΩ1 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− V2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− α3β2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2α3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− α3β3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2β2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2β3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='−α2α3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='(α3β1V1−α2β3V3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α3(α2V2−α1V1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='−α3β3V2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2V2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− V2V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2β2V2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2V2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='−α3β3‘V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2β2V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='− α2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2V3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='(α3β2V3−α2β1V1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α2(α1V1−α3V3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='α1V 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='(29) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Then the solution of equation (23) can be represented as: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='ˆn1 = ˆΩ1ˆω1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (30) were ˆnT 1 = (n12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆωT 1 = (−( ˙β1 + α1n11), − ˙β2, ˙α2, −β3, ˙α3), 7 Function n11, as well as the functions αa, βa are arbitrary functions of u0, that obey the condition (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' α2V1 ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ⇒ α1 = 0 ⇒ the minor ˆW −1 14 and its inverse matrix ˆΩ2 = ˆW −1 14 have the form: ˆW14 = � � � � � � α2 α3 0 0 0 β2 β3 0 0 0 0 0 α2 α3 0 0 0 0 α2 α3 0 β1 0 β2 β3 � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆΩ2 = � � � � � � � � β3 V1 −α3 V1 0 0 0 − β2 V1 α2 V1 0 0 0 a2 3β1β2 α2V 2 1 −α2 3β1 V 2 1 1 α2 − α3β3 α2V1 a2 3 α2V1 −a3β1β2 V 2 1 α2α3β1 V 2 1 0 β3 V1 − a3 V1 a2β1β2 V1 −α2 2β1 V1 0 − β2 V1 α2 V1 � � � � � � � � (31) Solution of the equation (23) can be represented as: ˆn2 = ˆΩˆω2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (32) were ˆnT 2 = (n12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆω2 = (− ˙β1, −β1n11, − ˙β2, − ˙β3, ˙α3) Function n11, as well as the functions αa, βa are arbitrary functions of u0, that obey the condition (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' a3V1 ̸= 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ⇒ a1 = a2 = 0 ⇒ the minor ˆW −1 16 and its inverse matrix ˆΩ3 = ˆW −1 16 have the form: ˆW16 = � � � � � � 0 a3 0 0 0 β2 β3 0 0 0 0 0 0 a3 0 β1 0 β2 β3 0 0 0 0 0 a3 � � � � � � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆΩ3 = � � � � � � � − β3 a3β2 1 β3 0 0 0 1 a3 0 0 0 0 β1β3 a3β2 2 − β1 β2 2 − β3 β2a3 1 β2 0 0 0 1 a3 0 0 0 0 0 0 1 a3 � � � � � � � (33) Then the solution of equation (23) can be represented as: ˆn3 = ˆΩ3ˆω3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (34) were ˆnT 3 = (n12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n22,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' n33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆωT 3 = (− ˙β1, −β1n11, − ˙β2, 0, − ˙β3) Function n11, as well as the functions α3, βa are arbitrary functions of u0, that obey the condition (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' a1V3 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ⇒ V1 = V2 = 0, otherwise, we get a solution equivalent to the previous ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' As V3 ̸= 0 ⇒ α3 = β3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The minor ˆW62 and its inverse matrix ˆΩ4 = ˆW −1 62 have 8 the form: ˆW26 = � � � � � � α1 α2 0 0 0 0 α1 0 a2 0 0 β1 0 β2 0 0 0 α1 0 α2 0 0 β1 0 β2 � � � � � � , ˆΩ4 = � � � � � � � 1 α1 − α2β2 α1V3 α2 2 α1V3 0 0 0 β2 V3 −α2 V3 0 0 0 0 0 β2 V3 −α2 V3 0 − β1 V3 α1 V3 0 0 0 0 0 − β1 V3 α1 V3 � � � � � � � (35) Then the solution of equation (23) can be represented as: ˆn4 = ˆΩ4ˆω4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (36) were ˆnT 4 = (n11, n12, n13, n22, n23);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆωT 4 = (− ˙β1, − ˙β2, ˙α2, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Function n33, as well as the functions α1, α2 βa are arbitrary functions of u0, that obey the condition (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Va = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Let us represent the system of Maxwell equations in the form: ˆQIˆnI = ˆωI were ˆQ = � � � � � � � � α1 α2 α3 0 0 0 0 α1 0 α2 α3 0 0 0 α1 0 α2 α3 β1 β2 β3 0 0 0 0 β1 0 β2 β3 0 0 0 β1 0 β2 β3 � � � � � � � � , (37) ˆωI = (ˆωβ, ˆωα);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆωβ = −( ˙β1, ˙β2, ˙β3), ˆωα = ( ˙α1, ˙α2, ˙α3) ˆnI = (ˆnα, ˆnβ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆnα = (n11, n12, n13), ˆnβ = (n22, n23, n33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' To provide the classification, it is sufficient to consider the options: 1) a1 ̸= 0, 2) a3 ̸= 0, a1 = a2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' a) a1 ̸= 0 ⇒ βa = αaβ1 α1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆWIˆnα = (ˆωβ − ˆQ1ˆnβ) ⇒ ˆnα = ˆW −1 I (ˆωβ − ˆQ1ˆnβ), β1 ˆWIˆnα = α1ˆωα − β1 ˆQ1ˆnβ ⇒ β1ˆωβ − α1ˆωα = 0 ⇒ � � � α1 ˙α2 + β1 ˙β2 = 0, α1 ˙α3 + β1 ˙β3 = 0, α1 ˙α1 + β1 ˙β1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ⇒ � � � α1 = e sin ϕ, β1 = e cos ϕ, e = const, α2 = ec2 sin ϕ, β1 = ec2 cos ϕ, e, c2 = const, α3 = ec3 sin ϕ, β1 = ec3 cos ϕ, e, c3 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' (38) 9 Here: ˆWI = � � α1 α2 α3 0 α1 0 0 0 α1 � � , ˆW −1 I = � � 1 α1 −α2 α2 1 −α3 α2 1 0 1 α1 0 0 0 1 α1 � � , ˆQI = � � 0 0 0 α2 α3 0 0 α2 α3, � � α1 = e sin ϕ, β1 = e cos ϕ, e, ca = const, Then matrices ˆWI, ˆW −1 I , ˆQI and lines ˆωT take the form: ˆWI = sin ϕ ˆP, ˆW −1 I = 1 sin ϕ ˆP −1, ˆQI = sin ϕ ˆQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ˆP = � � 1 c2 c3 0 1 0 0 0 1 � � , ˆP −1 = � � 1 −c2 −c3 0 1 0 0 0 1 � � , ˆQ = � � 0 0 0 c2 c3 0 0 c2 c3, � � ˆωT α = ˆωT β = ˙ϕ sin ϕ ˆCT = ˙ϕ sin ϕ(1, c2, c3), ˆnα = ˆw−1( ˙ϕ ˆCT − ˆQˆnβ) Function n22, n23, n33, as well as the function ϕ are arbitrary functions of u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' b) Va = 0, α3 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ⇒ β1 = β2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The system of Maxwell equations has the form: α3n13 = α3n23 = 0, α3n33 = − ˙β3, β3n33 = ˙α3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' a3 ˙a3 + β3 ˙β3 = 0 ⇒ a3 = c sin ϕ, β3 = cos ϕ From here: n33 = ˙ϕ, n13 = n23 = α1 = α2 = β1 = β2 = 0, α3 = c sin ϕ, β3 = c cos ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Functions ϕ, n11, n12, n22 - are arbitrary functions on u0, c = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 5 Conclusion It is known that homogeneous spaces of IV and IX types according to Bianchi classification include as special cases the spaces of constant curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='This causes a special interest to them in cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' In the Universe with the metric of homogeneous space all physical fields are invariant with respect to the group of motions of the space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Therefore, exactly such fields should be considered in the first place when solving the self-consistent Einstein equations, in particular the Einstein-Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The final goal of classification of PSS with admissible electromagnetic fields is to enumerate all electrovacuum solutions of the Einstein- Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' In [40], [41] the complete classification of vacuum solutions of the Maxwell equations for homogeneous spaces with solvable groups of motions has been carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' In the present paper the same problem is solved for HPSS of IX-type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' For the final decision of the first stage of the classification problem it remains to consider HPSS V III-type, which will be 10 done in the next paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The results obtained will be used in the second stage for integration of the corresponding Einstein-Maxwell equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' FUNDING: The work is supported by Russian Science Foundation, project number N 23- 21-00275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' INSTITUTIONAL REVIEW BOARD STATEMENT: Not applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' INFORMED CONSENT STATEMENT: Not applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available within the article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' CONFLICTS OF INTEREST: The author declares no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' References [1] Stackel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 49, (145-147 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [2] Eisenhart L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Separable systems of stackel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1934, 35, (284-305 pp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [3] Levi-Civita T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1904 59, (383-397 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [4] Jarov-Jrovoy M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Integration of Hamilton-Jacobi equation by complete sep- aration of variables method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='. 1963, 27, No 6, (173-219 pp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1016/0021-8928(63)90122-9;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [5] Carter B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' New family of Einstein spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1968, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='25, No 9 (399-400pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ), doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1016/0375-9601(68)90240-5 [6] Shapovalov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Symmetry and separation of variables in the Hamilton-Jacobi equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='. 1978, 21, 1124-1132pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1007/BF00894560;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [7] Shapovalov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Stackel‘s spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Sib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1979, 20, (1117-1130pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ), doi: org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1007/BF00971844;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Miller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry And Separation Of Variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Cambridge University Press:Cambridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1984, (318 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [9] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry, 12, 2020, 12891291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym12081289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [10] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys, 2020, 17, 14, 2050186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1142/S0219887820501868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [11] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equa- tions for a charged test particle in the stackel spaces of type (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2021, 18, 03, (2150036);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1142/S0219887821500365 11 [12] Odintsov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Editorial for Special Issue Feature Papers 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2023, 15, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym15010008 [13] McLenaghan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Rastelli G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' and Valero C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Complete separability of the Hamilton- Jacobi equation for the charged particle orbits in a Lienard-Wiehert field /em J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', /bf2020,61, (122903).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='0030305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [14] Mitsopoulos A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Tsamparlis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Leon G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Paliathanasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Paliathanasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' New conserva- tion laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2021, 13(8):1364, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym13081364 [15] Claudio Dappiaggi, Benito A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Juarez-Aubry, Alessio Marta Ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' State for the Klein- Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 105, 105017 doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='105017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [16] Francisco Astorga, J Felix Salazar and Thomas Zannias On the integrability of the geodesic flow on a Friedmann-Robertson-Walker spacetime Physica Scripta, 2018, 93, 8, 93 085205 doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1088/1402-4896/aacd44 [17] Capozziello S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', De Laurentis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Odintsov D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Hamiltonian dynamics and Noether sym- metries in extended gravity cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2012, C72, 2068 (22 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ), doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1140/epjc/s10052-012-2068-0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [18] Salih Kibaroglu, Oktay Cebecioglu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Generalized cosmological constant from gauging Maxwell-conformal algebra, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='B, 2020, 803, 135295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='135295 [19] Nojiri Shin’ichi, Odintsov Sergei D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Faraoni Valerio, Searching for dynamical black holes in various theories of gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2021, 103, 4, 044055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='044055 [20] Epp V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Pervukhina O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' The Stormer problem for an aligned rotator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' MNRAS, 2018 474, (5330-5339) doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1093/mnras/stx3102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [21] Epp V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Masterova M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Effective potential energy for relativistic particles in the field of inclined rotating magnetized sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Astrophys Space Sci, 2014, 353, (473-483).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1007/s10509-014-2066-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [22] Kumaran Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Ovgun A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Deflection angle and shadow of the reissner-nordstrom black hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 14, 2054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym14102054 [23] Osetrin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Osetrin E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Shapovalov wave-like spacetimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry 2020, 12, 1372.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/SYM12081372.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [24] Osetrin E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Osetrin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Filippov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1) Stackel Spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Russian Physics Journal 2019, 62, 292-301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1007/s11182-019-01711-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 12 [25] Osetrin K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Osetrin E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' and Osetrina E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Plus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 137, (856).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1140/epjp/s13360-022-03061-3 [26] Osetrin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Osetrin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Osetrina, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' C 2022, 82, 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1140/epjc/s10052-022-10852-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [27] Shapovalov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Shirokov I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Noncommutative integration method for linear partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' functional algebras and dimensional reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Theoret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' And Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 1996, 106:1, (1-10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='4213/tmf1093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [28] Shapovalov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Breev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Symmetry 2023, 15, 282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym15020282 [29] Breev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Shapovalov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Non-commutative integration of the Dirac equation in ho- mogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry 2020, 12, 1867.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [30] Breev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Shapovalov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Yang–Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2014, 563, 012004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [31] Magazev A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=',Boldyreva M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Schrodinger equations in electromagnetic fields: symmetries and noncommutative integration, Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2021, 13, (1527).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym13081527 [32] Magazev A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='and Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', 2012, 173:3, (1654-1667).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1007/s11232- 012-0139-x, arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/abs/1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='5698;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [33] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Algebra of symmetry operators for Klein-Gordon-Fock Equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symme- try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2021, 13, 727 (15p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym13040727.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [34] Odintsov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Editorial for Feature Papers 2021-2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2023, 15, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym15010032 [35] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act transitively on null subsurfaces of spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 14, (346).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym14020346 [36] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Algebras of integrals of motion for the Hamilton-Jacobi and Klein- Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 63, Issue 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='0080703 [37] Stephani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Kramer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', MacCallum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Hoenselaers, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Herlt, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Exact Solu- tions of Einstein’s Field Equations (2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Cambridge Monographs on Mathematical Physics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='2003 Cambridge: Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1017/CBO9780511535185 [38] Landau L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Lifshits E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Theoretical physics, Field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 7th ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Moskow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='(vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' II): Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='-Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' lit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' - (512 p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' ISBN 5-02-014420-7 13 [39] Petrov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Einstein Spaces, Oxford, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' [40] Obukhov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 8, (245).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/universe8040245 [41] Obukhov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Maxwell Equations in Homogeneous Spaces with Solvable Groups of Mo- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' 2022, 14, (2595).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='3390/sym14122595 [42] Stephani H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Kramer D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', MacCallum M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Hoenselaers C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=', Herlt E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' Exact Solu- tions of Einstein’s Field Equations Second Edition, 2003, Cambrige university press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content=' doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} +page_content='1017/CBO9780511535185 14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NFJT4oBgHgl3EQfoSxe/content/2301.11595v1.pdf'} diff --git a/AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf b/AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c52d4a9d6884f432928ec56ca65d1866bed0549c --- /dev/null +++ b/AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:85ff01e4afcfd815466ba709f50a9c56f2cf3234cb25d1fa4e5b4d9d696cc842 +size 1557622 diff --git a/AtAyT4oBgHgl3EQfd_hU/vector_store/index.pkl b/AtAyT4oBgHgl3EQfd_hU/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3cea233e6389f7cf3ac4179c113a121e13177a67 --- /dev/null +++ b/AtAyT4oBgHgl3EQfd_hU/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd9d0350675397ee7798f1507a39a04c70a6735eee63fb82710631ae8bcda6ca +size 101954 diff --git a/BNE0T4oBgHgl3EQfxwK1/vector_store/index.pkl b/BNE0T4oBgHgl3EQfxwK1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8ef1fc3ba1be3ec179ad254bee07c4e2d86b5482 --- /dev/null +++ b/BNE0T4oBgHgl3EQfxwK1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fdf45de1c585fd45d4f6d0fd1ed53602817fae67409208cf1ad0e4a6f0bd7c3a +size 169124 diff --git a/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/2301.02652v1.pdf.txt b/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/2301.02652v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a8aa3409ec95b07aa963b10d80e41b846935275e --- /dev/null +++ b/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/2301.02652v1.pdf.txt @@ -0,0 +1,1334 @@ +Draft version January 9, 2023 +Typeset using LATEX twocolumn style in AASTeX631 +Diverse Carbonates in Exoplanet Oceans Promote the Carbon Cycle +Kaustubh Hakim +,1 Meng Tian +,1 Dan J. Bower +,1 and Kevin Heng +2, 3, 4 +1University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland +2Ludwig Maximilian University, University Observatory Munich, Scheinerstrasse 1, Munich D-81679, Germany +3University of Warwick, Department of Physics, Astronomy & Astrophysics Group, Coventry CV4 7AL, United Kingdom +4University of Bern, ARTORG Center for Biomedical Engineering Research, Murtenstrasse 50, CH-3008, Bern, Switzerland +ABSTRACT +Carbonate precipitation in oceans is essential for the carbonate-silicate cycle (inorganic carbon cycle) +to maintain temperate climates. +By considering the thermodynamics of carbonate chemistry, we +demonstrate that the ocean pH decreases by approximately 0.5 for a factor of 10 increase in the +atmospheric carbon dioxide content. The upper and lower limits of ocean pH are within 1–4 of each +other, where the upper limit is buffered by carbonate precipitation and defines the ocean pH when +the carbon cycle operates. If the carbonate compensation depth (CCD) resides above the ocean floor, +then carbonate precipitation and the carbon cycle cease to operate. +The CCD is deep (>40 km) +for high ocean temperature and high atmospheric carbon dioxide content. Key divalent carbonates of +magnesium, calcium and iron produce an increasingly wider parameter space of deep CCDs, suggesting +that chemical diversity promotes the carbon cycle. The search for life from exoplanets will benefit by +including chemically more diverse targets than Earth twins. +Keywords: Extrasolar rocky planets (511); Carbon dioxide (196); Habitable zone (696); Ocean- +atmosphere interactions (1150); Geological processes (2288); (Unified Astronomy Thesaurus) +1. INTRODUCTION +The carbonate-silicate cycle, also known as the in- +organic carbon cycle, is a negative climate feedback +mechanism that stabilises the surface temperature via +the greenhouse effect of carbon dioxide in response +to changes in volcanism rates, stellar luminosity, at- +mospheric composition and opacity, planetary orbital +movements and spin axis tilt (Berner 2004; Catling +& Kasting 2017). +Continental silicate rocks and at- +mospheric carbon dioxide react with water in a pro- +cess known as silicate weathering to produce carbonate- +forming ions that precipitate as carbonates onto the +ocean floor (Walker et al. 1981). +The carbon cycle +is completed when carbonates are transferred into the +mantle for deep storage or carbon is eventually re- +leased back into the atmosphere by volcanism (Holland +1978; Sleep & Zahnle 2001), although the degassing ef- +Corresponding author: Kaustubh Hakim +kaustubh.hakim@unibe.ch +ficiency is debated (Kelemen & Manning 2015; Foley +2015). Silicate weathering and carbonate precipitation +are traditionally represented by the net chemical reac- +tion (Walker et al. 1981), +CaSiO3 + CO2 → CaCO3 + SiO2, +(1) +where wollastonite (CaSiO3), which serves as a proxy for +silicate rocks, is converted into calcite (CaCO3). Cal- +cium thus plays a crucial role in silicate weathering and +carbonate precipitation and is present as Ca2+ cations +in oceans (Sect. 2). +The existence of habitable zones assumes that the +carbon cycle operates on Earth analogues to stabilise +their atmospheric carbon dioxide content (Kasting et al. +1993). +Implicitly, this assumes not only that silicate +weathering operates, but that ocean floor precipitation +and deep storage of carbonates also occur. There exists +a critical ocean depth known as the carbonate compen- +sation depth (CCD), below which carbonates are unable +to exist in their solid form because carbonate solubility +increases with pressure in the ocean (Zeebe & West- +broek 2003, see also Sect. 2.3, Figure 1). In modern +arXiv:2301.02652v1 [astro-ph.EP] 6 Jan 2023 + +ID2 +CCD +!"#$# +%&'( +Ocean Depth +%)*+,- +%&'( ≤ %,/0 +1)*+,- = 13456 = 1 +!78'(,#$# +Carbonates +Silicates +Dissolved ions +Figure 1. Model parameters, nDtot where D = Ca, Mg or +Fe, nSiO2,tot, PCO2, Patm, Poc and T. See Sect. 2 and Table 1 +for a full list of output quantities and description. +Earth oceans, the CCD is located between 4–5 km, be- +low the average ocean depth of about 3.8 km (Zeebe +2012). If the CCD resides at a depth above the ocean +floor, then carbonates are unable to settle. This leads +to the disruption of the carbon cycle—at least, as it is +understood to operate on Earth. Moreover, there are +currently no theoretical constraints on exoplanet ocean +chemistry. We investigate the interplay between atmo- +spheric carbon dioxide content, ocean acidity (pH) and +carbonate precipitation. +We then calculate the CCD +over a broad range of physical conditions. +2. METHODS +2.1. Ocean chemistry model +2.1.1. Ca system +Ocean chemistry is modelled by considering thermo- +chemical equilibrium for pure Ca, Mg, or Fe systems. +The CO2 partial pressure PCO2, ocean–surface temper- +ature T and local ocean pressure Poc are control pa- +rameters (Figure 1, Table 1). In the Ca system, there +are 13 unknowns, the number density n of H+, OH−, +H2O, HCO− +3 , CO2− +3 , CO2(aq), Catot, Ca2+, SiO2,tot, +SiO2(aq), quartz SiO2(s), wollastonite CaSiO3(s) and +calcite CaCO3(s). Out of the 13 unknowns, 2 are conti- +nental silicate weathering products, nCatot and nSiO2,tot, +that depend on PCO2 and T (Sect. +2.2). +There are +11 remaining unknowns. We solve for 3 mass conserva- +tion equations (for H, Ca and SiO2), 1 charge balance +equation, and 7 equations from 7 chemical reactions pro- +viding relations between equilibrium constants (that de- +pend on Poc and T), reactants and products. +Table 1. Parameters and output quantities. +Symbol +Description +Reference +Parameters for ocean chemistry +T +Ocean–Surface temperature +288 K +PCO2 +CO2 partial pressure +0.3 mbar +Patm +Atmospheric pressure +1 bar +Poc +Ocean layer pressure +1 bar +Parameters for weathering +nDtot,0 +Ca, Mg or Fe ref. number density +1 m−3 +β +Weathering power-law exponent +0.3 +Te +e-folding temperature +13.7 K +Output quantities +nX +Number density of X [m−3] +pH +–log10(nH+/n0); n0 = 103 m−3 +These 3 mass-conservation equations, 1 charge balance +equation and 7 reactions (water dissociation, Henry’s +law/physical CO2 dissolution, chemical CO2 dissolu- +tion, bicarbonate ion dissociation, calcite precipitation, +quartz precipitation and wollastonite precipitation) are +specified below. Henry’s law gives the amount of CO2 +physically dissolved in ocean water in equilibrium with +PCO2: +CO2(g) ⇌ CO2(aq). +(2) +The chemical dissolution or dissociation of CO2 in ocean +water leads to the production of HCO− +3 and H+ ions and +thereby increases the ocean acidity (and decreases ocean +pH = − log10(nH+/n0), where the standard number den- +sity n0 = 1 m−3) by the following reaction: +CO2(g) + H2O ⇌ H+ + HCO− +3 . +(3) +To maintain the charge balance in ocean water, the ad- +dition of Ca2+ to oceans decreases the number density +of H+ and hence increases the ocean pH. The charge +balance equation is given by: +2nCa2+ + nH+ = nHCO− +3 + 2nCO2− +3 ++ nOH−, +(4) +where CO2− +3 +is produced due to the bicarbonate disso- +ciation reaction: +HCO− +3 ⇌ CO2− +3 ++ H+, +(5) +and where OH− is produced due to the water dissocia- +tion reaction: +H2O ⇌ H+ + OH−. +(6) + +3 +The mass conservation of H is given by +nHtot = 2nH2O + nH+ + nHCO− +3 . +(7) +Catot partitions into Ca2+, calcite and wollastonite +which is accounted for by mass conservation: +nCatot = nCa2+ + nCal + nWo. +(8) +Calcite precipitation occurs when nCa2+ is saturated to +a certain value determined by the equilibrium constant +of the calcite precipitation reaction and the abundance +of nCO2− +3 : +Ca2+ + CO2− +3 +⇌ CaCO3(s). +(9) +SiO2,tot partitions into aqueous silica SiO2(aq), quartz +SiO2(s) and wollastonite CaSiO3(s). The mass conser- +vation for SiO2 is given by: +nSiO2,tot = nSiO2(aq) + nQz + nWo. +(10) +The quartz precipitation reaction is: +SiO2(aq) ⇌ SiO2(s). +(11) +The reaction of wollastonite precipitation is given by: +Ca2+ + SiO2(aq) + H2O ⇌ 2H+ + CaSiO3(s). +(12) +These equilibrium chemistry calculations are per- +formed using Reaktoro v2 (Leal 2015), a multi-phase +(aqueous, gas and solid mineral phases) chemistry soft- +ware. +This software implements the extended law of +mass action including the determination of stable and +unstable species for a given set of species in the system +(Leal et al. 2017). +We use the SUPCRTBL database +for thermodynamic data (Johnson et al. 1992; Zimmer +et al. 2016), the Peng-Robinson activity model for gases +(Peng & Robinson 1976), the HKF activity model for +water (Helgeson et al. 1981) and the Drummond activ- +ity model for CO2(aq) (Drummond 1981). +2.1.2. Mg and Fe systems +In the Mg system, Ca is replaced by Mg, calcite +by magnesite MgCO3(s) and wollastonite by enstatite +Mg2Si2O6(s). This includes replacing equilibrium con- +stants of all reactions including Mg. Similarly, in the +Fe system, Ca is replaced by Fe, calcite by siderite +FeCO3(s) and wollastonite by fayalite Fe2SiO4(s). We +limit our calculations to Fe2+ although its oxidation has +inhibited the formation of siderite during Earth’s his- +tory, particularly since the great oxidation event (Rye +et al. 1995). +2.2. Weathering model +The introduction of carbonate-producing divalent +cations in oceans is dictated by silicate weathering. Sil- +icate weathering and therefore the total number density +of divalent cations D2+ (D = Ca, Mg or Fe) must depend +on the CO2 partial pressure PCO2 and surface tempera- +ture T (Walker et al. 1981; Hakim et al. 2021), +nDtot = fW (PCO2, T) = nDtot,0 +� PCO2 +PCO2,0 +�β +exp +�T − T0 +Te +� +, +(13) +where ‘0’ represents the Earth reference values (Table 1), +Te = 13.7 K is the e-folding temperature and β = 0.3 is +the weathering power-law exponent (Walker et al. 1981). +However, not all added Ca (or Mg, Fe) in oceans re- +mains in the form of divalent cations, a fraction of it +precipitates as carbonates on the ocean floor and an- +other fraction as silicates. For this reason, we perform +partitioning calculations of Ca (or Mg, Fe) in different +phases following the ocean chemistry model (Sect. 2.1). +2.3. CCD model +Carbonates are deposited onto the ocean floor as part +of sediments. The transition from calcite-rich to calcite- +free sediments is gradual. The carbonate compensation +depth (CCD) for the Earth ocean is normally defined +as the depth at which the dissolution flux of calcite bal- +ances the precipitation flux (Zeebe 2012). The depth +at which the rapid dissolution of calcite-rich sediments +begins is known as the lysocline, which is a sediment +property (Zeebe & Westbroek 2003). The lysocline and +CCD serve as bounds on the transition zone (∼0.5 km) +between calcite-rich and calcite-free sediments. Other +definitions for the CCD exist (Berger et al. 1976; Ridg- +well & Zeebe 2005; Zeebe 2012). The depth of ocean d +[km] in terms of ocean pressure Poc [bar] at the equator +is given by (Leroy & Parthiot 1998) +d = +1 +9.7803 × 103 + 0.011Poc (97.266Poc − 2.512 × 10−3P 2 +oc ++ 2.28 × 10−7P 3 +oc − 1.8 × 10−11P 4 +oc). +(14) +We consider the CCD to be the depth dCCD (equiv- +alent to the ocean pressure where Poc = PCCD) at +which 99.9% of near-surface (Poc = Psurf) Ca, Mg or +Fe-carbonates dissolve, +nCarb,CCD = 0.001 nCarb,surf. +(15) +Our calculations of CCD are performed up to dCCD = +45 km because of the availability of thermodynamic data +up to the pressure of 5000 bar (Zimmer et al. 2016). This +limitation does not affect our conclusions. + +4 +2.4. Analytical solution of ocean pH +Upper limit of ocean pH. For calcite precipitation, all +reactions in Section 2 need to be satisfied. However, two +of these reactions can be used to analytically constrain +ocean pH: Equations 9 and 16 where Equation 16 is a +combination of Equations 3 and 5, +CO2(g) + H2O ⇌ 2H+ + CO2− +3 . +(16) +The ocean pH can be written as a function of PCO2, +nCa2+ and equilibrium constants of Equations 9 and 16 +(Appendix A): +pH = −1 +2 +� +log PCO2 + log K9K16 + log nCa2+ +n0 +� +. (17) +This equation demonstrates the reason for the slope of +approximately −0.5 for the upper limit of ocean pH as a +function of the logarithm (base 10) of PCO2. Because K9 +and K16 are constants at a fixed T and P, pH becomes +a function of only PCO2 and nCa2+ in Equation 17. As a +function of PCO2, nCa2+ at the limit of carbonate satura- +tion varies between ∼0.1 m−3 (at PCO2 = 0.01 µbar) and +∼6 m−3 (at PCO2 = 0.3 bar). This additional increase +in nCa2+ of less than two orders of magnitude over seven +orders of magnitude increase in PCO2, makes the slope +of ocean pH slightly steeper than −0.5 (see Fig. A1). +Using nCa2+ from the numerical solution in Equation 17 +results in a semi-analytical solution matching with the +numerical solution until PCO2 = 0.1 bar, beyond which +non-ideal effects accounted in the numerical solution ex- +hibit a small deviation from the analytical equation. +Lower limit of ocean pH. In the absence of divalent +cations in ocean, the ocean pH is largely governed by the +conversion of CO2 to protons (Equation 3). For PCO2 > +1 µbar, the ocean is acidic, where the number density of +H+ is larger than that of OH− and the number density +of HCO− +3 is larger than CO2− +3 +(bicarbonate-carbonate- +water equilibria, Wolf-Gladrow et al. 2007). Therefore, +the charge balance equation can be approximated as +nH+ = nHCO− +3 . +(18) +In terms of the equilibrium constant of Equation 3, this +leads to (Appendix A) +pH = −1 +2 (log PCO2 + log K3) . +(19) +At a fixed T and P, K3 is constant and thus the ocean +pH exhibits a slope of −0.5 for PCO2 > 1 µbar (Fig. A1). +For PCO2 < 1 µbar, the analytical solution does not +hold because the number density of OH− is significant +enough to make the charge balance approximation in +Equation 18 invalid. +The lower limit of ocean pH is +independent of the Ca, Mg or Fe systems considered. +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +(a) +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Forbidden +Ca +nCa, tot = fW(PCO2) +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +(b) +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Forbidden +Mg +nMg, tot = fW(PCO2) +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +(c) +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Forbidden +Fe +nFe, tot = fW(PCO2) +Figure 2. +Sensitivity of ocean pH to PCO2 at T = 288 K for +pure (a) Ca, (b) Mg, (c) Fe systems. Upper and lower bounds +of ocean pH are represented by the blue shaded region. Pink +shaded regions are forbidden. + +5 +3. RESULTS AND DISCUSSION +We consider the ocean pH to be determined by the +chemical dissolution of atmospheric carbon dioxide in +a well-mixed ocean, which occurs at the atmosphere– +ocean interface. The chemical dissolution of CO2 is gov- +erned by the reaction between water and CO2 to produce +H+, HCO− +3 and CO2− +3 +ions (Sect. 2). As PCO2 increases, +the ocean becomes more acidic. We consider an atmo- +spheric surface pressure of 1 bar, but allow the atmo- +spheric carbon dioxide content to vary via PCO2. Atmo- +spheric surface pressures up to 100 bar have a negligible +effect on our results and those between 100–1000 bar +exhibit a small effect (Fig. A2a). +For a given value of PCO2, the ocean pH is bounded +between two limits (Fig. 2a). The ocean pH is restricted +to a narrow range between 7–11 at PCO2 = 0.01 µbar +and 4–7 for PCO2 = 0.1 bar. These ocean pH ranges +are consistent with the inferences for Earth’s history, +transitioning from an acidic ocean during the Archean +at high PCO2 to an alkaline ocean at present-day PCO2 +(Halevy & Bachan 2017; Krissansen-Totton et al. 2018). +The lower limit corresponds to the complete absence of +divalent cations and thus it is independent of the car- +bonate system under investigation (Sect. 2). The upper +limit corresponds to the saturation of calcium cations +in ocean water such that more weathering does not pro- +duce further changes in pH and simply produces more +calcite. This upper limit is buffered by the precipita- +tion of carbonates and hence it results in one solution +of ocean pH when the carbon cycle is operational for +a given carbonate system and PCO2. Both upper and +lower limits of ocean pH follow a slope of approximately +–0.5 as a function of PCO2 (see Sect. +2.4). +Between +these two limits, the number density of calcium cations +is below the threshold to precipitate carbonates onto the +ocean floor; thus, the carbon cycle is not operational. +Due to their high condensation temperatures, the +relative abundances of refractory elements observed in +the photosphere of stars are expected to be mirrored +in the rocky exoplanets they host (Bond et al. 2010; +Thiabaud et al. 2015). +For example, the calcium-to- +magnesium ratio of the solar photosphere and Earth are +0.062 and 0.066, respectively (Lodders 2003; Elser et al. +2012). The relative abundances of Ca, Mg and Fe, mea- +sured from the spectra of stars, vary by up to an or- +der of magnitude. For example, Ca/Mg=0.02–0.2 and +Ca/Fe=0.04–0.2 in the Hypatia catalogue of more than +7000 stars (Hinkel et al. 2014). Furthermore, carbonates +involving Mg and Fe are known to have formed during +Earth’s history: e.g., magnesite (MgCO3) and siderite +(FeCO3); these carbonates have dissolution properties +that differ from those of calcite. +Siderite could have +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(a) +nCa, tot = 100 m +3 +nCa, tot = 1 m +3 +Carbon Cycle +No Carbon Cycle +(cations consumed +by silicates) +No Carbon Cycle +(too little CO2) +No Carbon Cycle +(too acidic) +nCa, tot = fW(PCO2, T) +Ca-CCD +1 +2 +4 +10 +20 +40 +CCD [km] +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(b) +nMg, tot = 100 m +3 +nMg, tot = 1 m +3 +Carbon Cycle +No Carbon Cycle +(cations consumed +by slicates) +No Carbon Cycle +(too little CO2) +No Carbon Cycle +(too acidic) +nMg, tot = fW(PCO2, T) +Mg-CCD +1 +2 +4 +10 +20 +40 +CCD [km] +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(c) +nFe, tot = 100 m +3 +nFe, tot = 1 m +3 +Carbon Cycle +No Carbon Cycle +(cations consumed +by slicates) +nFe, tot = fW(PCO2, T) +Fe-CCD +1 +2 +4 +10 +20 +40 +CCD [km] +Figure 3. Carbonate compensation depth (CCD) as a func- +tion of PCO2 and T (Patm = 1 bar) for (a) Ca, (b) Mg and +(c) Fe systems. +Gray contours represent the weathering- +dependent cation number density as a function of PCO2 and +T (Eq. 13). Gray disc denotes modern Earth PCO2 and T. + +6 +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(a) +nCa, tot = fW(PCO2) +Ca Partitioning +Ca++ +Calcite +Silicates +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(b) +nMg, tot = fW(PCO2) +Mg Partitioning +Mg++ +Magnesite +Silicates +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(c) +nFe, tot = fW(PCO2) +Fe Partitioning +Fe++ +Siderite +Silicates +Figure 4. +Partitioning of (a) Ca, (b) Mg and (c) Fe in +aqueous, carbonate and silicate phases as a function of PCO2 +at T = 310 K (Patm = Poc = 1 bar) in pure Ca, Mg and Fe +systems, respectively. +played a key role in locking up CO2 in carbonates on +Earth during the Archean (Rye et al. 1995; Sverjensky +& Lee 2010). We calculate ocean pH for the pure Mg and +Fe systems in addition to the Ca system (Fig. 2b,c). The +upper limit of ocean pH for a given PCO2 varies when +considering systems with purely Ca, Mg or Fe as the +source of weathering cations. The upper limit of ocean +pH for the Mg system is only 0.2 higher than for the Ca +system, whereas it is more than unity lower for the Fe +system. +For PCO2 < 10 µbar, ocean chemistry and hence +the CCD is sensitive to the addition of aqueous silica +(SiO2) in the ocean (Fig. 3). Silica is another product +of silicate weathering, which enables the locking up of +cations in silicate minerals instead of carbonate minerals +(Walker et al. 1981; Hakim et al. 2021). For instance, +for T > 300 K and PCO2 < 0.1 µbar in the Ca sys- +tem in the presence of aqueous silica, silicates impinge +on the stability of calcite (Fig. 4a) and prevent carbon- +ate precipitation at all depths (Fig. 3a). +In contrast, +when no silica is present in the ocean for T > 300 K +and PCO2 < 0.1 µbar, calcite is stable (Fig. B2a) and +deep CCDs are produced (Fig. B1a), thereby increasing +the parameter-space where the carbon cycle is stable. +Similarly, in the Mg and Fe systems, silicates are more +stable than carbonates for PCO2 < 10 µbar (Fig. 4b,c). +PCO2 > 10 µbar favours the thermodynamic stability of +carbonates over silicates. +Carbon cycle box models of exoplanets often omit self- +consistent modelling of ocean chemistry and precipita- +tion of carbonates. Carbonate precipitation is implicitly +assumed to persist and is not expected to be a bottle- +neck for carbon cycling. +Our ocean chemistry model +can be incorporated directly into carbon cycle box mod- +els for exoplanets, which can couple via key parameters, +PCO2, T, and the carbonate chemistry. Thermochemi- +cal equilibrium calculations of our ocean model can be +used to determine the carbon fluxes into or out of the +near-surface reservoirs. +The carbon cycle box models +can also be informed of the effect of ocean chemistry +and ocean depth on the efficiency of carbon degassing +and recycling. +Upcoming observations of terrestrial exoplanets from +the James Webb Space Telescope, Atmospheric Remote- +sensing Infrared Exoplanet Large-survey and Extremely +Large Telescopes will put constraints on their atmo- +spheric composition, for instance, the volume mixing +ratio of atmospheric carbon dioxide (PCO2/P). Deter- +mining the partial pressure of carbon dioxide (PCO2) +requires the atmospheric surface pressure (P) which is +not easily constrained. Nonetheless, our thermodynamic +calculations provide strong constraints on ocean chem- + +7 +istry in the presence or absence of magnesium, calcium +or iron carbonates; the relative abundances of these +carbonate-forming elements in planetary systems can +be deduced from observations of stellar photospheres. +Our results suggest that the carbon cycle will oper- +ate robustly on chemically-diverse terrestrial exoplanets +exhibiting silicate weathering. +This implies that the +search for life from exoplanets with temperate climates +or biospheres will benefit by broadening the target list +to planets that are more chemically diverse than Earth. +We acknowledge financial support from the European +Research Council via Consolidator Grant (ERC-2017- +CoG-771620-EXOKLEIN, awarded to K. Heng) and the +Center for Space and Habitability, University of Bern. +We thank Allan Leal for the support with Reaktoro. +DATA AVAILABILITY +All data generated or analysed during this study are +included in the published article. +CODE AVAILABILITY +OCRA (Ocean Chemistry with Reaktoro And beyond): +the open-source code developed in this work is hosted +at https://github.com/kaustubhhakim/ocra. OCRA v1.0 +was used in this study and is also available on Zenodo +(Hakim 2022). +Software: +numpy (Harris et al. 2020), scipy (Vir- +tanen et al. 2020), pandas (The pandas development +team 2020), astropy (Astropy Collaboration et al. +2013, 2022), matplotlib (Hunter 2007), Reaktoro (Leal +2015) +APPENDIX +A. ANALYTICAL SOLUTION OF OCEAN PH AND +P–T SENSITIVITY +The analytical solution for the upper limit of ocean +pH is derived from the relations between the equilibrium +constants and reactants and products (assuming water +activity to be unity in diluted solutions) of reactions +described by Equations 9 and 16, +K9 = +n2 +0 +nCa2+nCO2− +3 +, +(A1) +K16 = +n2 +H+nCO2− +3 +PCO2n3 +0 +. +(A2) +By eliminating the carbonate ion number density from +these two equations, proton number density is +nH+ +n0 += +� +PCO2K9K16 +nCa2+ +n0 +�1/2 +(A3) +Because the pH is given by +pH = − log(nH+/n0), +(A4) +the analytical upper limit of ocean pH is Equation 17. +The analytical solution for the lower limit of ocean +pH is derived from the the equilibrium constant of the +reaction described by Equation 3, +K3 = +nH+nHCO− +3 +PCO2n2 +0 +. +(A5) +Then the proton number density is +nH+ +n0 += K3PCO2n0 +nHCO− +3 +(A6) +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Ca +Up (numerical) +Up (semi-analytical) +Up (ana., nCa2 + = 1 m +3) +Low (numerical) +Low (analytical) +Figure A1. Numerical, analytical and semi-analytical so- +lutions of the upper and lower limits of ocean pH in the Ca +system. +Thus, the lower limit of ocean pH is given by Equation +19. +The analytical solutions of upper and lower limits of +ocean pH as a function of PCO2 result in a slope of –0.5 +(Fig. A1). Pressure and temperature have a negligible +effect on ocean pH (Fig. A2). + +8 +100 +101 +102 +103 +P [bar] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +(a) +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Forbidden +Ca +nCa, tot = fW(PCO2) +280 +300 +320 +340 +360 +T [K] +4 +5 +6 +7 +8 +9 +10 +11 +Ocean pH +(b) +Carbon Cycle +No Carbon Cycle +Modern +Earth pH +Forbidden +Forbidden +Ca +nCa, tot = fW(PCO2) +Figure A2. The sensitivity of ocean pH to (a) P and (b) T +in the Ca-system. +B. CCD WITHOUT SILICATE PRECIPITATION +When no silicates are allowed to precipitate, CCDs for +the Ca, Mg and Fe systems become deeper for PCO2 < +1 µbar (Fig. B1). This is reflected in the phase stability +plots in Fig. B2. +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(a) +nCa, tot = 100 m +3 +nCa, tot = 1 m +3 +Carbon Cycle +No Carbon Cycle +(too little CO2) +No Carbon Cycle +(too acidic) +nCa, tot = fW(PCO2, T) +Ca CCD +1 +2 +4 +10 +20 +40 +CCD [km] +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(b) +nMg, tot = 100 m +3 +nMg, tot = 1 m +3 +Carbon Cycle +No Carbon Cycle +(too little CO2) +No Carbon Cycle +(too acidic) +nMg, tot = fW(PCO2, T) +Mg CCD +1 +2 +4 +10 +20 +40 +CCD [km] +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +280 +300 +320 +340 +360 +T [K] +(c) +nFe, tot = 100 m +3 +nFe, tot = 1 m +3 +Carbon Cycle +nFe, tot = fW(PCO2, T) +Fe CCD +1 +2 +4 +10 +20 +40 +CCD [km] +Figure B1. Same as Fig. 3 but with no silica nSiO2,tot = 0. + +9 +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(a) +nCa, tot = fW(PCO2) +Ca Partitioning +Ca++ +Calcite +Silicates +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(b) +nMg, tot = fW(PCO2) +Mg Partitioning +Mg++ +Magnesite +Silicates +10 +8 +10 +7 +10 +6 +10 +5 +10 +4 +10 +3 +10 +2 +10 +1 +PCO2 [bar] +10 +1 +100 +101 +n [m +3] +(c) +nFe, tot = fW(PCO2) +Fe Partitioning +Fe++ +Siderite +Silicates +Figure B2. Same as Fig. 4 but with no silica nSiO2,tot = 0. + +10 +REFERENCES +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., +et al. 2013, A&A, 558, A33, +doi: 10.1051/0004-6361/201322068 +Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., +et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74 +Berger, W. H., Adelseck, C. G., J., & Mayer, L. A. 1976, +J. Geophys. Res., 81, 2617, +doi: 10.1029/JC081i015p02617 +Berner, R. A. 2004, The Phanerozoic carbon cycle: CO2 +and O2 (Oxford University Press on Demand) +Bond, J. C., O’Brien, D. P., & Lauretta, D. S. 2010, ApJ, +715, 1050, doi: 10.1088/0004-637X/715/2/1050 +Catling, D. C., & Kasting, J. F. 2017, Atmospheric +Evolution on Inhabited and Lifeless Worlds (Cambridge +University Press) +Drummond, S. 1981, PhD thesis, Pennsylvania State +University +Elser, S., Meyer, M. R., & Moore, B. 2012, Icarus, 221, 859, +doi: 10.1016/j.icarus.2012.09.016 +Foley, B. J. 2015, ApJ, 812, 36, +doi: 10.1088/0004-637X/812/1/36 +Hakim, K. 2022, kaustubhhakim/ocra: OCRA, v1.0, +Zenodo, doi: 10.5281/zenodo.7380526. +https://doi.org/10.5281/zenodo.7380526 +Hakim, K., Bower, D. J., Tian, M., et al. 2021, PSJ, 2, 49, +doi: 10.3847/PSJ/abe1b8 +Halevy, I., & Bachan, A. 2017, Science, 355, 1069, +doi: 10.1126/science.aal4151 +Harris, C. R., Millman, K. J., van der Walt, S. J., et al. +2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2 +Helgeson, H. C., Kirkham, D. H., & Flowers, G. C. 1981, +American Journal of Science, 281, 1249, +doi: 10.2475/ajs.281.10.1249 +Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D., +& Turnbull, M. C. 2014, AJ, 148, 54, +doi: 10.1088/0004-6256/148/3/54 +Holland, H. D. 1978, The chemistry of the atmosphere and +oceans (New York, NY (USA) Wiley-Interscience) +Hunter, J. D. 2007, Computing in Science & Engineering, 9, +90, doi: 10.1109/MCSE.2007.55 +Johnson, J. W., Oelkers, E. H., & Helgeson, H. C. 1992, +Computers and Geosciences, 18, 899, +doi: 10.1016/0098-3004(92)90029-Q +Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, +Icarus, 101, 108, doi: 10.1006/icar.1993.1010 +Kelemen, P. B., & Manning, C. E. 2015, Proceedings of the +National Academy of Science, 112, E3997, +doi: 10.1073/pnas.1507889112 +Krissansen-Totton, J., Arney, G. N., & Catling, D. C. 2018, +Proceedings of the National Academy of Science, 115, +4105, doi: 10.1073/pnas.1721296115 +Leal, A. M. M. 2015, Reaktoro: An open-source unified +framework for modeling chemically reactive systems, 2.0. +https://reaktoro.org +Leal, A. M. M., Kulik, D. A., Smith, W. R., & Saar, M. O. +2017, Pure and Applied Chemistry, 89, 597, +doi: doi:10.1515/pac-2016-1107 +Leroy, C. C., & Parthiot, F. 1998, Acoustical Society of +America Journal, 103, 1346, doi: 10.1121/1.421275 +Lodders, K. 2003, ApJ, 591, 1220, doi: 10.1086/375492 +Peng, D.-Y., & Robinson, D. B. 1976, Industrial & +Engineering Chemistry Fundamentals, 15, 59 +Ridgwell, A., & Zeebe, R. E. 2005, Earth and Planetary +Science Letters, 234, 299, doi: 10.1016/j.epsl.2005.03.006 +Rye, R., Kuo, P. H., & Holland, H. D. 1995, Nature, 378, +603, doi: 10.1038/378603a0 +Sleep, N. H., & Zahnle, K. 2001, J. Geophys. Res., 106, +1373, doi: 10.1029/2000JE001247 +Sverjensky, D., & Lee, N. 2010, Elements, 6, 31, +doi: 10.2113/gselements.6.1.31 +The pandas development team. 2020, pandas-dev/pandas: +Pandas, latest, Zenodo, doi: 10.5281/zenodo.3509134. +https://doi.org/10.5281/zenodo.3509134 +Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I., & +Mezger, K. 2015, A&A, 580, A30, +doi: 10.1051/0004-6361/201525963 +Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, +Nature Methods, 17, 261, +doi: https://doi.org/10.1038/s41592-019-0686-2 +Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, +J. Geophys. Res., 86, 9776, +doi: 10.1029/JC086iC10p09776 +Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., K¨ortzinger, +A., & Dickson, A. G. 2007, Marine Chemistry, 106, 287, +doi: https://doi.org/10.1016/j.marchem.2007.01.006 +Zeebe, R. E. 2012, Annual Review of Earth and Planetary +Sciences, 40, 141, +doi: 10.1146/annurev-earth-042711-105521 +Zeebe, R. E., & Westbroek, P. 2003, Geochemistry, +Geophysics, Geosystems, 4, 1104, +doi: 10.1029/2003GC000538 +Zimmer, K., Zhang, Y., Lu, P., et al. 2016, Computers and +Geosciences, 90, 97, doi: 10.1016/j.cageo.2016.02.013 + diff --git a/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/load_file.txt b/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..db6814a8030bba7e25ec1d42a0e7f1daf9bdbd32 --- /dev/null +++ b/BdE0T4oBgHgl3EQfyAIA/content/tmp_files/load_file.txt @@ -0,0 +1,598 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf,len=597 +page_content='Draft version January 9, 2023 Typeset using LATEX twocolumn style in AASTeX631 Diverse Carbonates in Exoplanet Oceans Promote the Carbon Cycle Kaustubh Hakim ,1 Meng Tian ,1 Dan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Bower ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 and Kevin Heng 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 4 1University of Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Center for Space and Habitability,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Gesellschaftsstrasse 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' CH-3012 Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Switzerland 2Ludwig Maximilian University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' University Observatory Munich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Scheinerstrasse 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Munich D-81679,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Germany 3University of Warwick,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Astronomy & Astrophysics Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Coventry CV4 7AL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' United Kingdom 4University of Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' ARTORG Center for Biomedical Engineering Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Murtenstrasse 50,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' CH-3008,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Bern,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Switzerland ABSTRACT Carbonate precipitation in oceans is essential for the carbonate-silicate cycle (inorganic carbon cycle) to maintain temperate climates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' By considering the thermodynamics of carbonate chemistry, we demonstrate that the ocean pH decreases by approximately 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 for a factor of 10 increase in the atmospheric carbon dioxide content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The upper and lower limits of ocean pH are within 1–4 of each other, where the upper limit is buffered by carbonate precipitation and defines the ocean pH when the carbon cycle operates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' If the carbonate compensation depth (CCD) resides above the ocean floor, then carbonate precipitation and the carbon cycle cease to operate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The CCD is deep (>40 km) for high ocean temperature and high atmospheric carbon dioxide content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Key divalent carbonates of magnesium, calcium and iron produce an increasingly wider parameter space of deep CCDs, suggesting that chemical diversity promotes the carbon cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The search for life from exoplanets will benefit by including chemically more diverse targets than Earth twins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Keywords: Extrasolar rocky planets (511);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Carbon dioxide (196);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Habitable zone (696);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Ocean- atmosphere interactions (1150);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Geological processes (2288);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (Unified Astronomy Thesaurus) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' INTRODUCTION The carbonate-silicate cycle, also known as the in- organic carbon cycle, is a negative climate feedback mechanism that stabilises the surface temperature via the greenhouse effect of carbon dioxide in response to changes in volcanism rates, stellar luminosity, at- mospheric composition and opacity, planetary orbital movements and spin axis tilt (Berner 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Catling & Kasting 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Continental silicate rocks and at- mospheric carbon dioxide react with water in a pro- cess known as silicate weathering to produce carbonate- forming ions that precipitate as carbonates onto the ocean floor (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The carbon cycle is completed when carbonates are transferred into the mantle for deep storage or carbon is eventually re- leased back into the atmosphere by volcanism (Holland 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Sleep & Zahnle 2001), although the degassing ef- Corresponding author: Kaustubh Hakim kaustubh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='hakim@unibe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='ch ficiency is debated (Kelemen & Manning 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Foley 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Silicate weathering and carbonate precipitation are traditionally represented by the net chemical reac- tion (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981), CaSiO3 + CO2 → CaCO3 + SiO2, (1) where wollastonite (CaSiO3), which serves as a proxy for silicate rocks, is converted into calcite (CaCO3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Cal- cium thus plays a crucial role in silicate weathering and carbonate precipitation and is present as Ca2+ cations in oceans (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The existence of habitable zones assumes that the carbon cycle operates on Earth analogues to stabilise their atmospheric carbon dioxide content (Kasting et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Implicitly, this assumes not only that silicate weathering operates, but that ocean floor precipitation and deep storage of carbonates also occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' There exists a critical ocean depth known as the carbonate compen- sation depth (CCD), below which carbonates are unable to exist in their solid form because carbonate solubility increases with pressure in the ocean (Zeebe & West- broek 2003, see also Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3, Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' In modern arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='02652v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='EP] 6 Jan 2023 ID2 CCD !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' "#$# %&\'( Ocean Depth %)*+,- %&\'( ≤ %,/0 1)*+,- = 13456 = 1 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content="78'(,#$# Carbonates Silicates Dissolved ions Figure 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Model parameters, nDtot where D = Ca, Mg or Fe, nSiO2,tot, PCO2, Patm, Poc and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' See Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2 and Table 1 for a full list of output quantities and description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Earth oceans, the CCD is located between 4–5 km, be- low the average ocean depth of about 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='8 km (Zeebe 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' If the CCD resides at a depth above the ocean floor, then carbonates are unable to settle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This leads to the disruption of the carbon cycle—at least, as it is understood to operate on Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Moreover, there are currently no theoretical constraints on exoplanet ocean chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We investigate the interplay between atmo- spheric carbon dioxide content, ocean acidity (pH) and carbonate precipitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We then calculate the CCD over a broad range of physical conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' METHODS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Ocean chemistry model 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Ca system Ocean chemistry is modelled by considering thermo- chemical equilibrium for pure Ca, Mg, or Fe systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The CO2 partial pressure PCO2, ocean–surface temper- ature T and local ocean pressure Poc are control pa- rameters (Figure 1, Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' In the Ca system, there are 13 unknowns, the number density n of H+, OH−, H2O, HCO− 3 , CO2− 3 , CO2(aq), Catot, Ca2+, SiO2,tot, SiO2(aq), quartz SiO2(s), wollastonite CaSiO3(s) and calcite CaCO3(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Out of the 13 unknowns, 2 are conti- nental silicate weathering products, nCatot and nSiO2,tot, that depend on PCO2 and T (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' There are 11 remaining unknowns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We solve for 3 mass conserva- tion equations (for H, Ca and SiO2), 1 charge balance equation, and 7 equations from 7 chemical reactions pro- viding relations between equilibrium constants (that de- pend on Poc and T), reactants and products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Parameters and output quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Symbol Description Reference Parameters for ocean chemistry T Ocean–Surface temperature 288 K PCO2 CO2 partial pressure 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3 mbar Patm Atmospheric pressure 1 bar Poc Ocean layer pressure 1 bar Parameters for weathering nDtot,0 Ca, Mg or Fe ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' number density 1 m−3 β Weathering power-law exponent 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3 Te e-folding temperature 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='7 K Output quantities nX Number density of X [m−3] pH –log10(nH+/n0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' n0 = 103 m−3 These 3 mass-conservation equations, 1 charge balance equation and 7 reactions (water dissociation, Henry’s law/physical CO2 dissolution, chemical CO2 dissolu- tion, bicarbonate ion dissociation, calcite precipitation, quartz precipitation and wollastonite precipitation) are specified below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Henry’s law gives the amount of CO2 physically dissolved in ocean water in equilibrium with PCO2: CO2(g) ⇌ CO2(aq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (2) The chemical dissolution or dissociation of CO2 in ocean water leads to the production of HCO− 3 and H+ ions and thereby increases the ocean acidity (and decreases ocean pH = − log10(nH+/n0), where the standard number den- sity n0 = 1 m−3) by the following reaction: CO2(g) + H2O ⇌ H+ + HCO− 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (3) To maintain the charge balance in ocean water, the ad- dition of Ca2+ to oceans decreases the number density of H+ and hence increases the ocean pH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The charge balance equation is given by: 2nCa2+ + nH+ = nHCO− 3 + 2nCO2− 3 + nOH−, (4) where CO2− 3 is produced due to the bicarbonate disso- ciation reaction: HCO− 3 ⇌ CO2− 3 + H+, (5) and where OH− is produced due to the water dissocia- tion reaction: H2O ⇌ H+ + OH−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (6) 3 The mass conservation of H is given by nHtot = 2nH2O + nH+ + nHCO− 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (7) Catot partitions into Ca2+, calcite and wollastonite which is accounted for by mass conservation: nCatot = nCa2+ + nCal + nWo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (8) Calcite precipitation occurs when nCa2+ is saturated to a certain value determined by the equilibrium constant of the calcite precipitation reaction and the abundance of nCO2− 3 : Ca2+ + CO2− 3 ⇌ CaCO3(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (9) SiO2,tot partitions into aqueous silica SiO2(aq), quartz SiO2(s) and wollastonite CaSiO3(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The mass conser- vation for SiO2 is given by: nSiO2,tot = nSiO2(aq) + nQz + nWo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (10) The quartz precipitation reaction is: SiO2(aq) ⇌ SiO2(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (11) The reaction of wollastonite precipitation is given by: Ca2+ + SiO2(aq) + H2O ⇌ 2H+ + CaSiO3(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (12) These equilibrium chemistry calculations are per- formed using Reaktoro v2 (Leal 2015), a multi-phase (aqueous, gas and solid mineral phases) chemistry soft- ware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This software implements the extended law of mass action including the determination of stable and unstable species for a given set of species in the system (Leal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We use the SUPCRTBL database for thermodynamic data (Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Zimmer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2016), the Peng-Robinson activity model for gases (Peng & Robinson 1976), the HKF activity model for water (Helgeson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981) and the Drummond activ- ity model for CO2(aq) (Drummond 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Mg and Fe systems In the Mg system, Ca is replaced by Mg, calcite by magnesite MgCO3(s) and wollastonite by enstatite Mg2Si2O6(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This includes replacing equilibrium con- stants of all reactions including Mg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Similarly, in the Fe system, Ca is replaced by Fe, calcite by siderite FeCO3(s) and wollastonite by fayalite Fe2SiO4(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We limit our calculations to Fe2+ although its oxidation has inhibited the formation of siderite during Earth’s his- tory, particularly since the great oxidation event (Rye et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Weathering model The introduction of carbonate-producing divalent cations in oceans is dictated by silicate weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Sil- icate weathering and therefore the total number density of divalent cations D2+ (D = Ca, Mg or Fe) must depend on the CO2 partial pressure PCO2 and surface tempera- ture T (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Hakim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2021), nDtot = fW (PCO2, T) = nDtot,0 � PCO2 PCO2,0 �β exp �T − T0 Te � , (13) where ‘0’ represents the Earth reference values (Table 1), Te = 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='7 K is the e-folding temperature and β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3 is the weathering power-law exponent (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' However, not all added Ca (or Mg, Fe) in oceans re- mains in the form of divalent cations, a fraction of it precipitates as carbonates on the ocean floor and an- other fraction as silicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For this reason, we perform partitioning calculations of Ca (or Mg, Fe) in different phases following the ocean chemistry model (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' CCD model Carbonates are deposited onto the ocean floor as part of sediments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The transition from calcite-rich to calcite- free sediments is gradual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The carbonate compensation depth (CCD) for the Earth ocean is normally defined as the depth at which the dissolution flux of calcite bal- ances the precipitation flux (Zeebe 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The depth at which the rapid dissolution of calcite-rich sediments begins is known as the lysocline, which is a sediment property (Zeebe & Westbroek 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The lysocline and CCD serve as bounds on the transition zone (∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 km) between calcite-rich and calcite-free sediments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Other definitions for the CCD exist (Berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Ridg- well & Zeebe 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Zeebe 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The depth of ocean d [km] in terms of ocean pressure Poc [bar] at the equator is given by (Leroy & Parthiot 1998) d = 1 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='7803 × 103 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='011Poc (97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='266Poc − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='512 × 10−3P 2 oc + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='28 × 10−7P 3 oc − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='8 × 10−11P 4 oc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (14) We consider the CCD to be the depth dCCD (equiv- alent to the ocean pressure where Poc = PCCD) at which 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='9% of near-surface (Poc = Psurf) Ca, Mg or Fe-carbonates dissolve, nCarb,CCD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='001 nCarb,surf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (15) Our calculations of CCD are performed up to dCCD = 45 km because of the availability of thermodynamic data up to the pressure of 5000 bar (Zimmer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This limitation does not affect our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Analytical solution of ocean pH Upper limit of ocean pH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For calcite precipitation, all reactions in Section 2 need to be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' However, two of these reactions can be used to analytically constrain ocean pH: Equations 9 and 16 where Equation 16 is a combination of Equations 3 and 5, CO2(g) + H2O ⇌ 2H+ + CO2− 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (16) The ocean pH can be written as a function of PCO2, nCa2+ and equilibrium constants of Equations 9 and 16 (Appendix A): pH = −1 2 � log PCO2 + log K9K16 + log nCa2+ n0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (17) This equation demonstrates the reason for the slope of approximately −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 for the upper limit of ocean pH as a function of the logarithm (base 10) of PCO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Because K9 and K16 are constants at a fixed T and P, pH becomes a function of only PCO2 and nCa2+ in Equation 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' As a function of PCO2, nCa2+ at the limit of carbonate satura- tion varies between ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 m−3 (at PCO2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='01 µbar) and ∼6 m−3 (at PCO2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3 bar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This additional increase in nCa2+ of less than two orders of magnitude over seven orders of magnitude increase in PCO2, makes the slope of ocean pH slightly steeper than −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Using nCa2+ from the numerical solution in Equation 17 results in a semi-analytical solution matching with the numerical solution until PCO2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 bar, beyond which non-ideal effects accounted in the numerical solution ex- hibit a small deviation from the analytical equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Lower limit of ocean pH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' In the absence of divalent cations in ocean, the ocean pH is largely governed by the conversion of CO2 to protons (Equation 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For PCO2 > 1 µbar, the ocean is acidic, where the number density of H+ is larger than that of OH− and the number density of HCO− 3 is larger than CO2− 3 (bicarbonate-carbonate- water equilibria, Wolf-Gladrow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Therefore, the charge balance equation can be approximated as nH+ = nHCO− 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (18) In terms of the equilibrium constant of Equation 3, this leads to (Appendix A) pH = −1 2 (log PCO2 + log K3) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (19) At a fixed T and P, K3 is constant and thus the ocean pH exhibits a slope of −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 for PCO2 > 1 µbar (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For PCO2 < 1 µbar, the analytical solution does not hold because the number density of OH− is significant enough to make the charge balance approximation in Equation 18 invalid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The lower limit of ocean pH is independent of the Ca, Mg or Fe systems considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 4 5 6 7 8 9 10 11 Ocean pH (a) Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Forbidden Ca nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 4 5 6 7 8 9 10 11 Ocean pH (b) Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Forbidden Mg nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 4 5 6 7 8 9 10 11 Ocean pH (c) Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Forbidden Fe nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Sensitivity of ocean pH to PCO2 at T = 288 K for pure (a) Ca, (b) Mg, (c) Fe systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Upper and lower bounds of ocean pH are represented by the blue shaded region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Pink shaded regions are forbidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' RESULTS AND DISCUSSION We consider the ocean pH to be determined by the chemical dissolution of atmospheric carbon dioxide in a well-mixed ocean, which occurs at the atmosphere– ocean interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The chemical dissolution of CO2 is gov- erned by the reaction between water and CO2 to produce H+, HCO− 3 and CO2− 3 ions (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' As PCO2 increases, the ocean becomes more acidic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We consider an atmo- spheric surface pressure of 1 bar, but allow the atmo- spheric carbon dioxide content to vary via PCO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Atmo- spheric surface pressures up to 100 bar have a negligible effect on our results and those between 100–1000 bar exhibit a small effect (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For a given value of PCO2, the ocean pH is bounded between two limits (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The ocean pH is restricted to a narrow range between 7–11 at PCO2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='01 µbar and 4–7 for PCO2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' These ocean pH ranges are consistent with the inferences for Earth’s history, transitioning from an acidic ocean during the Archean at high PCO2 to an alkaline ocean at present-day PCO2 (Halevy & Bachan 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Krissansen-Totton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The lower limit corresponds to the complete absence of divalent cations and thus it is independent of the car- bonate system under investigation (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The upper limit corresponds to the saturation of calcium cations in ocean water such that more weathering does not pro- duce further changes in pH and simply produces more calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This upper limit is buffered by the precipita- tion of carbonates and hence it results in one solution of ocean pH when the carbon cycle is operational for a given carbonate system and PCO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Both upper and lower limits of ocean pH follow a slope of approximately –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 as a function of PCO2 (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Between these two limits, the number density of calcium cations is below the threshold to precipitate carbonates onto the ocean floor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' thus, the carbon cycle is not operational.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Due to their high condensation temperatures, the relative abundances of refractory elements observed in the photosphere of stars are expected to be mirrored in the rocky exoplanets they host (Bond et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Thiabaud et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For example, the calcium-to- magnesium ratio of the solar photosphere and Earth are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='062 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='066, respectively (Lodders 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Elser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The relative abundances of Ca, Mg and Fe, mea- sured from the spectra of stars, vary by up to an or- der of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For example, Ca/Mg=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='02–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2 and Ca/Fe=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='04–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2 in the Hypatia catalogue of more than 7000 stars (Hinkel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Furthermore, carbonates involving Mg and Fe are known to have formed during Earth’s history: e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', magnesite (MgCO3) and siderite (FeCO3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' these carbonates have dissolution properties that differ from those of calcite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Siderite could have 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (a) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle No Carbon Cycle (cations consumed by silicates) No Carbon Cycle (too little CO2) No Carbon Cycle (too acidic) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Ca-CCD 1 2 4 10 20 40 CCD [km] 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (b) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle No Carbon Cycle (cations consumed by slicates) No Carbon Cycle (too little CO2) No Carbon Cycle (too acidic) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Mg-CCD 1 2 4 10 20 40 CCD [km] 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (c) nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle No Carbon Cycle (cations consumed by slicates) nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Fe-CCD 1 2 4 10 20 40 CCD [km] Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Carbonate compensation depth (CCD) as a func- tion of PCO2 and T (Patm = 1 bar) for (a) Ca, (b) Mg and (c) Fe systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Gray contours represent the weathering- dependent cation number density as a function of PCO2 and T (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Gray disc denotes modern Earth PCO2 and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 6 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (a) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Ca Partitioning Ca++ Calcite Silicates 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (b) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Mg Partitioning Mg++ Magnesite Silicates 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (c) nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Fe Partitioning Fe++ Siderite Silicates Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Partitioning of (a) Ca, (b) Mg and (c) Fe in aqueous, carbonate and silicate phases as a function of PCO2 at T = 310 K (Patm = Poc = 1 bar) in pure Ca, Mg and Fe systems, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' played a key role in locking up CO2 in carbonates on Earth during the Archean (Rye et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Sverjensky & Lee 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We calculate ocean pH for the pure Mg and Fe systems in addition to the Ca system (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2b,c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The upper limit of ocean pH for a given PCO2 varies when considering systems with purely Ca, Mg or Fe as the source of weathering cations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The upper limit of ocean pH for the Mg system is only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2 higher than for the Ca system, whereas it is more than unity lower for the Fe system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For PCO2 < 10 µbar, ocean chemistry and hence the CCD is sensitive to the addition of aqueous silica (SiO2) in the ocean (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Silica is another product of silicate weathering, which enables the locking up of cations in silicate minerals instead of carbonate minerals (Walker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Hakim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' For instance, for T > 300 K and PCO2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 µbar in the Ca sys- tem in the presence of aqueous silica, silicates impinge on the stability of calcite (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 4a) and prevent carbon- ate precipitation at all depths (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' In contrast, when no silica is present in the ocean for T > 300 K and PCO2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1 µbar, calcite is stable (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B2a) and deep CCDs are produced (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B1a), thereby increasing the parameter-space where the carbon cycle is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Similarly, in the Mg and Fe systems, silicates are more stable than carbonates for PCO2 < 10 µbar (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 4b,c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' PCO2 > 10 µbar favours the thermodynamic stability of carbonates over silicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Carbon cycle box models of exoplanets often omit self- consistent modelling of ocean chemistry and precipita- tion of carbonates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Carbonate precipitation is implicitly assumed to persist and is not expected to be a bottle- neck for carbon cycling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Our ocean chemistry model can be incorporated directly into carbon cycle box mod- els for exoplanets, which can couple via key parameters, PCO2, T, and the carbonate chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Thermochemi- cal equilibrium calculations of our ocean model can be used to determine the carbon fluxes into or out of the near-surface reservoirs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The carbon cycle box models can also be informed of the effect of ocean chemistry and ocean depth on the efficiency of carbon degassing and recycling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Upcoming observations of terrestrial exoplanets from the James Webb Space Telescope, Atmospheric Remote- sensing Infrared Exoplanet Large-survey and Extremely Large Telescopes will put constraints on their atmo- spheric composition, for instance, the volume mixing ratio of atmospheric carbon dioxide (PCO2/P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Deter- mining the partial pressure of carbon dioxide (PCO2) requires the atmospheric surface pressure (P) which is not easily constrained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Nonetheless, our thermodynamic calculations provide strong constraints on ocean chem- 7 istry in the presence or absence of magnesium, calcium or iron carbonates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' the relative abundances of these carbonate-forming elements in planetary systems can be deduced from observations of stellar photospheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Our results suggest that the carbon cycle will oper- ate robustly on chemically-diverse terrestrial exoplanets exhibiting silicate weathering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This implies that the search for life from exoplanets with temperate climates or biospheres will benefit by broadening the target list to planets that are more chemically diverse than Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We acknowledge financial support from the European Research Council via Consolidator Grant (ERC-2017- CoG-771620-EXOKLEIN, awarded to K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Heng) and the Center for Space and Habitability, University of Bern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' We thank Allan Leal for the support with Reaktoro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' DATA AVAILABILITY All data generated or analysed during this study are included in the published article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' CODE AVAILABILITY OCRA (Ocean Chemistry with Reaktoro And beyond): the open-source code developed in this work is hosted at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='com/kaustubhhakim/ocra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' OCRA v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='0 was used in this study and is also available on Zenodo (Hakim 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Software: numpy (Harris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2020), scipy (Vir- tanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2020), pandas (The pandas development team 2020), astropy (Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2013, 2022), matplotlib (Hunter 2007), Reaktoro (Leal 2015) APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' ANALYTICAL SOLUTION OF OCEAN PH AND P–T SENSITIVITY The analytical solution for the upper limit of ocean pH is derived from the relations between the equilibrium constants and reactants and products (assuming water activity to be unity in diluted solutions) of reactions described by Equations 9 and 16, K9 = n2 0 nCa2+nCO2− 3 , (A1) K16 = n2 H+nCO2− 3 PCO2n3 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (A2) By eliminating the carbonate ion number density from these two equations, proton number density is nH+ n0 = � PCO2K9K16 nCa2+ n0 �1/2 (A3) Because the pH is given by pH = − log(nH+/n0), (A4) the analytical upper limit of ocean pH is Equation 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The analytical solution for the lower limit of ocean pH is derived from the the equilibrium constant of the reaction described by Equation 3, K3 = nH+nHCO− 3 PCO2n2 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' (A5) Then the proton number density is nH+ n0 = K3PCO2n0 nHCO− 3 (A6) 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 4 5 6 7 8 9 10 11 Ocean pH Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Ca Up (numerical) Up (semi-analytical) Up (ana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', nCa2 + = 1 m 3) Low (numerical) Low (analytical) Figure A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Numerical, analytical and semi-analytical so- lutions of the upper and lower limits of ocean pH in the Ca system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Thus, the lower limit of ocean pH is given by Equation 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The analytical solutions of upper and lower limits of ocean pH as a function of PCO2 result in a slope of –0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Pressure and temperature have a negligible effect on ocean pH (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 8 100 101 102 103 P [bar] 4 5 6 7 8 9 10 11 Ocean pH (a) Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Forbidden Ca nCa, tot = fW(PCO2) 280 300 320 340 360 T [K] 4 5 6 7 8 9 10 11 Ocean pH (b) Carbon Cycle No Carbon Cycle Modern Earth pH Forbidden Forbidden Ca nCa, tot = fW(PCO2) Figure A2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' The sensitivity of ocean pH to (a) P and (b) T in the Ca-system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' CCD WITHOUT SILICATE PRECIPITATION When no silicates are allowed to precipitate, CCDs for the Ca, Mg and Fe systems become deeper for PCO2 < 1 µbar (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' This is reflected in the phase stability plots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (a) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle No Carbon Cycle (too little CO2) No Carbon Cycle (too acidic) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Ca CCD 1 2 4 10 20 40 CCD [km] 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (b) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle No Carbon Cycle (too little CO2) No Carbon Cycle (too acidic) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Mg CCD 1 2 4 10 20 40 CCD [km] 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 280 300 320 340 360 T [K] (c) nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 100 m 3 nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = 1 m 3 Carbon Cycle nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T) Fe CCD 1 2 4 10 20 40 CCD [km] Figure B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 3 but with no silica nSiO2,tot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (a) nCa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Ca Partitioning Ca++ Calcite Silicates 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (b) nMg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Mg Partitioning Mg++ Magnesite Silicates 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 PCO2 [bar] 10 1 100 101 n [m 3] (c) nFe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' tot = fW(PCO2) Fe Partitioning Fe++ Siderite Silicates Figure B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 4 but with no silica nSiO2,tot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 10 REFERENCES Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2013, A&A, 558, A33, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Lim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2022, ApJ, 935, 167, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3847/1538-4357/ac7c74 Berger, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Adelseck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Mayer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1976, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', 81, 2617, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1029/JC081i015p02617 Berner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2004, The Phanerozoic carbon cycle: CO2 and O2 (Oxford University Press on Demand) Bond, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', O’Brien, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Lauretta, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2010, ApJ, 715, 1050, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1088/0004-637X/715/2/1050 Catling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2017, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press) Drummond, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981, PhD thesis, Pennsylvania State University Elser, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Meyer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Moore, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2012, Icarus, 221, 859, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='icarus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='016 Foley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2015, ApJ, 812, 36, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1088/0004-637X/812/1/36 Hakim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2022, kaustubhhakim/ocra: OCRA, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='0, Zenodo, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='7380526.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='7380526 Hakim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Bower, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Tian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2021, PSJ, 2, 49, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3847/PSJ/abe1b8 Halevy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Bachan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2017, Science, 355, 1069, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='aal4151 Harris, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Millman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2020, Nature, 585, 357, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1038/s41586-020-2649-2 Helgeson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Kirkham, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Flowers, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981, American Journal of Science, 281, 1249, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2475/ajs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1249 Hinkel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Timmes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Young, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Pagano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Turnbull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2014, AJ, 148, 54, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1088/0004-6256/148/3/54 Holland, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1978, The chemistry of the atmosphere and oceans (New York, NY (USA) Wiley-Interscience) Hunter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2007, Computing in Science & Engineering, 9, 90, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1109/MCSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='55 Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Oelkers, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Helgeson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1992, Computers and Geosciences, 18, 899, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1016/0098-3004(92)90029-Q Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Whitmire, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Reynolds, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1993, Icarus, 101, 108, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1006/icar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1010 Kelemen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Manning, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2015, Proceedings of the National Academy of Science, 112, E3997, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1507889112 Krissansen-Totton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Arney, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Catling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2018, Proceedings of the National Academy of Science, 115, 4105, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1721296115 Leal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2015, Reaktoro: An open-source unified framework for modeling chemically reactive systems, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' https://reaktoro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='org Leal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Kulik, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Smith, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Saar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2017, Pure and Applied Chemistry, 89, 597, doi: doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1515/pac-2016-1107 Leroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Parthiot, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1998, Acoustical Society of America Journal, 103, 1346, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1121/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='421275 Lodders, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2003, ApJ, 591, 1220, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1086/375492 Peng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Robinson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1976, Industrial & Engineering Chemistry Fundamentals, 15, 59 Ridgwell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Zeebe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2005, Earth and Planetary Science Letters, 234, 299, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='epsl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='006 Rye, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Kuo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Holland, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1995, Nature, 378, 603, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1038/378603a0 Sleep, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Zahnle, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2001, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', 106, 1373, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1029/2000JE001247 Sverjensky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Lee, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2010, Elements, 6, 31, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2113/gselements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='31 The pandas development team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2020, pandas-dev/pandas: Pandas, latest, Zenodo, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3509134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='3509134 Thiabaud, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Marboeuf, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Alibert, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Leya, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Mezger, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2015, A&A, 580, A30, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1051/0004-6361/201525963 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Oliphant, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2020, Nature Methods, 17, 261, doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1038/s41592-019-0686-2 Walker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Hays, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Kasting, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 1981, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', 86, 9776, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1029/JC086iC10p09776 Wolf-Gladrow, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Zeebe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Klaas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', K¨ortzinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Dickson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2007, Marine Chemistry, 106, 287, doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='marchem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='006 Zeebe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2012, Annual Review of Earth and Planetary Sciences, 40, 141, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1146/annurev-earth-042711-105521 Zeebe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', & Westbroek, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2003, Geochemistry, Geophysics, Geosystems, 4, 1104, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1029/2003GC000538 Zimmer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', Lu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content=' 2016, Computers and Geosciences, 90, 97, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='cageo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} +page_content='013' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE0T4oBgHgl3EQfyAIA/content/2301.02652v1.pdf'} diff --git a/BdE3T4oBgHgl3EQftAtl/content/tmp_files/2301.04672v1.pdf.txt b/BdE3T4oBgHgl3EQftAtl/content/tmp_files/2301.04672v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4fe578d46e898eda2561ae27bb126dbf1f19806e --- /dev/null +++ b/BdE3T4oBgHgl3EQftAtl/content/tmp_files/2301.04672v1.pdf.txt @@ -0,0 +1,897 @@ +Astronomy & Astrophysics manuscript no. VMS +©ESO 2023 +January 13, 2023 +Clues on the presence and segregation of very massive stars in +the Sunburst Lyman-continuum cluster at z=2.37⋆ +U. Meštri´c1,⋆⋆, E. Vanzella1, A. Upadhyaya2, F. Martins3, R. Marques-Chaves2, D. Schaerer2, 4, +J. Guibert2, A. Zanella5, C. Grillo6, 7, P. Rosati8, F. Calura1, G.B. Caminha9, 10, A. Bolamperti5, 11, 12, +M. Meneghetti1, P. Bergamini1, 6, A. Mercurio13, 14, M. Nonino15, R. Pascale1 +1 INAF – OAS, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, I-40129 Bologna, Italy +2 Geneva Observatory, Department of Astronomy, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland +3 LUPM, Université de Montpellier, CNRS, Place Eugène Bataillon, F-34095 Montpellier, France +4 CNRS, IRAP, 14 Avenue E. Belin, 31400 Toulouse, France +5 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy +6 Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy +7 INAF – IASF Milano, via A. Corti 12, I-20133 Milano, Italy +8 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, I-44122 Ferrara, Italy +9 Technical University of Munich, TUM School of Natural Sciences, Department of Physics, James-Franck-Str 1, 85748 Garching, +Germany +10 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany +11 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy +12 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany +13 Dipartimento di Fisica “E.R. Caianiello”, Università Degli Studi di Salerno, Via Giovanni Paolo II, I–84084 Fisciano (SA), Italy +14 INAF – INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy +15 INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143, Trieste, Italy +ABSTRACT +We report on the identification of very massive stars (VMS, mass > 100 M⊙) possibly segregated in the center of the young massive +star cluster at z=2.37 hosted in the Sunburst lensed galaxy. Such a result is based on two pieces of evidence: (1) the VLT/MUSE +spectra of several multiple images of the same star cluster show key spectral signatures of VMS, like the Heiiλ1640 broad emission, +Nivλ1486 emission and Nivλ1720 P-Cygni profile. In particular, Heiiλ1640 is broad (∼ 1610 ± 300 km s−1) with an equivalent width +of 3Å and shows an asymmetric profile. Such features require an extremely young (∼ 2.5 Myr) stellar population component with +masses of the stars exceeding 100 M⊙. Assuming a Salpeter IMF and BPASS models for normal massive stars, the observed spectral +features require ∼400 VMS; (2) the same star cluster is detected at S/N ∼ 100 in the LyC domain (λ < 900Å). The LyC emission +emerges from a region with a radius at least 2 times smaller than what is observed at 1700Å (independently from magnification) +and is located in the center of the cluster. In absolute scales, after de-lensing, the effective radii are Reff[LyC] ∼ 4.7 ± 1.5 pc and +Reff[1700] = 7.8 ± 1.4 pc. The LyC radiation is mainly produced by hot and massive stars, implying that their spatial distribution +(including VMS) is preferentially more confined in the central parts of the cluster. Approximately 400 VMS hosted by a cluster of +∼ 107 M⊙ are producing ∼15% of the escaping LyC photons, while the rest is produced from other massive early-type stars. +Key words. galaxies: high-redshift – galaxies: star formation – galaxies: ISM – galaxies: star clusters: general – gravitational lensing: +strong – galaxies: individual: Sunburst galaxy. +1. Introduction +For many years the existence and occurrence of very massive +stars (VMS) was mostly associated with the early Universe and +metal-free environments in the context of the so-called Popula- +tion III stars (e.g. Abel et al. 2002). VMS are short-lived stars ∼ +2 – 3 Myr (e.g. Yusof et al. 2013) with mass M > 100 M⊙ (Vink +et al. 2015) and predominantly populate the central regions of +young massive star clusters (within the core radius rc ∼ 0.1−0.2 +pc, Portegies Zwart et al. 2010). Due to their narrow lifetime, +⋆ Based on observations collected at the European Southern Observa- +tory for Astronomical research in the Southern Hemisphere under ESO +programmes DDT MUSE program ID 107.22SK.001 (PI E. Vanzella), +X-Shooter program ID 0103.A-0688 (PI E. Vanzella) and DDT MUSE +program ID 297.A-5012(A) (PI Aghanim). +⋆⋆ E-mail: uros.mestric@inaf.it +studies of VMS in Milky Way star clusters is limited only to +few targets, for example, the Arches cluster (Martins et al. 2008) +or NGC3603 (Crowther et al. 2010). Individual VMS have been +investigated in the local Universe, with high spatial resolution, +thanks to the Hubble Space Telescope (HST, Cignoni et al. 2015; +Crowther et al. 2016; Calzetti et al. 2015; Smith et al. 2016, +2020; Brands et al. 2022). Very massive stars with masses above +100 M⊙ are recognized as objects with significant impact on the +evolution of early galaxies, influencing their chemical enrich- +ment and star formation through feedback (e.g. Goswami et al. +2021). Therefore, extending upper masses beyond 100 M⊙ of the +current population synthesis models is essential for investigating +and understanding young massive star clusters and VMS at dif- +ferent redshifts (Smith et al. 2016; Crowther et al. 2016). +Article number, page 1 of 10 +arXiv:2301.04672v1 [astro-ph.GA] 11 Jan 2023 + +A&A proofs: manuscript no. VMS +Despite some progress, the maximum stellar mass attained +and the conditions determining the presence of VMS remain +largely unknown. Recent observations of local star clusters re- +port initial stellar masses up to ∼ 270 M⊙ (Brands et al. 2022) in +the star cluster R136, with a cluster age of ∼1.5 Myr (Crowther +et al. 2016). Furthermore, observations of young stellar clus- +ters have revealed the presence of peculiar spectroscopic fea- +tures such as unusually strong broad Heiiλ1640 emission (with +FWHM > 1000 km s−1), which suggests the presence of VMS +in these objects (e.g., Wofford et al. 2014; Crowther et al. 2016; +Senchyna et al. 2021). +Alongside with the observations, different models are try- +ing to predict and trace the evolution, through different ages +and masses, of the various spectroscopic features characteristic +to VMS (e.g., Köhler et al. 2015; Gräfener 2021). For exam- +ple, Martins & Palacios (2022) have generated new evolution- +ary models and synthetic spectra of stars with initial masses in +the range 150 – 400 M⊙, taking into account the existence of +stellar winds stronger than typical OB-type stars produce. The +resulting models predict specific features in the UV and optical +part of the spectra, which are characteristic signatures of VMS. +The most robust ultraviolet spectral features associated to VMS +are Nivλ1486, broad Heiiλ1640 emission, and the Nivλ1720 P- +Cygni profile (Martins & Palacios 2022). Such lines are expected +to have equivalent widths spanning the interval 0.1 − 7 Å rest- +frame. High signal-to-noise spectra with well detected contin- +uum are therefore required to identify them, as shown, e.g., by +Crowther et al. (2016) in the R136 stellar cluster in the local +Universe. At cosmological distance strong gravitational lensing +is necessary to detect these faint spectral features, allowing us to +further gain in spatial resolution at tens of parsec scale and depth +(see also, Vanzella et al. 2016; Johnson et al. 2017; Rigby et al. +2017, 2018b,a; Vanzella et al. 2017, 2021; Meštri´c et al. 2022; +Vanzella et al. 2022b). +In this paper, we present for the first time convincing spec- +troscopic evidence for the presence of VMS in a stellar cluster +at cosmological distance (z=2.37, Vanzella et al. 2020a, 2022a). +The host galaxy is dubbed Sunburst (Rivera-Thorsen et al. +2019, 2017), and Lyman continuum (LyC) radiation is detected +from the same clumpy regions which are showing the presence +of VMS. Those massive stars in the center of the stellar cluster +are significant producers of LyC radiation and hence are the main +culprits for creating porous interstellar medium (ISM) enabling +LyC escape. For purpose of this work, we perform a compre- +hensive analysis of deep VLT/MUSE, X-Shooter and synthetic +spectra with aim to confirm presence of VMS. Additionally we +investigate the existence of the segregation of VMS by modeling +the morphology of the young massive star cluster (YMC) hosted +in the Sunburst galaxy. +The paper is organized as follows. In Section 2 we briefly de- +scribe the Sunburst galaxy and the available observational data. +In Section 3 we analyze the spectral signatures of very massive +stars using MUSE/IFU and X-Shooter observations in combina- +tion with the latest evolutionary models and synthetic spectra. In +Section 4 we discuss the morphological properties of the YMC +(dubbed 5.1) and the possible segregation of the (very) massive +stars in its central parts. We present our conclusion in Section 5. +We assume a flat cosmology with ΩM= 0.3, ΩΛ= 0.7 and +H0 = 70 km s−1 Mpc−1. Within this model, one arcsec at z = 2.37 +corresponds to a projected physical scale of 8200 parsec. All +magnitudes are given in the AB system. +Fig. 1. Left: The HST F555W band image, showing the six aperture po- +sitions where a MUSE 1D spectrum is extracted (red contours). White +arrows point to the multiple images of the young stellar cluster. Right: +The MUSE IFU image at ∼ 1800Å of the same region shown on the left +with the same apertures in red. +2. The Sunburst lensed galaxy +The Sunburst is a galaxy at z=2.37, strongly lensed by the +Planck cluster PSZ1 G311.65-18.48 at z=0.44, initially reported +by Dahle et al. (2016). The strong gravitational lensing effect +deflects the light from the background high-z Sunburst galaxy +into four bright arcs. These bright arcs harbor at least 13 star- +forming knots, which likely are stellar clusters. There are more +than 50 multiple images of this system (Pignataro et al. 2021), +whose physical properties are studied in detail in Vanzella et al. +(2022a). Among the 13 young stellar clusters, one has been iden- +tified 12 times (dubbed 5.1) and it is the subject of this work +(see Figure 1). The source 5.1 shows a multi-peaked Lyα emis- +sion consistent with an optically thin medium and Lyman con- +tinuum (LyC) leakage along the line of sight (Rivera-Thorsen +et al. 2017). Furthermore, the detection of LyC radiation emerg- +ing from the 12 detected multiple images of the 5.1 young mas- +sive star cluster is confirmed by HST multi-band observations +(Rivera-Thorsen et al. 2019). Additional analyses of the 12 LyC +multiple images of 5.1 have revealed that the star cluster has +an age younger than 3 Myr and a stellar metallicity of 0.5Z⊙ +(Chisholm et al. 2019), with a physical size of ≃ 10 pc and a +stellar (and dynamical) mass value of ≃ 107 M⊙ (Vanzella et al. +2022a). +The Sunburst was observed with HST, providing multi- +band photometry in the F275W, F410M, F555W, F606W, +F814W, F098M, F105W, F140W and F160W filters, under the +programs 15101 (PI Dahle), 15949 (PI Gladders), and 15377 +(PI Bayliss). Sunburst has also been targeted with ground- +based high resolution (R ∼ 5000 − 9000) VLT/X-Shooter spec- +troscopy covering the spectral range 3000-22000Å in three main +arms, UVB, VIS abd NIR. The observational strategy and the +data reduction procedures applied to HST imaging and VLT/X- +Shooter spectroscopy have been presented in Vanzella et al. +(2020b, 2022a). VLT/MUSE integral field spectroscopy at res- +olution R = 3000 and covering the spectral range 4800-9400Å +was obtained during 2016 (1h integration, DDT, PI. Aghanim) +and 2021 (1h integration, PI, Vanzella) in the wide field mode +configuration. The final datacube which combines the two hours +and the data reduction is described in Vanzella et al. (2022a). +We also presented a first version of the lens model in Pignataro +et al. (2021) based on the 62 spectroscopically confirmed mul- +tiple images in the redshift range 1 < z < 3.5 (see also Sharon +et al. 2022; Diego et al. 2022). A revised lens model will be com- +puted once the new VLT/MUSE observations (7h integration) +planned during 2023 will be performed (prog. 110.249D.001, +PI. Vanzella). +Article number, page 2 of 10 + +PSF +HST F555W +PSF +MUSE IFU +AP1 +AP2 +AP3 +5.1a +5.1b +5.1c +5.1d' + 5.1f +5.1e +AP4 +AP5 +AP5 +.5.1h +AP6 +5.1iU. Mestric et al.: Very massive, spatially segregated stars at z=2.4 +Here we focus on the ≃ 3 Myr old, UV-bright and Ly- +man continuum source with MUV = −18.6 (1700Å magnitude +and ultraviolet slope β = −1.71 ± 0.01, Fλ ∼ λβ), massive +(M ∼ 107 M⊙) star cluster 5.1, subjected to large magnification +values (µ ∼ 10 − 70 over 12 multiple images, Pignataro et al. +2021; Vanzella et al. 2022a). In the following we perform a new +analysis focusing on the nature of the ionizing source (Sect. 3) +and its morphology (Sect. 4). +3. Spectral signatures of very massive stars in the +Sunburst star cluster at z=2.37 +We aim to investigate the UV and optical spectroscopic prop- +erties of the young stellar cluster 5.1. The VLT/MUSE one- +dimensional spectra are extracted from six apertures enclosing +nine multiple images of 5.1 (shown in Fig. 1) and subsequently +combined to produce a continuum-detected high signal-to-noise +ratio SNR (> 60) weighted-average spectrum (Figure 2). The +stacked spectrum shown in Figure 2 is equivalent to an inte- +gration time of (2 × 9) × 302 > 16, 000 hours without lensing +amplification, adopting the minimum amplification among the 9 +multiple images (µ = 30). +3.1. Observed VMS features with VLT MUSE and X-Shooter +The very high SNR MUSE spectrum (Fig. 2) allows us to +identify several emission and absorption lines. Among them +we have the nebular emission lines associated to the interstel- +lar medium of the galaxy, like Oiii]λ1661, 1666, Niii]λ1750, +[Siiii]λ1883, 1892, and Ciii]λλ1907, 1909. The well detected +continuum allows us to investigate faint line emissions (of a frac- +tion of an Å rest-frame equivalent width), and to sample the de- +tails of the line profiles, otherwise not accessible without lens- +ing amplification. In particular, faint Nivλ1486 emission, the ev- +ident P-Cygni profile of the Civλ1550, the prominent broad and +asymmetric Heiiλ1640 line profile, and the P-Cygni signature of +Nivλ1720 clearly stand out. All these lines are associated with +young, hot and (very) massive stars. +We report detection of Heiiλ1640 emission with measured +rest frame EW=3.0±0.3Å and FWHM=8.8±1.7Å (∼ 1610±300 +km s−1). The broad shape of the Heiiλ1640 emission line ob- +served in the Sunburst cluster is asymmetric and resembles a +typical P-Cygni profile. The blue end of the emission line drops +steeply, while the red end drops more gradually. The P-Cygni +profile of Heiiλ1640 line is consistent with that predicted by +models and synthetic spectra (see, Martins & Palacios 2022). +Broad Heiiλ1640 emission observed in galaxies is usually re- +lated to non-nebular origin, commonly associated with Wolf- +Rayet (WR) stars, (e.g. Schaerer & Stasi´nska 1999; Brinchmann +et al. 2008; Leitherer et al. 2018; Senchyna et al. 2021), though +the failure of the synthesis models to reproduce some of the +strong Heiiλ1640 lines might be related to missing ingredients in +stellar evolution models (see, e.g., Leitherer et al. 2018). How- +ever, far-UV spectroscopic investigation of ∼57 individual stars +located within the R136 star cluster reveals that massive stars +with M>100 M⊙ have a crucial role in producing the Heiiλ1640 +emission line (Gräfener & Vink 2015; Crowther et al. 2016). +On the other hand, Martins & Palacios (2022) have shown that +Heiiλ1640 can be produced in significant amount only when stel- +lar winds are stronger than in normal O stars. VMS develop +such strong winds because of their proximity to the Eddington +limit (Vink et al. 2011; Bestenlehner 2020; Gräfener 2021). At +the same time, these winds peel off the external layers of the +stars and expose to the surface the products of hydrogen burn- +ing through the CNO cycle. This results in a strong nitrogen +(and helium) enrichment that boosts the strength of Nivλ1486 +and Nivλ1720. This typically happens after ∼1.5 Myr. Both +mentioned emission lines are detected in the spectrum of the +Sunburst cluster at SNR > 15 (Figure 2), with EW=0.2Å and +FWHM=2.9Å for Nivλ1486 and EW=0.15Å and FWHM ∼ 2Å +for Nivλ1720. The helium enrichment also contributes to the +strength of Heiiλ1640. The same effects (strong winds combined +with surface chemical enrichment) happen in normal evolved +massive stars when they are seen as WR stars. The key difference +compared to VMS is that helium enrichment takes place only af- +ter the main sequence (>∼ 4 Myr), while the same process takes +place at younger ages in VMS. Furthermore, VMS are more lu- +minous than normal WR stars and hence their contribution to +integrated light is larger. +The nebular Hα equivalent width provides constraints on the +cluster age and hence on whether the Heiiλ1640 line is primar- +ily due to WR stars or VMS. According to the BPASS mod- +els and results from Eldridge & Stanway (2012) (their Fig. 3) +they predict that normal and WR stars produce EWHα < 1Å for +ages <∼ 3Myr. The X-Shooter spectrum reveals a prominent Hα +line and no continuum detection, which very conservatively im- +plies an equivalent width larger than 200Å rest-frame at 1-sigma. +However, if we assume for Hα the same continuum level ob- +served at λ ∼ 5000Å rest-frame in the photometric spectral en- +ergy distribution (SED) by Vanzella et al. (2022a) such a limit in- +creases to ∼ 840Å. This value would be still a lower limit, even in +the case of leakage of ionizing photons. After correcting the Hα +flux for the fraction of escaping LyC photons (Hα/(1− f abs +esc )), the +resulting EW increases to EWHα ∼ 1231Å. We adopt f abs +esc values +from Rivera-Thorsen et al. (2019), where the corresponding ab- +solute escape fraction of LyC photons along the line of sight is +f abs +esc = 32+2 +−4% . Such a large Hα equivalent width is consistent +with a star-forming burst younger than ∼ 3 Myr (e.g., Leitherer +et al. 2014). Furthermore as discussed in Chisholm et al. (2019) +Nvλ1240 stellar wind profile predominantly depends on the stel- +lar age while variations due to different metallicity are negligible +and it is related to the young stellar populations (< 5 Myr). From +the comparison of the observed Nvλ1240 with the models Figure +3 and 4 we additionally demonstrate that the age of the cluster is +< 3 Myr. From our age analysis, we can conclude that properties +of both Nvλ1240 and Hα fit well with < 3 Myr age of the stel- +lar cluster which requires other sources than WR stars to explain +the observed strong Heiiλ1640 EW=3.0±0.3Å. Therefore these +results strongly suggest that VMS are responsible for the pro- +duction of the spectral ultraviolet features we observe in such a +young massive star cluster. Moreover, Wofford et al. (2014) and +Smith et al. (2016) have argued that the presence of Ovλ1371 in +integrated light of the clusters was also a key feature of VMS. +This line is not seen in the Sunburst cluster, see Figure 2. As +demonstrated by Martins & Palacios (2022), this is not incom- +patible with the presence of VMS, since Ovλ1371 disappears as +VMS evolve to lower effective temperature. In their Fig. 4, we +see that no sign of Ovλ1371 exists after ∼1 Myr. This, together +with the presence of Nivλ1486, places a rather tight constraint +on the cluster age. +3.2. Comparing observations with models +To investigate the rest-frame UV spectrum of the cluster, we have +created an integrated VMS model following Martins & Palacios +Article number, page 3 of 10 + +A&A proofs: manuscript no. VMS +Fig. 2. The MUSE IFU spectrum of the 5.1 young massive star cluster extracted from 6 apertures is shown in black (thin line) and the X-Shooter +long slit spectrum of 5.1l knot is shown in blue (bold line). The key confirmed features indicating the presence of VMS in the stellar cluster +are marked with shaded light red strips while the dark-orange line shows the best-fit Fλ ∼ λβ, with β = −1.71. The shaded grey strip indicates +the (absence of) Ovλ1371 line, which usually is an indicator of VMS too. The prominent P-Cygni of Nvλ1240 and strong emission part of the +Civλ1550 are present and indicate the young age of the stellar cluster (black bold markers). In the bottom, the 1-sigma errors of both spectra are +shown. Other detected interstellar features and stellar features are marked with dashed red and green lines, respectively. +(2022) that includes normal mass stars (0.1-100 M⊙) with differ- +ent VMS (150 M⊙ and 200 M⊙). +We have used the spectral energy distribution (SEDs) of +BPASS (Eldridge et al. 2017; Stanway & Eldridge 2018) v2.2.1 +single-star population synthesis model. The model has an up- +per mass limit of 100 M⊙ with the Salpeter IMF, metallicity of +Z=0.006 (where 0.02 corresponds to solar metallicity), and in- +stantaneous star formation history, with a burst of mass 106 M⊙. +The adopted metallicity of the model is the closest to our mea- +sured value based on N2 index (Marino et al. 2013), which is +≃ 0.4Z⊙ and consistent with the estimate provided by Mainali +et al. (2022) (see also Chisholm et al. 2019). +We have extrapolated the Salpeter IMF to 225 M⊙ upper +mass limit within a few mass bins given by Equation 1 from the +BPASS manual1. Equation 1 gives the number of massive stars +in the mass range [Ma; Mb]. +N(Ma; Mb) = C × Mα1 +1 +� Mb +Ma +Mα2 dM +(1) +Here, C is a constant and has a value of 1.23×105 for an arbitrary +burst mass of 106 M⊙. Also, M1 = 0.5 M⊙ α1 = -1.3, α2 = - +2.35. The mass bins are selected in a way to add the SEDs of +appropriate numbers of single VMS stars, which are available +for discrete sets of VMS with masses including 150 M⊙ and 200 +M⊙. In this manner we compute SEDs including VMS with IMFs +extending up to 175 and 225 M⊙, respectively, following Martins +& Palacios (2022). +1 https://flexiblelearning.auckland.ac.nz/bpass/9.html +From Figure 2, we can see that the cluster shows signifi- +cant Nivλ1486 emission. From the VMS models and synthetic +spectra, Nivλ1486 emission only appears after 1.5 Myr of VMS +evolution (see, Martins & Palacios 2022) and VMS last approx- +imately until 2.5 Myr. Based on this, we created the SEDs of in- +tegrated VMS models at 1.5 Myr, 2 Myr, and 2.5 Myr. We have +normalized the spectrum of the cluster and the models by fitting +a UV power law by using the spectral windows provided by Rix +et al. (2004). +We have directly compared the cluster spectrum with the two +VMS models at 3 different ages. The comparison shows that +VMS are clearly needed to reproduce the observations (see, Fig- +ures 3, 4, and A.1). However, the Heiiλ1640 and Nivλ1720 lines +in the models appear stronger than observed even at the age of +1.5 Myr and with a maximum mass of 175 M⊙. To match the +observed Heiiλ1640 and Nivλ1720 profiles, we have therefore +reduced the VMS contribution by decreasing their numbers. We +find good agreement if we reduce the VMS contribution by a fac- +tor of 6 in the VMS model, which includes only 150 M⊙ VMS +at 2.5 Myr (Fig. 3). Alternatively, a similar match is also found +by reducing the VMS contribution by a factor of 8 in models in- +cluding also the 200 M⊙ VMS (Fig. 4). In short, the observations +are compatible with an IMF extending up to ∼ 175 or 225 M⊙, +but with an IMF slope steeper than Salpeter (α2 < −2.35) for +M > 100 M⊙. +Article number, page 4 of 10 + +Aobs / A +4000 +4500 +5000 +5500 +6000 +6500 +3.0 +1H13 +IIIS.+IO +AS: +{IIIN +IIIS +IIIS +AID +全13 +sv +CIV1550 +2.5 +NV1240 +y1486 +ux +fl +Normalized +1.0 +0.5 +0.0 +F +1100 +1200 +1300 +1400 +1500 +1600 +1700 +1800 +1900 +2000 +Arest / AU. Mestric et al.: Very massive, spatially segregated stars at z=2.4 +3.3. VMS contribution to the LyC budget of the young stellar +cluster +After adopting the results from the previous section, we can now +estimate the number of O-type stars hosted by the same stellar +cluster and the percentage of LyC photons emitted by VMS only. +Measurements are performed in the range of ∼730–900Å +rest-frame (range covered by HST F275W filter in which LyC +radiation is detected and fesc later on evaluated). First, we cal- +culate the mean flux from the model which include both normal +and VMS stars and, secondly, we calculate the mean flux from +the model including only VMS. The resulting ratio of those two +models gives us the fraction of the LyC photons produced by +VMS, which is ∼15%. Since LyC photons are mainly produced +by O-type and more massive stars, we can see that ∼15% of the +LyC production is generated only from ∼1% of the stars capable +of producing LyC photons. It is worth noting that the fraction +of LyC ionizing radiation produced from VMS in the Sunburst +5.1 stellar cluster is smaller than the predicted LyC fraction pro- +duced by the VMS located in R136 stellar cluster, which is 25% +(Doran et al. 2013). However, we also note that in the case of the +Sunburst stellar cluster the light coming from the host galaxy +could slightly decreases the inferred equivalent width of the key +spectral features discussed above. While such dilution is difficult +to address with the present ground-based spectroscopic data2, its +effect implies a possible slightly higher contribution of VMS to +the LyC radiation. +4. Spatial segregation of the Lyman continuum +radiation +We now address the morphological properties of image 5.1l, +which is the most magnified among the multiple images of the +star cluster (µtot ≃ 76, Pignataro et al. 2021). 5.1l is the brightest +image detected with a large SNR in the F275W (SNR ∼ 90) and +F555W (SNR ≫100), allowing us to investigate and compare +the morphology in these two spectral regions: the emitting LyC +(λ < 900Å, in HST F275W band) and the non-ionizing radiation +at 1700Å (HST F555W band). We follow two approaches: (1) +we ran simulations injecting the sources in the F275W band and +(2) we analyzed the curve of growth of the resulting images. +Figure 5 shows the F555W image of 5.1l, in which the elon- +gation is clearly visible in the direction of the tangential stretch +produced by gravitational lensing. As discussed in Pignataro +et al. (2021) (see also Vanzella et al. 2022a), the tangential am- +plification largely dominates along the arc (µtang ≃ 57). We per- +form here a relative comparison between images, to ensure that +the the results do not depend on the magnification values. +As a first step, we compute a realistic model of 5.1l on the +HST F555W image using Galfit (Peng et al. 2010). The point +spread function (PSF) has been extracted by combining non- +saturated stars available in the field of view. While the fit with a +single component does not produce acceptable residuals (larger +than 20%), we reproduce quite well the light profile of the ob- +ject by combining two components: a core with a Gaussian light +profile and an effective radius (Reff) smaller than 0.5 pixels (in +practice nearly unresolved) and an extended component with +Reff = 6 pixels and Sersic index n=1 (similar results are ob- +tained also with n=0.5). The combination of the two components +produces an optimal shape which leaves normalized residuals +smaller than 10% (see Figure 5). It is worth now investigating if +2 JWST/NIRSpec-IFU and NIRCAM observations on the same YMC +are planned during 2023, prog. 2555, PI. Rivera-Thorsen +such a resolved shape (sampled at 1700Å) is recovered if placed +in the F275W Lyman continuum image. For this check, we in- +jected mock images of 5.1l into the F275W image on five dif- +ferent positions around 5.1l, which are not contaminated by the +flux coming from other sources. Such images are produced from +the aforementioned two-component Galfit model constructed +at 1700Å (F555W), but now accounting for the F275W PSF (in +other words convolved by the F275W PSF) to allow for a proper +comparison with the LyC 5.1l source (observed in HST F275W +band). Such images have been added to F275W after rescaling +each of them to the observed peak value of the LyC 5.1l ob- +ject. This step has been performed with IRAF (Tody 1986) task +IMARITH and IMCOPY. Figure 6 shows the results, in which all +the injected images show a spatially-resolved morphology along +the tangential magnification. Conversely, the observed LyC im- +age (of 5.1l) appears nucleated, suggesting that the emitting LyC +region is smaller than the one at 1700Å. +To quantify this result, we calculate the curve of growth +(CoG) of the images shown in Figure 6. The flux is then mea- +sured in the F275W band in 34 circular apertures. The small- +est aperture has a radius of 0.1 pixel. Intermediate apertures are +drawn with increasing radii, with a step of 0.5 pix, up to largest +one, which has a radius of 34 pixels. As a reference point-like +source, we constructed the mean CoG from a selected sample of +twenty non-saturated and non-contaminated stars. The resulting +CoG is shown in Figure 7, where the y-axis reports the frac- +tion of the flux enclosed at the corresponding radius in pixels +(x-axis). +The same procedure has been applied to the LyC emitting +source 5.1l, while another CoG has been constructed by averag- +ing the five CoG of the injected models resembling the morphol- +ogy at 1700Å. Figure 7 compares all the CoG after normalizing +them to the saturation value at the largest radius. The first re- +sult which emerges from this test is the clear deviation of the +CoG of the observed 5.1l LyC source from the behavior of a +point-like source (stars). This was not explored before and sug- +gests that in the most magnified image of the star cluster the +LyC appears spatially resolved. This is the first evidence of a re- +solved stellar LyC emission at cosmological distance. Second, +such barely resolved LyC emission appears more nucleated than +the one at 1700Å. Consequently, the sources of ionizing radi- +ation appears located in the central part of the cluster. Indeed, +from those curves, it emerges that 50% of the flux of the stars is +enclosed within a radius of ∼1.9 pixel, while for 5.1l it lies within +∼2.2 pixels. Additionally, we perform the Kolmogorov-Smirnov +two-sample test (KS-test) to check if the CoGs derived from the +stars and 5.1l source follow the same distribution (null hypothe- +sis). For this purpose, we used the statistical function ks_2samp +from scipy.stats. After comparing the average CoG of the +stars with cyan and violet CoGs, the KS-test gives p << 0.05. It +means that the null hypothesis is not satisfied with the LyC pro- +file of 5.1l and it deviates from the CoG of a point-like source. +Furthermore, we also find that the half-light size of 5.1l at 1700Å +is larger than the ionizing region, ∼2.6 pixels compared to the +∼2.2 pixels. If we correct such radii for the instrumental reso- +lution (given by the stars) we obtain an effective radius for 5.1l +at 1700Å ≃ 7.8 ± 1.4 pc after de-lensing3, in agreement with +Vanzella et al. (2020a), while the LyC image (5.1l) has a smaller +radius, Reff ≃ 4.7 ± 1.5 pc. We therefore find a LyC emission +which is more compact than the non-ionizing UV continuum, +3 Adopting the pixel scale of 0.03′′/pixel, 8200 pc per arcsecond at +z=2.37 and µtang ≃ 57, Reff = 0.03∗8200∗((2.62−1.92)0.5)/57, adopting +the same uncertainty on µtang reported by Vanzella et al. (2022a). +Article number, page 5 of 10 + +A&A proofs: manuscript no. VMS +Fig. 3. The MUSE ultraviolet spectra of the young star cluster (blue) is shown in the bottom panel with the X-Shooter spectrum (green). The +grey-shaded regions show specific UV features closely associated with the presence of the VMS (Nivλ1486, Heiiλ1640, and Nivλ1720) and some +of them show a P-Cygni profile, characteristic of young and massive stars. Furthermore, the black line shows the single BPASS model including +only normal stars at 2.5 Myr, while the red line shows the BPASS single-star model augmented by VMS with masses up to 150 M⊙. The upper +panels show the zoom in VMS characteristic features compared with models and Nvλ1240 P-Cygni line, characteristic due to the presence of very +young stellar populations. +which we interpret as a spatial segregation of the most massive +stars. +5. Summary and Conclusions +In this paper, we have presented a detailed spectroscopic and +morphological analysis of the massive and young stellar cluster +hosted in the Sunburst lensed galaxy at z=2.37, for which also +LyC emission was confirmed in the literature. We used results +from recent stellar evolutions and atmosphere models including +VMS (Martins & Palacios 2022) to conduct extensive compar- +isons with high spectral resolution observations performed with +VLT/MUSE and X-Shooter. The main results of this work can +be summarized as follows: +– In the spectroscopic observations, the high signal-to-noise +MUSE and X-Shooter spectra reveal features of broad (and +asymmetric) Heiiλ1640 emission with EW ≃ 3Å rest-frame +and line width of 1610 km s−1, and Nivλ1486 with EW ≃ +0.2Å emission. In addition, the P-Cygni profile of Nivλ1720 +(along with NV and CIV) is also observed. All these features +suggest the presence of very massive (> 100M⊙) stars. The +absence of Ovλ1371 provides a lower age limit of 1 Myr. On +the other hand, the large Hα EW (> 1231Å after correcting +for the escaping LyC radiation) indicates an age younger than +∼ 3 Myr. These narrow age constraints strongly favor the +existence of VMS over WR stars, implying that the strength +of the Heiiλ1640 emission line is entirely due to VMS. +– A comparison of the observations with the models reveals +that the most plausible age of the star cluster is 2.5 Myr, and +an estimated number of ∼ 370 − 400 VMS for a cluster mass +of 107 M⊙. The observations are compatible with an IMF +extending up to ∼ 175 − 225 M⊙, but with a slope which is +steeper than the Salpeter IMF. +– The fraction of LyC radiation emerging from the VMS com- +ponent is not negligible. We estimate that in the 730Å – 900Å +range (probed by the HST/F275W band) about 360 – 400 +VMS (or roughly 1% of the total population of O-type stars +in the star cluster) account for 15% of the escaping LyC pho- +tons, with the rest being produced mostly by the other less +massive O-type stars. +– Detailed morphological analysis of the most magnified im- +age of the star cluster shows that the region emitting LyC +is not point-like, with a light profile different from the av- +erage profile of stars present in the same field of view. This +is the first evidence of a resolved LyC emission at any red- +shift. Remarkably, the physical scale of the LyC emitting re- +gion appears also smaller (with a significant K-S probability +p << 0.05) than the non-ionizing region (1700Å), suggest- +ing that massive O-type stars responsible for the LyC radi- +ation, and likely the VMS (significantly contributing to it), +are segregated in the central part of the star cluster. After de- +lensing the angular half-light radii, the LyC region appears +barely resolved with Reff ≃ 4.7 ± 1.5pc, while at 1700Å it +is Reff ≃ 7.8 ± 1.4 pc. The packaging of such a large num- +ber of massive O-type stars per parsec cube in the central +region, ≃ 70 pc−3, is likely a element which allowed to carve +the ionizing channel and the development of a high-speed +outflowing gas (Rivera-Thorsen et al. 2017; Vanzella et al. +2022a; Mainali et al. 2022). +Acknowledgements. We acknowledge financial support through grants PRIN- +MIUR 2017WSCC32, 2020SKSTHZ and the INAF GO Grant 2022 “The rev- +Article number, page 6 of 10 + +Nv1240A +NIV1486A +NIV1720A +HeI1640A +1.6 +1.4 + Sunburst Cluster Mus +1.5 +1.3 E +BPASS 100 M。+ 150 M。VMS (39.43) at 2.5 Myr +1.4 +1.2 + 0.7 E +0.7 +0.4E +0.61705 +1220 +1492 +1640 +1650 +1240 +1480 +1484 +1488 +1660 +670 +1710 +1715 +1720 +1725 +1730 +Rest Frame Wavelength [A] +Rest Frame Wavelength [A] + Rest Frame Wavelength [A] + Rest Frame Wavelength [A] +2.0E + Sunburst Cluster MUSE +Sunburst Cluster Xshooter +BPASS 2.5 Myr +1.8E +Single BPASSup to 100 Mo + 39.43 number of 150 Mo VMS at 2.5 Myr +1.6E +1.4 +1.2E +1.0M +W +0.8E +Nor +0.6 +0.4 +0.2日 +1250 +1300 +1350 +1400 +1450 +1500 +1550 +1600 +1650 +1700 +1750 +Rest Frame Wavelength [A]U. Mestric et al.: Very massive, spatially segregated stars at z=2.4 +Fig. 4. All symbols as in Figure 3 except for the red lines, showing the BPASS single-star model augmented by VMS with masses up to 200 M⊙. +Fig. 5. The results from Galfit modeling after using a two-component +fit. From the left, the first panel shows the 5.1l source in the F555W +band (UV1700Å). The second panel shows the model from Galfit. The +third panel shows the residual and the fourth panel is the normalized +residual produced after dividing the residual with the original image. +The white contour encloses the region used to check the quality of the +produced model. +olution is around the corner: JWST will probe globular cluster precursors and +Population III stellar clusters at cosmic dawn” (PI Vanzella). FC and RP ac- +knowledge funding from PRIN INAF 1.05.01.85.01. +References +Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93 +Bestenlehner, J. M. 2020, MNRAS, 493, 3938 +Brands, S. A., de Koter, A., Bestenlehner, J. M., et al. 2022, A&A, 663, A36 +Brinchmann, J., Kunth, D., & Durret, F. 2008, A&A, 485, 657 +Calzetti, D., Johnson, K. E., Adamo, A., et al. 2015, ApJ, 811, 75 +Chisholm, J., Rigby, J. R., Bayliss, M., et al. 2019, ApJ, 882, 182 +Cignoni, M., Sabbi, E., van der Marel, R. P., et al. 2015, ApJ, 811, 76 +Crowther, P. A., Caballero-Nieves, S. M., Bostroem, K. A., et al. 2016, MNRAS, +458, 624 +Crowther, P. A., Schnurr, O., Hirschi, R., et al. 2010, MNRAS, 408, 731 +Dahle, H., Aghanim, N., Guennou, L., et al. 2016, A&A, 590, L4 +Diego, J. M., Pascale, M., Kavanagh, B. J., et al. 2022, A&A, 665, A134 +Doran, E. I., Crowther, P. A., de Koter, A., et al. 2013, A&A, 558, A134 +Eldridge, J. J. & Stanway, E. R. 2012, MNRAS, 419, 479 +Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058 +Goswami, S., Slemer, A., Marigo, P., et al. 2021, A&A, 650, A203 +Gräfener, G. 2021, A&A, 647, A13 +Gräfener, G. & Vink, J. S. 2015, A&A, 578, L2 +Fig. 6. The HST F275W image showing 5.1l LyC leaking source in +its centre; other two multiple images, of the same source, are labeled +as 5.1i and 5.1h. Around 5.1l, in the region not contaminated by other +sources, five models are injected (see text for more details), enclosed +in the white squares. In the bottom right corner, we shown the largest +(34pix diameter) aperture size used to construct CoGs. +Johnson, T. L., Rigby, J. R., Sharon, K., et al. 2017, ApJ, 843, L21 +Köhler, K., Langer, N., de Koter, A., et al. 2015, A&A, 573, A71 +Leitherer, C., Byler, N., Lee, J. C., & Levesque, E. M. 2018, ApJ, 865, 55 +Leitherer, C., Ekström, S., Meynet, G., et al. 2014, ApJS, 212, 14 +Mainali, R., Rigby, J. R., Chisholm, J., et al. 2022, ApJ, 940, 160 +Marino, R. A., Rosales-Ortega, F. F., Sánchez, S. F., et al. 2013, A&A, 559, A114 +Article number, page 7 of 10 + +Nv1240A +NIV1486A +HeII1640A +NIV1720A +- Sunburst Cluster Xshootel +1.05 +1260 +1480 +1492 +1496 +1630 +1640 +1650 +1670 +1220 +1484 +1488 +1710 +1715 +1725 +1730 +1230 +Rest Frame Wavelength [A] +Rest Frame Wavelength [A] +Rest Frame Wavelength [A] +Rest Frame Wavelength [A] +2.0 +Sunburst Cluster MUSE +1.8E +Sunburst Cluster Xshooter +BPASS 2.5 Myr +1.6E +1.4 +.2 +1.0 +MA +0.8 +LLLLLLLLLLLLL +LJON +0.6 +0.4E +0.2E +一 +0.0 +1250 +1300 +1350 +1400 +1450 +1500 +1550 +1600 +1650 +1700 +1750 +Rest Frame Wavelength [A]5.11 +normalised +model +residual +HST +F555W +residual5.1h +1" +Model5 +Model +5.1i +Model +5.11 +Model +ModelA&A proofs: manuscript no. VMS +Fig. 7. Three curves of growth normalized to 1. The cyan CoG cor- +responds to the 5.1l LyC leaking source located in the Sunburst arc +(F275W band). The violet CoG is the PSF-convolved, best-fit model of +the 5.1l source observed in F555W constructed averaging 5 CoGs (see +text for more details). The orange growth curve is used for comparison +and it is constructed averaging 20 single CoGs from randomly selected +stars. In both cases (cyan and violet) error bars are 1σ. Vertical lines in +the bottom left part of the figure mark the pixel radii at which 50% of +the light is enclosed. The colors corresponds to the CoG colors. +Martins, F., Hillier, D. J., Paumard, T., et al. 2008, A&A, 478, 219 +Martins, F. & Palacios, A. 2022, A&A, 659, A163 +Meštri´c, U., Vanzella, E., Zanella, A., et al. 2022, MNRAS, 516, 3532 +Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097 +Pignataro, G. V., Bergamini, P., Meneghetti, M., et al. 2021, A&A, 655, A81 +Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431 +Rigby, J. R., Bayliss, M. B., Chisholm, J., et al. 2018a, ApJ, 853, 87 +Rigby, J. R., Bayliss, M. B., Sharon, K., et al. 2018b, AJ, 155, 104 +Rigby, J. R., Johnson, T. L., Sharon, K., et al. 2017, ApJ, 843, 79 +Rivera-Thorsen, T. E., Dahle, H., Chisholm, J., et al. 2019, Science, 366, 738 +Rivera-Thorsen, T. E., Dahle, H., Gronke, M., et al. 2017, A&A, 608, L4 +Rix, S. A., Pettini, M., Leitherer, C., et al. 2004, ApJ, 615, 98 +Schaerer, D. & Stasi´nska, G. 1999, A&A, 345, L17 +Senchyna, P., Stark, D. P., Charlot, S., et al. 2021, MNRAS, 503, 6112 +Sharon, K., Mahler, G., Rivera-Thorsen, T. E., et al. 2022, arXiv e-prints, +arXiv:2209.03417 +Smith, L. J., Bajaj, V., Ryon, J., & Sabbi, E. 2020, ApJ, 896, 84 +Smith, L. J., Crowther, P. A., Calzetti, D., & Sidoli, F. 2016, ApJ, 823, 38 +Stanway, E. R. & Eldridge, J. J. 2018, MNRAS, 479, 75 +Tody, D. 1986, in Proc. SPIE, Vol. 627, Instrumentation in astronomy VI, ed. +D. L. Crawford, 733 +Vanzella, E., Calura, F., Meneghetti, M., et al. 2017, MNRAS, 467, 4304 +Vanzella, E., Caminha, G. B., Calura, F., et al. 2020a, MNRAS, 491, 1093 +Vanzella, E., Caminha, G. B., Rosati, P., et al. 2021, A&A, 646, A57 +Vanzella, E., Castellano, M., Bergamini, P., et al. 2022a, A&A, 659, A2 +Vanzella, E., Castellano, M., Bergamini, P., et al. 2022b, ApJ, 940, L53 +Vanzella, E., De Barros, S., Cupani, G., et al. 2016, ApJ, 821, L27 +Vanzella, E., Meneghetti, M., Pastorello, A., et al. 2020b, MNRAS, 499, L67 +Vink, J. S., Heger, A., Krumholz, M. R., et al. 2015, Highlights of Astronomy, +16, 51 +Vink, J. S., Muijres, L. E., Anthonisse, B., et al. 2011, A&A, 531, A132 +Wofford, A., Leitherer, C., Chandar, R., & Bouret, J.-C. 2014, ApJ, 781, 122 +Yusof, N., Hirschi, R., Meynet, G., et al. 2013, MNRAS, 433, 1114 +Article number, page 8 of 10 + +1.0 +0.8 +iction +rd +0.6 +ux +0.4 +0.2 +observed CoG of 5.1l in F275W +★ +avg CoG for 5 observed Stars +0.0 +6AE +CoG model n=0.5 +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +Radius +[pixels]U. Mestric et al.: Very massive, spatially segregated stars at z=2.4 +Appendix A: Initial models +As described in Section 3.2, we compare the X-Shooter and +MUSE spectroscopic observations with the BPASS models at +different ages (1.5 Myr, 2 Myr, and 2.5 Myr). We narrow our +models to the mentioned age range since the predicted age of the +cluster is higher than 1.5 Myr (inferred from Nivλ1486 emission +line) and the lifetime of the VMS is about 2.5 Myr (Martins & +Palacios 2022). We started with the BPASS which has an upper +mass limit of 100 M⊙ and added 236.56 stars in the 100 - 175 +M⊙ mass range and 60.30 stars in the mass range 175 – 225 M⊙. +Resulting models (at different ages) are shown in A.1; all models +produce significantly strong spectroscopic features characteristic +of the presence of VMS. To better match models with observa- +tions, we decreased the numbers of the VMS and the final results +are presented in Section 3 (Figure. 3 and 4). +Article number, page 9 of 10 + +A&A proofs: manuscript no. VMS +Fig. A.1. The six panels are showing the comparison of the observations (MUSE spectrum, red line) with BPASS models (black line). The left +column shows three BPASS models with an IMF up to 100 M⊙, ages of 1.5 Myr, 2 Myr, 2.5 Myr and an added number of 236.56 150 M⊙ VMS. +The right column shows BPASS model with an IMF up to 100 M⊙ at same ages (as shown in previous column) but with added nuber of 236.56 +and 60.30 VMS of 150 M⊙ and 200 M⊙, respectively. In all six panels we can see that the strength of feature characteristic to VMS is higher than +in observed cluster, see the Section 3 for more details. +Article number, page 10 of 10 + diff --git a/BdE3T4oBgHgl3EQftAtl/content/tmp_files/load_file.txt b/BdE3T4oBgHgl3EQftAtl/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..28b514b27aff208aee655917581dbabff06cbbbb --- /dev/null +++ b/BdE3T4oBgHgl3EQftAtl/content/tmp_files/load_file.txt @@ -0,0 +1,913 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf,len=912 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS ©ESO 2023 January 13, 2023 Clues on the presence and segregation of very massive stars in the Sunburst Lyman-continuum cluster at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37⋆ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Meštri´c1,⋆⋆, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella1, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Upadhyaya2, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Martins3, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Marques-Chaves2, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Schaerer2, 4, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Guibert2, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Zanella5, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Grillo6, 7, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Rosati8, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Calura1, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Caminha9, 10, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Bolamperti5, 11, 12, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Meneghetti1, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Bergamini1, 6, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mercurio13, 14, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Nonino15, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Pascale1 1 INAF – OAS, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, I-40129 Bologna, Italy 2 Geneva Observatory, Department of Astronomy, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland 3 LUPM, Université de Montpellier, CNRS, Place Eugène Bataillon, F-34095 Montpellier, France 4 CNRS, IRAP, 14 Avenue E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Belin, 31400 Toulouse, France 5 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy 6 Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy 7 INAF – IASF Milano, via A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Corti 12, I-20133 Milano, Italy 8 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, I-44122 Ferrara, Italy 9 Technical University of Munich, TUM School of Natural Sciences, Department of Physics, James-Franck-Str 1, 85748 Garching, Germany 10 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1, D-85748 Garching, Germany 11 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy 12 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany 13 Dipartimento di Fisica “E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Caianiello”, Università Degli Studi di Salerno, Via Giovanni Paolo II, I–84084 Fisciano (SA), Italy 14 INAF – INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy 15 INAF – Osservatorio Astronomico di Trieste, via G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Tiepolo 11, I-34143, Trieste, Italy ABSTRACT We report on the identification of very massive stars (VMS, mass > 100 M⊙) possibly segregated in the center of the young massive star cluster at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37 hosted in the Sunburst lensed galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such a result is based on two pieces of evidence: (1) the VLT/MUSE spectra of several multiple images of the same star cluster show key spectral signatures of VMS, like the Heiiλ1640 broad emission, Nivλ1486 emission and Nivλ1720 P-Cygni profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In particular, Heiiλ1640 is broad (∼ 1610 ± 300 km s−1) with an equivalent width of 3Å and shows an asymmetric profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such features require an extremely young (∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr) stellar population component with masses of the stars exceeding 100 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Assuming a Salpeter IMF and BPASS models for normal massive stars, the observed spectral features require ∼400 VMS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2) the same star cluster is detected at S/N ∼ 100 in the LyC domain (λ < 900Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The LyC emission emerges from a region with a radius at least 2 times smaller than what is observed at 1700Å (independently from magnification) and is located in the center of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In absolute scales, after de-lensing, the effective radii are Reff[LyC] ∼ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 pc and Reff[1700] = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The LyC radiation is mainly produced by hot and massive stars, implying that their spatial distribution (including VMS) is preferentially more confined in the central parts of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Approximately 400 VMS hosted by a cluster of ∼ 107 M⊙ are producing ∼15% of the escaping LyC photons, while the rest is produced from other massive early-type stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' galaxies: high-redshift – galaxies: star formation – galaxies: ISM – galaxies: star clusters: general – gravitational lensing: strong – galaxies: individual: Sunburst galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Introduction For many years the existence and occurrence of very massive stars (VMS) was mostly associated with the early Universe and metal-free environments in the context of the so-called Popula- tion III stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Abel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS are short-lived stars ∼ 2 – 3 Myr (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Yusof et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013) with mass M > 100 M⊙ (Vink et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015) and predominantly populate the central regions of young massive star clusters (within the core radius rc ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 pc, Portegies Zwart et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Due to their narrow lifetime, ⋆ Based on observations collected at the European Southern Observa- tory for Astronomical research in the Southern Hemisphere under ESO programmes DDT MUSE program ID 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='22SK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='001 (PI E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella), X-Shooter program ID 0103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='A-0688 (PI E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella) and DDT MUSE program ID 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='A-5012(A) (PI Aghanim).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' ⋆⋆ E-mail: uros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='mestric@inaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='it studies of VMS in Milky Way star clusters is limited only to few targets, for example, the Arches cluster (Martins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2008) or NGC3603 (Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Individual VMS have been investigated in the local Universe, with high spatial resolution, thanks to the Hubble Space Telescope (HST, Cignoni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Calzetti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Brands et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Very massive stars with masses above 100 M⊙ are recognized as objects with significant impact on the evolution of early galaxies, influencing their chemical enrich- ment and star formation through feedback (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Goswami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Therefore, extending upper masses beyond 100 M⊙ of the current population synthesis models is essential for investigating and understanding young massive star clusters and VMS at dif- ferent redshifts (Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 1 of 10 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='04672v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='GA] 11 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS Despite some progress, the maximum stellar mass attained and the conditions determining the presence of VMS remain largely unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Recent observations of local star clusters re- port initial stellar masses up to ∼ 270 M⊙ (Brands et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022) in the star cluster R136, with a cluster age of ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr (Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore, observations of young stellar clus- ters have revealed the presence of peculiar spectroscopic fea- tures such as unusually strong broad Heiiλ1640 emission (with FWHM > 1000 km s−1), which suggests the presence of VMS in these objects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Wofford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Alongside with the observations, different models are try- ing to predict and trace the evolution, through different ages and masses, of the various spectroscopic features characteristic to VMS (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Köhler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Gräfener 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' For exam- ple, Martins & Palacios (2022) have generated new evolution- ary models and synthetic spectra of stars with initial masses in the range 150 – 400 M⊙, taking into account the existence of stellar winds stronger than typical OB-type stars produce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The resulting models predict specific features in the UV and optical part of the spectra, which are characteristic signatures of VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The most robust ultraviolet spectral features associated to VMS are Nivλ1486, broad Heiiλ1640 emission, and the Nivλ1720 P- Cygni profile (Martins & Palacios 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such lines are expected to have equivalent widths spanning the interval 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 − 7 Å rest- frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' High signal-to-noise spectra with well detected contin- uum are therefore required to identify them, as shown, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', by Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2016) in the R136 stellar cluster in the local Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' At cosmological distance strong gravitational lensing is necessary to detect these faint spectral features, allowing us to further gain in spatial resolution at tens of parsec scale and depth (see also, Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Rigby et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, 2018b,a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Meštri´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In this paper, we present for the first time convincing spec- troscopic evidence for the presence of VMS in a stellar cluster at cosmological distance (z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37, Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2020a, 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The host galaxy is dubbed Sunburst (Rivera-Thorsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019, 2017), and Lyman continuum (LyC) radiation is detected from the same clumpy regions which are showing the presence of VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Those massive stars in the center of the stellar cluster are significant producers of LyC radiation and hence are the main culprits for creating porous interstellar medium (ISM) enabling LyC escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' For purpose of this work, we perform a compre- hensive analysis of deep VLT/MUSE, X-Shooter and synthetic spectra with aim to confirm presence of VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Additionally we investigate the existence of the segregation of VMS by modeling the morphology of the young massive star cluster (YMC) hosted in the Sunburst galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In Section 2 we briefly de- scribe the Sunburst galaxy and the available observational data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In Section 3 we analyze the spectral signatures of very massive stars using MUSE/IFU and X-Shooter observations in combina- tion with the latest evolutionary models and synthetic spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In Section 4 we discuss the morphological properties of the YMC (dubbed 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1) and the possible segregation of the (very) massive stars in its central parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We present our conclusion in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We assume a flat cosmology with ΩM= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3, ΩΛ= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 and H0 = 70 km s−1 Mpc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Within this model, one arcsec at z = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37 corresponds to a projected physical scale of 8200 parsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' All magnitudes are given in the AB system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Left: The HST F555W band image, showing the six aperture po- sitions where a MUSE 1D spectrum is extracted (red contours).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' White arrows point to the multiple images of the young stellar cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Right: The MUSE IFU image at ∼ 1800Å of the same region shown on the left with the same apertures in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The Sunburst lensed galaxy The Sunburst is a galaxy at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37, strongly lensed by the Planck cluster PSZ1 G311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='65-18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='48 at z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='44, initially reported by Dahle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The strong gravitational lensing effect deflects the light from the background high-z Sunburst galaxy into four bright arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' These bright arcs harbor at least 13 star- forming knots, which likely are stellar clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' There are more than 50 multiple images of this system (Pignataro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021), whose physical properties are studied in detail in Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Among the 13 young stellar clusters, one has been iden- tified 12 times (dubbed 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1) and it is the subject of this work (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The source 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 shows a multi-peaked Lyα emis- sion consistent with an optically thin medium and Lyman con- tinuum (LyC) leakage along the line of sight (Rivera-Thorsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore, the detection of LyC radiation emerg- ing from the 12 detected multiple images of the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 young mas- sive star cluster is confirmed by HST multi-band observations (Rivera-Thorsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Additional analyses of the 12 LyC multiple images of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 have revealed that the star cluster has an age younger than 3 Myr and a stellar metallicity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5Z⊙ (Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019), with a physical size of ≃ 10 pc and a stellar (and dynamical) mass value of ≃ 107 M⊙ (Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The Sunburst was observed with HST, providing multi- band photometry in the F275W, F410M, F555W, F606W, F814W, F098M, F105W, F140W and F160W filters, under the programs 15101 (PI Dahle), 15949 (PI Gladders), and 15377 (PI Bayliss).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Sunburst has also been targeted with ground- based high resolution (R ∼ 5000 − 9000) VLT/X-Shooter spec- troscopy covering the spectral range 3000-22000Å in three main arms, UVB, VIS abd NIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The observational strategy and the data reduction procedures applied to HST imaging and VLT/X- Shooter spectroscopy have been presented in Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2020b, 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VLT/MUSE integral field spectroscopy at res- olution R = 3000 and covering the spectral range 4800-9400Å was obtained during 2016 (1h integration, DDT, PI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Aghanim) and 2021 (1h integration, PI, Vanzella) in the wide field mode configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The final datacube which combines the two hours and the data reduction is described in Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We also presented a first version of the lens model in Pignataro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2021) based on the 62 spectroscopically confirmed mul- tiple images in the redshift range 1 < z < 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 (see also Sharon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Diego et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A revised lens model will be com- puted once the new VLT/MUSE observations (7h integration) planned during 2023 will be performed (prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='249D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='001, PI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 2 of 10 PSF HST F555W PSF MUSE IFU AP1 AP2 AP3 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1a 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1b 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1c 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content="1d' 5." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1f 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1e AP4 AP5 AP5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1h AP6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1iU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mestric et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' : Very massive, spatially segregated stars at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 Here we focus on the ≃ 3 Myr old, UV-bright and Ly- man continuum source with MUV = −18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 (1700Å magnitude and ultraviolet slope β = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='71 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='01, Fλ ∼ λβ), massive (M ∼ 107 M⊙) star cluster 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1, subjected to large magnification values (µ ∼ 10 − 70 over 12 multiple images, Pignataro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In the following we perform a new analysis focusing on the nature of the ionizing source (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3) and its morphology (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Spectral signatures of very massive stars in the Sunburst star cluster at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37 We aim to investigate the UV and optical spectroscopic prop- erties of the young stellar cluster 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The VLT/MUSE one- dimensional spectra are extracted from six apertures enclosing nine multiple images of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1) and subsequently combined to produce a continuum-detected high signal-to-noise ratio SNR (> 60) weighted-average spectrum (Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The stacked spectrum shown in Figure 2 is equivalent to an inte- gration time of (2 × 9) × 302 > 16, 000 hours without lensing amplification, adopting the minimum amplification among the 9 multiple images (µ = 30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Observed VMS features with VLT MUSE and X-Shooter The very high SNR MUSE spectrum (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2) allows us to identify several emission and absorption lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Among them we have the nebular emission lines associated to the interstel- lar medium of the galaxy, like Oiii]λ1661, 1666, Niii]λ1750, [Siiii]λ1883, 1892, and Ciii]λλ1907, 1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The well detected continuum allows us to investigate faint line emissions (of a frac- tion of an Å rest-frame equivalent width), and to sample the de- tails of the line profiles, otherwise not accessible without lens- ing amplification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In particular, faint Nivλ1486 emission, the ev- ident P-Cygni profile of the Civλ1550, the prominent broad and asymmetric Heiiλ1640 line profile, and the P-Cygni signature of Nivλ1720 clearly stand out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' All these lines are associated with young, hot and (very) massive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We report detection of Heiiλ1640 emission with measured rest frame EW=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3Å and FWHM=8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7Å (∼ 1610±300 km s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The broad shape of the Heiiλ1640 emission line ob- served in the Sunburst cluster is asymmetric and resembles a typical P-Cygni profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The blue end of the emission line drops steeply, while the red end drops more gradually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The P-Cygni profile of Heiiλ1640 line is consistent with that predicted by models and synthetic spectra (see, Martins & Palacios 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Broad Heiiλ1640 emission observed in galaxies is usually re- lated to non-nebular origin, commonly associated with Wolf- Rayet (WR) stars, (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Schaerer & Stasi´nska 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Brinchmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Leitherer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Senchyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021), though the failure of the synthesis models to reproduce some of the strong Heiiλ1640 lines might be related to missing ingredients in stellar evolution models (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Leitherer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' How- ever, far-UV spectroscopic investigation of ∼57 individual stars located within the R136 star cluster reveals that massive stars with M>100 M⊙ have a crucial role in producing the Heiiλ1640 emission line (Gräfener & Vink 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Crowther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' On the other hand, Martins & Palacios (2022) have shown that Heiiλ1640 can be produced in significant amount only when stel- lar winds are stronger than in normal O stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS develop such strong winds because of their proximity to the Eddington limit (Vink et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Bestenlehner 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Gräfener 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' At the same time, these winds peel off the external layers of the stars and expose to the surface the products of hydrogen burn- ing through the CNO cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This results in a strong nitrogen (and helium) enrichment that boosts the strength of Nivλ1486 and Nivλ1720.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This typically happens after ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Both mentioned emission lines are detected in the spectrum of the Sunburst cluster at SNR > 15 (Figure 2), with EW=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2Å and FWHM=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='9Å for Nivλ1486 and EW=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='15Å and FWHM ∼ 2Å for Nivλ1720.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The helium enrichment also contributes to the strength of Heiiλ1640.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The same effects (strong winds combined with surface chemical enrichment) happen in normal evolved massive stars when they are seen as WR stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The key difference compared to VMS is that helium enrichment takes place only af- ter the main sequence (>∼ 4 Myr), while the same process takes place at younger ages in VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore, VMS are more lu- minous than normal WR stars and hence their contribution to integrated light is larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The nebular Hα equivalent width provides constraints on the cluster age and hence on whether the Heiiλ1640 line is primar- ily due to WR stars or VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' According to the BPASS mod- els and results from Eldridge & Stanway (2012) (their Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3) they predict that normal and WR stars produce EWHα < 1Å for ages <∼ 3Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The X-Shooter spectrum reveals a prominent Hα line and no continuum detection, which very conservatively im- plies an equivalent width larger than 200Å rest-frame at 1-sigma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' However, if we assume for Hα the same continuum level ob- served at λ ∼ 5000Å rest-frame in the photometric spectral en- ergy distribution (SED) by Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022a) such a limit in- creases to ∼ 840Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This value would be still a lower limit, even in the case of leakage of ionizing photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' After correcting the Hα flux for the fraction of escaping LyC photons (Hα/(1− f abs esc )), the resulting EW increases to EWHα ∼ 1231Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We adopt f abs esc values from Rivera-Thorsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2019), where the corresponding ab- solute escape fraction of LyC photons along the line of sight is f abs esc = 32+2 −4% .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such a large Hα equivalent width is consistent with a star-forming burst younger than ∼ 3 Myr (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Leitherer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore as discussed in Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2019) Nvλ1240 stellar wind profile predominantly depends on the stel- lar age while variations due to different metallicity are negligible and it is related to the young stellar populations (< 5 Myr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' From the comparison of the observed Nvλ1240 with the models Figure 3 and 4 we additionally demonstrate that the age of the cluster is < 3 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' From our age analysis, we can conclude that properties of both Nvλ1240 and Hα fit well with < 3 Myr age of the stel- lar cluster which requires other sources than WR stars to explain the observed strong Heiiλ1640 EW=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Therefore these results strongly suggest that VMS are responsible for the pro- duction of the spectral ultraviolet features we observe in such a young massive star cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Moreover, Wofford et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2014) and Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2016) have argued that the presence of Ovλ1371 in integrated light of the clusters was also a key feature of VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This line is not seen in the Sunburst cluster, see Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' As demonstrated by Martins & Palacios (2022), this is not incom- patible with the presence of VMS, since Ovλ1371 disappears as VMS evolve to lower effective temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In their Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 4, we see that no sign of Ovλ1371 exists after ∼1 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This, together with the presence of Nivλ1486, places a rather tight constraint on the cluster age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Comparing observations with models To investigate the rest-frame UV spectrum of the cluster, we have created an integrated VMS model following Martins & Palacios Article number, page 3 of 10 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The MUSE IFU spectrum of the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 young massive star cluster extracted from 6 apertures is shown in black (thin line) and the X-Shooter long slit spectrum of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l knot is shown in blue (bold line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The key confirmed features indicating the presence of VMS in the stellar cluster are marked with shaded light red strips while the dark-orange line shows the best-fit Fλ ∼ λβ, with β = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The shaded grey strip indicates the (absence of) Ovλ1371 line, which usually is an indicator of VMS too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The prominent P-Cygni of Nvλ1240 and strong emission part of the Civλ1550 are present and indicate the young age of the stellar cluster (black bold markers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In the bottom, the 1-sigma errors of both spectra are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Other detected interstellar features and stellar features are marked with dashed red and green lines, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022) that includes normal mass stars (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1-100 M⊙) with differ- ent VMS (150 M⊙ and 200 M⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We have used the spectral energy distribution (SEDs) of BPASS (Eldridge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Stanway & Eldridge 2018) v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 single-star population synthesis model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The model has an up- per mass limit of 100 M⊙ with the Salpeter IMF, metallicity of Z=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='006 (where 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='02 corresponds to solar metallicity), and in- stantaneous star formation history, with a burst of mass 106 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The adopted metallicity of the model is the closest to our mea- sured value based on N2 index (Marino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013), which is ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4Z⊙ and consistent with the estimate provided by Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022) (see also Chisholm et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We have extrapolated the Salpeter IMF to 225 M⊙ upper mass limit within a few mass bins given by Equation 1 from the BPASS manual1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Equation 1 gives the number of massive stars in the mass range [Ma;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mb].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' N(Ma;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mb) = C × Mα1 1 � Mb Ma Mα2 dM (1) Here, C is a constant and has a value of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='23×105 for an arbitrary burst mass of 106 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Also, M1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 M⊙ α1 = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3, α2 = - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The mass bins are selected in a way to add the SEDs of appropriate numbers of single VMS stars, which are available for discrete sets of VMS with masses including 150 M⊙ and 200 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In this manner we compute SEDs including VMS with IMFs extending up to 175 and 225 M⊙, respectively, following Martins & Palacios (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1 https://flexiblelearning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='auckland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='nz/bpass/9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='html From Figure 2, we can see that the cluster shows signifi- cant Nivλ1486 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' From the VMS models and synthetic spectra, Nivλ1486 emission only appears after 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr of VMS evolution (see, Martins & Palacios 2022) and VMS last approx- imately until 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Based on this, we created the SEDs of in- tegrated VMS models at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr, 2 Myr, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We have normalized the spectrum of the cluster and the models by fitting a UV power law by using the spectral windows provided by Rix et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We have directly compared the cluster spectrum with the two VMS models at 3 different ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The comparison shows that VMS are clearly needed to reproduce the observations (see, Fig- ures 3, 4, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' However, the Heiiλ1640 and Nivλ1720 lines in the models appear stronger than observed even at the age of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr and with a maximum mass of 175 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' To match the observed Heiiλ1640 and Nivλ1720 profiles, we have therefore reduced the VMS contribution by decreasing their numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We find good agreement if we reduce the VMS contribution by a fac- tor of 6 in the VMS model, which includes only 150 M⊙ VMS at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Alternatively, a similar match is also found by reducing the VMS contribution by a factor of 8 in models in- cluding also the 200 M⊙ VMS (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In short, the observations are compatible with an IMF extending up to ∼ 175 or 225 M⊙, but with an IMF slope steeper than Salpeter (α2 < −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='35) for M > 100 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 4 of 10 Aobs / A 4000 4500 5000 5500 6000 6500 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 1H13 IIIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='+IO AS: {IIIN IIIS IIIS AID 全13 sv CIV1550 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 NV1240 y1486 ux fl Normalized 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 F 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Arest / AU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mestric et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' : Very massive, spatially segregated stars at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS contribution to the LyC budget of the young stellar cluster After adopting the results from the previous section, we can now estimate the number of O-type stars hosted by the same stellar cluster and the percentage of LyC photons emitted by VMS only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Measurements are performed in the range of ∼730–900Å rest-frame (range covered by HST F275W filter in which LyC radiation is detected and fesc later on evaluated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' First, we cal- culate the mean flux from the model which include both normal and VMS stars and, secondly, we calculate the mean flux from the model including only VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The resulting ratio of those two models gives us the fraction of the LyC photons produced by VMS, which is ∼15%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Since LyC photons are mainly produced by O-type and more massive stars, we can see that ∼15% of the LyC production is generated only from ∼1% of the stars capable of producing LyC photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' It is worth noting that the fraction of LyC ionizing radiation produced from VMS in the Sunburst 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 stellar cluster is smaller than the predicted LyC fraction pro- duced by the VMS located in R136 stellar cluster, which is 25% (Doran et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' However, we also note that in the case of the Sunburst stellar cluster the light coming from the host galaxy could slightly decreases the inferred equivalent width of the key spectral features discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' While such dilution is difficult to address with the present ground-based spectroscopic data2, its effect implies a possible slightly higher contribution of VMS to the LyC radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Spatial segregation of the Lyman continuum radiation We now address the morphological properties of image 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l, which is the most magnified among the multiple images of the star cluster (µtot ≃ 76, Pignataro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l is the brightest image detected with a large SNR in the F275W (SNR ∼ 90) and F555W (SNR ≫100), allowing us to investigate and compare the morphology in these two spectral regions: the emitting LyC (λ < 900Å, in HST F275W band) and the non-ionizing radiation at 1700Å (HST F555W band).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We follow two approaches: (1) we ran simulations injecting the sources in the F275W band and (2) we analyzed the curve of growth of the resulting images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Figure 5 shows the F555W image of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l, in which the elon- gation is clearly visible in the direction of the tangential stretch produced by gravitational lensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' As discussed in Pignataro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2021) (see also Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022a), the tangential am- plification largely dominates along the arc (µtang ≃ 57).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We per- form here a relative comparison between images, to ensure that the the results do not depend on the magnification values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' As a first step, we compute a realistic model of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l on the HST F555W image using Galfit (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The point spread function (PSF) has been extracted by combining non- saturated stars available in the field of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' While the fit with a single component does not produce acceptable residuals (larger than 20%), we reproduce quite well the light profile of the ob- ject by combining two components: a core with a Gaussian light profile and an effective radius (Reff) smaller than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 pixels (in practice nearly unresolved) and an extended component with Reff = 6 pixels and Sersic index n=1 (similar results are ob- tained also with n=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The combination of the two components produces an optimal shape which leaves normalized residuals smaller than 10% (see Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' It is worth now investigating if 2 JWST/NIRSpec-IFU and NIRCAM observations on the same YMC are planned during 2023, prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2555, PI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Rivera-Thorsen such a resolved shape (sampled at 1700Å) is recovered if placed in the F275W Lyman continuum image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' For this check, we in- jected mock images of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l into the F275W image on five dif- ferent positions around 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l, which are not contaminated by the flux coming from other sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such images are produced from the aforementioned two-component Galfit model constructed at 1700Å (F555W), but now accounting for the F275W PSF (in other words convolved by the F275W PSF) to allow for a proper comparison with the LyC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l source (observed in HST F275W band).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Such images have been added to F275W after rescaling each of them to the observed peak value of the LyC 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l ob- ject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This step has been performed with IRAF (Tody 1986) task IMARITH and IMCOPY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Figure 6 shows the results, in which all the injected images show a spatially-resolved morphology along the tangential magnification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Conversely, the observed LyC im- age (of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l) appears nucleated, suggesting that the emitting LyC region is smaller than the one at 1700Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' To quantify this result, we calculate the curve of growth (CoG) of the images shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The flux is then mea- sured in the F275W band in 34 circular apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The small- est aperture has a radius of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1 pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Intermediate apertures are drawn with increasing radii, with a step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 pix, up to largest one, which has a radius of 34 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' As a reference point-like source, we constructed the mean CoG from a selected sample of twenty non-saturated and non-contaminated stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The resulting CoG is shown in Figure 7, where the y-axis reports the frac- tion of the flux enclosed at the corresponding radius in pixels (x-axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The same procedure has been applied to the LyC emitting source 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l, while another CoG has been constructed by averag- ing the five CoG of the injected models resembling the morphol- ogy at 1700Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Figure 7 compares all the CoG after normalizing them to the saturation value at the largest radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The first re- sult which emerges from this test is the clear deviation of the CoG of the observed 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l LyC source from the behavior of a point-like source (stars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This was not explored before and sug- gests that in the most magnified image of the star cluster the LyC appears spatially resolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This is the first evidence of a re- solved stellar LyC emission at cosmological distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Second, such barely resolved LyC emission appears more nucleated than the one at 1700Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Consequently, the sources of ionizing radi- ation appears located in the central part of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Indeed, from those curves, it emerges that 50% of the flux of the stars is enclosed within a radius of ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='9 pixel, while for 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l it lies within ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Additionally, we perform the Kolmogorov-Smirnov two-sample test (KS-test) to check if the CoGs derived from the stars and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l source follow the same distribution (null hypothe- sis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' For this purpose, we used the statistical function ks_2samp from scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='stats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' After comparing the average CoG of the stars with cyan and violet CoGs, the KS-test gives p << 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' It means that the null hypothesis is not satisfied with the LyC pro- file of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l and it deviates from the CoG of a point-like source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore, we also find that the half-light size of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l at 1700Å is larger than the ionizing region, ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 pixels compared to the ∼2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' If we correct such radii for the instrumental reso- lution (given by the stars) we obtain an effective radius for 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l at 1700Å ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 pc after de-lensing3, in agreement with Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2020a), while the LyC image (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l) has a smaller radius, Reff ≃ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We therefore find a LyC emission which is more compact than the non-ionizing UV continuum, 3 Adopting the pixel scale of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='03′′/pixel, 8200 pc per arcsecond at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37 and µtang ≃ 57, Reff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='03∗8200∗((2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='62−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='92)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5)/57, adopting the same uncertainty on µtang reported by Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' (2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 5 of 10 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The MUSE ultraviolet spectra of the young star cluster (blue) is shown in the bottom panel with the X-Shooter spectrum (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The grey-shaded regions show specific UV features closely associated with the presence of the VMS (Nivλ1486, Heiiλ1640, and Nivλ1720) and some of them show a P-Cygni profile, characteristic of young and massive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Furthermore, the black line shows the single BPASS model including only normal stars at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr, while the red line shows the BPASS single-star model augmented by VMS with masses up to 150 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The upper panels show the zoom in VMS characteristic features compared with models and Nvλ1240 P-Cygni line, characteristic due to the presence of very young stellar populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' which we interpret as a spatial segregation of the most massive stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Summary and Conclusions In this paper, we have presented a detailed spectroscopic and morphological analysis of the massive and young stellar cluster hosted in the Sunburst lensed galaxy at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='37, for which also LyC emission was confirmed in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We used results from recent stellar evolutions and atmosphere models including VMS (Martins & Palacios 2022) to conduct extensive compar- isons with high spectral resolution observations performed with VLT/MUSE and X-Shooter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The main results of this work can be summarized as follows: – In the spectroscopic observations, the high signal-to-noise MUSE and X-Shooter spectra reveal features of broad (and asymmetric) Heiiλ1640 emission with EW ≃ 3Å rest-frame and line width of 1610 km s−1, and Nivλ1486 with EW ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2Å emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In addition, the P-Cygni profile of Nivλ1720 (along with NV and CIV) is also observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' All these features suggest the presence of very massive (> 100M⊙) stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The absence of Ovλ1371 provides a lower age limit of 1 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' On the other hand, the large Hα EW (> 1231Å after correcting for the escaping LyC radiation) indicates an age younger than ∼ 3 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' These narrow age constraints strongly favor the existence of VMS over WR stars, implying that the strength of the Heiiλ1640 emission line is entirely due to VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' – A comparison of the observations with the models reveals that the most plausible age of the star cluster is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr, and an estimated number of ∼ 370 − 400 VMS for a cluster mass of 107 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The observations are compatible with an IMF extending up to ∼ 175 − 225 M⊙, but with a slope which is steeper than the Salpeter IMF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' – The fraction of LyC radiation emerging from the VMS com- ponent is not negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We estimate that in the 730Å – 900Å range (probed by the HST/F275W band) about 360 – 400 VMS (or roughly 1% of the total population of O-type stars in the star cluster) account for 15% of the escaping LyC pho- tons, with the rest being produced mostly by the other less massive O-type stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' – Detailed morphological analysis of the most magnified im- age of the star cluster shows that the region emitting LyC is not point-like, with a light profile different from the av- erage profile of stars present in the same field of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' This is the first evidence of a resolved LyC emission at any red- shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Remarkably, the physical scale of the LyC emitting re- gion appears also smaller (with a significant K-S probability p << 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='05) than the non-ionizing region (1700Å), suggest- ing that massive O-type stars responsible for the LyC radi- ation, and likely the VMS (significantly contributing to it), are segregated in the central part of the star cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' After de- lensing the angular half-light radii, the LyC region appears barely resolved with Reff ≃ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5pc, while at 1700Å it is Reff ≃ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 pc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The packaging of such a large num- ber of massive O-type stars per parsec cube in the central region, ≃ 70 pc−3, is likely a element which allowed to carve the ionizing channel and the development of a high-speed outflowing gas (Rivera-Thorsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vanzella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mainali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We acknowledge financial support through grants PRIN- MIUR 2017WSCC32, 2020SKSTHZ and the INAF GO Grant 2022 “The rev- Article number, page 6 of 10 Nv1240A NIV1486A NIV1720A HeI1640A 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 Sunburst Cluster Mus 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='3 E BPASS 100 M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='+ 150 M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='VMS (39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='43) at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='61705 1220 1492 1640 1650 1240 1480 1484 1488 1660 670 1710 1715 1720 1725 1730 Rest Frame Wavelength [A] Rest Frame Wavelength [A] Rest Frame Wavelength [A] Rest Frame Wavelength [A] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0E Sunburst Cluster MUSE Sunburst Cluster Xshooter BPASS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8E Single BPASSup to 100 Mo + 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='43 number of 150 Mo VMS at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0M W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8E Nor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2日 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 Rest Frame Wavelength [A]U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mestric et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' : Very massive, spatially segregated stars at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' All symbols as in Figure 3 except for the red lines, showing the BPASS single-star model augmented by VMS with masses up to 200 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The results from Galfit modeling after using a two-component fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' From the left, the first panel shows the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l source in the F555W band (UV1700Å).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The second panel shows the model from Galfit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The third panel shows the residual and the fourth panel is the normalized residual produced after dividing the residual with the original image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The white contour encloses the region used to check the quality of the produced model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' olution is around the corner: JWST will probe globular cluster precursors and Population III stellar clusters at cosmic dawn” (PI Vanzella).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' FC and RP ac- knowledge funding from PRIN INAF 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' References Abel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bryan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Norman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2002, Science, 295, 93 Bestenlehner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2020, MNRAS, 493, 3938 Brands, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', de Koter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bestenlehner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, A&A, 663, A36 Brinchmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Kunth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Durret, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2008, A&A, 485, 657 Calzetti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Johnson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Adamo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015, ApJ, 811, 75 Chisholm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bayliss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019, ApJ, 882, 182 Cignoni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Sabbi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', van der Marel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015, ApJ, 811, 76 Crowther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Caballero-Nieves, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bostroem, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016, MNRAS, 458, 624 Crowther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Schnurr, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Hirschi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010, MNRAS, 408, 731 Dahle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Aghanim, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Guennou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016, A&A, 590, L4 Diego, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Pascale, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Kavanagh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, A&A, 665, A134 Doran, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Crowther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', de Koter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013, A&A, 558, A134 Eldridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' & Stanway, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2012, MNRAS, 419, 479 Eldridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Stanway, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Xiao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, PASA, 34, e058 Goswami, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Slemer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Marigo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021, A&A, 650, A203 Gräfener, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021, A&A, 647, A13 Gräfener, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' & Vink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015, A&A, 578, L2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The HST F275W image showing 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l LyC leaking source in its centre;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' other two multiple images, of the same source, are labeled as 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1i and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Around 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l, in the region not contaminated by other sources, five models are injected (see text for more details), enclosed in the white squares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In the bottom right corner, we shown the largest (34pix diameter) aperture size used to construct CoGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Sharon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, ApJ, 843, L21 Köhler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Langer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', de Koter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015, A&A, 573, A71 Leitherer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Byler, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Levesque, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018, ApJ, 865, 55 Leitherer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Ekström, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Meynet, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2014, ApJS, 212, 14 Mainali, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Chisholm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, ApJ, 940, 160 Marino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rosales-Ortega, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Sánchez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013, A&A, 559, A114 Article number, page 7 of 10 Nv1240A NIV1486A HeII1640A NIV1720A Sunburst Cluster Xshootel 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='05 1260 1480 1492 1496 1630 1640 1650 1670 1220 1484 1488 1710 1715 1725 1730 1230 Rest Frame Wavelength [A] Rest Frame Wavelength [A] Rest Frame Wavelength [A] Rest Frame Wavelength [A] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 Sunburst Cluster MUSE 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8E Sunburst Cluster Xshooter BPASS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 MA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8 LLLLLLLLLLLLL LJON 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2E 一 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 Rest Frame Wavelength [A]5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='11 normalised model residual HST F555W residual5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1h 1" Model5 Model 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1i Model 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='11 Model ModelA&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Three curves of growth normalized to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The cyan CoG cor- responds to the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l LyC leaking source located in the Sunburst arc (F275W band).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The violet CoG is the PSF-convolved, best-fit model of the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l source observed in F555W constructed averaging 5 CoGs (see text for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The orange growth curve is used for comparison and it is constructed averaging 20 single CoGs from randomly selected stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In both cases (cyan and violet) error bars are 1σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Vertical lines in the bottom left part of the figure mark the pixel radii at which 50% of the light is enclosed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The colors corresponds to the CoG colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Martins, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Hillier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Paumard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2008, A&A, 478, 219 Martins, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' & Palacios, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, A&A, 659, A163 Meštri´c, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Zanella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, MNRAS, 516, 3532 Peng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Impey, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Rix, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010, AJ, 139, 2097 Pignataro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bergamini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Meneghetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021, A&A, 655, A81 Portegies Zwart, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', McMillan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Gieles, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2010, ARA&A, 48, 431 Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bayliss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Chisholm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018a, ApJ, 853, 87 Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bayliss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Sharon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018b, AJ, 155, 104 Rigby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Sharon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, ApJ, 843, 79 Rivera-Thorsen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Dahle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Chisholm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2019, Science, 366, 738 Rivera-Thorsen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Dahle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Gronke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, A&A, 608, L4 Rix, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Pettini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Leitherer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2004, ApJ, 615, 98 Schaerer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' & Stasi´nska, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1999, A&A, 345, L17 Senchyna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Stark, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Charlot, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021, MNRAS, 503, 6112 Sharon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Mahler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rivera-Thorsen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='03417 Smith, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bajaj, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Ryon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Sabbi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2020, ApJ, 896, 84 Smith, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Crowther, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Calzetti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Sidoli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016, ApJ, 823, 38 Stanway, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' & Eldridge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2018, MNRAS, 479, 75 Tody, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 1986, in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' SPIE, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 627, Instrumentation in astronomy VI, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Crawford, 733 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Calura, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Meneghetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2017, MNRAS, 467, 4304 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Caminha, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Calura, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2020a, MNRAS, 491, 1093 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Caminha, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Rosati, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2021, A&A, 646, A57 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Castellano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bergamini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022a, A&A, 659, A2 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Castellano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Bergamini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2022b, ApJ, 940, L53 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', De Barros, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Cupani, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2016, ApJ, 821, L27 Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Meneghetti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Pastorello, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2020b, MNRAS, 499, L67 Vink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Heger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Krumholz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2015, Highlights of Astronomy, 16, 51 Vink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Muijres, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Anthonisse, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2011, A&A, 531, A132 Wofford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Leitherer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Chandar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', & Bouret, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2014, ApJ, 781, 122 Yusof, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Hirschi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', Meynet, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 2013, MNRAS, 433, 1114 Article number, page 8 of 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='8 iction rd 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='6 ux 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2 observed CoG of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1l in F275W ★ avg CoG for 5 observed Stars 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 6AE CoG model n=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Radius [pixels]U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Mestric et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' : Very massive, spatially segregated stars at z=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='4 Appendix A: Initial models As described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='2, we compare the X-Shooter and MUSE spectroscopic observations with the BPASS models at different ages (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr, 2 Myr, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We narrow our models to the mentioned age range since the predicted age of the cluster is higher than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr (inferred from Nivλ1486 emission line) and the lifetime of the VMS is about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr (Martins & Palacios 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' We started with the BPASS which has an upper mass limit of 100 M⊙ and added 236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='56 stars in the 100 - 175 M⊙ mass range and 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='30 stars in the mass range 175 – 225 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Resulting models (at different ages) are shown in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' all models produce significantly strong spectroscopic features characteristic of the presence of VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' To better match models with observa- tions, we decreased the numbers of the VMS and the final results are presented in Section 3 (Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' 3 and 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 9 of 10 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' VMS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The six panels are showing the comparison of the observations (MUSE spectrum, red line) with BPASS models (black line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The left column shows three BPASS models with an IMF up to 100 M⊙, ages of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr, 2 Myr, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='5 Myr and an added number of 236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='56 150 M⊙ VMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' The right column shows BPASS model with an IMF up to 100 M⊙ at same ages (as shown in previous column) but with added nuber of 236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='56 and 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content='30 VMS of 150 M⊙ and 200 M⊙, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' In all six panels we can see that the strength of feature characteristic to VMS is higher than in observed cluster, see the Section 3 for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} +page_content=' Article number, page 10 of 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf'} diff --git a/BtFAT4oBgHgl3EQfsR7g/vector_store/index.faiss b/BtFAT4oBgHgl3EQfsR7g/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fea874ba33f03bdd3cbd05e88a47b4d624ea2156 --- /dev/null +++ b/BtFAT4oBgHgl3EQfsR7g/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8878f216a8ecf8097bc30f5b571f2f56b794180aef570db16c872faf056111a7 +size 2621485 diff --git a/CNFRT4oBgHgl3EQfvzii/content/2301.13636v1.pdf b/CNFRT4oBgHgl3EQfvzii/content/2301.13636v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..63478f2c32cc5c7799ba09ed4f157c43d3baca28 --- /dev/null +++ b/CNFRT4oBgHgl3EQfvzii/content/2301.13636v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dba39f7ed69b2744e3f38595416007033c135d407c43a95e8e5109d2653dc59c +size 6051264 diff --git a/CNFRT4oBgHgl3EQfvzii/vector_store/index.faiss b/CNFRT4oBgHgl3EQfvzii/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..5926f780a92b6913442be54f329a3b5016128766 --- /dev/null +++ b/CNFRT4oBgHgl3EQfvzii/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce27fd9f836e63a6939bc3b4a54fa1ecf436f9ece56403f0534d967f227b47e9 +size 4784173 diff --git a/CNFRT4oBgHgl3EQfvzii/vector_store/index.pkl b/CNFRT4oBgHgl3EQfvzii/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..39db29de6046782846471536e51b326843d7729c --- /dev/null +++ b/CNFRT4oBgHgl3EQfvzii/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b06da2428b6e1f8c6dce52e2fcf7faf559a353ee027239dae852d0800be63f5 +size 189144 diff --git a/CtAyT4oBgHgl3EQfR_f1/vector_store/index.faiss b/CtAyT4oBgHgl3EQfR_f1/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2f41352b427d6ed1a989bc65631ffe8ee891c7d9 --- /dev/null +++ b/CtAyT4oBgHgl3EQfR_f1/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f56613ea7b0527205786e26b426afe4a804acecc2226db0a370d0dcc2fa9bfd +size 11993133 diff --git a/DdAzT4oBgHgl3EQfif0c/vector_store/index.faiss b/DdAzT4oBgHgl3EQfif0c/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..5f948a52c0128a829f85dcdb8ee0d37be5728aac --- /dev/null +++ b/DdAzT4oBgHgl3EQfif0c/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3d14d4d211746405171b0420b70d4934a71c78ffd19567b12dd4bdcc9e2da31c +size 5767213 diff --git a/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/2301.02198v1.pdf.txt b/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/2301.02198v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f4196f4f7a7486cafe7c74211379136df821139b --- /dev/null +++ b/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/2301.02198v1.pdf.txt @@ -0,0 +1,1971 @@ +1 +Privacy-Preserving Distributed Energy Resource +Control with Decentralized Cloud Computing +Xiang Huo, Graduate Student Member, IEEE, Mingxi Liu, Member, IEEE +Abstract—The rapidly growing penetration of renewable en- +ergy resources brings unprecedented challenges to power distri- +bution networks – management of a large population of grid- +tied controllable devices encounters control scalability crises and +potential end-user privacy breaches. Despite the importance, +research on privacy preservation of distributed energy resource +(DER) control in a fully scalable manner is lacked. To fill the +gap, this paper designs a novel decentralized privacy-preserving +DER control framework that 1) achieves control scalability over +DER population and heterogeneity; 2) eliminates peer-to-peer +communications and secures the privacy of all participating +DERs against various types of adversaries; and 3) enjoys higher +computation efficiency and accuracy compared to state-of-the- +art privacy-preserving methods. A strongly coupled optimization +problem is formulated to control the power consumption and +output of DERs, including solar photovoltaics and energy storage +systems, then solved using the projected gradient method. Cloud +computing and secret sharing are seamlessly integrated into the +proposed decentralized computing to achieve privacy preserva- +tion. Simulation results prove the capabilities of the proposed +approach in DER control applications. +Index Terms—Decentralized optimization, distributed energy +resources, privacy preservation, secret sharing +I. INTRODUCTION +A. Related Works +L +ARGE-scale deployment of distributed energy resources +(DERs) has proven efficacy in reducing carbon footprint +and providing grid-edge services such as voltage control, load +following, and backup power supply [1]. DERs, including +energy storage systems (ESSs), solar photovoltaic (PV), and +electric vehicles (EVs), along with other monitoring and +controllable devices, can offer significant opportunities for +advancing efficient, reliable, and cost-effective power grids [2], +[3]. Though integrating DERs into power grids can provide +multifarious benefits, such as enhanced energy efficiency and +economic boost, the high penetration of DERs raises surging +challenges on the scalability of existing control strategies [4]. +To address the aforementioned challenges in large-scale +DER control problems, distributed and decentralized control +strategies are drawing increased attention owing to their +superior scalability. For instance, a distributed coordination +method based on local droop control and consensus control +was designed in [5] to deal with the voltage rise problem +caused by the high penetration of solar PVs. Zhang et al. in [6] +proposed an asynchronous distributed leader-follower control +strategy that optimally schedules DERs to lower the voltage +The authors are with the Department of Electrical and Computer Engineer- +ing, University of Utah, Salt Lake City, UT 84112 USA (e-mail: xiang.huo, +mingxi.liu@utah.edu). +for peak load shaving and long-term energy saving. To reduce +the communication burden, a distributed low-communication +algorithm was proposed in [7] to control islanded PV-battery- +hybrid systems. Though distributed methods can achieve +scalability, they generically suffer from massive peer-to-peer +communications. To overcome this issue, Navidi et al. in +[8] developed a two-layer decentralized DER coordination +architecture that can scale the solution to large networks, and +no direct communication is required between local controllers. +In [9], a decentralized stochastic control strategy was designed +for radial distribution systems with controllable PVs and ESSs +to minimize the demand balancing cost. Huo et al. in [10] pro- +posed a decentralized shrunken primal-multi-dual subgradient +algorithm with dimension reduction to achieve scalability w.r.t. +both agent population size and network dimension. +Despite the superior scalability and communication effi- +ciency of decentralized methods, their implementation has +been significantly hampered by the vulnerability to privacy +breaches. Furthermore, both distributed and decentralized +strategies rely heavily on mandatory communications which +can disclose users’ sensitive information and expose system +vulnerabilities to adversaries. Differential privacy (DP) has re- +ceived substantial attention in addressing privacy concerns due +to its rigorous mathematical formulation [11]. DP-based meth- +ods add persistent randomized perturbations to the datasets, +constraints, or objective functions for privacy preservation. +In [12], a DP-based aggregation algorithm is proposed to +compensate for solar power fluctuations and protect users’ +personal information. Han et al. in [13] developed a distributed +optimization algorithm based on DP to preserve the privacy +of the participating agents. Gough et al. in [14] designed an +innovative DP-compliant algorithm to ensure that the data +from consumers’ smart meters are protected. Despite the +success in privacy preservation, DP-based methods inevitably +suffer from accuracy loss due to the added perturbations. +In contrast, encryption-based strategies achieve privacy +preservation with high accuracy by encrypting the original +data into cyphertexts, and only those holding private keys +can decrypt the cyphertexts. Lu et al. in [15] proposed an +efficient and privacy-preserving aggregation scheme for smart +grid communications, in which the data is encrypted by Paillier +cryptosystem. In [16], a privacy-preserving and fault-tolerant +scheme was designed based on homomorphic cryptosystem +to achieve secure aggregation of metering data. Similarly, +Cheng et al. in [17] proposed a novel private collaborative +distributed energy management system based on homomorphic +encryption to solve the privacy issues in distribution systems +and microgirds. Despite the high accuracy, the drawback +arXiv:2301.02198v1 [math.OC] 5 Jan 2023 + +2 +of encryption-based methods lies in the prevalent comput- +ing overhead caused by encryption and decryption. Other +hardware-integrated privacy-preserving methods, e.g., garbled +circuit [18], [19], are deficient in flexibility and uneconomic +due to the hardware cost. +Secret sharing (SS) [20] is a lightweight cryptographic +method that can securely distribute a secret among a group +of participants. Each participant will be allocated a share +of the secret, and only through the collaboration of certain +participants where the number of participants is greater than a +threshold can the secret be reconstructed from their shares. +Adopting SS, Nabil et al. in [21] designed an SS-based +detection scheme to identify malicious consumers who steal +electricity, in which system operators only collect masked +meter readings from the consumers to avoid privacy vio- +lation. In [22], an SS-based EV charging control protocol +was developed to achieve privacy-preserving EV charging +control for overnight valley filling. Compared with encryption- +based strategies, SS-based methods can preserve privacy while +avoiding the heavy computational load. Despite the superiority, +few research studied the integration of SS into DER control +due to the highly complex distribution network structure, large +DER population, and lack of theoretical support in privacy +guarantees. To fill these gaps, this paper designs a novel SS- +based privacy-preserving algorithm that merits high efficiency, +security, and accuracy for large-scale DER control problems. +B. Statement of Contributions +The contribution of this paper is three-fold: 1) We propose +a novel decentralized privacy-preserving algorithm that con- +currently achieves scalability and privacy in large-scale DER +control. To the best of our knowledge, this is the first paper +that proposes a decentralized SS-based algorithm for DER +privacy preservation, in which decentralized solutions, privacy +guarantees, and rigorous security proofs are provided; 2) The +proposed method eliminates the frequent peer-to-peer commu- +nications and secures the privacy of the participating DERs +against various types of adversaries. The designed framework +serves as a benchmark for secure and scalable DER control. 3) +Compared to state-of-the-art approaches, the proposed method +can achieve lower computational overhead and identically +accurate solutions as the non-privacy-concerned algorithms. +The rest of this paper is organized as follows: In Sec- +tion II, we construct the models of distribution networks, +PVs, and ESSs, then formulate the DER control problem +into a constrained optimization problem. Section III derives +the decentralized solution via the projected gradient method +and presents the corresponding DER aggregation and control +strategies. The SS-based privacy-preserving DER control al- +gorithm and privacy analyses are provided in Section IV. We +give simulation results and analyses in Section V. Section VI +concludes this paper. +II. PROBLEM FORMULATION +A. Branch Flow Model +Consider an n-bus radial distribution network where B = +{0, 1, . . . , n} denotes the set of buses. Let lij denote the line +segment connecting buses i and j, L = {1, . . . , h} denote +the set of lines, Cj denote the set of bus j’s child buses, Vj +denote the voltage magnitude at bus j, Pij and Qij denote +the active and reactive power flow from bus i to bus j, +respectively, and rij and xij be the resistance and reactance of +line lij, respectively. For bus j, let pc +j and qc +j denote the active +and reactive power consumptions, respectively, and pg +j and qg +j +denote its active and reactive power generations, respectively. +To simplify the network model, a nonlinear DistFlow model +[23] can be linearized to the LinDistFlow model by omitting +the higher order terms with negligible error [24]. Therefore, +this paper adopts the LinDistFlow model, represented as +Pij − +� +u∈Cj +Pju = pc +j − pg +j +(1a) +Qij − +� +u∈Cj +Qju = qc +j − qg +j +(1b) +V 2 +i − V 2 +j = 2(rijPij + xijQij). +(1c) +A radial 13-bus distribution network connected with rooftop +solar PVs and ESSs is shown in Fig. 1 and will be used as an +example throughout this paper. +10 +3 +2 +11 +6 +7 +5 +9 +8 +4 +1 +0 +P1, Q1 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoi4mNXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjbC8MczrmXe+5xY0aFNIyRVlhaXldK6XNja3tnf03 +b2miBKOSQNHLOJtFwnCaEgakpG2jEnKHAZabn9u1xvPRIuaBQ+yEFM7AB1Q+pTjKSiHP3SciPmiUGgvtQKkOxhxNJaljnmGVyo1XPN0ctGxRgXnAfmFJSrh8P6z9PRsObo35YX4SQgocQMCdExjVjaKeKSYkaykpUIEiPcR13SUTBEARF2Or4vgyeK8aAfcfVCcfs34kUBSK3qTpzl2JWy8lFWieR/rWd0jBOJAnxZJGfMCgjmIcFPcoJlmygAMKcKq8Q9xBHWKpISyoEc/bkedA8r5gXlZu6Wa7egkVwQE4BqfABFegCu5BDTQABs/gFbyD+1Fe9M+ta9Ja0GbzuyDf6WNfgEg2af6 +P2, Q2 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkpSxMeu6MZlC/YBTQiTyaQdOnkwMxFKyNK/cONfdO3GhSLirt/gTzhpu9DaC8MczrmXe+5xY0aFNIyxVlhaXldK6XNja3tnf03b2 +WiBKOSRNHLOIdFwnCaEiakpGOjEnKHAZabuD21xvPxAuaBTey2FM7AD1QupTjKSiHP3CciPmiWGgvtQKkOxjxNJ6ljnVM7hQa+Sao5eNijEp+B+YM1CuHY4a349Ho7qjf1lehJOAhBIzJETXNGJp4hLihnJSlYiSIzwAPVIV8EQBUTY6eS+DJ4oxoN+xNULJZywvydSFIjcpurMXYp5LScXad1E+ld2SsM4kSTE0V+wqCMYB4W9CgnWLKhAghzqrxC3EcYakiLakQzPmT/4NWtWKeV64bZrl2A6ZVBAfgGJwCE1yCGrgDdAEGDyBF/AG3rVn7VX70D6nrQVtNrMP/pQ2/gEj/af8 +p3, q3 +AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREBXVXdOyBfuANoTJZNIOnUzizEQoUvBjb/ixoVF3PoD7vwGf8J20WtHhjmcM693HuPFzMqlWV9GbmFxaXlfxqYW19Y3PL3N5 +pyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPrX2d+854ISN+qwYxcULU5TSgGCktuWax40XMl4NQf2k8dE+P4axypxXLFlawz4l9hTUqrsj2rfDwejqmt+dvwIJyHhCjMkZdu2YuWkSCiKGRkWOokMcJ91CVtTkKiXTS8S1DeKgVHwaR0I8rOFZnO1IUymw5XRki1ZPzXib+57UTFVw4KeVxogjHk0FBwqCKYBYM9KkgWLGBJgLqneFuIcEwkrHV9Ah2PMn/yWNk7J9Vr6s6TSuwAR5sAeK4AjY4BxUwA2ogjrA4BE8g1cwMp6MF+PNeJ+U5oxpzy74BePjB5D3nxk= +p2, q2 +AC3icbVDLSsNAFJ34rPUVdanI0CK4kJIUQd0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3 +NtvyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBZdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RLtnpauaTuMaTJADh6AToENLkAF3IqAMnsALeAMj49l4Nd6Nj0npkjHtOQB/YHz+Ao3dnxc= +p1, q1 +AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREBHVXdOyBfuANoTJZNIOnUzizEQoUvBjb/ixoVF3PoD7vwGf8J20VtPTDM4Zx7ufceL2ZUKsv6NnJLyura/n1wsbm1vaOu +bvXkFEiMKnjiEWi5SFJGOWkrqhipBULgkKPkabXv8n85gMRkb8Tg1i4oSoy2lAMVJacs1ix4uYLweh/tJ46NqncFa514prlqyNQZcJPaUlCqHo9rP49Go6pfHT/CSUi4wgxJ2batWDkpEopiRoaFTiJjHAfdUlbU45CIp10fMsQHmvFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBZdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLxFXQI9vzJi6RxVrbPy1c1u1S5BhPkwQEoghNgwtQAbegCuoAgyfwAt7AyHg2Xo1342NSmjOmPfvgD4zPX4sTnxY= +p6, q6 +AC3icbVDLSsNAFJ3UV62vqEtFhbBhZRExMeu6MZlC/YBbQiTyaQdOsnEmYlQpeCG3/FjQuLuPUH3PkN/oSTtotaPTDM4Zx7ufceL2ZUKsv6MnILi0vLK/nVwtr6xuaWub3 +TkDwRmNQxZ1y0PCQJoxGpK6oYacWCoNBjpOn1rzO/eU+EpDy6VYOYOCHqRjSgGCktuWax43Hmy0GovzQeumfHcFa504prlqyNQb8S+wpKVX2R7Xvh4NR1TU/Oz7HSUgihRmSsm1bsXJSJBTFjAwLnUSGOE+6pK2phEKiXTS8S1DeKgVHwZc6BcpOFZnO1IUymw5XRki1ZPzXib+57UTFVw4KY3iRJEITwYFCYOKwywY6FNBsGIDTRAWVO8KcQ8JhJWOr6BDsOdP/ksaJ2X7tHxZs0uVKzBHuyBIjgCNjgHFXADqAOMHgEz+AVjIwn48V4M94npTlj2rMLfsH4+AGalZ8g +P4, Q4 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoixceu6MZlC/YBTQiTyaQdOnkwMxFKyNK/cONfdO3GhSLirt/gTzhpu9DaC8MczrmXe+5xY0aFNIyxVlhaXldK6XNja3tnf03b2 +WiBKOSRNHLOIdFwnCaEiakpGOjEnKHAZabuD21xvPxAuaBTey2FM7AD1QupTjKSiHP3CciPmiWGgvtQKkOxjxNJ6ljnVM7hQa+Sao5eNijEp+B+YM1CuHY4a349Ho7qjf1lehJOAhBIzJETXNGJp4hLihnJSlYiSIzwAPVIV8EQBUTY6eS+DJ4oxoN+xNULJZywvydSFIjcpurMXYp5LScXad1E+ld2SsM4kSTE0V+wqCMYB4W9CgnWLKhAghzqrxC3EcYakiLakQzPmT/4PWecWsVq4bZrl2A6ZVBAfgGJwCE1yCGrgDdAEGDyBF/AG3rVn7VX70D6nrQVtNrMP/pQ2/gEqRagA +P5, Q5 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiPndFNy5bsA9oQphMJu3QyYOZiVBClv6FG/+iazcuFBF3/QZ/wknrQteGOZwzr3c48bMyqkYy0wsLi0vJKcbW0tr6xuaVv7 +zRFlHBMGjhiEW+7SBGQ9KQVDLSjlBgctIy+3f5nrgXBo/BeDmJiB6gbUp9iJBXl6BeWGzFPDAL1pVaAZA8jltayzDk/gXO1eq45etmoGOCs8D8BeXq/rD+/XgwrDn6l+VFOAlIKDFDQnRMI5Z2irikmJGsZCWCxAj3UZd0FAxRQISdju/L4JFiPOhHXL1QwjH7dyJFgchtqs7cpZjWcnKe1kmkf2WnNIwTSUI8WeQnDMoI5mFBj3KCJRsogDCnyivEPcQRlirSkgrBnD5FjRPK+Z5bpulqs3YFJFsAcOwTEwSWogjtQAw2AwRN4AW/gXvWXrUP7XPSWtB+Z3bBv9JGPy1pqAI= +P6, Q6 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiUnVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 +LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjl613Ih5YhioL7UCJPsYsbSeZU71DC7UGrnm6GWjYkwK/gfmDJRrh6PG9+PRqO7oX5YX4SQgocQMCdE1jVjaKeKSYkaykpUIEiM8QD3SVTBEARF2OrkvgyeK8aAfcfVCSfs74kUBSK3qTpzl2Jey8lFWjeR/pWd0jBOJAnxdJGfMCgjmIcFPcoJlmyoAMKcKq8Q9xFHWKpISyoEc/7k/6B1XjEvKtcNlcYNmFYRHIBjcApMcAlq4A7UQRNg8ARewBt41561V+1D+5y2FrTZzD74U9r4BzA9qAM= +P7, Q7 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiYnVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5L +RAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/Ss7pWGcSBLi6SI/YVBGMA8LepQTLNlQAYQ5V4h7iOsFSRlQI5vzJ/0HrvGJeVK4bZrl2A6ZVBAfgGJwCE1RBDdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wAzsagG +P8, Q8 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoionVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 +LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/aqd0jBOJAnxdJGfMCgjmIcFPcoJlmyoAMKcKq8Q9xFHWKpISyoEc/7k/6B1XjEvKtcNs1y7AdMqgNwDE6BCa5ADdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wA21agI +P9, Q9 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoionZXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 +LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/Ws7pWGcSBLi6SI/YVBGMA8LepQTLNlQAYQ5V4h7iOsFSRlQI5vzJ/0HrvGJeVKoNs1y7AdMqgNwDE6BCa5ADdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wA5+agK +P10, Q10 +ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkoigouim5ctmAf0IQwmUzaoZMHMxOhCz9ETf+Qj/BjQuLCK78AH/CSduFtr0wzOGce7nHjdmVEjD+NIKS8srq2vF9dLG5tb2jr671xR +RwjFp4IhFvO0iQRgNSUNSyUg75gQFLiMt3+X61HwgWNwgc5iIkdoG5IfYqRVJSj31huxDwxCNSXWgGSPYxYWsyJzWN7AwulOtT2dHLRsUYF5wH5hSUq4fD+s/T0bDm6CPLi3ASkFBihoTomEYs7RxSTEjWclKBIkR7qMu6SgYoAIOx1fmcETxXjQj7h6oYRj9u9EigKRO1WduVExq+XkIq2TSP/KTmkYJ5KEeLITxiUEcwjgx7lBEs2UABhTpVXiHuIyxVsCUVgjl78jxonlfMi8p13SxXb8GkiuAHINTYIJLUAX3oAYaAINn8ArewUh70d60D+1z0lrQpjP74F9p378KEKqG +P11, Q11 +ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkoigouim5ctmAf0IQwmUzaoZMHMxOhCz9ETf+Qj/BjQuLCK78AH/CSduFtr0wzOGce7nHjdmVEjD+NIKS8srq2vF9dLG5tb2jr67 +1xRwjFp4IhFvO0iQRgNSUNSyUg75gQFLiMt3+X61HwgWNwgc5iIkdoG5IfYqRVJSj31huxDwxCNSXWgGSPYxYWsyJzXN7AwulOtT2dHLRsUYF5wH5hSUq4fD+s/T0bDm6CPLi3ASkFBihoTomEYs7RxSTEjWclKBIkR7qMu6SgYoAIOx1fmcETxXjQj7h6oYRj9u9EigKRO1WduVExq+XkIq2TSP/KTmkYJ5KEeLITxiUEcwjgx7lBEs2UABhTpVXiHuIyxVsCUVgjl78jxonlfMi8p13SxXb8GkiuAHINTYIJLUAX3oAYaAINn8ArewUh70d60D+1z0lrQpjP74F9p378NOaqI +P12, Q12 +ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkpSBVcFN24bME+oAlhMpm0QycPZiZCVn6I278hX6CGxcWEVz5Af6Ek7YLrb0wzOGce7nHjdmVEjD+NQKS8srq2vF9dLG5tb2jr671x +JRwjFp4ohFvOMiQRgNSVNSyUgn5gQFLiNtd3Cb6+0HwgWNwns5jIkdoF5IfYqRVJSjX1tuxDwxDNSXWgGSfYxYWs8yJzWr2RlcKDdmsqOXjYoxKfgfmDNQrh2OGt+PR6O6o48tL8JQEKJGRKiaxqxtFPEJcWMZCUrESRGeIB6pKtgiAIi7HRyZQZPFONBP+LqhRJO2N8TKQpE7lR15kbFvJaTi7RuIv1LO6VhnEgS4ukiP2FQRjCPDHqUEyzZUAGEOVeIe4jrBUwZUCOb8yf9Bq1oxzytXDbNcuwHTKoIDcAxOgQkuQA3cgTpoAgyewAt4A2PtWXvV3rWPaWtBm83sgz+lf0AEGKqig= +p4, q4 +AC3icbVDLSsNAFJ34rPUVdanI0CK4kJIQd0V3bhswT6gDWEymbRDJ5k4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3NtvS +J4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT6N5nfCBCUh7dqUFMnB1IxpQjJSWXLPQ8Tjz5SDUXxoP3fIZnFXuteKaRatkjQEXiT0lxcrRqPbzeDyquZXx+c4CUmkMENStm0rVk6KhKYkWG+k0gSI9xHXdLWNEIhkU46vmUIT7Tiw4AL/SIFx+psR4pCmS2nK0OkenLey8T/vHaigksnpVGcKBLhyaAgYVBxmAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrLpauaXaxcgwly4BAUwCmwQWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX5Rhnxw= +p5, q5 +AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREFHVXdOyBfuANoTJZNIOnWTizEQoUvBjb/ixoVF3PoD7vwGf8J20WtHhjmcM693HuPFzMqlWV9GbmFxaXlfxqYW19Y3PL3N5pSJ4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT615nfvCdCUh7dqkFMnB1IxpQjJSWXLPY8Tjz5SDUXxoP3bNjOKvcacU1S1bZGgP+JfaUlCr7o9r3w8Go6pqfHZ/jJCSRwgxJ2batWDkpEopiRoaFTiJjHAfdUlb0wiFRDrp+JYhPNSKDwMu9I +sUHKuzHSkKZbacrgyR6sl5LxP/89qJCi6clEZxokiEJ4OChEHFYRYM9KkgWLGBJgLqneFuIcEwkrHV9Ah2PMn/yWNk7J9Wr6s2aXKFZgD/ZAERwBG5yDCrgBVAHGDyCZ/AKRsaT8WK8Ge+T0pwx7dkFv2B8/ACXe58e +p7, q7 +AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIUN0V3bhswT6gDWEymbRDJ5k4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3Nt +vSJ4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT6N5nfCBCUh7dqUFMnB1IxpQjJSWXLPQ8Tjz5SDUXxoP3fIZnFXuteKaRatkjQEXiT0lxcrRqPbzeDyquZXx+c4CUmkMENStm0rVk6KhKYkWG+k0gSI9xHXdLWNEIhkU46vmUIT7Tiw4AL/SIFx+psR4pCmS2nK0OkenLey8T/vHaigksnpVGcKBLhyaAgYVBxmAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrIvSlc1u1i5BhPkwCEogFNgzKogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX52vnyI= +p8, q8 +AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIYN0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3NtvyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjt +XZjhSFMltOV4ZI9eS8l4n/e1EBWUnpTxOFOF4MihIGFQRzIKBPhUEKzbQBGFB9a4Q95BAWOn48joEe/7kRdI4L9kXpauaXaxcgwly4BAUwCmwSWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX6DJnyQ= +p9, q9 +AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIoN0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3Nt +vyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBVdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrIvSuWaXaxcgwly4BAUwCmwSWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX6PjnyY= +p10, q10 +ACEXicbVDLSsNAFJ34rPUVdanIYBG6kJKIoO6Kbly2YB/QhjCZTNqhk4czE6GELN268Vdc1IUibt258xv8CSdNF7X1wDCHc+7l3nuciFEhDeNbW1hcWl5ZLawV1zc2t7b1nd2mCGOSQOHL +ORtBwnCaEAakpG2hEnyHcYaTmD68xv3RMuaBjcymFELB/1AupRjKSbL3cdULmiqGviRK7cQ0hM4Ld7loq2XjIoxBpwn5oSUqgej+s/D4ahm619dN8SxTwKJGRKiYxqRtBLEJcWMpMVuLEiE8AD1SEfRAPlEWMn4ohQeK8WFXsjVCyQcq9MdCfJFtp+q9JHsi1kvE/zOrH0LqyEBlEsSYDzQV7MoAxhFg90KSdYsqEiCHOqdoW4jzjCUoVYVCGYsyfPk+ZpxTyrXNbNUvUK5CiAfXAEysAE56AKbkANAGj+AZvI37Ul70d61j7x0QZv07IE/0D5/AUNMoaI= +p11, q11 +ACEXicbVDLSsNAFJ34rPUVdanIYBG6kJKIoO6Kbly2YB/QhjCZTNqhk4czE6GELN268Vdc1IUibt258xv8CSdNF7X1wDCHc+7l3nuciFEhDeNbW1hcWl5ZLawV1zc2t7b1nd2mCGOSQO +HLORtBwnCaEAakpG2hEnyHcYaTmD68xv3RMuaBjcymFELB/1AupRjKSbL3cdULmiqGviRK7cQ0xM4Ld7loq2XjIoxBpwn5oSUqgej+s/D4ahm619dN8SxTwKJGRKiYxqRtBLEJcWMpMVuLEiE8AD1SEfRAPlEWMn4ohQeK8WFXsjVCyQcq9MdCfJFtp+q9JHsi1kvE/zOrH0LqyEBlEsSYDzQV7MoAxhFg90KSdYsqEiCHOqdoW4jzjCUoVYVCGYsyfPk+ZpxTyrXNbNUvUK5CiAfXAEysAE56AKbkANAGj+AZvI37Ul70d61j7x0QZv07IE/0D5/AUZroaQ= +p12, q12 +ACEXicbVC7SgNBFJ2Nrxhfq5aKDAYhYTdIKhd0MYyAfOAZFlmZyfJkNmHM7NCWLa0tfFXLGKhiK2dnd/gTzibTRETDwxzOde7r3HCRkV0jC+tdzS8srqWn69sLG5tb2j7+41RBxTBo4Y +AFvO0gQRn3SkFQy0g45QZ7DSMsZXqd+65wQP/Vo5CYnmo79MexUgqydZLXSdgrh56ovDxI7NSnIKZ8W7TLT1olE2JoCLxJySYvVwXP95OBrXbP2r6wY48ogvMUNCdEwjlFaMuKSYkaTQjQJER6iPuko6iOPCueXJTAE6W4sBdw9XwJ+psR4w8ke6nKj0kB2LeS8X/vE4kexdWTP0wksTH2aBexKAMYBoPdCknWLKRIghzqnaFeIA4wlKFWFAhmPMnL5JmpWyelS/rZrF6BTLkwQE4BiVgnNQBTegBhoAg0fwDF7Bm/akvWjv2kdWmtOmPfvgD7TPX0mKoaY= +P3, Q3 +ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkqi4mNXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0LrTthWEO59zLPfe4MaNCGsZIKywsLi2vFdLa+sbm1v69k5 +TRAnHpIEjFvG2iwRhNCQNSUj7ZgTFLiMtNz+ba63HgXNArv5SAmdoC6IfUpRlJRjn5huRHzxCBQX2oFSPYwYmkty5yzEzhXq+eao5eNijEuOAvMX1Cu7g/r348Hw5qjf1lehJOAhBIzJETHNGJp4hLihnJSlYiSIxwH3VJR8EQBUTY6fi+DB4pxoN+xNULJRyzfydSFIjcpurMXYpLSfnaZ1E+ld2SsM4kSTEk0V+wqCMYB4W9CgnWLKBAghzqrxC3EMcYakiLakQzOmTZ0HztGKeV67rZrl6AyZVBHvgEBwDE1yCKrgDNdAGDyBF/AG3rVn7VX70D4nrQXtd2YX/Ct9AMnIaf+ +12 +Fig. 1. +A radial 13-bus distribution network connected with rooftop solar +PVs and ESSs. +In this paper, one control objective is to minimize the +total power loss of the distribution network by controlling the +dynamics of PVs and ESSs, which is approximated by +f1(pg +1, . . . , pg +n) = +� +lij∈L +rij +�∥Pij∥2 +2 + ∥Qij∥2 +2 +V 2 +0 +� +(2) +where V0 denotes the nominal voltage magnitude, pg +j, Pij, and +Qij ∈ RT are augmented vectors of pg +j, Pij, and Qij across T +time intervals, respectively. Note that we only consider active +power loss and assume reactive power flows Qij to be constant +vectors. Though the reactive power loss is not included here for +simplicity, it can be added without affecting algorithm design. +The active power flows are constrained by +0 ≤ Pij ≤ Pij +(3) +where Pij denotes the maximum active power flow limit. +B. Solar Photovoltaic +Let V denote the set of in total V solar PVs. During T time +intervals of a day, the active power injection ˜pν ∈ RT from +the νth PV inverter should satisfy +0 ≤ ˜pν ≤ pv +ν +(4) + +田田3 +where pv +ν denotes the maximum active power injection and is +assumed to be known by the forecast. Herein, the curtailment +cost can be calculated by [25] +f2(˜pν) = ∥˜pν − pv +ν∥2 +2. +(5) +C. Energy Storage System +Let S denote the set of E ESSs. The charging/discharging +power ˆpσ ∈ RT of the σth ESS is constrained by +− ps +σ ≤ ˆpσ ≤ ps +σ +(6) +where ps +σ and ps +σ denote the maximum discharging and +charging power, respectively. Let s0 +σ denote the initial state of +charge (SoC) of the σth ESS and Hσ ≜ [s0 +σ, . . . , s0 +σ]T ∈ RT . +Aggregate the charging/discharging power across T time in- +tervals, then the capacity of the σth ESS is constrained by +pa +σ ≤ Hσ + Aˆpσ∆T ≤ pa +σ +(7) +where pa +σ and pa +σ denote its lower and upper capacity +bounds, respectively, ∆T denotes the sampling time, and +the aggregation matrix A is lower triangular consisting of +ones and zeros, i.e., element Aˆı,ˆȷ = 1 if ˆı ≥ ˆȷ, element +Aˆı,ˆȷ = 0 if ˆı < ˆȷ, ∀ˆı, ˆȷ = 1, . . . , T. Therefore, the SoCs of +ESS σ during T time slots are obtained by aggregating the +charging/discharging power using A. +Furthermore, the σth ESS’s degradation cost is calculated in +terms of the smoothness of charging and discharging by [26] +f3(ˆpσ) = ∥B ˆpσ∥2 +2. +(8) +where B calculates discharging/charging differences between +adjacent times, i.e., Bˆı,ˆı = 1, ∀ˆı = 1, . . . , T, Bˆı,ˆı+1 = +−1, ∀ˆı = 1, . . . , T − 1, and all other elements are zeros. +D. Problem Formulation +The optimization problem is then formulated to minimize +the summation of total active power loss, PV curtailment cost, +and ESS degradation cost within the distribution network as +min +˜p, ˆp +δ1f1(pg) + +V +� +ν=1 +δ2f2(˜pν) + +E +� +σ=1 +δ3f3(ˆpσ) +s.t. +(1a), (3), (4), (6), (7) +(P1) +where +˜p += +[˜pT +1 , . . . , ˜pT +n]T, +ˆp += +[ˆpT +1 , . . . , ˆpT +n]T, pg += +[pg +1 +T, . . . , pg +n +T]T, and δα denotes the cost coefficient asso- +ciated with the objective function fα(·). Note that the cost +coefficients are constants that allow flexible adjustments on +the weights of the global and local objective functions and +regulate different units. +III. DECENTRALIZED OPTIMIZATION +A. Projected Gradient Method +This paper achieves scalability in solving (P1) via projected +gradient method (PGM). PGM decomposes a centralized opti- +mization problem into local optimizations at agents, resulting +in a paralleled computing structure. Let M = {1, . . . , m} +denote the set of agents, e.g., buses or DERs, who work +cooperatively in solving (P1). In this setting, the κth agent +updates its decision variable xκ using PGM by +x(ℓ+1) +κ += PXκ[x(ℓ) +κ − γ(ℓ) +κ Φκ(x(ℓ))] +(9) +where +ℓ +denotes +the +iteration +number, +x(ℓ) += +[x(ℓ) +1 +T, . . . , x(ℓ) +m +T]T +includes +all +decision +variables, +i.e., +˜pν and ˆpσ in problem (P1), γ(ℓ) +k +denotes the step size, Φκ(·) +denotes the gradient of the Lagrangian w.r.t. x(ℓ) +κ , and PXκ[·] +denotes the projection operation onto set Xκ. +In (P1), the local constraint of the νth PV in (4) and local +constraints of the σth ESS in (6) and (7) can be represented +by two feasible sets Pv +ν and Pe +σ as +Pv +ν ≜ {˜pν| 0 ≤ ˜pν ≤ pv +ν} +(10a) +Pe +σ ≜ {ˆpσ| − ps +σ≤ˆpσ≤ps +σ, pa +σ≤H+Aˆpσ∆T ≤ pa +σ}. (10b) +In what follows, aiming at reducing the number of coupling +terms, we rewrite the networked constraints in (1a) and (3) to +a single inequality constraint based on the network topology. +To this end, we first represent the active power flows in (1a) +through active power generations of each bus using +pi = ˜pi − ˆpi − pc +i +(11) +where pi denotes the aggregated active power generation at +bus i, ˜pi = �Vi +ν=1 ˜pν and ˆpi = �Ei +σ=1 ˆpσ denote the aggre- +gated active power of all PVs and ESSs that are connected at +bus i, respectively. Vi and Ei denote the total number of PVs +and ESSs connected at bus i, respectively. +For the ιth line flow Pι in the distribution network, the +from-bus is defined by the bus where the flow begins, and the +to-bus set is defined by the set of buses that the ιth line flow +travels to till reaching the edge of the distribution network. +Let Z ∈ Rn×n denote the adjacency matrix of the distribution +network and Zι denote the ιth row of Z that represents the +adjacency vector of the ιth line flow. Let Zι(i) denote the ith +element of Zι, and Zι(i) = 1 if the ιth power flow has bus i +as a to-bus, e.g., Z9 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]. Then, the +power flows in the distribution network can be represented by +Z. Expand Z across T time slots, we have +˜Z = +� +���� +Z1(1)I Z1(2)I · · · Z1(n)I +... +... +... +Zn(1)I Zn(2)I · · · Zn(n)I +� +���� +(12) +where I∈RT ×T denotes the identity matrix and ˜Z ∈ RnT ×nT . +In what follows, let ˜P ∈ RnT denote the aggregated active +power generations defined in (11) from all buses, we have +˜P = +� +�� +p1 +... +pn +� +�� = +� +���� +�V1 +ν=1 ˜pν − �E1 +σ=1 ˆpσ − pc +1 +... +�Vn +ν=Vn−1+1 ˜pν − �En +σ=En−1+1 ˆpσ − pc +n +� +���� . +(13) +Furthermore, ˜P can be rewritten compactly as +˜P = +n +� +i=1 +∆i (˜pi − ˆpi − pc +i) +(14) + +4 +where ∆i denotes the aggregation matrix whose ith block is +represented by the identity matrix I, and all other blocks are +zeros, e.g., ∆1 = [I, 0, . . . , 0]T ∈ RnT ×T . Then, the active +power flow of the ιth line can be calculated by +Pι = ˜Zι ˜P . +(15) +Consequently, the power flow limit constraint in (3) becomes +0 ≤ ˜Zι ˜P ≤ Pι. +(16) +Therefore, problem (P1) can be written into +min +˜p, ˆp +δ1f1(pg) + +V +� +ν=1 +δ2f2(˜pν) + +E +� +σ=1 +δ3f3(ˆpσ) +s.t. +pν ∈ Pv +ν, ∀ν ∈ V +pσ ∈ Pe +σ, ∀σ ∈ S +0 ≤ ˜Zι ˜P ≤ Pι, ∀ι ∈ L +(P2) +The optimization problem in (P2) seeks to find the optimal +decision variables, i.e., charging and discharging power ˜pσ’s +of the ESSs and the active power injection ˆpν’s of the PVs. In +what follows, we focus on solving (P2) through a decentralized +fashion based on PGM defined in (9). To solve (P2) via PGM, +we firstly derive its relaxed Lagrangian as +L(˜p, ˆp, µl, µu) = δ1f1(pg) + +V +� +ν=1 +δ2f2(˜pν) + +E +� +σ=1 +δ3f3(ˆpσ) ++ +L +� +ι=1 +µT +uι( ˜Zι ˜P − Pι)− +L +� +ι=1 +µT +lι ˜Zι ˜P (17) +where µl = [µT +l1, . . . , µT +lL]T and µu = [µT +u1, . . . , µT +uL]T, µlι +and µuι denote the dual variables associated with lower and +upper power flow limits of the line ι, respectively. +Suppose ˜pν and ˆpσ are decision variables of the νth PV and +σth ESS connected at bus i, respectively. Take the subgradients +of (17) w.r.t. the primal variables ˜pν and ˆpσ, we have +∇ ˜pνL(·) = 2δ2(˜pν − pv +ν) + 2δ1 +V 2 +0 +L +� +ι=1 +rι( ˜Zι∆i)T( ˜Zι ˜P ) ++ +L +� +ι=1 +( ˜Zι∆i)T(µuι − µlι) +(18a) +∇ ˆpσL(·) = 2δ3 ˆpσ − 2δ1 +V 2 +0 +L +� +ι=1 +rι( ˜Zι∆i)T( ˜Zι ˜P ) +− +L +� +ι=1 +( ˜Zι∆i)T(µuι − µlι). +(18b) +Without affecting the efficacy of the algorithm design, we +assume all power lines have the same resistance ¯r for the +simplicity of presentation, herein (18) becomes +∇ ˜pνL(·) = 2δ2(˜pν − pv +ν) + ¯δ1πi ˜P + ψi(µu − µl) +(19a) +∇ ˆpσL(·) = 2δ3 ˆpσ − ¯δ1πi ˜P − ψi(µu − µl) +(19b) +where ¯δ1 = 2δ1 +V 2 +0 ¯r, πi = �L +ι=1( ˜Zι∆i)T ˜Zι, and ψi denotes the +ith column block of ˜Z. +The detailed derivation of the Lagrangian subgradients in +(19) can be found in APPENDIX A. +Therefore, based on the calculated subgradients in (18), at +the ℓth iteration, the νth PV and the σth ESS can update their +decision variables using PGM by +˜p(ℓ+1) +ν += ΠPvν +� +˜p(ℓ) +ν +− αv +ν,ℓ∇ ˜pνL(ℓ) (·) +� +(20a) +ˆp(ℓ+1) +σ += ΠPeσ +� +ˆp(ℓ) +σ − αe +σ,ℓ∇ ˆpσL(ℓ) (·) +� +(20b) +where αv +ν,ℓ and αe +σ,ℓ denote the primal step sizes of the νth PV +and the σth ESS, respectively, L(ℓ) (·) denotes the calculated +Lagrangian in (17) at the ℓth iteration. The dual variables can +be updated similarly using PGM. +B. DER Aggregation and Control +In PGM iterations, the ith agent needs to calculate Φi(xℓ) +in (9) where the decision variables xi’s from all other agents +are required. As indicated in (19), calculating subgradients +∇ ˜pνL(·) and ∇ ˆpσL(·) indeed requires the decision variables +˜P from all the agents. Specifically, the calculation of subgra- +dients in (19a) and (19b) are coupled through +C = Cp + Cd = ¯δ1πi ˜P + ψi(µu − µl) +(21) +where Cp and Cd denote the coupling terms associated with +the primal and dual variables, respectively. +To clearly demonstrate the information exchange needs in +subgradient calculation, we exemplify the primal update of the +ˆνth PV connected at bus 2. The ˆνth PV can update its decision +variable ˜pˆν using the subgradient in (19a) which is +∇ ˜pˆνL(·) = 2δ2(˜pˆν − pv +ˆν) + +2 +� +ι=1 +� +¯δ1πι ˜P + µuι + µlι +� +(22) +where π1 ˜P = �n +i=1 pi and π2 ˜P = p2 + p3. Therefore, the +ˆνth PV requires the active power generations pi, ∀i = 1, . . . , n +from all buses to conduct the update in (20a). +Based on the above observations, two different aggregation +and control strategies, i.e., Bus-level aggregation and control +and DER-level aggregation and control, can be applied as +shown in Fig. 2. In bus-level aggregation and control, the ith +Each bus aggregates the decision +variables and +DERs exchange decision variables +with others to obtain + and +˜pi= +XVi +⌫=1 ˜p⌫ +ACR3icdVDLSgMxFM3Ud31VXboJFsFVmRFBXRENy4VbBU6dchkUg3mMSR3hBLm79y4decvuHGhiEsztQufF0IO59yT3HvSXHALYfgY1CYmp6ZnZufq8wu +LS8uNldWu1YWhrEO10OYiJZYJrlgHOAh2kRtGZCrYeXpzVOnt8xYrtUZDHPWl+RK8QGnBDyVNC5j4CJjLk61yOxQ+svlZlw7Noljm0hExeroh2VsdKCSw720sWSwDUlwnV9Y/nPC5WtTBrNsBWOCv8G0Rg0bhOksZDnGlaSKaACmJtLwpz6DtigFPBynpcWJYTekOuWM9DRSzfTfKocSbnsnwQBt/FOAR+9XhiLTVhL6z2sD+1CryL61XwGCv7jKC2CKfn40KAQGjatQcYNoyCGHhBquJ8V02tiCAUfd2HEP1c+Tfobreindb+6U7z4HAcxyxaRxtoC0VoF +x2gY3SCOoiO/SEXtBrcB8B2/B+2drLRh71tC3qgUf3V+2Gw= +ˆpi= +XEi +�=1 ˆp� +ACSXicbVDPSxtBFJ6N2qaprWl79DIYCp7CbhG0B0EshR4jGBWycX07mSD82OZeSuEYf+9Xnrf9DLx4s4snZuIf648EwH9/3vpn3vryQwmEc/4laK6tr163Ter97v9H98PHEmdIyPmRGnuWg+NSaD5EgZKfFZaDyiU/zS+/1frpFbdOGH2Mi4KPFcy0mAoGKise5HOAX2aGzlxCxUuX1RVJqjfr2jqSpX51ImZgv2kSrWRQgl05z5VgHMG0n8PvdWLTzS+Kuv24n68LPocJA3okaYGWfd +3OjGsVFwjk+DcKIkLHuwKJjkVSctHS+AXcKMjwLUoLgb+2USFf0cmAmdGhuORrpk/3d4UK4eMnTWK7inWk2+pI1KnO6NvdBFiVyzh4+mpaRoaB0rnQjLGcpFAMCsCLNSNgcLDEP4nRBC8nTl5+DkSz/Z6X892ukdHDZxtMkm2SLbJCG75ID8IAMyJIz8JH/JDfkX/Yquo9vo7qG1FTWeT+RtVbuAWP/tA= +Each individual PV or ESS owns +decision variable or to itself +˜p⌫ +ACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUpQJWCrYGEsEn1ITRQ5jtadezIdpCqKAsLv8LCAEKs/AMbf4PTZoCWI1k+ +Oude3XtPmDCqtON8W5WV1bX1jepmbWt7Z3fP3j/oKpFKTDpYMCH7IVKEU46mpG+okKA4Z6YWTm8LvPRCpqOD3epoQP0YjTocUI2kwD72NGURybxQsEhNY/NlSZ4HmcfTPLDrTsOZAS4TtyR1UKId2F9eJHAaE64xQ0oNXCfRfoakpiRvOaliQIT9CIDAzlKCbKz2ZX5PDUKBEcCmke13Cm/u7IUKyKDU1ljPRYLXqF+J83SPXw0s8oT1JNOJ4PGqYMagGLSGBEJcGaTQ1BWFKzK8 +RjJBHWJriaCcFdPHmZdM8brNxdest67LOKrgCJyAM+C9ACt6ANOgCDR/AMXsGb9WS9WO/Wx7y0YpU9h+APrM8fVh+Zxg= +ˆp� +ACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRSUHdFNy4r2Ac0IUwm03boTCbMTIQSsnLjr7hxoYhbv8Gdf+OkzUJbDwxzOde +7r0nTBhV2nG+rcrK6tr6RnWztrW9s7tn7x90lUglJh0smJD9ECnCaEw6mpG+okiIeM9MLJTeH3HohUVMT3epoQn6NRTIcUI2kwD72xkhnXihYpKbcfFmS50HmKTriKA/sutNwZoDLxC1JHZRoB/aXFwmchJrzJBSA9dJtJ8hqSlmJK95qSIJwhM0IgNDY8SJ8rPZGTk8NUoEh0KaF2s4U393ZIirYklTyZEeq0WvEP/zBqkeXvoZjZNUkxjPBw1TBrWARSYwopJgzaGICyp2RXiMZIa5NczY +TgLp68TLrnDbfZuLpr1lvXZRxVcAROwBlwQVogVvQBh2AwSN4Bq/gzXqyXqx362NeWrHKnkPwB9bnDw53mik= +The ith bus performs the primal- +dual updates for all the DERs +Each DER performs the primal- +dual update in Eqs. (22) and (23) +End iteration if : DERs’ decision variables achieve convergence +Aim: Calculate subgradients and for the updates in PGM +r˜p⌫L(·) +ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx +4U0Zv+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykT +tQ2j6J7oT9PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW +rˆp�L(·) +ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdF +vIl/xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5Pafsk +umP290QGsSl8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 +˜pi= +XV +⌫=1 ˜p⌫ +ACRHicdVDLSiQxFE05PtXO7N0E2wEV02VCOqiQZyNSwemW6GrLVKptAbzKJbQhPycW78AHfzBW5cKOJWJtX2wueFkM595CTk5eCW4jf9 +HUj+mZ2bn5hcbi0vLKanPtZ8/qylDWpVpoc5oTywRXrAscBDstDSMyF+wkv/xd6ydXzFiu1V8YlWwgybniQ04JBCpr9lPgomAuzbUo7EiGy5XeZ9x1PE5tJTOXqT+FRpwSUHe+ZSeCEuF63n9jr0+a7bidjwe/BkE9BCkznOmrdpoWklmQIqiLX9JC5h4IgBTgXzjbSyrCT0kpyzfoCKSGYHblyCx5uBKfBQm3AU4DH71uGItHXCsFntx+1mvxK61cw3Bs4rsoKmKvDw0rgUHjulFcMoiFEAhBoesmJ6QyhEHpvhBKSj1/+ +DHrb7WSnvf9np3VwOKljHq2jDbSFErSLDtAROkZdRNE1ukMP6DG6ie6jp+j5dXUqmnh+oXcTvfwHsO62FA= +Buses exchange decision variables +with others to obtain +8i=1 . . . , n +AB/nicbVDLSgMxFL3js9ZXVy5CRbBhZQZKagLoejGZQX7gM5QMpm0Dc0kQ5IRylDwV9y4UMSt3+HOvzFtZ6GtBwKHc+7lnpw4Uwb1/12lpZXVt +fWCxvFza3tnd3S3n5Ty1QR2iCS9UOsacCdowzHDaThTFchpKxzeTvzWI1WaSfFgRgkNYtwXrMcINlbqlg79nlSYc8Sy67Hn80gafWb1sltxp0CLxMtJGXLUu6UvP5IkjakwhGOtO56bmCDyjDC6bjop5omAxn3YsFTimOsim8cfoxCoRsjnsEwZN1d8bGY61HsWhnYyxGeh5byL+53VS07sMiaS1FBZod6KUdGokXKGKEsNHlmCimM2KyArTIxtrGhL8Oa/vEia5xWvWrm6r5ZrN3kdBTiCYzgFDy6gBndQhwYQyOAZXuHNeXJenHfnYz +a65OQ7B/AHzucP2q2VcA= +ˆpi= +XE +�=1 ˆp�, +ACSHicbVBNaxsxENW6zZeTpm57zEXEFHoZrcY2h4CoaXQYwJxEvA6y6ws2yL6WKTZgBH6eb302Ft/Qy89tJTeonX2kK8Bocd786SZV1ZSOEzTn0n +ydO19Y3Nre72zrPd570XL0+dqS3jI2akseclOC6F5iMUKPl5ZTmoUvKz8vJzo59dceuE0Se4rPhEwVyLmWCAkSp6Rb4A9Hlp5NQtVbx8FUIhqD8INHe1KnzuxFzBQRZybaRQAt2FzxXgoH0X0J49IHWFd4WvX46SFdFH4KsBX3S1lHR+5FPDasV18gkODfO0gonHiwKJno5rXjFbBLmPNxhBoUdxO/CiLQ15GZ0pmx8WikK/a2w4NyzZSxs9nA3dca8jFtXOPsw8QLXdXINbv5aFZLioY2qdKpsJyhXEYAzIo4K2ULsMAwZt+NIWT3V34ITt8NsuHg4/ +Gwf/ipjWOT7JF98oZk5D05JF/JERkRr6RX+QP+Zt8T34n/5L/N62dpPW8Ineq07kGLPy2Kg= +ˆpi, ˜pi, 8i = 1 . . . , n +ACLnicbVDLSgMxFM3UV62vqks3wSK4KGVGCupCKIrgsoJ9QGcomUymDc1MhuSOUIZ+kRt/ReCirj1M0wfC217IeRwzr3JucdP +BNdg2+9WbmV1bX0jv1nY2t7Z3SvuHzS1TBVlDSqFVG2faCZ4zBrAQbB2ohiJfMFa/uBmrLcemdJcxg8wTJgXkV7MQ04JGKpbvHX7BDLXlyLQw8hcWTIadXkZu8BFwJYqoVRECMyvHFcEnTZvFOyK/ak8CJwZqCEZlXvFl/dQNI0YjFQbTuOHYCXkYUcCrYqOCmiWEDkiPdQyMScS0l03WHeETwTYuDAnBjxh/05kJNJjy6YzItDX89qYXKZ1UgvIzHSQosptOPwlRgkHicHQ64YhTE0ABCFTdeMe0TRSi +YhAsmBGd+5UXQPKs41crlfbVUu57FkUdH6BidIgedoxq6Q3XUQBQ9oRf0gT6tZ+vN+rK+p605azZziP6V9fMLNxmqbQ= +r˜p⌫L(·) +ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx4U0Z +v+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykTtQ2j6J7oT9 +PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW +rˆp�L(·) +ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdFvIl/ +xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5PafskumP290QGsS +l8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 +Individual DER acts an agent to +calculate subgradients +and +r˜p⌫L(·) +ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx4U0Z +v+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykTtQ2j6J7oT9 +PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW +rˆp�L(·) +ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdFvIl/ +xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5PafskumP290QGsS +l8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 +Individual bus acts an agent to +calculate subgradients +and +DER-level aggregation and control +Bus-level aggregation and control +Fig. 2. +Aggregation and control of DERs via bus-level and DER-level +architectures. +bus (agent) aggregates the decision variables ˜pi = �Vi +ν=1 ˜pν + +5 +and ˆpi = �Ei +σ=1 ˆpσ where only aggregated decision variables +are transmitted and used for the primal updates. In contrast, +DER-level control strategies require each DER to act as an +agent and receive all data of others that is demanded for +updates in (20). However, due to the large number of DERs +connected to the distribution network, DER-level control can +suffer from massive data exchange and heavy local computa- +tion. Therefore, we adopt the bus-level aggregation and control +scheme which is more computing and communicating effi- +cient. We will later show that the proposed privacy-preserving +algorithm can be readily extended to the DER-level control +(See Remark 1 for details). +Apart from scalability and efficiency, the inevitable private +information exposure in both bus-level and DER-level methods +raises fundamental privacy concerns, e.g., the electrical load +can reveal sensitive business activities and/or customer’s daily +routines. To address the privacy concerns, we will develop +a novel SS-based algorithm to achieve secure information +exchange in executing (20). +IV. SS-BASED PRIVACY-PRESERVING DER CONTROL +A. Real Number to Integer Quantization +Note that the SS scheme requires modular arithmetic instead +of real arithmetic. However, decentralized optimization ge- +netically requires real number calculations, e.g., real decision +variables and parameters. Therefore, a real number to integer +transformation is needed to integrate SS into decentralized +optimization. We adopt the fixed-point number quantization +[27] to map the real numbers onto the integer space and the +fixed-point real-number set is defined by +Qθ,γ,ζ≜ +� +−θγ, −θγ + θ−ζ, . . . , θγ − 2θ−ζ, θγ − θ−ζ� +(23) +where θ ∈ N1+ denotes the basis, γ ∈ N denotes the +magnitude, and ζ ∈ N denotes the resolution. Therefore, by +defining a surjective mapping m(·) : R �→ Qθ,γ,ζ, a real +number can be mapped to the closest point in Qθ,γ,ζ. To limit +the quantization error, the mapping m(·) needs to satisfy +|m(ϕ) − ϕ| ≤ θ−ζ, ∀ϕ ∈ [−θγ, θγ] +(24) +where the quantization error is restricted by the resolution +within the range of Qθ,γ,ζ. To map the real-number set onto +the integer set Z, we simply scale Qθ,γ,ζ by θζ as +Zθ,γ,ζ = θζQθ,γ,ζ= +� +−θγ+ζ, −θγ+ζ+1, . . . , θγ+ζ−1 +� +(25) +where Zθ,γ,ζ ⊆ Z denotes the fixed-point set in the integer +field. Moreover, the SS requires the inputs to be within the +field E. Therefore, we further map each element in z ∈ Zθ,γ,ζ +onto E with the modular operation as +g(z) = z mod e. +(26) +Note that z ∈ Zθ,γ,ζ can be any negative integer, and the +modular operation in (26) will change the sign of a negative +input, i.e., g(ˆz) = ˆz + e for ˆz < 0. To address the negative +integer operation, we introduce the partial inverse of g(·) as +ψ(z) = +� z − e +if z ≥ e +2, +z +otherwise. +(27) +Therefore, we can readily obtain z = ψ(g(z)), ∀z ∈ E. +B. SS-based Privacy-Preserving Algorithm +1) Shamir’s secret sharing scheme: Before introducing the +privacy-preserving algorithm design, we first briefly intro- +duce Shamir’s SS scheme [20] which merits an efficient and +lightweight private information distribution structure. Suppose +a manager (secret holder) seeks to distribute a secret ω to +specific agents and mandates the cooperation of at least d +agents to retrieve the secret. In such needs, Shamir’s SS is +grounded on the following idea of Lagrange interpolation for +secret distribution and recovery. +Theorem 1 (Polynomial interpolation [28]). Let {(ς1, y1), . . . , +(ςd, yd)} ⊆ R2 be a set of points whose values of ςı are all +distinct. Then there exists a unique polynomial Y of degree +d − 1 that satisfies yı = Y(ςı), ∀ı = 1, . . . , d. +■ +In SS-based schemes, the manager first constructs a random +polynomial of degree d − 1 as +y(z) = ω + a1z + · · · + ad−1zd−1 +(28) +where ω denotes an integer secret, a1, . . . , ad−1 are random +coefficients that are uniformly distributed in the field E ≜ +[0, e), and e denotes a prime number that is larger than ω. +Secondly, the manager calculates the outputs of (28) with +non-zero integer inputs, e.g., setting τ = 1, . . . , n to retrieve +(τ, y(τ)) where yΠ +τ += y(τ) mod e. Then, the share yΠ +τ +is +distributed to agent τ. Lastly, at least d agents with shares +are required to reconstruct the polynomial based on Theorem +1 and hence recover the secret ω by +ω = +d +� +τ=1 +yΠ +τ +d +� +υ=0 +υ̸=τ +υ +υ − τ . +(29) +2) Proposed privacy-preserving algorithm: We next present +the proposed two-layer decentralized privacy-preserving al- +gorithm based on SS in a bus-level aggregation and control +architecture, to achieve privacy preservation and scalability +concurrently. In the distribution network layer, all DERs’ deci- +sion variables are updated in parallel, and only masked data are +sent from each bus to the servers. In the cloud computing layer, +the servers calculate the aggregated messages and distribute +them to the related buses. The computing structure of the +proposed privacy-preserving algorithm is shown in Fig. 3. +Cloud Computing +Distribution +Network +ESS +Solar +PV +Server +Secure +Data Flow +Secure +Data Flow +Bus +Fig. 3. Two-layer privacy-preserving computing structure for DER control in +distribution networks. + +田田Compute20066 +Let C denote the set of clouds and c ≥ 2 denotes the total +number of clouds. The ith bus generates a random polynomial +of order d − 1 using (28) to obtain +y(ℓ) +i (z) = ω(ℓ) +i ++ a(ℓ) +i,1z + · · · + a(ℓ) +i,d−1zd−1 +(30) +where 2 ≤ d ≤ c, ω(ℓ) +i +denotes the secret of bus i at the ℓth +iteration, ℓ denotes the iteration number, and a(ℓ) +i,1, . . . , a(ℓ) +i,d−1 +denote random coefficients that are uniformly distributed in the +field E. Note that for a vector secret such as pi, we refer to an +elementwise calculation of the vector using (30) by default. +At the ℓth iteration, the uth cloud firstly generates a random +integer α(ℓ) +u , then it broadcasts α(ℓ) +u +to all the buses. Subse- +quently, the ith bus can calculate y(ℓ) +i (α(ℓ) +u ), ∀u = 1, . . . , c +using the received inputs based on (30). Finally, the ith bus +sends y(ℓ) +i (α(ℓ) +u ) back to the uth cloud. Note that the coupling +term πi ˜P in (21) is a linear combination of all pi’s that +requires the private generation/consumption details from the +buses. Therefore, a secure computation framework of πi ˜P is +required to preserve the privacy of buses and DER owners. +Suppose the clouds are aware of the network topology +matrix Z which contains no private information of the buses +or DERs. In order to calculate the aggregated information πi ˜P +for bus i, the uth cloud firstly multiplies the received outputs +y1(α(ℓ) +u ), . . . , yn(α(ℓ) +u ) utilizing the coefficients of πi to obtain +{α(ℓ) +u , πi(1)y(ℓ) +1 (α(ℓ) +u ), . . . , πi(n)y(ℓ) +n (α(ℓ) +u )} +(31) +Then, the uth cloud sums the outputs in (31) to obtain a new +pair of input and output as +¯ +Au,i = {α(ℓ) +u , +n +� +ˆı=1 +πi(ˆı) y(ℓ) +ˆı (α(ℓ) +u )}. +(32) +Finally, the uth cloud calculates +¯ +Au,i, ∀i = 1, . . . , n and +broadcasts the new input-output share ¯ +Au,i to the ith bus. +Therefore, after receiving new shares from in total c clouds +servers, the ith bus now has access to +˜ +Ai = +� +α(ℓ) +ˆȷ , +n +� +ˆı=1 +πi(ˆı) y(ℓ) +ˆı (α(ℓ) +ˆȷ ), ∀ˆȷ = 1, . . . , c +� +. +(33) +Note that ˜ +Ai contains in total c shares that can construct a +new polynomial of the form +˜y(ℓ) +i (z) = πi ˜P + ˜a(ℓ) +i,1z + · · · + ˜a(ℓ) +i,d−1zd−1 +(34) +whose constant term is exactly πi ˜P . +During this information exchange process, each bus only +sends a single share to each server so that a single cloud server +is incapable of reconstructing the secret based on the received +shares, and herein cannot infer agents’ true decision variables. +The cloud servers only need to calculate aggregated messages +using outputs of randomized polynomials. The details of the +proposed method are presented via Algorithm 1. +Algorithm 1 can achieve privacy preservation while main- +taining exact solutions as non-privacy PGM-based methods. +The decision variables will be continuously updated till the +convergence errors ϵ(ℓ) +ν +≜ ∥˜p(ℓ) +ν − ˜p(ℓ−1) +ν +∥2 +2 and ϵ(ℓ) +σ +≜ ∥ˆp(ℓ) +σ − +ˆp(ℓ−1) +σ +∥2 +2 are smaller than the threshold ϵ0. The correctness of +Algorithm 1 is presented via Theorem 2. +IEEE 13 bus network +Decentralized +updates +Cloud +Aggregation +y(`) +3 (↵(`) +1 ) +ACnicbVDLSsNAFJ3UV42vqEs3o0VoNyXRgrorunFZwT6giWEynbRDJ5MwMxFK6NqNv+LGhSJu/QJ3/o3 +TNqC2HrhwOde7r0nSBiVyra/jMLS8srqWnHd3Nj +c2t6xdvdaMk4FJk0cs1h0AiQJo5w0FVWMdBJBUBQw0g6GVxO/fU+EpDG/VaOEeBHqcxpSjJSWfOtw5J/emVnZJYxVxmUXsWSAfOdHqvhWya7aU8BF4uSkBHI0fOvT7cU4jQhXmCEpu46dKC9DQlHMyNh0U0kShIeoT7qachQR6WXTV8bwWCs9GMZCF1dwqv6eyFAk5SgKdGeE1EDOexPxP6+bqvDcyhPUkU +4ni0KUwZVDCe5wB4VBCs20gRhQfWtEA+QFjp9EwdgjP/8iJpnVSdWvXiplaqX+ZxFMEBOAJl4IAzUAfXoAGaAIMH8ARewKvxaDwb8b7rLVg5DP74A+Mj29 +9eJj +y(`) +3 (↵(`) +2 ) +ACnicbVDLSsNAFJ34rPEVdelmtAjtpiS1oO6KblxWsA9oYphMJ+3QySTMTIQSunbjr7hxoYhbv8Cdf+O0DaitBy4czrmXe+8 +JEkalsu0vY2l5ZXVtvbBhbm5t7+xae/stGacCkyaOWSw6AZKEU6aipGOokgKAoYaQfDq4nfvidC0pjfqlFCvAj1OQ0pRkpLv +nU0 +8k/vzKzkEsbK45KLWDJAfvVHKvtW0a7YU8BF4uSkCHI0fOvT7cU4jQhXmCEpu46dKC9DQlHMyNh0U0kShIeoT7qachQR6WXTV8bwR +Cs9GMZCF1dwqv6eyFAk5SgKdGeE1EDOexPxP6+bqvDcyhPUkU4ni0KUwZVDCe5wB4VBCs20gRhQfWtEA+QFjp9EwdgjP/8iJpV +StOrXJxUyvWL/M4CuAQHIMScMAZqINr0ABNgMEDeAIv4NV4NJ6N+N91rpk5DMH4A+Mj29/B5jk +y(`) +3 (↵(`) +c ) +ACnicbVDLSsNAFJ3UV42vqEs3o0VoNyXRgrorunFZwT6giWEynbRDJ5MwMxFK6NqNv+LGhSJ +u/QJ3/o3TNqC2HrhwOde7r0nSBiVyra/jMLS8srqWnHd3Njc2t6xdvdaMk4FJk0cs1h0AiQJo5w0FVWMdBJ +BUBQw0g6GVxO/fU+EpDG/VaOEeBHqcxpSjJSWfOtw5J/emVnZJYxVxmUXsWSAfPwjVXyrZFftKeAicXJSAjka +vXp9mKcRoQrzJCUXcdOlJchoShmZGy6qSQJwkPUJ1NOYqI9LpK2N4rJUeDGOhiys4VX9PZCiSchQFujNC +aiDnvYn4n9dNVXjuZQnqSIczxaFKYMqhpNcYI +8KghUbaYKwoPpWiAdIKx0eqYOwZl/eZG0TqpOrXpxUyvV +L/M4iuAHIEycMAZqINr0ABNgMEDeAIv4NV4NJ6N+N91low8pl98AfGxzfLZpkV +Cloud1 +Cloud 2 +Cloud c +DERs +DERs +DERs +Bus 3 +Bus 2 +Bus 6 +Bus 1 +Bus 4 +Bus 5 +Bus 7 +Bus 9 +Bus 10 +Bus 12 +Bus 11 +Bus 8 +Bus 2 +Bus 1 +Bus 12 +¯ +A(`) +1,1 +ACnicbVDLSsNAFJ3UV42vqEs30SJUkJIQd3VunFZwT6giWEynbRDJw9mJkIZsnbjr7hxoYhbv8Cdf+OkzUJbD1w4nHMv97jJ5RwYVnfWmlpeWV1rbyub2xube8Yu3 +sdHqcM4TaKacx6PuSYkgi3BREU9xKGYehT3PXH17nfcCMkzi6E5MEuyEcRiQgCAolecah04RMOiEUIwSpvMoyT9qndnavy6qDKT3JPKNi1awpzEViF6QCrQ848sZxCgNcSQhZz3bSsRroRMERxpjspxwlEYzjEfUjGLuyukrmXmslIEZxExVJMyp+ntCwpDzSeirzvxmPu/l4n9ePxXBhStJlKQCR2i2KEipKWIz8UcEIaRoBNFIGJE3WqiEWQCZWerkKw519eJ2zml2vXd7WK41mEUcZHIAjUAU2OAcNcANaoA0QeATP4BW8aU/ai/aufcxaS1oxsw/+QPv8AVJNmg= +¯ +A(`) +1,2 +AC +CXicbVDLSsNAFJ3UV62vqEs3g0WoICUpBXVX68ZlBfuAJobJdNoOnUzCzEQoIVs3/obF4q49Q/c+TdO2iy09cCFwzn3cu89fsSoVJb1bRWVtf +WN4qbpa3tnd09c/+gI8NYNLGIQtFz0eSMpJW1HFSC8SBAU+I1/cp353QciJA35nZpGxA3QiNMhxUhpyTOh0QicQKkxhix5CpNvcQ+q6X3Sc +UhjJ2mnlm2qtYMcJnYOSmDHC3P/HIGIY4DwhVmS +Mq+bUXKTZBQFDOSlpxYkgjhCRqRvqYcBUS6yeyTFJ5oZQCHodDFZypvycSFEg5DXzdmZ0s +F71M/M/rx2p4SaUR7EiHM8XDWMGVQizWOCACoIVm2qCsKD6VojHSCsdHglHYK9+PIy6dSqdr16eVsvN5p5HEVwBI5BdjgHDTADWiBNsDgETy +DV/BmPBkvxrvxMW8tGPnMIfgD4/MHFgeZ9Q= +¯ +A(`) +1,12 +ACnicbVDLSsNAFJ3UV62vqEs3o0WoICUpBXVX68ZlBfuAJobJdNoOnTyYmQhlyNqNv+LGhSJu +/QJ3/o2TNgutHrhwOde7r3HjxkV0rK+jMLS8srqWnG9tLG5tb1j7u51RJRwTNo4YhHv+UgQRkPSlQy0os5Q +YHPSNefXGV+95wQaPwVk5j4gZoFNIhxUhqyTMPnSbiygmQHGPE1GWaeso+tWvpnao4hLGT1DPLVtWaAf4ldk7 +KIEfLMz+dQYSTgIQSMyRE37Zi6SrEJcWMpCUnESRGeIJGpK9piAIiXDV7JYXHWhnAYcR1hRLO1J8TCgVCTANf +d2Y3i0UvE/z+okcnruKhnEiSYjni4YJgzKCWS5wQDnBk01QZhTfSvEY8QRljq9kg7BXnz5L+nUqna9enFTL +zeaeRxFcACOQAXY4Aw0wDVogTbA4AE8gRfwajwaz8ab8T5vLRj5zD74BePjG4+2mjA= +Bus 0 +Fig. 4. Information exchange structure between the distribution network and +cloud servers (only the messages sent from bus 3 and cloud 1 are labeled). +Algorithm 1 Decentralized SS-based privacy-preserving DER +control strategy +1: Agents initialize decision variables, tolerance ϵ0, basis θ, +magnitude γ, resolution ζ, iteration counter ℓ = 0, and +maximum iteration ℓmax. +2: while ϵ(ℓ) +ν(σ) > ϵ0 and ℓ < ℓmax do +3: +Each bus performs real number to integer transforma- +tion using (23)-(26), then obtains the integer secret ω(ℓ) +i . +4: +The uth cloud generates a random integer α(ℓ) +u , then +broadcasts α(ℓ) +u +to all the buses. +5: +The ith bus generates a random polynomial y(ℓ) +i (z) +using (30) with ω(ℓ) +i +as the constant term, calculates the +outputs using α(ℓ) +1 , . . . , α(ℓ) +c +to obtain y(ℓ) +i (α(ℓ) +1 ), . . . , +y(ℓ) +i (α(ℓ) +c ), then sends y(ℓ) +i (α(ℓ) +u ) to the uth cloud. +6: +The uth cloud formulates ¯ +Au,i in (32), then broadcasts +¯ +Au,i to the ith bus. +7: +The ith bus formulates +˜ +Ai in (33), reconstructs the +aggregated secrets using c shares to obtain πi ˜P , then +calculates Cp in (21). +8: +The ith bus transforms Cp back to real numbers +using (27), then decision variables ˜p(ℓ) +ν +or ˆp(ℓ) +σ +of DERs +connected at bus i are updated by PGM using (9). The ith +bus calculates the error ϵ(ℓ) +ν +or ϵ(ℓ) +σ . +9: +ℓ = ℓ + 1. +10: end while +Theorem 2 (Correctness). Let E denote the domain of the +input secrets ω1, . . . , ωn, and Cp denote the desired outputs. +Then, Algorithm 1 satisfies: +Pr +� +∀c ≥ d, Rec +� +A, E, Z, ¯δ1, θ, γ, ζ +� += Cp +� += 1 +(35) +where A = { ˜ +A1, . . . , ˜ +Ac} denotes the set of shares from +agents, Pr[·] denotes probability, and Rec(·) denotes the secret +reconstruction operation. +■ +Theorem 2 states that Algorithm 1 can correctly retrieve +the aggregated information Cp which would be further used to +achieve exact primal and dual updates. + +Compute田田7 +The detailed proof of Theorem 2 can be found in AP- +PENDIX B. +Remark 1 : Though Algorithm 1 is developed based on bus- +level aggregation and control, it can also be extended to the +DER-level aggregation and control. In DER-level aggregation +and control, each DER is required to generate a polynomial in +(30) and act as an independent agent in secret reconstruction +using (33). Besides, depending on the practical applications, +DERs can also be clustered and controlled by the household +or district where the new clusters act as agents, following the +similar design of Algorithm 1. +□ +Remark 2: The multi-server architecture seamlessly integrates +the SS scheme into DER aggregation and control. Shares +generated from buses were aggregated and broadcasted to the +buses by a group of servers for the purpose of secret retrieval. +The aggregation task is distributed to multiple servers to ensure +that a single server cannot retrieve any secrets. +□ +C. Privacy Analysis +The proposed approach aims at protecting the decision +variables of the DERs whose disclosure can lead to the leakage +of customers’ sensitive information. To resolve this issue, Al- +gorithm 1 achieves privacy preservation against two types of +adversaries, including honest-but-curious-agent who follows +the algorithm but may utilize the possessed and received data +to infer the private information of other agents, and external +eavesdroppers who wiretap and intercept exchanged messages +from communication channels. +Proposition 1: (Secure cloud computing). In Algorithm 1, any +cloud number less than d − 1 cannot infer any information of +the aggregated decision variables Cp. +■ +Proposition 1 presents the security of the proposed al- +gorithm against corrupted clouds. Based on the polynomial +interpolation in Theorem 1, at least d clouds are required to +retrieve any secret through collusion. +Proposition 1 is proved based on the correctness analysis. +Please refer to APPENDIX C for the detailed proof. +Assumption 1. At least one communication link of an indi- +vidual agent is secure against external eavesdroppers. +■ +Assumption 1 is essential and generically used in SS- +based schemes. Given d pairs of shares sent via different +communication links, i.e., {(ς1, y1), . . . , (ςd, yd)} ⊆ R2, if +an external eavesdropper wiretap all communication links to +gain access to the shares, then it can simply deduce the secret +by Lagrangian interpolation using Theorem 1. +Theorem 3 (Privacy preservation against adversaries). By +using Algorithm 1, the following two statements stand: +1) Algorithm 1 securely computes and updates the deci- +sion variables between agents in the presence of honest- +but-curious agents. +2) External eavesdroppers learn no private information of +the agents. +■ +Theorem 3 gives privacy preservation guarantees in the +presence of honest-but-curious agents and external eavesdrop- +pers. The privacy preservation of Algorithm 1 can be proved +from secure multi-party computation (SMC) perspective. Be- +fore giving detailed privacy analyses and proofs, we first +introduce some concepts of SMC. +Definition 1 (Computational indistinguishability [29]). Let +{Dκ}κ∈N and {Eκ}κ∈N be two distribution ensembles with +security parameter κ; If for any non-uniform probabilistic +polynomial-time algorithm G, δ(κ) is negligible, where +δ(κ) = +���� +Pr +x1←Dκ[G(x1) = 1] − +Pr +x2←Eκ[G(x2) = 1] +���� +(36) +we say that {Dκ}κ∈N and {Eκ}κ∈N are computationally +indistinguishable, denoted as Dκ +c≡ Eκ. +■ +Therefore, Definition 1 states that any polynomial-time +algorithm cannot distinguish two computationally indistin- +guishable ensembles because the outputs of those algorithms +do not significantly differ. In what follows, Definition 2 +presents the standard privacy notion in SMC. +Definition 2 ([30], [31]). Let Π be an m-party protocol +for computing the outputs of function F(¯x) where ¯x = +{x1, . . . , xm} and Fρ(¯x) denotes the ρth output of F(¯x). Let +M = {M1, . . . , Mm} denote the set of parties. The view +of the ρth party during the execution of Π is denoted by +VIEWΠ +ρ (¯x). We say that Π privately computes F(¯x) if there +exists a polynomial-time algorithm S, such that for every party +Mρ in M, we have +S(ρ, xρ, Fρ(¯x)) +c≡ VIEWΠ +ρ (¯x). +(37) +■ +Definition 2 states that the security of an m-party protocol +can be evaluated based on computational indistinguishability, +i.e., the view of the parties can be efficiently simulated based +solely on their inputs and outputs. In other words, SMC allows +a group of participants to learn the correct outputs of some +agreed-upon function applied to their private inputs without +revealing anything else. The theoretical underpinnings of Def- +inition 1 and Definition 2 can help prove that Algorithm 1 +securely computes π1 ˜P , . . . , πn ˜P between the agents. +The detailed proofs of Theorem 3 can be found in AP- +PENDIX D. +V. SIMULATION RESULTS +A simplified single-phase IEEE 13-bus test feeder [32] is +used to verify the proposed decentralized privacy-preserving +DER control strategy. In specific, each bus, except the feeder +head, is assumed to be connected with 2 houses and each house +is equipped with an ESS and 5 solar panels that can generate +maximum 2.5 kW solar output. The maximum capacity of all +residential ESSs are 10 kWh, the initial SoCs of all ESSs are +uniformly set to be 4 kWh, and the maximum charging and +discharging rates are ±3 kW, respectively [33]. The forecasted +solar PV generation is chosen from 01/01/2021 with ∆T = 15 +mins in California from CAISO [34]. +In total c = 4 clouds are responsible for message aggrega- +tion and distribution. The degree of all polynomials is set to +be d−1 = 3 and the integer field is chosen as E = [0, 231−1). +For the fixed-point number quantization, the basis, magnitude, +and resolution are uniformly set to be θ = 2, γ = 27, and +ζ = 4, respectively. For the distribution network shown in +Fig. 1, all 24 houses are assumed to be located in the same +area with identical solar radiation. The baseline load profiles + +8 +00:00 +04:00 +08:00 +12:00 +16:00 +20:00 +24:00 +Time +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +Power (kW) +(a) Heterogeneous baseline loads of 24 +houses +00:00 +04:00 +08:00 +12:00 +16:00 +20:00 +24:00 +Time +0.0 +0.5 +1.0 +1.5 +2.0 +Solar PV generations (kW) +(b) Solar power injection of 24 houses +00:00 +04:00 +08:00 +12:00 +16:00 +20:00 +24:00 +Time +−1.00 +−0.75 +−0.50 +−0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +Charging/discharging (kW) +(c) Charging and discharging power from +24 ESSs +00:00 +04:00 +08:00 +12:00 +16:00 +20:00 +24:00 +Time +0 +5 +10 +15 +20 +25 +Power (kW) +(d) Power flows of 12 lines in the +distribution network +Fig. 5. The optimal solutions of (P2) by controlling DERs in the distribution network. +of all houses are shown in Fig. 5(a) [34]. The primal and dual +step sizes are chosen based on experience to be αv +ν,ℓ = 2.3, +αe +σ,ℓ = 1.8, and βµlι,ℓ = 5×10−4, respectively. Note that only +the lower bound of power flow limits in (16) is active, herein, +only the results related to µlι are presented. +Fig. 5(b) and Fig. 5(c) show the active power generations +and the charging/discharging power from the solar PVs and +ESSs, respectively. At around 12:00, the solar PVs generate +the maximum amount of energy, and the ESSs charge at +peak rates. After 16:00, energy stored in ESSs is extracted to +supply in-home use and compensate for the power loss in the +distribution network. The power flows of 12 lines are shown +in Fig. 5(d) where no inverse flows occur. Moreover, accurate +primal and dual solutions are achieved without affecting the +anticipated primal-dual convergence. The iterative solutions +of the primal and dual variables are shown in Fig. 6. +Fig. +0 +20 +40 +60 +80 +100 +Iterations +0.0 +0.5 +1.0 +1.5 +2.0 +˜pν +(a) Convergence of solar PVs’ decision +variables ˜pν +0 +100 +200 +300 +400 +500 +600 +700 +Iterations +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +µlι +(b) Convergence of the dual variable µlι +Fig. 6. Convergence of the primal and dual variables +Fig. 7. Random shares generated by Bus 6 at different iterations +7 presents normalized shares generated by Bus 6 using the +random polynomial y(ℓ) +6 (z) = ω(ℓ) +6 ++ a(ℓ) +1 z + a2z2 + a(ℓ) +3 z3 +where the coefficients a(ℓ) +i , i = 1, 2, 3 are randomized at each +iteration and different time slots. The privacy preservation of +Algorithm 1 against external eavesdroppers are guaranteed +because external eavesdroppers have insufficient information +in polynomial reconstruction by wiretapping the transmitted +shares. Without loss of generality, suppose bus 6 is honest- +but-curious. Fig. 8 shows the existence of a simulator that +−1 +0 +1 +×1015 +True polynomial y6(z) +−100 +−75 +−50 +−25 +0 +25 +50 +75 +100 +−1 +0 +1 +×1015 +Simulated polynomial ˜y′ +6(z) +True constructed polynomial ˜y6(z) +Fig. 8. +Polynomials simulated by a simulator to achieve computational +indistinguishability among agents +can generate true polynomial y6(z) and simulated polyno- +mials y′ +i(z) (dashed lines), ∀i = 1, . . . , n, i ̸= 6, such that +(π6 ˜P )′ = π6 ˜P . Therefore, the computational indistinguisha- +bility ˜y′ +6(αj) +c≡ ˜y6(αj), ∀j = 1, . . . , c is satisfied at any +iteration and any time slot, and herein π1 ˜P , . . . , πn ˜P can +be securely computed among buses and the ith bus can only +know the information contained in its own view VIEWi. +VI. CONCLUSION +This +paper +proposed +a +novel +decentralized +privacy- +preserving algorithm with cloud computing architecture for +DER control in distribution networks. The DER control prob- +lem was formulated into a constrained optimization problem +with the objectives of minimizing the line loss, PV curtailment +cost, and ESS degradation cost. By integrating SS into the +decentralized PGM, the proposed approach achieved privacy +preservation for DER owners’ private data, including the +DERs’ generation, consumption and daily electricity usage. +The security of the proposed approach was proved rigor- +ously with privacy guarantees and analyses against honest-but- +curious agents and external eavesdroppers. Simulation results +verified the applicability of the proposed approach on the +modified IEEE 13-bus test feeder with controllable ESSs +and solar PVs. Moreover, the designed methodology can be +readily used in general large-scale decentralized optimization +problems in the context of privacy preservation provisions. +APPENDIX A +DERIVATION OF THE PGM UPDATES +We take the IEEE 13-bus test feeder in Fig. 1 for example +to illustrate the derivation of subgradients in (18). To prove + +0.5 +0.4 +0.3 +0.2 +0.1 +0.0 +00:00 +04:00 +08:00 +104 +12:00 +103 +16:00 +102 +Time +20:00 +101 +24:009 +(18a), we firstly consider the subgradient of the power loss +minimization objective, the active power loss is +f1(pg +1, . . . , pg +n) = δ1 +� +lij∈L +rij +�∥Pij∥2 +2 +V 2 +0 +� += δ1¯r +V 2 +0 +� +ι∈L +∥Pι∥2 +2 += +¯δ1 +2 +� +ι∈L +∥Pι∥2 +2. +(38) +Take (15) into (38), we have +f1(pg +1, . . . , pg +n) = +¯δ1 +2 +� +ι∈L +∥ ˜Zι ˜P ∥2 +2. +(39) +Without loss of generality, assume the νth PV with decision +variable ˜pν is connected at bus i, we have +∇ ˜pνL(·) = δ1∇ ˜pνf1(pg +1, . . . , pg +n) + δ2∇ ˜pνf2(˜pν) ++ +L +� +ι=1 +∇ ˜pνµT +uι( ˜Zι ˜P −Pι)− +L +� +ι=1 +∇ ˜pνµT +lι ˜Zι ˜P . (40) +Substitute (14) and (38) into the first term of (40), we have +δ1∇ ˜pνf1(·) = +¯δ1 +2 ∇ ˜pν +� +ι∈L +∥ ˜Zι ˜P ∥2 +2 += ¯δ1 +� +ι∈L +� +∇ ˜pν ˜Zι +n +� +ˆı=1 +∆ˆı ˜pˆı +� � +˜Zι ˜P +� += ¯δ1 +� +ι∈L +� +˜Zι∆i +�T � +˜Zι ˜P +� +. +(41) +Take the subgradient of (5), the second term in (40) becomes +δ2∇ ˜pνf2(˜pν) = δ2∇ ˜pν∥˜pν − pv +ν∥2 +2 = 2δ2 (˜pν − pv +ν) . (42) +Then, substitute (14) into the third term of (40) on the right +hand side, we have +L +� +ι=1 +∇ ˜pνµT +uι( ˜Zι ˜P − Pι) = +L +� +ι=1 +∇ ˜pνµT +uι ˜Zι( +n +� +ˆı=1 +∆ˆı ˜pˆı) += +L +� +ι=1 +( ˜Zι∆i) +Tµuι. +(43) +Similarly, the last term of (40) can be readily obtained as +− +L +� +ι=1 +∇ ˜pνµT +lι( ˜Zι ˜P ) = − +L +� +ι=1 +( ˜Zι∆i) +Tµlι. +(44) +Finally, by substituting (41), (42), (43), (44) into (40), (18a) +is readily proved. Following similar lines, subgradients of the +primal variable ˆpσ in (18b) can be readily proved. +APPENDIX B +PROOF OF THEOREM 2 +Proof: To prove the correctness of Algorithm 1, we show +that the proposed method has the same primal and dual +solutions as the non-privacy PGM. Recall that the uth cloud +multiplies the received n outputs by the elements of πi +according to (31), it yields +� +� +� +� +� +πi(1)y1(αu) = πi(1) +� +ω1 + a1,1αu + · · · + a1,d−1αd−1 +u +� +... +πi(n)yn(αu) = πi(n) +� +ωn + an,1αu + · · · + an,d−1αd−1 +u +� +(45) +Then, the aggregated outputs �n +ˆı=1 πi(ˆı)yˆı(αu) in (31) can be +obtained by summing the left hand side of (45). Therefore, in +total c pairs of shares from all clouds as in (32) can be seen +as the inputs and outputs of a polynomial +˜y(z) = +n +� +ˆı=1 +πi(ˆı)ωˆı + ˜a1z + · · · + ˜ad−1zd−1 +(46) +where ˜aˆȷ = �n +ˆı=1 πi(ˆı)aˆı,ˆȷ, ˆȷ = 1, . . . , d−1 and �n +ˆı=1 πi(ˆı)ωˆı +is exactly πi ˜P . Then, the aggregated secret πi ˜P can be +readily retrieved by using c pairs of shares in (33) since d ≤ c, +as stated by Theorem 1. +APPENDIX C +PROOF OF PROPOSITION 1 +Proof: Under the collusion of d − 1 clouds, they can +construct the following set of equations +� +� +� +� +� +˜yi(α1) = ˜ω + ˜ai,1α1 + · · · + ˜ai,d−1αd−1 +1 +... +˜yi(αd−1) = ˜ω + ˜ai,1αd−1 + · · · + ˜ai,d−1αd−1 +d−1 +(47) +where ˜yi(z) is defined in (34) and ˜ω = πi ˜P . In (47), ˜ai,ı, +∀ı = 1, . . . , d − 1 and ˜ω are unknown, therefore the d − 1 +clouds can yield in total d − 1 equations yet d unknowns that +leads to underdetermined solutions. +APPENDIX D +PROOF OF THEOREM 3 +Proof: To prove the privacy preservation of Algorithm +1 against honest-but-curious agents, we aim at verifying +that whatever an honest-but-curious agent receives can be +efficiently simulated. That being said, the honest-but-curious +agent cannot retrieve useful information from others using the +received data because it cannot distinguish the received data +from its own. During the ℓth iteration of executing Algorithm +1, the view of bus i can be described via +VIEWi = {α1, . . . , αc, θ, γ, ζ, πi ˜P , yi(z), ωi, ¯ +Ai, +˜yi(αj), ∀j = 1, . . . , c, Cp, Cd}. +(48) +Based on Definition 2, we need to prove the existence of a +polynomial-time algorithm, denoted as simulator S, that can +simulate VIEWi using the data of agent i, i.e., +S(Ξi) +c≡ VIEWi +(49) +where Ξi ≜ {α1, . . . , αc, θ, γ, ζ, πi ˜P , yi(z), ωi, ¯ +Ai, ˜yi(αj), +∀j = 1, . . . , c, Cp, Cd} denotes the set of data that agent +i has access to. Manifesting (49) indicates that whatever +agent i receives can be efficiently reconstructed based on its +own knowledge Ξi. To this end, the simulator is required to +generate ˜y′ +i(αj),∀j = 1, . . . , c that satisfy +˜y′ +i(αj) +c≡ ˜yi(αj), ∀j = 1, . . . , c. +(50) +To achieve this goal, the simulator firstly generates secrets +w′ +j̸=i ∈ E of other agents such that +πi ˜P = wi + +� +j̸=i +w′ +j. +(51) + +10 +Then it generates a set of random polynomials as in (30) to +obtain y′ +j(z), ∀j ̸= i with w′ +j, ∀j ̸= i as the corresponding +constant terms, i.e., +� +yi(z) = wi + ai,1z + · · · + ai,d−1zd−1 +(52a) +y′ +j(z) = w′ +j + a′ +i,1z + · · · + a′ +i,d−1zd−1, ∀j ̸= i. +(52b) +Consequently, the simulator can use {α1, . . . , αc} as inputs +for (52) and obtain +˜ +A′ +i = +� +� +�αˆȷ, yi(αˆȷ) + +� +j̸=i +y′ +j(αˆȷ), ∀, ˆȷ = 1, . . . , c +� +� +� . +(53) +By Theorem 1 and Theorem 2, the shares in (53) can be +used to construct a new polynomial in the form of +˜y′ +i(x) = (πi ˜P )′ + ˜a′ +i,1z + · · · + ˜a′ +i,d−1zd−1 +(54) +where (πi ˜P )′ = πi ˜P . Therefore, (50) and (49) hold, by +Definition 2, Algorithm 1 securely computes π1 ˜P , . . . , πn ˜P +between the agents. +In what follows, we prove the privacy preservation of Al- +gorithm 1 against external eavesdroppers. Under Assumption +1, assume agent 1 is safe from external eavesdroppers, by +wiretapping any other agents’ communication channels, an +external eavesdropper can at most have access to +Ξe= +� +α1,. . ., αc,yi(αu), ¯ +Au,i, ∀i=2,. . ., n,u=1, . . ., c +� +. +(55) +Since (55) is insufficient to formulate (33), the external eaves- +dropper is incapable of inferring either yi(z)’s or ˜y′ +i(z)’s, +i.e., unable to infer agents’ private information pi’s or the +aggregated message πi ˜P ’s. +REFERENCES +[1] J. Campbell, “Ancillary services provided from DER,” Oak Ridge +National Lab, Oak Ridge, TN, United States, Tech. Rep., 2005. +[2] J. R. Aguero, E. Takayesu, D. Novosel, and R. Masiello, “Modernizing +the grid: Challenges and opportunities for a sustainable future,” IEEE +Power Energy Mag., vol. 15, no. 3, pp. 74–83, 2017. +[3] I.-K. Song, W.-W. Jung, J.-Y. Kim, S.-Y. Yun, J.-H. Choi, and S.-J. +Ahn, “Operation schemes of smart distribution networks with distributed +energy resources for loss reduction and service restoration,” IEEE Trans. +Smart Grid, vol. 4, no. 1, pp. 367–374, 2012. +[4] D. K. Molzahn, F. D¨orfler, H. Sandberg, S. H. Low, S. Chakrabarti, +R. Baldick, and J. Lavaei, “A survey of distributed optimization and +control algorithms for electric power systems,” IEEE Trans. Smart Grid, +vol. 8, no. 6, pp. 2941–2962, 2017. +[5] M. Zeraati, M. E. H. Golshan, and J. M. Guerrero, “Distributed control +of battery energy storage systems for voltage regulation in distribution +networks with high PV penetration,” IEEE Trans. Smart Grid, vol. 9, +no. 4, pp. 3582–3593, 2016. +[6] Q. Zhang, Y. Guo, Z. Wang, and F. Bu, “Distributed optimal conservation +voltage reduction in integrated primary-secondary distribution systems,” +IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3889–3900, 2021. +[7] Y. Pan, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, “Distributed +control of islanded series PV-battery-hybrid systems with low communi- +cation burden,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10 199– +10 213, 2021. +[8] T. Navidi, A. El Gamal, and R. Rajagopal, “A two-layer decentralized +control architecture for DER coordination,” in Proc. IEEE Conf. Decis. +Control, Miami, FL, USA, Dec. 17-29 2018, pp. 6019–6024. +[9] W. Lin and E. Bitar, “Decentralized stochastic control of distributed +energy resources,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 888– +900, 2017. +[10] X. Huo and M. Liu, “Two-facet scalable cooperative optimization of +multi-agent systems in the networked environment,” IEEE Trans. Control +Syst. Technol., vol. 30, no. 6, pp. 2317–2332, 2022. +[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise +to sensitivity in private data analysis,” in Proc. Theory Cryptogr. Conf., +New York, NY, USA, Mar. 4-7 2006, pp. 265–284. +[12] J. Dong, T. Kuruganti, S. Djouadi, M. Olama, and Y. Xue, “Privacy- +preserving aggregation of controllable loads to compensate fluctuations +in solar power,” in Proc. IEEE Electron. Power Grid, Charleston, SC, +USA, Nov. 12-14 2018, pp. 1–5. +[13] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed +constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 1, +pp. 50–64, 2016. +[14] M. B. Gough, S. F. Santos, T. AlSkaif, M. S. Javadi, R. Castro, and +J. P. Catal˜ao, “Preserving privacy of smart meter data in a smart grid +environment,” IEEE Trans. Ind. Inform., vol. 18, no. 1, pp. 707–718, +2021. +[15] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: An efficient +and privacy-preserving aggregation scheme for secure smart grid com- +munications,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 9, pp. +1621–1631, 2012. +[16] A. Mohammadali and M. S. Haghighi, “A privacy-preserving homomor- +phic scheme with multiple dimensions and fault tolerance for metering +data aggregation in smart grid,” IEEE Trans. Smart Grid, vol. 12, no. 6, +pp. 5212–5220, 2021. +[17] Z. Cheng, F. Ye, X. Cao, and M.-Y. Chow, “A homomorphic encryption- +based private collaborative distributed energy management system,” +IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5233–5243, 2021. +[18] S. Wang, Q. Hu, Y. Sun, and J. Huang, “Privacy preservation in location- +based services,” IEEE Commun. Mag., vol. 56, no. 3, pp. 134–140, 2018. +[19] R. Gilad-Bachrach, K. Laine, K. Lauter, P. Rindal, and M. Rosulek, +“Secure data exchange: A marketplace in the cloud,” in Proc. ACM +SIGSAC Conf. Cloud Comput. Security Workshop, London, UK, Nov. +11 2019, pp. 117–128. +[20] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, +pp. 612–613, 1979. +[21] M. Nabil, M. Ismail, M. M. Mahmoud, W. Alasmary, and E. Serpedin, +“PPETD: Privacy-preserving electricity theft detection scheme with load +monitoring and billing for AMI networks,” IEEE Access, vol. 7, pp. +96 334–96 348, 2019. +[22] X. Huo and M. Liu, “Distributed privacy-preserving electric vehicle +charging control based on secret sharing,” Electr. Power Syst. Res., vol. +211, p. 108357, 2022. +[23] M. Baran and F. F. Wu, “Optimal sizing of capacitors placed on a radial +distribution system,” IEEE Trans. Power Deliv., vol. 4, no. 1, pp. 735– +743, 1989. +[24] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local +voltage control in distribution systems,” in Proc. IEEE Conf. Decis. +Control, Florence, Italy, Dec. 10-13 2013, pp. 4329–4334. +[25] J. Li, Z. Xu, J. Zhao, and C. Zhang, “Distributed online voltage control +in active distribution networks considering PV curtailment,” IEEE Trans. +Ind. Inform., vol. 15, no. 10, pp. 5519–5530, 2019. +[26] J. Forman, J. Stein, and H. Fathy, “Optimization of dynamic battery +parameter characterization experiments via differential evolution,” in +Proc. Am. Control Conf., Washington, DC, USA, Jun. 17-19 2013, pp. +867–874. +[27] M. S. Daru and T. Jager, “Encrypted cloud-based control using secret +sharing with one-time pads,” in Proc. IEEE Conf. Decis. Control, Nice, +France, Dec. 11-13 2019, pp. 7215–7221. +[28] J. Humpherys and T. J. Jarvis, Foundations of Applied Mathematics, +Volume I: Mathematical Analysis. +Soc. Ind. Appl. Math, 2020. +[29] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica- +tions. +Cambridge Univ. Press, 2009. +[30] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to +secure multi-party computation,” Found. Trends Privacy Security, vol. 2, +no. 2-3, pp. 70–246, 2018. +[31] O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi- +nary Version, vol. 78, p. 110, 1998. +[32] M. Liu, P. K. Phanivong, Y. Shi, and D. S. Callaway, “Decentralized +charging control of electric vehicles in residential distribution networks,” +IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 266–281, 2019. +[33] National Renewable Energy Laboratory. Residential battery storage. +[Online]. +Available: +https://atb.nrel.gov/electricity/2021/residential +battery storage +[34] U.S. +Energy +Information +Administration. +Electric +power +annual. +[Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id= +49276 + diff --git a/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/load_file.txt b/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..739c2bfd1dad561a34fec2c1ac9b0423984ac3c8 --- /dev/null +++ b/E9E0T4oBgHgl3EQfQwCg/content/tmp_files/load_file.txt @@ -0,0 +1,1213 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf,len=1212 +page_content='1 Privacy-Preserving Distributed Energy Resource Control with Decentralized Cloud Computing Xiang Huo, Graduate Student Member, IEEE, Mingxi Liu, Member, IEEE Abstract—The rapidly growing penetration of renewable en- ergy resources brings unprecedented challenges to power distri- bution networks – management of a large population of grid- tied controllable devices encounters control scalability crises and potential end-user privacy breaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Despite the importance, research on privacy preservation of distributed energy resource (DER) control in a fully scalable manner is lacked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To fill the gap, this paper designs a novel decentralized privacy-preserving DER control framework that 1) achieves control scalability over DER population and heterogeneity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 2) eliminates peer-to-peer communications and secures the privacy of all participating DERs against various types of adversaries;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' and 3) enjoys higher computation efficiency and accuracy compared to state-of-the- art privacy-preserving methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' A strongly coupled optimization problem is formulated to control the power consumption and output of DERs, including solar photovoltaics and energy storage systems, then solved using the projected gradient method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Cloud computing and secret sharing are seamlessly integrated into the proposed decentralized computing to achieve privacy preserva- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Simulation results prove the capabilities of the proposed approach in DER control applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Index Terms—Decentralized optimization, distributed energy resources, privacy preservation, secret sharing I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' INTRODUCTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Related Works L ARGE-scale deployment of distributed energy resources (DERs) has proven efficacy in reducing carbon footprint and providing grid-edge services such as voltage control, load following, and backup power supply [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' DERs, including energy storage systems (ESSs), solar photovoltaic (PV), and electric vehicles (EVs), along with other monitoring and controllable devices, can offer significant opportunities for advancing efficient, reliable, and cost-effective power grids [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Though integrating DERs into power grids can provide multifarious benefits, such as enhanced energy efficiency and economic boost, the high penetration of DERs raises surging challenges on the scalability of existing control strategies [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To address the aforementioned challenges in large-scale DER control problems, distributed and decentralized control strategies are drawing increased attention owing to their superior scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' For instance, a distributed coordination method based on local droop control and consensus control was designed in [5] to deal with the voltage rise problem caused by the high penetration of solar PVs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [6] proposed an asynchronous distributed leader-follower control strategy that optimally schedules DERs to lower the voltage The authors are with the Department of Electrical and Computer Engineer- ing, University of Utah, Salt Lake City, UT 84112 USA (e-mail: xiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='huo, mingxi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='liu@utah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' for peak load shaving and long-term energy saving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To reduce the communication burden, a distributed low-communication algorithm was proposed in [7] to control islanded PV-battery- hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Though distributed methods can achieve scalability, they generically suffer from massive peer-to-peer communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To overcome this issue, Navidi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [8] developed a two-layer decentralized DER coordination architecture that can scale the solution to large networks, and no direct communication is required between local controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In [9], a decentralized stochastic control strategy was designed for radial distribution systems with controllable PVs and ESSs to minimize the demand balancing cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Huo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [10] pro- posed a decentralized shrunken primal-multi-dual subgradient algorithm with dimension reduction to achieve scalability w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' both agent population size and network dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Despite the superior scalability and communication effi- ciency of decentralized methods, their implementation has been significantly hampered by the vulnerability to privacy breaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Furthermore, both distributed and decentralized strategies rely heavily on mandatory communications which can disclose users’ sensitive information and expose system vulnerabilities to adversaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Differential privacy (DP) has re- ceived substantial attention in addressing privacy concerns due to its rigorous mathematical formulation [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' DP-based meth- ods add persistent randomized perturbations to the datasets, constraints, or objective functions for privacy preservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In [12], a DP-based aggregation algorithm is proposed to compensate for solar power fluctuations and protect users’ personal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Han et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [13] developed a distributed optimization algorithm based on DP to preserve the privacy of the participating agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Gough et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [14] designed an innovative DP-compliant algorithm to ensure that the data from consumers’ smart meters are protected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Despite the success in privacy preservation, DP-based methods inevitably suffer from accuracy loss due to the added perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In contrast, encryption-based strategies achieve privacy preservation with high accuracy by encrypting the original data into cyphertexts, and only those holding private keys can decrypt the cyphertexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Lu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [15] proposed an efficient and privacy-preserving aggregation scheme for smart grid communications, in which the data is encrypted by Paillier cryptosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In [16], a privacy-preserving and fault-tolerant scheme was designed based on homomorphic cryptosystem to achieve secure aggregation of metering data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Similarly, Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [17] proposed a novel private collaborative distributed energy management system based on homomorphic encryption to solve the privacy issues in distribution systems and microgirds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Despite the high accuracy, the drawback arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='02198v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='OC] 5 Jan 2023 2 of encryption-based methods lies in the prevalent comput- ing overhead caused by encryption and decryption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Other hardware-integrated privacy-preserving methods, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', garbled circuit [18], [19], are deficient in flexibility and uneconomic due to the hardware cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Secret sharing (SS) [20] is a lightweight cryptographic method that can securely distribute a secret among a group of participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Each participant will be allocated a share of the secret, and only through the collaboration of certain participants where the number of participants is greater than a threshold can the secret be reconstructed from their shares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Adopting SS, Nabil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' in [21] designed an SS-based detection scheme to identify malicious consumers who steal electricity, in which system operators only collect masked meter readings from the consumers to avoid privacy vio- lation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In [22], an SS-based EV charging control protocol was developed to achieve privacy-preserving EV charging control for overnight valley filling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Compared with encryption- based strategies, SS-based methods can preserve privacy while avoiding the heavy computational load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Despite the superiority, few research studied the integration of SS into DER control due to the highly complex distribution network structure, large DER population, and lack of theoretical support in privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To fill these gaps, this paper designs a novel SS- based privacy-preserving algorithm that merits high efficiency, security, and accuracy for large-scale DER control problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Statement of Contributions The contribution of this paper is three-fold: 1) We propose a novel decentralized privacy-preserving algorithm that con- currently achieves scalability and privacy in large-scale DER control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To the best of our knowledge, this is the first paper that proposes a decentralized SS-based algorithm for DER privacy preservation, in which decentralized solutions, privacy guarantees, and rigorous security proofs are provided;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 2) The proposed method eliminates the frequent peer-to-peer commu- nications and secures the privacy of the participating DERs against various types of adversaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The designed framework serves as a benchmark for secure and scalable DER control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 3) Compared to state-of-the-art approaches, the proposed method can achieve lower computational overhead and identically accurate solutions as the non-privacy-concerned algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The rest of this paper is organized as follows: In Sec- tion II, we construct the models of distribution networks, PVs, and ESSs, then formulate the DER control problem into a constrained optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Section III derives the decentralized solution via the projected gradient method and presents the corresponding DER aggregation and control strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The SS-based privacy-preserving DER control al- gorithm and privacy analyses are provided in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' We give simulation results and analyses in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Section VI concludes this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' PROBLEM FORMULATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Branch Flow Model Consider an n-bus radial distribution network where B = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , n} denotes the set of buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let lij denote the line segment connecting buses i and j, L = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , h} denote the set of lines, Cj denote the set of bus j’s child buses, Vj denote the voltage magnitude at bus j, Pij and Qij denote the active and reactive power flow from bus i to bus j, respectively, and rij and xij be the resistance and reactance of line lij, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' For bus j, let pc j and qc j denote the active and reactive power consumptions, respectively, and pg j and qg j denote its active and reactive power generations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To simplify the network model, a nonlinear DistFlow model [23] can be linearized to the LinDistFlow model by omitting the higher order terms with negligible error [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, this paper adopts the LinDistFlow model, represented as Pij − � u∈Cj Pju = pc j − pg j (1a) Qij − � u∈Cj Qju = qc j − qg j (1b) V 2 i − V 2 j = 2(rijPij + xijQij).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (1c) A radial 13-bus distribution network connected with rooftop solar PVs and ESSs is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 1 and will be used as an example throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 10 3 2 11 6 7 5 9 8 4 1 0 P1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoi4mNXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjbC8MczrmXe+5xY0aFNIyRVlhaXldK6XNja3tnf03 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='b2miBKOSQNHLOJtFwnCaEgakpG2jEnKHAZabn9u1xvPRIuaBQ+yEFM7AB1Q+pTjKSiHP3SciPmiUGgvtQKkOxhxNJaljnmGVyo1XPN0ctGxRgXnAfmFJSrh8P6z9PRsObo35YX4SQgocQMCdExjVjaKeKSYkaykpUIEiPcR13SUTBEARF2Or4vgyeK8aAfcfVCcfs34kUBSK3qTpzl2JWy8lFWieR/rWd0jBOJAnxZJGfMCgjmIcFPcoJlmygAMKcKq8Q9xBHWKpISyoEc/bkedA8r5gXlZu6Wa7egkVwQE4BqfABFegCu5BDTQABs/gFbyD+1Fe9M+ta9Ja0GbzuyDf6WNfgEg2af6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkpSxMeu6MZlC/YBTQiTyaQdOnkwMxFKyNK/cONfdO3GhSLirt/gTzhpu9DaC8MczrmXe+5xY0aFNIyxVlhaXldK6XNja3tnf03b2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='WiBKOSRNHLOIdFwnCaEiakpGOjEnKHAZabuD21xvPxAuaBTey2FM7AD1QupTjKSiHP3CciPmiWGgvtQKkOxjxNJ6ljnVM7hQa+Sao5eNijEp+B+YM1CuHY4a349Ho7qjf1lehJOAhBIzJETXNGJp4hLihnJSlYiSIzwAPVIV8EQBUTY6eS+DJ4oxoN+xNULJZywvydSFIjcpurMXYp5LScXad1E+ld2SsM4kSTE0V+wqCMYB4W9CgnWLKhAghzqrxC3EcYakiLakQzPmT/4NWtWKeV64bZrl2A6ZVBAfgGJwCE1yCGrgDdAEGDyBF/AG3rVn7VX70D6nrQVtNrMP/pQ2/gEj/af8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREBXVXdOyBfuANoTJZNIOnUzizEQoUvBjb/ixoVF3PoD7vwGf8J20WtHhjmcM693HuPFzMqlWV9GbmFxaXlfxqYW19Y3PL3N5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='pyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPrX2d+854ISN+qwYxcULU5TSgGCktuWax40XMl4NQf2k8dE+P4axypxXLFlawz4l9hTUqrsj2rfDwejqmt+dvwIJyHhCjMkZdu2YuWkSCiKGRkWOokMcJ91CVtTkKiXTS8S1DeKgVHwaR0I8rOFZnO1IUymw5XRki1ZPzXib+57UTFVw4KeVxogjHk0FBwqCKYBYM9KkgWLGBJgLqneFuIcEwkrHV9Ah2PMn/yWNk7J9Vr6s6TSuwAR5sAeK4AjY4BxUwA2ogjrA4BE8g1cwMp6MF+PNeJ+U5oxpzy74BePjB5D3nxk= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ34rPUVdanI0CK4kJIUQd0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='NtvyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBZdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RLtnpauaTuMaTJADh6AToENLkAF3IqAMnsALeAMj49l4Nd6Nj0npkjHtOQB/YHz+Ao3dnxc= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREBHVXdOyBfuANoTJZNIOnUzizEQoUvBjb/ixoVF3PoD7vwGf8J20VtPTDM4Zx7ufceL2ZUKsv6NnJLyura/n1wsbm1vaOu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='bvXkFEiMKnjiEWi5SFJGOWkrqhipBULgkKPkabXv8n85gMRkb8Tg1i4oSoy2lAMVJacs1ix4uYLweh/tJ46NqncFa514prlqyNQZcJPaUlCqHo9rP49Go6pfHT/CSUi4wgxJ2batWDkpEopiRoaFTiJjHAfdUlbU45CIp10fMsQHmvFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBZdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLxFXQI9vzJi6RxVrbPy1c1u1S5BhPkwQEoghNgwtQAbegCuoAgyfwAt7AyHg2Xo1342NSmjOmPfvgD4zPX4sTnxY= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ3UV62vqEtFhbBhZRExMeu6MZlC/YBbQiTyaQdOsnEmYlQpeCG3/FjQuLuPUH3PkN/oSTtotaPTDM4Zx7ufceL2ZUKsv6MnILi0vLK/nVwtr6xuaWub3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='TkDwRmNQxZ1y0PCQJoxGpK6oYacWCoNBjpOn1rzO/eU+EpDy6VYOYOCHqRjSgGCktuWax43Hmy0GovzQeumfHcFa504prlqyNQb8S+wpKVX2R7Xvh4NR1TU/Oz7HSUgihRmSsm1bsXJSJBTFjAwLnUSGOE+6pK2phEKiXTS8S1DeKgVHwZc6BcpOFZnO1IUymw5XRki1ZPzXib+57UTFVw4KY3iRJEITwYFCYOKwywY6FNBsGIDTRAWVO8KcQ8JhJWOr6BDsOdP/ksaJ2X7tHxZs0uVKzBHuyBIjgCNjgHFXADqAOMHgEz+AVjIwn48V4M94npTlj2rMLfsH4+AGalZ8g ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoixceu6MZlC/YBTQiTyaQdOnkwMxFKyNK/cONfdO3GhSLirt/gTzhpu9DaC8MczrmXe+5xY0aFNIyxVlhaXldK6XNja3tnf03b2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='WiBKOSRNHLOIdFwnCaEiakpGOjEnKHAZabuD21xvPxAuaBTey2FM7AD1QupTjKSiHP3CciPmiWGgvtQKkOxjxNJ6ljnVM7hQa+Sao5eNijEp+B+YM1CuHY4a349Ho7qjf1lehJOAhBIzJETXNGJp4hLihnJSlYiSIzwAPVIV8EQBUTY6eS+DJ4oxoN+xNULJZywvydSFIjcpurMXYp5LScXad1E+ld2SsM4kSTE0V+wqCMYB4W9CgnWLKhAghzqrxC3EcYakiLakQzPmT/4PWecWsVq4bZrl2A6ZVBAfgGJwCE1yCGrgDdAEGDyBF/AG3rVn7VX70D6nrQVtNrMP/pQ2/gEqRagA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiPndFNy5bsA9oQphMJu3QyYOZiVBClv6FG/+iazcuFBF3/QZ/wknrQteGOZwzr3c48bMyqkYy0wsLi0vJKcbW0tr6xuaVv7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='zRFlHBMGjhiEW+7SBGQ9KQVDLSjlBgctIy+3f5nrgXBo/BeDmJiB6gbUp9iJBXl6BeWGzFPDAL1pVaAZA8jltayzDk/gXO1eq45etmoGOCs8D8BeXq/rD+/XgwrDn6l+VFOAlIKDFDQnRMI5Z2irikmJGsZCWCxAj3UZd0FAxRQISdju/L4JFiPOhHXL1QwjH7dyJFgchtqs7cpZjWcnKe1kmkf2WnNIwTSUI8WeQnDMoI5mFBj3KCJRsogDCnyivEPcQRlirSkgrBnD5FjRPK+Z5bpulqs3YFJFsAcOwTEwSWogjtQAw2AwRN4AW/gXvWXrUP7XPSWtB+Z3bBv9JGPy1pqAI= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiUnVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjl613Ih5YhioL7UCJPsYsbSeZU71DC7UGrnm6GWjYkwK/gfmDJRrh6PG9+PRqO7oX5YX4SQgocQMCdE1jVjaKeKSYkaykpUIEiM8QD3SVTBEARF2OrkvgyeK8aAfcfVCSfs74kUBSK3qTpzl2Jey8lFWjeR/pWd0jBOJAnxdJGfMCgjmIcFPcoJlmyoAMKcKq8Q9xFHWKpISyoEc/7k/6B1XjEvKtcNlcYNmFYRHIBjcApMcAlq4A7UQRNg8ARewBt41561V+1D+5y2FrTZzD74U9r4BzA9qAM= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoiYnVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5L ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='RAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/Ss7pWGcSBLi6SI/YVBGMA8LepQTLNlQAYQ5V4h7iOsFSRlQI5vzJ/0HrvGJeVK4bZrl2A6ZVBAfgGJwCE1RBDdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wAzsagG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoionVXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/aqd0jBOJAnxdJGfMCgjmIcFPcoJlmyoAMKcKq8Q9xFHWKpISyoEc/7k/6B1XjEvKtcNs1y7AdMqgNwDE6BCa5ADdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wA21agI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkoionZXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0XWjthWEO59zLPfe4MaNCGsZYKywtr6yuFdLG5tb2zv67l5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='LRAnHpIkjFvGOiwRhNCRNSUjnZgTFLiMtN3Bba63HwgXNArv5TAmdoB6IfUpRlJRjn5puRHzxDBQX2oFSPYxYmk9y5zqGVyoNXLN0ctGxZgU/A/MGSjXDkeN78ejUd3RvywvwklAQokZEqJrGrG0U8QlxYxkJSsRJEZ4gHqkq2CIAiLsdHJfBk8U40E/4uqFEk7Y3xMpCkRuU3XmLsW8lpOLtG4i/Ws7pWGcSBLi6SI/YVBGMA8LepQTLNlQAYQ5V4h7iOsFSRlQI5vzJ/0HrvGJeVKoNs1y7AdMqgNwDE6BCa5ADdyBOmgCDJ7AC3gD79qz9qp9aJ/T1oI2m9kHf0ob/wA5+agK ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkoigouim5ctmAf0IQwmUzaoZMHMxOhCz9ETf+Qj/BjQuLCK78AH/CSduFtr0wzOGce7nHjdmVEjD+NIKS8srq2vF9dLG5tb2jr671xR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='RwjFp4IhFvO0iQRgNSUNSyUg75gQFLiMt3+X61HwgWNwgc5iIkdoG5IfYqRVJSj31huxDwxCNSXWgGSPYxYWsyJzWN7AwulOtT2dHLRsUYF5wH5hSUq4fD+s/T0bDm6CPLi3ASkFBihoTomEYs7RxSTEjWclKBIkR7qMu6SgYoAIOx1fmcETxXjQj7h6oYRj9u9EigKRO1WduVExq+XkIq2TSP/KTmkYJ5KEeLITxiUEcwjgx7lBEs2UABhTpVXiHuIyxVsCUVgjl78jxonlfMi8p13SxXb8GkiuAHINTYIJLUAX3oAYaAINn8ArewUh70d60D+1z0lrQpjP74F9p378KEKqG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkoigouim5ctmAf0IQwmUzaoZMHMxOhCz9ETf+Qj/BjQuLCK78AH/CSduFtr0wzOGce7nHjdmVEjD+NIKS8srq2vF9dLG5tb2jr67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='1xRwjFp4IhFvO0iQRgNSUNSyUg75gQFLiMt3+X61HwgWNwgc5iIkdoG5IfYqRVJSj31huxDwxCNSXWgGSPYxYWsyJzXN7AwulOtT2dHLRsUYF5wH5hSUq4fD+s/T0bDm6CPLi3ASkFBihoTomEYs7RxSTEjWclKBIkR7qMu6SgYoAIOx1fmcETxXjQj7h6oYRj9u9EigKRO1WduVExq+XkIq2TSP/KTmkYJ5KEeLITxiUEcwjgx7lBEs2UABhTpVXiHuIyxVsCUVgjl78jxonlfMi8p13SxXb8GkiuAHINTYIJLUAX3oAYaAINn8ArewUh70d60D+1z0lrQpjP74F9p378NOaqI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACJXicbVDLSsNAFJ3UV62vqEtFBovgQkpSBVcFN24bME+oAlhMpm0QycPZiZCVn6I278hX6CGxcWEVz5Af6Ek7YLrb0wzOGce7nHjdmVEjD+NQKS8srq2vF9dLG5tb2jr671x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='JRwjFp4ohFvOMiQRgNSVNSyUgn5gQFLiNtd3Cb6+0HwgWNwns5jIkdoF5IfYqRVJSjX1tuxDwxDNSXWgGSfYxYWs8yJzWr2RlcKDdmsqOXjYoxKfgfmDNQrh2OGt+PR6O6o48tL8JQEKJGRKiaxqxtFPEJcWMZCUrESRGeIB6pKtgiAIi7HRyZQZPFONBP+LqhRJO2N8TKQpE7lR15kbFvJaTi7RuIv1LO6VhnEgS4ukiP2FQRjCPDHqUEyzZUAGEOVeIe4jrBUwZUCOb8yf9Bq1oxzytXDbNcuwHTKoIDcAxOgQkuQA3cgTpoAgyewAt4A2PtWXvV3rWPaWtBm83sgz+lf0AEGKqig= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ34rPUVdanI0CK4kJIQd0V3bhswT6gDWEymbRDJ5k4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3NtvS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='J4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT6N5nfCBCUh7dqUFMnB1IxpQjJSWXLPQ8Tjz5SDUXxoP3fIZnFXuteKaRatkjQEXiT0lxcrRqPbzeDyquZXx+c4CUmkMENStm0rVk6KhKYkWG+k0gSI9xHXdLWNEIhkU46vmUIT7Tiw4AL/SIFx+psR4pCmS2nK0OkenLey8T/vHaigksnpVGcKBLhyaAgYVBxmAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrLpauaXaxcgwly4BAUwCmwQWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX5Rhnxw= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ3UV62vqEtFhbBhZREFHVXdOyBfuANoTJZNIOnWTizEQoUvBjb/ixoVF3PoD7vwGf8J20WtHhjmcM693HuPFzMqlWV9GbmFxaXlfxqYW19Y3PL3N5pSJ4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT615nfvCdCUh7dqkFMnB1IxpQjJSWXLPY8Tjz5SDUXxoP3bNjOKvcacU1S1bZGgP+JfaUlCr7o9r3w8Go6pqfHZ/jJCSRwgxJ2batWDkpEopiRoaFTiJjHAfdUlb0wiFRDrp+JYhPNSKDwMu9I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='sUHKuzHSkKZbacrgyR6sl5LxP/89qJCi6clEZxokiEJ4OChEHFYRYM9KkgWLGBJgLqneFuIcEwkrHV9Ah2PMn/yWNk7J9Wr6s2aXKFZgD/ZAERwBG5yDCrgBVAHGDyCZ/AKRsaT8WK8Ge+T0pwx7dkFv2B8/ACXe58e ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIUN0V3bhswT6gDWEymbRDJ5k4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3Nt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='vSJ4ITOqYMy5aHpKE0YjUFVWMtGJBUOgx0vT6N5nfCBCUh7dqUFMnB1IxpQjJSWXLPQ8Tjz5SDUXxoP3fIZnFXuteKaRatkjQEXiT0lxcrRqPbzeDyquZXx+c4CUmkMENStm0rVk6KhKYkWG+k0gSI9xHXdLWNEIhkU46vmUIT7Tiw4AL/SIFx+psR4pCmS2nK0OkenLey8T/vHaigksnpVGcKBLhyaAgYVBxmAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrIvSlc1u1i5BhPkwCEogFNgzKogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX52vnyI= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIYN0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3NtvyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='XZjhSFMltOV4ZI9eS8l4n/e1EBWUnpTxOFOF4MihIGFQRzIKBPhUEKzbQBGFB9a4Q95BAWOn48joEe/7kRdI4L9kXpauaXaxcgwly4BAUwCmwSWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX6DJnyQ= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AC3icbVDLSsNAFJ34rPUVdanI0CK4kJKIoN0V3bhswT6gDWEymbRDJ5M4MxFK6FJw46+4cWERt/6AO7/Bn3DSdlFbDwxzOde7r3HixmVyrK+jaXldW19dxGfnNre2fX3Nt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='vyCgRmNRxCLR8pAkjHJSV1Qx0oFQaHSNPr32R+84EISN+pwYxcULU5TSgGCktuWah40XMl4NQf2k8dMtncFa514prFq2SNQZcJPaUFCtHo9rP4/Go6pfHT/CSUi4wgxJ2batWDkpEopiRob5TiJjHAfdUlbU45CIp10fMsQnmjFh0Ek9OMKjtXZjhSFMltOV4ZI9eS8l4n/e1EBVdOSnmcKMLxZFCQMKgimAUDfSoIVmygCcKC6l0h7iGBsNLx5XUI9vzJi6RxXrIvSuWaXaxcgwly4BAUwCmwSWogFtQBXWAwRN4AW9gZDwbr8a78TEpXTKmPQfgD4zPX6PjnyY= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACEXicbVDLSsNAFJ34rPUVdanIYBG6kJKIoO6Kbly2YB/QhjCZTNqhk4czE6GELN268Vdc1IUibt258xv8CSdNF7X1wDCHc+7l3nuciFEhDeNbW1hcWl5ZLawV1zc2t7b1nd2mCGOSQOHL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ORtBwnCaEAakpG2hEnyHcYaTmD68xv3RMuaBjcymFELB/1AupRjKSbL3cdULmiqGviRK7cQ0hM4Ld7loq2XjIoxBpwn5oSUqgej+s/D4ahm619dN8SxTwKJGRKiYxqRtBLEJcWMpMVuLEiE8AD1SEfRAPlEWMn4ohQeK8WFXsjVCyQcq9MdCfJFtp+q9JHsi1kvE/zOrH0LqyEBlEsSYDzQV7MoAxhFg90KSdYsqEiCHOqdoW4jzjCUoVYVCGYsyfPk+ZpxTyrXNbNUvUK5CiAfXAEysAE56AKbkANAGj+AZvI37Ul70d61j7x0QZv07IE/0D5/AUNMoaI= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACEXicbVDLSsNAFJ34rPUVdanIYBG6kJKIoO6Kbly2YB/QhjCZTNqhk4czE6GELN268Vdc1IUibt258xv8CSdNF7X1wDCHc+7l3nuciFEhDeNbW1hcWl5ZLawV1zc2t7b1nd2mCGOSQO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='HLORtBwnCaEAakpG2hEnyHcYaTmD68xv3RMuaBjcymFELB/1AupRjKSbL3cdULmiqGviRK7cQ0xM4Ld7loq2XjIoxBpwn5oSUqgej+s/D4ahm619dN8SxTwKJGRKiYxqRtBLEJcWMpMVuLEiE8AD1SEfRAPlEWMn4ohQeK8WFXsjVCyQcq9MdCfJFtp+q9JHsi1kvE/zOrH0LqyEBlEsSYDzQV7MoAxhFg90KSdYsqEiCHOqdoW4jzjCUoVYVCGYsyfPk+ZpxTyrXNbNUvUK5CiAfXAEysAE56AKbkANAGj+AZvI37Ul70d61j7x0QZv07IE/0D5/AUZroaQ= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='p12,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' q12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACEXicbVC7SgNBFJ2Nrxhfq5aKDAYhYTdIKhd0MYyAfOAZFlmZyfJkNmHM7NCWLa0tfFXLGKhiK2dnd/gTzibTRETDwxzOde7r3HCRkV0jC+tdzS8srqWn69sLG5tb2j7+41RBxTBo4Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AFvO0gQRn3SkFQy0g45QZ7DSMsZXqd+65wQP/Vo5CYnmo79MexUgqydZLXSdgrh56ovDxI7NSnIKZ8W7TLT1olE2JoCLxJySYvVwXP95OBrXbP2r6wY48ogvMUNCdEwjlFaMuKSYkaTQjQJER6iPuko6iOPCueXJTAE6W4sBdw9XwJ+psR4w8ke6nKj0kB2LeS8X/vE4kexdWTP0wksTH2aBexKAMYBoPdCknWLKRIghzqnaFeIA4wlKFWFAhmPMnL5JmpWyelS/rZrF6BTLkwQE4BiVgnNQBTegBhoAg0fwDF7Bm/akvWjv2kdWmtOmPfvgD7TPX0mKoaY= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='P3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Q3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACH3icbVDLSsNAFJ3UV62vqEtFBovgQkqi4mNXdOyBfuAJoTJZNIOnTyYmQglZOlfuPEvunbjQhFx12/wJ5y0LrTthWEO59zLPfe4MaNCGsZIKywsLi2vFdLa+sbm1v69k5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='TRAnHpIEjFvG2iwRhNCQNSUj7ZgTFLiMtNz+ba63HgXNArv5SAmdoC6IfUpRlJRjn5huRHzxCBQX2oFSPYwYmkty5yzEzhXq+eao5eNijEuOAvMX1Cu7g/r348Hw5qjf1lehJOAhBIzJETHNGJp4hLihnJSlYiSIxwH3VJR8EQBUTY6fi+DB4pxoN+xNULJRyzfydSFIjcpurMXYpLSfnaZ1E+ld2SsM4kSTEk0V+wqCMYB4W9CgnWLKBAghzqrxC3EMcYakiLakQzOmTZ0HztGKeV67rZrl6AyZVBHvgEBwDE1yCKrgDNdAGDyBF/AG3rVn7VX70D4nrQXtd2YX/Ct9AMnIaf+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' A radial 13-bus distribution network connected with rooftop solar PVs and ESSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In this paper, one control objective is to minimize the total power loss of the distribution network by controlling the dynamics of PVs and ESSs, which is approximated by f1(pg 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , pg n) = � lij∈L rij �∥Pij∥2 2 + ∥Qij∥2 2 V 2 0 � (2) where V0 denotes the nominal voltage magnitude, pg j, Pij, and Qij ∈ RT are augmented vectors of pg j, Pij, and Qij across T time intervals, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Note that we only consider active power loss and assume reactive power flows Qij to be constant vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Though the reactive power loss is not included here for simplicity, it can be added without affecting algorithm design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The active power flows are constrained by 0 ≤ Pij ≤ Pij (3) where Pij denotes the maximum active power flow limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Solar Photovoltaic Let V denote the set of in total V solar PVs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' During T time intervals of a day, the active power injection ˜pν ∈ RT from the νth PV inverter should satisfy 0 ≤ ˜pν ≤ pv ν (4) 田田3 where pv ν denotes the maximum active power injection and is assumed to be known by the forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Herein, the curtailment cost can be calculated by [25] f2(˜pν) = ∥˜pν − pv ν∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (5) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Energy Storage System Let S denote the set of E ESSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The charging/discharging power ˆpσ ∈ RT of the σth ESS is constrained by − ps σ ≤ ˆpσ ≤ ps σ (6) where ps σ and ps σ denote the maximum discharging and charging power, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let s0 σ denote the initial state of charge (SoC) of the σth ESS and Hσ ≜ [s0 σ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , s0 σ]T ∈ RT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Aggregate the charging/discharging power across T time in- tervals, then the capacity of the σth ESS is constrained by pa σ ≤ Hσ + Aˆpσ∆T ≤ pa σ (7) where pa σ and pa σ denote its lower and upper capacity bounds, respectively, ∆T denotes the sampling time, and the aggregation matrix A is lower triangular consisting of ones and zeros, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', element Aˆı,ˆȷ = 1 if ˆı ≥ ˆȷ, element Aˆı,ˆȷ = 0 if ˆı < ˆȷ, ∀ˆı, ˆȷ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, the SoCs of ESS σ during T time slots are obtained by aggregating the charging/discharging power using A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Furthermore, the σth ESS’s degradation cost is calculated in terms of the smoothness of charging and discharging by [26] f3(ˆpσ) = ∥B ˆpσ∥2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (8) where B calculates discharging/charging differences between adjacent times, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', Bˆı,ˆı = 1, ∀ˆı = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , T, Bˆı,ˆı+1 = −1, ∀ˆı = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , T − 1, and all other elements are zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Problem Formulation The optimization problem is then formulated to minimize the summation of total active power loss, PV curtailment cost, and ESS degradation cost within the distribution network as min ˜p, ˆp δ1f1(pg) + V � ν=1 δ2f2(˜pν) + E � σ=1 δ3f3(ˆpσ) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (1a), (3), (4), (6), (7) (P1) where ˜p = [˜pT 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , ˜pT n]T, ˆp = [ˆpT 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , ˆpT n]T, pg = [pg 1 T, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , pg n T]T, and δα denotes the cost coefficient asso- ciated with the objective function fα(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Note that the cost coefficients are constants that allow flexible adjustments on the weights of the global and local objective functions and regulate different units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' DECENTRALIZED OPTIMIZATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Projected Gradient Method This paper achieves scalability in solving (P1) via projected gradient method (PGM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' PGM decomposes a centralized opti- mization problem into local optimizations at agents, resulting in a paralleled computing structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let M = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , m} denote the set of agents, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', buses or DERs, who work cooperatively in solving (P1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In this setting, the κth agent updates its decision variable xκ using PGM by x(ℓ+1) κ = PXκ[x(ℓ) κ − γ(ℓ) κ Φκ(x(ℓ))] (9) where ℓ denotes the iteration number, x(ℓ) = [x(ℓ) 1 T, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , x(ℓ) m T]T includes all decision variables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', ˜pν and ˆpσ in problem (P1), γ(ℓ) k denotes the step size, Φκ(·) denotes the gradient of the Lagrangian w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' x(ℓ) κ , and PXκ[·] denotes the projection operation onto set Xκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In (P1), the local constraint of the νth PV in (4) and local constraints of the σth ESS in (6) and (7) can be represented by two feasible sets Pv ν and Pe σ as Pv ν ≜ {˜pν| 0 ≤ ˜pν ≤ pv ν} (10a) Pe σ ≜ {ˆpσ| − ps σ≤ˆpσ≤ps σ, pa σ≤H+Aˆpσ∆T ≤ pa σ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (10b) In what follows, aiming at reducing the number of coupling terms, we rewrite the networked constraints in (1a) and (3) to a single inequality constraint based on the network topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To this end, we first represent the active power flows in (1a) through active power generations of each bus using pi = ˜pi − ˆpi − pc i (11) where pi denotes the aggregated active power generation at bus i, ˜pi = �Vi ν=1 ˜pν and ˆpi = �Ei σ=1 ˆpσ denote the aggre- gated active power of all PVs and ESSs that are connected at bus i, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Vi and Ei denote the total number of PVs and ESSs connected at bus i, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' For the ιth line flow Pι in the distribution network, the from-bus is defined by the bus where the flow begins, and the to-bus set is defined by the set of buses that the ιth line flow travels to till reaching the edge of the distribution network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let Z ∈ Rn×n denote the adjacency matrix of the distribution network and Zι denote the ιth row of Z that represents the adjacency vector of the ιth line flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let Zι(i) denote the ith element of Zι, and Zι(i) = 1 if the ιth power flow has bus i as a to-bus, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', Z9 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Then, the power flows in the distribution network can be represented by Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Expand Z across T time slots, we have ˜Z = � ���� Z1(1)I Z1(2)I · · · Z1(n)I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Zn(1)I Zn(2)I · · · Zn(n)I � ���� (12) where I∈RT ×T denotes the identity matrix and ˜Z ∈ RnT ×nT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In what follows, let ˜P ∈ RnT denote the aggregated active power generations defined in (11) from all buses, we have ˜P = � �� p1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' pn � �� = � ���� �V1 ν=1 ˜pν − �E1 σ=1 ˆpσ − pc 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' �Vn ν=Vn−1+1 ˜pν − �En σ=En−1+1 ˆpσ − pc n � ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (13) Furthermore, ˜P can be rewritten compactly as ˜P = n � i=1 ∆i (˜pi − ˆpi − pc i) (14) 4 where ∆i denotes the aggregation matrix whose ith block is represented by the identity matrix I, and all other blocks are zeros, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', ∆1 = [I, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , 0]T ∈ RnT ×T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Then, the active power flow of the ιth line can be calculated by Pι = ˜Zι ˜P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (15) Consequently, the power flow limit constraint in (3) becomes 0 ≤ ˜Zι ˜P ≤ Pι.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (16) Therefore, problem (P1) can be written into min ˜p, ˆp δ1f1(pg) + V � ν=1 δ2f2(˜pν) + E � σ=1 δ3f3(ˆpσ) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' pν ∈ Pv ν, ∀ν ∈ V pσ ∈ Pe σ, ∀σ ∈ S 0 ≤ ˜Zι ˜P ≤ Pι, ∀ι ∈ L (P2) The optimization problem in (P2) seeks to find the optimal decision variables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', charging and discharging power ˜pσ’s of the ESSs and the active power injection ˆpν’s of the PVs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In what follows, we focus on solving (P2) through a decentralized fashion based on PGM defined in (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To solve (P2) via PGM, we firstly derive its relaxed Lagrangian as L(˜p, ˆp, µl, µu) = δ1f1(pg) + V � ν=1 δ2f2(˜pν) + E � σ=1 δ3f3(ˆpσ) + L � ι=1 µT uι( ˜Zι ˜P − Pι)− L � ι=1 µT lι ˜Zι ˜P (17) where µl = [µT l1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , µT lL]T and µu = [µT u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , µT uL]T, µlι and µuι denote the dual variables associated with lower and upper power flow limits of the line ι, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Suppose ˜pν and ˆpσ are decision variables of the νth PV and σth ESS connected at bus i, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Take the subgradients of (17) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' the primal variables ˜pν and ˆpσ, we have ∇ ˜pνL(·) = 2δ2(˜pν − pv ν) + 2δ1 V 2 0 L � ι=1 rι( ˜Zι∆i)T( ˜Zι ˜P ) + L � ι=1 ( ˜Zι∆i)T(µuι − µlι) (18a) ∇ ˆpσL(·) = 2δ3 ˆpσ − 2δ1 V 2 0 L � ι=1 rι( ˜Zι∆i)T( ˜Zι ˜P ) − L � ι=1 ( ˜Zι∆i)T(µuι − µlι).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (18b) Without affecting the efficacy of the algorithm design, we assume all power lines have the same resistance ¯r for the simplicity of presentation, herein (18) becomes ∇ ˜pνL(·) = 2δ2(˜pν − pv ν) + ¯δ1πi ˜P + ψi(µu − µl) (19a) ∇ ˆpσL(·) = 2δ3 ˆpσ − ¯δ1πi ˜P − ψi(µu − µl) (19b) where ¯δ1 = 2δ1 V 2 0 ¯r, πi = �L ι=1( ˜Zι∆i)T ˜Zι, and ψi denotes the ith column block of ˜Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The detailed derivation of the Lagrangian subgradients in (19) can be found in APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, based on the calculated subgradients in (18), at the ℓth iteration, the νth PV and the σth ESS can update their decision variables using PGM by ˜p(ℓ+1) ν = ΠPvν � ˜p(ℓ) ν − αv ν,ℓ∇ ˜pνL(ℓ) (·) � (20a) ˆp(ℓ+1) σ = ΠPeσ � ˆp(ℓ) σ − αe σ,ℓ∇ ˆpσL(ℓ) (·) � (20b) where αv ν,ℓ and αe σ,ℓ denote the primal step sizes of the νth PV and the σth ESS, respectively, L(ℓ) (·) denotes the calculated Lagrangian in (17) at the ℓth iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The dual variables can be updated similarly using PGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' DER Aggregation and Control In PGM iterations, the ith agent needs to calculate Φi(xℓ) in (9) where the decision variables xi’s from all other agents are required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' As indicated in (19), calculating subgradients ∇ ˜pνL(·) and ∇ ˆpσL(·) indeed requires the decision variables ˜P from all the agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Specifically, the calculation of subgra- dients in (19a) and (19b) are coupled through C = Cp + Cd = ¯δ1πi ˜P + ψi(µu − µl) (21) where Cp and Cd denote the coupling terms associated with the primal and dual variables, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To clearly demonstrate the information exchange needs in subgradient calculation, we exemplify the primal update of the ˆνth PV connected at bus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The ˆνth PV can update its decision variable ˜pˆν using the subgradient in (19a) which is ∇ ˜pˆνL(·) = 2δ2(˜pˆν − pv ˆν) + 2 � ι=1 � ¯δ1πι ˜P + µuι + µlι � (22) where π1 ˜P = �n i=1 pi and π2 ˜P = p2 + p3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, the ˆνth PV requires the active power generations pi, ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , n from all buses to conduct the update in (20a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Based on the above observations, two different aggregation and control strategies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', Bus-level aggregation and control and DER-level aggregation and control, can be applied as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In bus-level aggregation and control,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' the ith ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Each bus aggregates the decision ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='variables ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='DERs exchange decision variables ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='with others to obtain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='˜pi= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='XVi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='⌫=1 ˜p⌫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACR3icdVDLSgMxFM3Ud31VXboJFsFVmRFBXRENy4VbBU6dchkUg3mMSR3hBLm79y4decvuHGhiEsztQufF0IO59yT3HvSXHALYfgY1CYmp6ZnZufq8wu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='LS8uNldWu1YWhrEO10OYiJZYJrlgHOAh2kRtGZCrYeXpzVOnt8xYrtUZDHPWl+RK8QGnBDyVNC5j4CJjLk61yOxQ+svlZlw7Noljm0hExeroh2VsdKCSw720sWSwDUlwnV9Y/nPC5WtTBrNsBWOCv8G0Rg0bhOksZDnGlaSKaACmJtLwpz6DtigFPBynpcWJYTekOuWM9DRSzfTfKocSbnsnwQBt/FOAR+9XhiLTVhL6z2sD+1CryL61XwGCv7jKC2CKfn40KAQGjatQcYNoyCGHhBquJ8V02tiCAUfd2HEP1c+Tfobreindb+6U7z4HAcxyxaRxtoC0VoF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='x2gY3SCOoiO/SEXtBrcB8B2/B+2drLRh71tC3qgUf3V+2Gw= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ˆpi= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='XEi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='�=1 ˆp� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACSXicbVDPSxtBFJ6N2qaprWl79DIYCp7CbhG0B0EshR4jGBWycX07mSD82OZeSuEYf+9Xnrf9DLx4s4snZuIf648EwH9/3vpn3vryQwmEc/4laK6tr163Ter97v9H98PHEmdIyPmRGnuWg+NSaD5EgZKfFZaDyiU/zS+/1frpFbdOGH2Mi4KPFcy0mAoGKise5HOAX2aGzlxCxUuX1RVJqjfr2jqSpX51ImZgv2kSrWRQgl05z5VgHMG0n8PvdWLTzS+Kuv24n68LPocJA3okaYGWfd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='3OjGsVFwjk+DcKIkLHuwKJjkVSctHS+AXcKMjwLUoLgb+2USFf0cmAmdGhuORrpk/3d4UK4eMnTWK7inWk2+pI1KnO6NvdBFiVyzh4+mpaRoaB0rnQjLGcpFAMCsCLNSNgcLDEP4nRBC8nTl5+DkSz/Z6X892ukdHDZxtMkm2SLbJCG75ID8IAMyJIz8JH/JDfkX/Yquo9vo7qG1FTWeT+RtVbuAWP/tA= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Each individual PV or ESS owns ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='decision variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='to itself ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='˜p⌫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUpQJWCrYGEsEn1ITRQ5jtadezIdpCqKAsLv8LCAEKs/AMbf4PTZoCWI1k+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Oude3XtPmDCqtON8W5WV1bX1jepmbWt7Z3fP3j/oKpFKTDpYMCH7IVKEU46mpG+okKA4Z6YWTm8LvPRCpqOD3epoQP0YjTocUI2kwD72NGURybxQsEhNY/NlSZ4HmcfTPLDrTsOZAS4TtyR1UKId2F9eJHAaE64xQ0oNXCfRfoakpiRvOaliQIT9CIDAzlKCbKz2ZX5PDUKBEcCmke13Cm/u7IUKyKDU1ljPRYLXqF+J83SPXw0s8oT1JNOJ4PGqYMagGLSGBEJcGaTQ1BWFKzK8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='RjJBHWJriaCcFdPHmZdM8brNxdest67LOKrgCJyAM+C9ACt6ANOgCDR/AMXsGb9WS9WO/Wx7y0YpU9h+APrM8fVh+Zxg= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ˆp� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRSUHdFNy4r2Ac0IUwm03boTCbMTIQSsnLjr7hxoYhbv8Gdf+OkzUJbDwxzOde ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='7r0nTBhV2nG+rcrK6tr6RnWztrW9s7tn7x90lUglJh0smJD9ECnCaEw6mpG+okiIeM9MLJTeH3HohUVMT3epoQn6NRTIcUI2kwD72xkhnXihYpKbcfFmS50HmKTriKA/sutNwZoDLxC1JHZRoB/aXFwmchJrzJBSA9dJtJ8hqSlmJK95qSIJwhM0IgNDY8SJ8rPZGTk8NUoEh0KaF2s4U393ZIirYklTyZEeq0WvEP/zBqkeXvoZjZNUkxjPBw1TBrWARSYwopJgzaGICyp2RXiMZIa5NczY ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='TgLp68TLrnDbfZuLpr1lvXZRxVcAROwBlwQVogVvQBh2AwSN4Bq/gzXqyXqx362NeWrHKnkPwB9bnDw53mik= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='The ith bus performs the primal- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='dual updates for all the DERs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Each DER performs the primal- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='dual update in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (22) and (23) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='End iteration if : DERs’ decision variables achieve convergence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Aim: Calculate subgradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='for the updates in PGM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r˜p⌫L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='4U0Zv+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='tQ2j6J7oT9PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='rˆp�L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='vIl/xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5Pafsk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='umP290QGsSl8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='˜pi= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='XV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='⌫=1 ˜p⌫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACRHicdVDLSiQxFE05PtXO7N0E2wEV02VCOqiQZyNSwemW6GrLVKptAbzKJbQhPycW78AHfzBW5cKOJWJtX2wueFkM595CTk5eCW4jf9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='HUj+mZ2bn5hcbi0vLKanPtZ8/qylDWpVpoc5oTywRXrAscBDstDSMyF+wkv/xd6ydXzFiu1V8YlWwgybniQ04JBCpr9lPgomAuzbUo7EiGy5XeZ9x1PE5tJTOXqT+FRpwSUHe+ZSeCEuF63n9jr0+a7bidjwe/BkE9BCkznOmrdpoWklmQIqiLX9JC5h4IgBTgXzjbSyrCT0kpyzfoCKSGYHblyCx5uBKfBQm3AU4DH71uGItHXCsFntx+1mvxK61cw3Bs4rsoKmKvDw0rgUHjulFcMoiFEAhBoesmJ6QyhEHpvhBKSj1/+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='DHrb7WSnvf9np3VwOKljHq2jDbSFErSLDtAROkZdRNE1ukMP6DG6ie6jp+j5dXUqmnh+oXcTvfwHsO62FA= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Buses exchange decision variables ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='with others to obtain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='8i=1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='AB/nicbVDLSgMxFL3js9ZXVy5CRbBhZQZKagLoejGZQX7gM5QMpm0Dc0kQ5IRylDwV9y4UMSt3+HOvzFtZ6GtBwKHc+7lnpw4Uwb1/12lpZXVt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='fWCxvFza3tnd3S3n5Ty1QR2iCS9UOsacCdowzHDaThTFchpKxzeTvzWI1WaSfFgRgkNYtwXrMcINlbqlg79nlSYc8Sy67Hn80gafWb1sltxp0CLxMtJGXLUu6UvP5IkjakwhGOtO56bmCDyjDC6bjop5omAxn3YsFTimOsim8cfoxCoRsjnsEwZN1d8bGY61HsWhnYyxGeh5byL+53VS07sMiaS1FBZod6KUdGokXKGKEsNHlmCimM2KyArTIxtrGhL8Oa/vEia5xWvWrm6r5ZrN3kdBTiCYzgFDy6gBndQhwYQyOAZXuHNeXJenHfnYz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='a65OQ7B/AHzucP2q2VcA= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ˆpi= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='XE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='�=1 ˆp�,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACSHicbVBNaxsxENW6zZeTpm57zEXEFHoZrcY2h4CoaXQYwJxEvA6y6ws2yL6WKTZgBH6eb302Ft/Qy89tJTeonX2kK8Bocd786SZV1ZSOEzTn0n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ydO19Y3Nre72zrPd570XL0+dqS3jI2akseclOC6F5iMUKPl5ZTmoUvKz8vJzo59dceuE0Se4rPhEwVyLmWCAkSp6Rb4A9Hlp5NQtVbx8FUIhqD8INHe1KnzuxFzBQRZybaRQAt2FzxXgoH0X0J49IHWFd4WvX46SFdFH4KsBX3S1lHR+5FPDasV18gkODfO0gonHiwKJno5rXjFbBLmPNxhBoUdxO/CiLQ15GZ0pmx8WikK/a2w4NyzZSxs9nA3dca8jFtXOPsw8QLXdXINbv5aFZLioY2qdKpsJyhXEYAzIo4K2ULsMAwZt+NIWT3V34ITt8NsuHg4/ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Gwf/ipjWOT7JF98oZk5D05JF/JERkRr6RX+QP+Zt8T34n/5L/N62dpPW8Ineq07kGLPy2Kg= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ˆpi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ˜pi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 8i = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACLnicbVDLSgMxFM3UV62vqks3wSK4KGVGCupCKIrgsoJ9QGcomUymDc1MhuSOUIZ+kRt/ReCirj1M0wfC217IeRwzr3JucdP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='BNdg2+9WbmV1bX0jv1nY2t7Z3SvuHzS1TBVlDSqFVG2faCZ4zBrAQbB2ohiJfMFa/uBmrLcemdJcxg8wTJgXkV7MQ04JGKpbvHX7BDLXlyLQw8hcWTIadXkZu8BFwJYqoVRECMyvHFcEnTZvFOyK/ak8CJwZqCEZlXvFl/dQNI0YjFQbTuOHYCXkYUcCrYqOCmiWEDkiPdQyMScS0l03WHeETwTYuDAnBjxh/05kJNJjy6YzItDX89qYXKZ1UgvIzHSQosptOPwlRgkHicHQ64YhTE0ABCFTdeMe0TRSi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='YhAsmBGd+5UXQPKs41crlfbVUu57FkUdH6BidIgedoxq6Q3XUQBQ9oRf0gT6tZ+vN+rK+p605azZziP6V9fMLNxmqbQ= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r˜p⌫L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx4U0Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='v+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykTtQ2j6J7oT9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='rˆp�L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdFvIl/ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5PafskumP290QGsS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='l8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Individual DER acts an agent to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='calculate subgradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='r˜p⌫L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIHicbVBNS8NAEN34WetX1aOXYBH0UhIpqDfRiwcPFWwVmlIm61dutkNuxOhPwUL/4VLx4U0Z ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='v+GjdtDn4NLPt4b4Z58JEcIOe9+HMzM7NLyxWlqrLK6tr67WNzY5RqasTZVQ+iYEwSXrI0cBbtJNIM4FOw6HJ0V+vUd04YreYXjhPViuJV8wCmgpfq1w0BCKCfBchFxLIgVCIy49h+WZLnlpdpngcx4JCyC7yvYBGCvf7tbrX8Cbl/gV+CeqkrFa/9h5EiqYxk0gFGNP1vQR7GWjkVLC8GqSGJUBHcMu6FkqImelkwNzd9cykTtQ2j6J7oT9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='PpFBbArTtrNwan5rBfmf1k1xcNTLuExSZJOFw1S4aJyi7TciGtGUYwtAKq59erSIWigaDOt2hD83yf/BZ2Dht9sHF826yenZRwVsk12yB7xySE5IekRdqEknvySJ7Ji/PgPDmvztu0dcYpZ7bIj3I+vwD93qVW ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='rˆp�L(·) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACIXicbVBNS8NAEN34bf2qevQSLEK9lEQE9SZ68eBwX5AU8pks2XbnbD7kQoIX/Fi3/FiwdFvIl/ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='xk3bg7YOLPt4b4Z58JEcIOe9+UsLC4tr6yurZc2Nre2d8q7ew2jUk1ZnSqhdCsEwSXrI4cBWslmkEcCtYMh9eF3nxk2nAlH3CUsE4Mfcl7nAJaqls+DySEArpZMADMglCJyIxi+2VJnlvW8H4MeR7EgAMKIrvNqwGNFB53yxWv5o3LnQf+FTItO65c8gUjSNmUQqwJi27yXYyUAjp4LlpSA1LAE6hD5rWyghZqaTjS/M3SPLRG5PafskumP290QGsS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='l8287CqZnVCvI/rZ1i7yTcZmkyCSdLOqlwkXlFnG5EdeMohZAFRz69WlA9BA0YZasiH4syfPg8ZJzT+tXdyfVi6vpnGskQNySKrEJ2fktyQO1InlDyRF/JG3p1n59X5cD4nrQvOdGaf/Cn+wfAO6W5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Individual bus acts an agent to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='calculate subgradients ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='DER-level aggregation and control ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Bus-level aggregation and control ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Aggregation and control of DERs via bus-level and DER-level architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' bus (agent) aggregates the decision variables ˜pi = �Vi ν=1 ˜pν 5 and ˆpi = �Ei σ=1 ˆpσ where only aggregated decision variables are transmitted and used for the primal updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In contrast, DER-level control strategies require each DER to act as an agent and receive all data of others that is demanded for updates in (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' However, due to the large number of DERs connected to the distribution network, DER-level control can suffer from massive data exchange and heavy local computa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, we adopt the bus-level aggregation and control scheme which is more computing and communicating effi- cient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' We will later show that the proposed privacy-preserving algorithm can be readily extended to the DER-level control (See Remark 1 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Apart from scalability and efficiency, the inevitable private information exposure in both bus-level and DER-level methods raises fundamental privacy concerns, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', the electrical load can reveal sensitive business activities and/or customer’s daily routines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To address the privacy concerns, we will develop a novel SS-based algorithm to achieve secure information exchange in executing (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' SS-BASED PRIVACY-PRESERVING DER CONTROL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Real Number to Integer Quantization Note that the SS scheme requires modular arithmetic instead of real arithmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' However, decentralized optimization ge- netically requires real number calculations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', real decision variables and parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, a real number to integer transformation is needed to integrate SS into decentralized optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' We adopt the fixed-point number quantization [27] to map the real numbers onto the integer space and the fixed-point real-number set is defined by Qθ,γ,ζ≜ � −θγ, −θγ + θ−ζ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , θγ − 2θ−ζ, θγ − θ−ζ� (23) where θ ∈ N1+ denotes the basis, γ ∈ N denotes the magnitude, and ζ ∈ N denotes the resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, by defining a surjective mapping m(·) : R �→ Qθ,γ,ζ, a real number can be mapped to the closest point in Qθ,γ,ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To limit the quantization error, the mapping m(·) needs to satisfy |m(ϕ) − ϕ| ≤ θ−ζ, ∀ϕ ∈ [−θγ, θγ] (24) where the quantization error is restricted by the resolution within the range of Qθ,γ,ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To map the real-number set onto the integer set Z, we simply scale Qθ,γ,ζ by θζ as Zθ,γ,ζ = θζQθ,γ,ζ= � −θγ+ζ, −θγ+ζ+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , θγ+ζ−1 � (25) where Zθ,γ,ζ ⊆ Z denotes the fixed-point set in the integer field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Moreover, the SS requires the inputs to be within the field E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, we further map each element in z ∈ Zθ,γ,ζ onto E with the modular operation as g(z) = z mod e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (26) Note that z ∈ Zθ,γ,ζ can be any negative integer, and the modular operation in (26) will change the sign of a negative input, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', g(ˆz) = ˆz + e for ˆz < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' To address the negative integer operation, we introduce the partial inverse of g(·) as ψ(z) = � z − e if z ≥ e 2, z otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (27) Therefore, we can readily obtain z = ψ(g(z)), ∀z ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' SS-based Privacy-Preserving Algorithm 1) Shamir’s secret sharing scheme: Before introducing the privacy-preserving algorithm design, we first briefly intro- duce Shamir’s SS scheme [20] which merits an efficient and lightweight private information distribution structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Suppose a manager (secret holder) seeks to distribute a secret ω to specific agents and mandates the cooperation of at least d agents to retrieve the secret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In such needs, Shamir’s SS is grounded on the following idea of Lagrange interpolation for secret distribution and recovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Theorem 1 (Polynomial interpolation [28]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Let {(ς1, y1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , (ςd, yd)} ⊆ R2 be a set of points whose values of ςı are all distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Then there exists a unique polynomial Y of degree d − 1 that satisfies yı = Y(ςı), ∀ı = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ■ In SS-based schemes, the manager first constructs a random polynomial of degree d − 1 as y(z) = ω + a1z + · · · + ad−1zd−1 (28) where ω denotes an integer secret, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , ad−1 are random coefficients that are uniformly distributed in the field E ≜ [0, e), and e denotes a prime number that is larger than ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Secondly, the manager calculates the outputs of (28) with non-zero integer inputs, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=', setting τ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , n to retrieve (τ, y(τ)) where yΠ τ = y(τ) mod e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Then, the share yΠ τ is distributed to agent τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Lastly, at least d agents with shares are required to reconstruct the polynomial based on Theorem 1 and hence recover the secret ω by ω = d � τ=1 yΠ τ d � υ=0 υ̸=τ υ υ − τ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (29) 2) Proposed privacy-preserving algorithm: We next present the proposed two-layer decentralized privacy-preserving al- gorithm based on SS in a bus-level aggregation and control architecture, to achieve privacy preservation and scalability concurrently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In the distribution network layer, all DERs’ deci- sion variables are updated in parallel, and only masked data are sent from each bus to the servers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In the cloud computing layer, the servers calculate the aggregated messages and distribute them to the related buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The computing structure of the proposed privacy-preserving algorithm is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Cloud Computing Distribution Network ESS Solar PV Server Secure Data Flow Secure Data Flow Bus Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Two-layer privacy-preserving computing structure for DER control in distribution networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 田田Compute20066 Let C denote the set of clouds and c ≥ 2 denotes the total number of clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The ith bus generates a random polynomial of order d − 1 using (28) to obtain y(ℓ) i (z) = ω(ℓ) i + a(ℓ) i,1z + · · · + a(ℓ) i,d−1zd−1 (30) where 2 ≤ d ≤ c, ω(ℓ) i denotes the secret of bus i at the ℓth iteration, ℓ denotes the iteration number, and a(ℓ) i,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , a(ℓ) i,d−1 denote random coefficients that are uniformly distributed in the field E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Note that for a vector secret such as pi, we refer to an elementwise calculation of the vector using (30) by default.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' At the ℓth iteration, the uth cloud firstly generates a random integer α(ℓ) u , then it broadcasts α(ℓ) u to all the buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Subse- quently, the ith bus can calculate y(ℓ) i (α(ℓ) u ), ∀u = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , c using the received inputs based on (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Finally, the ith bus sends y(ℓ) i (α(ℓ) u ) back to the uth cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Note that the coupling term πi ˜P in (21) is a linear combination of all pi’s that requires the private generation/consumption details from the buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, a secure computation framework of πi ˜P is required to preserve the privacy of buses and DER owners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Suppose the clouds are aware of the network topology matrix Z which contains no private information of the buses or DERs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' In order to calculate the aggregated information πi ˜P for bus i, the uth cloud firstly multiplies the received outputs y1(α(ℓ) u ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , yn(α(ℓ) u ) utilizing the coefficients of πi to obtain {α(ℓ) u , πi(1)y(ℓ) 1 (α(ℓ) u ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , πi(n)y(ℓ) n (α(ℓ) u )} (31) Then, the uth cloud sums the outputs in (31) to obtain a new pair of input and output as ¯ Au,i = {α(ℓ) u , n � ˆı=1 πi(ˆı) y(ℓ) ˆı (α(ℓ) u )}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (32) Finally, the uth cloud calculates ¯ Au,i, ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , n and broadcasts the new input-output share ¯ Au,i to the ith bus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Therefore, after receiving new shares from in total c clouds servers, the ith bus now has access to ˜ Ai = � α(ℓ) ˆȷ , n � ˆı=1 πi(ˆı) y(ℓ) ˆı (α(ℓ) ˆȷ ), ∀ˆȷ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' , c � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' (33) Note that ˜ Ai contains in total c shares that can construct a new polynomial of the form ˜y(ℓ) i (z) = πi ˜P + ˜a(ℓ) i,1z + · · · + ˜a(ℓ) i,d−1zd−1 (34) whose constant term is exactly πi ˜P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' During this information exchange process, each bus only sends a single share to each server so that a single cloud server is incapable of reconstructing the secret based on the received shares, and herein cannot infer agents’ true decision variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The cloud servers only need to calculate aggregated messages using outputs of randomized polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The details of the proposed method are presented via Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' Algorithm 1 can achieve privacy preservation while main- taining exact solutions as non-privacy PGM-based methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The decision variables will be continuously updated till the convergence errors ϵ(ℓ) ν ≜ ∥˜p(ℓ) ν − ˜p(ℓ−1) ν ∥2 2 and ϵ(ℓ) σ ≜ ∥ˆp(ℓ) σ − ˆp(ℓ−1) σ ∥2 2 are smaller than the threshold ϵ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' The correctness of Algorithm 1 is presented via Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='IEEE 13 bus network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Decentralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='updates ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Cloud ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='Aggregation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='y(`) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='3 (↵(`) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='1 ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='ACnicbVDLSsNAFJ3UV42vqEs3o0VoNyXRgrorunFZwT6giWEynbRDJ5MwMxFK6NqNv+LGhSJu/QJ3/o3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='TNqC2HrhwOde7r0nSBiVyra/jMLS8srqWnHd3Nj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='c2t6xdvdaMk4FJk0cs1h0AiQJo5w0FVWMdBJBUBQw0g6GVxO/fU+EpDG/VaOEeBHqcxpSjJSWfOtw5J/emVnZJYxVxmUXsWSAfOdHqvhWya7aU8BF4uSkBHI0fOvT7cU4jQhXmCEpu46dKC9DQlHMyNh0U0kShIeoT7qachQR6WXTV8bwWCs9GMZCF1dwqv6eyFAk5SgKdGeE1EDOexPxP6+bqvDcyhPUkU ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='4ni0KUwZVDCe5wB4VBCs20gRhQfWtEA+QFjp9EwdgjP/8iJpnVSdWvXiplaqX+ZxFMEBOAJl4IAzUAfXoAGaAIMH8ARewKvxaDwb8b7rLVg5DP74A+Mj29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='9eJj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='y(`) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='3 (↵(`) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content='2 ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf'} +page_content=' 2 consecutive numbers smaller than N, having the same number of divisors. +Let them be n + 1, n + 2, . . . , n + k and write +d(n + 1) = d(n + 2) = · · · = d(n + k) = D. +We will firstly provide an estimate for D, in terms of k. For simplicity, let K = ⌊log2 k⌋. +As k ⩾ 2K, all residues modulo 2K are among n + 1, n + 2, . . . , n + k. Therefore, for all +1 ⩽ i ⩽ K − 1, there exists some 1 ⩽ ti ⩽ k such that n + ti ≡ 2i mod 2K. Consequently, +ν2(n + ti) = i, so (i + 1) divides d(n + ti) = D. +Hence, D is divisible by lcm(1, 2, . . . , K). Using lemma 1, we infer that +D ⩾ lcm(1, 2, . . . , K) ⩾ 2K−1. +Recall that K = ⌊log2 k⌋ ⩾ log2 k − 1, so D ⩾ k/4. +Next, we will bound ω((n + 1) · · ·(n + k)). Choose 1 ⩽ l ⩽ k arbitrarily. As n + l ⩽ N, +it follows that νp(n + l) ⩽ logp N ⩽ log2 N for all prime numbers p. Therefore, +D = d(n + l) = +� +p +(νp(n + l) + 1) ⩽ +� +p|n+l +(log2 N + 1) = (log2 N + 1)ω(n+l), +where p always represents a prime number. Thus, ω(n+l) ⩾ log D/ log(log2 N +1). A prime +number p can divide at most ⌈k/p⌉ ⩽ k/p + 1 numbers among n + 1, . . . , n + k, so +ω((n + 1) · · ·(n + k)) ⩾ +k +� +i=1 +ω(n + i) − +� +p⩽k +k +p, + +RUNS OF CONSECUTIVE INTEGERS HAVING THE SAME NUMBER OF DIVISORS +3 +the second sum being taken over all prime numbers p not exceeding k. Using lemma 2 and +the inequality we have previously deduced for ω(n + l), we may finally infer that +ω((n + 1) · · ·(n + k)) ⩾ +k · log D +log(log2 N + 1) − C1k log log k. +Further, we will write log(log2 N +1) ⩽ C2 log log N, for an absolute constant C2. Recall +that D ⩾ k/4, so we have +ω((n + 1) · · ·(n + k)) ⩾ k · log(k/4) +C2 log log N − C1k log log k. +(1) +Write the right-hand side of equation 1 as k · fN(k). Clearly, if ω(a) ⩾ b then a ⩾ b!. +Using this remark on equation 1, we get (n+1) · · · (n+k) ⩾ ⌈k ·fN(k)⌉!. Moreover, because +Nk ⩾ (n + 1) · · ·(n + k), by taking logarithms and applying the well-known inequality +log t! ⩾ t log t − t, we have +k log N ⩾ log ((n + 1) · · · (n + k)) ⩾ log (⌈k · fN(k)⌉!) +⩾ k · fN(k) · log(k · fN(k)) − k · fN(k). +(2) +Finally, dividing equation 2 by k we obtain +log N ⩾ fN(k) · log(k · fN(k)) − fN(k). +(3) +Define the interval IN = [exp (C1 · C2 · log log N) , ∞). Using standard arguments, one +may infer that fN is increasing on IN. +Let us suppose, for the sake of contradiction, that k > exp �C√log N log log N�, where +C > max(√C2, C1 · C2). Firstly, note that since log N > log log N and C > C1 · C2 then +exp �C√log N log log N� and k are in IN. Therefore, we have +fN(k) > fN +Ä +exp +Ä +C +� +log N · log log N +ää += C +C2 +  +log N +log log N − +log 4 +C2 log log N − C1 log +Ä +C +� +log N · log log N +ä +. +(4) +Viewing equation 4 as a function in N, it is evident that for large enough N (greater than +some N1) we also have fN(k) > e. In what follows, we will assume that N > N1. +As fN(k) > e, it follows from equation 3 that log N ⩾ fN(k) · log k. Further, applying +equation 4 and the estimate for k and isolating the term log N, we get +C log 4 +C2 +  +log N +log log N + C1C +� +log N log log N log +Ä +C +� +log N log log N +ä +⩾ +ÅC2 +C2 +− 1 +ã +log N. +Recall that C > √C2, so the latter inequality is absurd for large enough N (greater than some +N2), as the left-hand side is asymptotically much smaller than log N. Therefore, theorem 1 +holds for N > max(N1, N2) and C > max(√C2, C1 · C2). + +4 +VLAD-TITUS SP˘ATARU +3. Acknowledgments +The author thanks Alexandru Gica for his proofreading and valuable comments. +References +[EM52] P. Erd˝os and L. Mirsky, The distribution of values of the divisor function d(n), Pro- +ceedings of the London Mathematical Society no. 1 (1952), 257–271. +[Far09] B. Farhi, An identity involving the least common multiple of binomial coefficients and its +application, The American Mathematical Monthly 116 no. 9 (2009), 836–839. +[HB84] D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 no. 1 +(1984), 141–149. +[Pin97] C. G. Pinner, Repeated values of the divisor function, The Quarterly Journal of Mathe- +matics 48 no. 4 (1997), 499–502. +[Spi81] C. A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Mul- +tiplicative or Additive Function of n Divides a Polynomial Function of n, Ph.D. thesis, +University of Illinois at Urbana-Champaign, 1981. +V. T. Sp˘ataru, Bucharest, Romania +E-mail : vtspataru@gmail.com + diff --git a/F9E3T4oBgHgl3EQfWAol/content/tmp_files/load_file.txt b/F9E3T4oBgHgl3EQfWAol/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4caed6f050d51a8fda8124ff71eec872770d2027 --- /dev/null +++ b/F9E3T4oBgHgl3EQfWAol/content/tmp_files/load_file.txt @@ -0,0 +1,107 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf,len=106 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='04464v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='NT] 8 Jan 2023 Runs of Consecutive Integers Having the Same Number of Divisors By Vlad-Titus Sp˘ataru Abstract Our principal objective is to provide an upper bound for the length ℓN of the longest run of consecutive integers smaller than N which have the same number of divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' We prove that ℓN ⩽ exp �C√log N log log N� in an elementary manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Introduction The equation d(n) = d(n + k) has been studied extensively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' In 1981, Spiro [Spi81] showed that it has infinitely many solutions for k = 5040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Subsequently, Heath-Brown [HB84] extended Spiro’s work to deal with the case k = 1, and Pinner [Pin97] ultimately proved that, in fact, all values of k yield infinitely many solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' As d(n) = d(n+1) infinitely often, one naturally wonders how many consecutive integers can there be, having the same number of divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Erd˝os and Mirsky [EM52] conjectured that there are arbitrarily long such runs of integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' They were not able to provide any estimates for the length of such sequences: “A related problem consists in the estimation of the longest run of consecutive integers ⩽ x all of which have the same number of divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' This problem seems to be one of exceptional difficulty, and we [Erd˝os & Mirsky] have not been able to make any progress with it.” Our principal objective is to provide an upper bound for the length of the runs in question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' We shall obtain the following result, in an elementary manner: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Let ℓN denote the length of the longest run of consecutive integers smaller than N, having the same number of divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Then, ℓN ⩽ exp Ä C � log N · log log N ä , for an absolute constant C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Keywords: divisor counting function, consecutive equidivisible integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 2020 Mathematics Subject Classification: Primary: 11A25, 11N37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 1 2 VLAD-TITUS SP˘ATARU 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' The main result In proving theorem 1, we will make use of the following lemmas, the first being proven in an elementary manner in [Far09] and the second being Mertens’ bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Let n be a positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Then, lcm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , n + 1) ⩾ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' There exists an absolute constant C1 such that for any positive integer n ⩾ 2, � p⩽n 1 p ⩽ C1 · log log n, the sum being over all prime numbers p not exceeding n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Note that it suffices to prove that theorem 1 holds for large enough N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Assume that there exist k > 2 consecutive numbers smaller than N, having the same number of divisors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Let them be n + 1, n + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , n + k and write d(n + 1) = d(n + 2) = · · · = d(n + k) = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' We will firstly provide an estimate for D, in terms of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' For simplicity, let K = ⌊log2 k⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' As k ⩾ 2K, all residues modulo 2K are among n + 1, n + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , n + k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Therefore, for all 1 ⩽ i ⩽ K − 1, there exists some 1 ⩽ ti ⩽ k such that n + ti ≡ 2i mod 2K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Consequently, ν2(n + ti) = i, so (i + 1) divides d(n + ti) = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Hence, D is divisible by lcm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Using lemma 1, we infer that D ⩾ lcm(1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , K) ⩾ 2K−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Recall that K = ⌊log2 k⌋ ⩾ log2 k − 1, so D ⩾ k/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Next, we will bound ω((n + 1) · · ·(n + k)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Choose 1 ⩽ l ⩽ k arbitrarily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' As n + l ⩽ N, it follows that νp(n + l) ⩽ logp N ⩽ log2 N for all prime numbers p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Therefore, D = d(n + l) = � p (νp(n + l) + 1) ⩽ � p|n+l (log2 N + 1) = (log2 N + 1)ω(n+l), where p always represents a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Thus, ω(n+l) ⩾ log D/ log(log2 N +1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' A prime number p can divide at most ⌈k/p⌉ ⩽ k/p + 1 numbers among n + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' , n + k, so ω((n + 1) · · ·(n + k)) ⩾ k � i=1 ω(n + i) − � p⩽k k p, RUNS OF CONSECUTIVE INTEGERS HAVING THE SAME NUMBER OF DIVISORS 3 the second sum being taken over all prime numbers p not exceeding k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Using lemma 2 and the inequality we have previously deduced for ω(n + l), we may finally infer that ω((n + 1) · · ·(n + k)) ⩾ k · log D log(log2 N + 1) − C1k log log k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Further, we will write log(log2 N +1) ⩽ C2 log log N, for an absolute constant C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Recall that D ⩾ k/4, so we have ω((n + 1) · · ·(n + k)) ⩾ k · log(k/4) C2 log log N − C1k log log k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' (1) Write the right-hand side of equation 1 as k · fN(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Clearly, if ω(a) ⩾ b then a ⩾ b!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='. Using this remark on equation 1, we get (n+1) · · · (n+k) ⩾ ⌈k ·fN(k)⌉!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='. Moreover, because Nk ⩾ (n + 1) · · ·(n + k), by taking logarithms and applying the well-known inequality log t!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' ⩾ t log t − t, we have k log N ⩾ log ((n + 1) · · · (n + k)) ⩾ log (⌈k · fN(k)⌉!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=') ⩾ k · fN(k) · log(k · fN(k)) − k · fN(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' (2) Finally, dividing equation 2 by k we obtain log N ⩾ fN(k) · log(k · fN(k)) − fN(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' (3) Define the interval IN = [exp (C1 · C2 · log log N) , ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Using standard arguments, one may infer that fN is increasing on IN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Let us suppose, for the sake of contradiction, that k > exp �C√log N log log N�, where C > max(√C2, C1 · C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Firstly, note that since log N > log log N and C > C1 · C2 then exp �C√log N log log N� and k are in IN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Therefore, we have fN(k) > fN Ä exp Ä C � log N · log log N ää = C C2 log N log log N − log 4 C2 log log N − C1 log Ä C � log N · log log N ä .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' (4) Viewing equation 4 as a function in N, it is evident that for large enough N (greater than some N1) we also have fN(k) > e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' In what follows, we will assume that N > N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' As fN(k) > e, it follows from equation 3 that log N ⩾ fN(k) · log k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Further, applying equation 4 and the estimate for k and isolating the term log N, we get C log 4 C2 log N log log N + C1C � log N log log N log Ä C � log N log log N ä ⩾ ÅC2 C2 − 1 ã log N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Recall that C > √C2, so the latter inequality is absurd for large enough N (greater than some N2), as the left-hand side is asymptotically much smaller than log N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Therefore, theorem 1 holds for N > max(N1, N2) and C > max(√C2, C1 · C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 4 VLAD-TITUS SP˘ATARU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Acknowledgments The author thanks Alexandru Gica for his proofreading and valuable comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' References [EM52] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Erd˝os and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Mirsky, The distribution of values of the divisor function d(n), Pro- ceedings of the London Mathematical Society no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 1 (1952), 257–271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' [Far09] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Farhi, An identity involving the least common multiple of binomial coefficients and its application, The American Mathematical Monthly 116 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 9 (2009), 836–839.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' [HB84] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Heath-Brown, The divisor function at consecutive integers, Mathematika 31 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 1 (1984), 141–149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' [Pin97] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Pinner, Repeated values of the divisor function, The Quarterly Journal of Mathe- matics 48 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' 4 (1997), 499–502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' [Spi81] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Mul- tiplicative or Additive Function of n Divides a Polynomial Function of n, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' thesis, University of Illinois at Urbana-Champaign, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content=' Sp˘ataru, Bucharest, Romania E-mail : vtspataru@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} +page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E3T4oBgHgl3EQfWAol/content/2301.04464v1.pdf'} diff --git a/FNAyT4oBgHgl3EQf4_q8/vector_store/index.faiss b/FNAyT4oBgHgl3EQf4_q8/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..877e15b7e8d77fcda29561b3c856c000282d38dd --- /dev/null +++ b/FNAyT4oBgHgl3EQf4_q8/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:666a81a47f06234618ac90e3cddccdb82bda00ef08f3e82cc951762b5bb05d0d +size 5439533 diff --git a/GNE1T4oBgHgl3EQfFANy/content/tmp_files/2301.02897v1.pdf.txt b/GNE1T4oBgHgl3EQfFANy/content/tmp_files/2301.02897v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c601e1f088ec093d2c92dc12c7a01fa59ba31c2 --- /dev/null +++ b/GNE1T4oBgHgl3EQfFANy/content/tmp_files/2301.02897v1.pdf.txt @@ -0,0 +1,1197 @@ +1 + +Catalytic action of two-dimensional layered materials (WS2, and MoS2) on hydrogen +sorption properties of MgH2 +Satish Kumar Verma1, Mohammad Abu Shaz1, Thakur Prasad Yadav1,2* +1Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi- +221005, India. +2Department of Physics, Faculty of Science, University of Allahabad, Prayagraj-211002, +India. + +Abstract: +The present study reports the catalytic action of two-dimensional (2D) layered materials +(MoS2 and WS2) for improving the de/re-hydrogenation kinetics of MgH2. The MgH2 +start desorbing at 277 ºC with a hydrogen storage capacity of 5.95 wt% in the presence of +WS2 catalyst whereas onset desorption temperature of MgH2 catalyzed by MoS2 is 330 +ºC. The MgH2-WS2 absorbed hydrogen ~ 3.72 wt% within 1.3 minutes at 300 ºC under 13 +atm hydrogen pressure and it desorbed ~5.57 wt% within 20 minutes at 300 ºC under 1 +atm hydrogen pressure. We have performed 25 cycles of dehydrogenation (under 1 atm +hydrogen pressure at 300 ºC) and re-hydrogenation (under 13 atm hydrogen pressure at +300 °C) to ensure cyclic stability of catalyzed version of MgH2 where MgH2-WS2 shows +better cyclic stability than MgH2-MoS2. MgH2-WS2 also shows the lower reaction +activation energy ~117 kJ/mol as compare to other catalyzed and uncatalyzed samples. +On the other hand, these catalysts (WS2 and MoS2) do not have any impact on the +thermodynamical parameters that is change in enthalpy. + +Key words: 2D layered materials, De/re-hydrogenation kinetics, Activation energy, +MgH2. +*Corresponding author Email: yadavtp@gmail.com + + +2 + +1. Introduction +A crucial and promising area of research for onboard hydrogen applications is the +development of safe and efficient hydrogen storage. The solid-state approach is one of +the most appropriate, secure, and effective ways to store hydrogen among the several +methods that can be used, including gaseous, liquid, and solid-state storage [1,2]. Due to +its high hydrogen storage capacity (110 g/L volumetric and 7.6 wt% gravimetric), low +cost, light weight, and large abundance (in the form of Mg) in earth crust (8th most) and +seawater (3rd most), MgH2 is a leading choice for hydrogen storage in the solid-state +mode [3–6]. According to the United States Department of Energy (US DOE) technical +targets for hydrogen storage systems [7], MgH2 has certain advantages that make it a +viable option. The high dehydrogenation temperature (above 400 ºC), slow kinetics +(hydrogen de/re-hydrogenation kinetics 0.4 kg-H2/min), and high thermodynamic +properties (high reaction enthalpy 74 kJ/mol) of MgH2 prevent it from being a suitable +material for onboard applications even with these advantages [8–10]. In recent years, the +creation of suitable catalyst(s), alloys, composite materials with complicated hydrides, +and scaffolding have all been used as feasible methods to improve the hydrogen storage +performance of MgH2 [11,12]. The use of various types of catalysts and additives to +enhance the performance of Mg/MgH2 has been the subject of several studies by various +research organizations [13–17]. +Another application for the 2D materials is as a catalyst for improving the hydrogen +characteristics of MgH2 [18–22]. Due to its enormous surface area, ballistic conduction, +thermal conductivity, mechanical stability, and light weight, graphene, which has a 2D +planer structure with sp2 carbon atoms arranged in a hexagonal framework, has attracted +a lot of attention as a catalyst and as a template material for hydrogen storage application +in MgH2 [23,24]. MgH2's de/rehydrogenation kinetics exhibit effective catalytic behavior +in the graphene layer, which also inhibits MgH2's agglomeration and grain growth +[3,5,25]. Liu et al., for instance, have created MgH2-5% Gr nanosheets [26]. They have +demonstrated that graphene nanosheets offer a significant hydrogen diffusion pathway +and prevent MgH2 from aggregating. According to Huang et al., [27] report's MgH2 +nanoparticles supported by graphene exhibit remarkable hydrogen sorption kinetics and + +3 + +cyclic stability. Due to the strong interaction between graphene and MgH2 nanoparticles +and the prevention of nanoparticle agglomeration, the MgH2 nanoparticles demonstrated +excellent hydrogen storage performance. Additionally, grapheme prevents the +aggregation of nanoparticles during the rehydrogenation of MgH2, according to a +theoretical study using molecular dynamics simulation [28]. Rough studies are still +required to determine the impact of graphene and other 2D layered materials on MgH2, +even though some prior studies have shown the remarkable catalytic/co-catalytic and +agglomeration blocking properties of Gr on MgH2. +We have examined a comparison between WS2 and MoS2 as a catalyst for enhancing +hydrogen sorption properties of MgH2. WS2 and MoS2 are suitable alternatives to +graphene for the catalytic action on MgH2 due to their high conductivity (metallic +nature), thermal stability, and strong catalytic behavior [29,30]. Tungsten (W) and +Molybdenum (Mo) are sandwiched between two Sulphur layers with weak Van der +Waals interactions in the family of layered transition-metal dichalcogenides (TMDs) +materials that include WS2 and MoS2. The re/de-hydrogenation kinetics, and catalytic +behavior of WS2 and MoS2 on MgH2 has been investigated in details. +2. Experimental section +2.1. Synthesis of a few layered WS2 +The bulk tungsten sulfide (WS2) (99.80 %) powder was procured from the Alfa Aesar for +the present investigation. For the preparation of few layered WS2, WS2 powder was +dispersed in de-ionized water and sonicated it for 74 hours using ultrasonicator at 20 kHz +frequency. The sonicated sample was then dried at 50 °C under a dynamic vacuum of +order 10-2 torr to form the few layered WS2 powder. This preparation method can also be +understood by the schematic given in Fig. 1. + +4 + + + + + + + + + + + + + + +Fig.1: Schematic diagram for the synthesis of a few layers WS2. + +2.2. Synthesis of few-layer MoS2 +The Otto Chemica bulk molybdenum disulfide (MoS2) (99 %) powder was used for the +present investigation. MoS2 powder was dispersed in de-ionized water and sonicate it for +74 hours using ultrasonicator at 20 kHz frequency to obtain the few-layered MoS2. The +sonicated sample was then dried at 50 °C under dynamic vacuum of order 10-2 torr to +form the few layered MoS2 powder. Fig. 2, shows the schematic diagram for preparation +of few-layered MoS2. + + + + + + + + + + + +BulkMoS2 +BulkMoS, +FewlayeredMoS2 +DoublelayeredMoS2 +UltrasonicationofbulkMoS,BulkWS2 +BulkWs, +FewlayeredwS2 +DoublelayeredWS2 +Ultrasonicationof bulkWS25 + + +Fig.2: Schematic diagram for the synthesis of a few layers MoS2. + +2.3. Synthesis of MgH2 catalyzed by WS2, and MoS2 +The pure MgH2 was procured from Fujifilm (Japan) (99.9%) for the present investigation. +Mechanical ball-milling of MgH2 with graphene at 180 rpm for 24 hours with a ball-to- +powder ratio of 50:1 (by weight) using a planetary ball-miller (Retsch PM 400) was used +to synthesize MgH2 catalyzed by WS2 (MgH2-WS2). To explore the optimum catalyst +concentration for hydrogen sorption kinetics of Mg/MgH2, we have synthesized a set of +different catalyst concentrations (5, 10, 12 wt%) to catalyze MgH2. For hydrogen +sorption in Mg/MgH2, 10 wt% catalysts were found to be optimal (in terms of desorption +temperature and hydrogen storage capacity). The ball-miller vials were filled with 5 atm +H2 pressure to compensate for the loss of hydrogen from MgH2 during milling. All the +loading and unloading of the samples was done inside the N2-filled glove box +(MBRAUM MB10 compact) with O2 and H2O levels < 1 ppm. The synthesis of MgH2 +catalyzed by MoS2 (MgH2-MoS2) was done using the same synthesis route as MgH2- +WS2. +2.4. Characterization techniques +The structural characterization of prepared samples was carried out by XRD technique +using Empyrean PANalytical X-ray diffractometer equipped with 2D detector with a Cu +Kα beam (λ = 1.5415 Å) operated at 40 kV and 40 mA. The microstructural and selected +area electron diffraction (SAED) analysis of as-prepared samples was carried out by +TEM (Technai-20G2) operating at the accelerating voltage of 200 kV. Perkin Elmer +(Spectrum 100) spectrometer in transmission mode with attenuated total reflectance +(ATR) sampling mode (wavenumber range 500–4000 cm-1) was used to carry out FTIR +spectroscopy. The Raman spectra have been acquired at -60 ºC using Horiba-Jobin-Yvon +LABRAM-HR800 spectrometer with diode LASER (532 nm). The desired thickness and +surface topography of the prepared samples were examined by using solver next AFM in +non-contact mode. The characterized samples then proceed for the hydrogen desorption +and absorption using automated two-channel volumetric sieverts type apparatus. The +temperature programmed desorption (TPD) was carried out with a heating rate of 5 + oC- + +6 + +min-1. The activation energy (Ea) study of prepared catalyzed samples has been done by +using DSC (Perkin Elmer DSC 8000) with a heating rate of 15 +oC/min, 18 +oC/min, 21 +oC/min, and 24 +oC/min under nitrogen atmosphere (20 ml/min). + +3. Results and discussion +3.1. Structural, microstructural, and spectroscopic characterization analysis +The structural characteristics of as-prepared samples have been examined using the XRD +characterization. Fig. 3(a) shows the XRD pattern of pristine MgH2, which matches well +with the tetragonal MgH2 with space group P42/mnm (136) and a=b= 4.516 Å, c = 3.020 +Å (JCPDS no. 740934). Fig. 3(b) shows the XRD pattern of MoS2, which matches well +with the hexagonal structure of MoS2 with space group P63/mmc(194) and a=b= 3.1602 +Å, c = 12.294 Å (Joint Committee on Powder Diffraction Standards (JCPDS) no. +651951). The XRD pattern of as-prepared WS2 is shown in Fig. 3(c), that matches well +with the hexagonal structure of WS2 with space group P63/mmc(194) and a=b= 3.1532 +Å, c = 12.323 Å (JCPDS no. 841398). The usual diffraction pattern of MgH2-MoS2, and +MgH2-WS2 are shown in Fig. 3(d-e), respectively, where besides the tetragonal phase of +MgH2, some peaks of WS2 and MoS2 are either suppressed or masked by the peaks of +MgH2. The diffraction peaks of WS2 and MoS2 are identified and labeled in the Fig. 3(d- +e), respectively. +The different bands position, shapes, and relative intensities of Raman spectra give us +essential information about the materials and stacking of layers, i.e., Raman spectroscopy +can determine the layer thickness at the atomic level. The Raman spectra of as-prepared +WS2, and MoS2 have shown in Fig. 4. In the case of MoS2, the two Raman modes are +appeared at ~ 345 cm-1 and ~ 370 cm-1 corresponds to E12g and A1g modes of vibrations +(labeled in Fig. 4(b)). The indicated modes of MoS2 have frequency difference of ~ 25 +cm-1, that means the MoS2 as layered material with few layers of stacking (3-5 layers) +[31,32]. The FWHM of A1g mode is ~ 7 cm-1, which can also be referred to stacking a +few layers of MoS2 [33]. The Raman shifts at ~316 cm-1 and 384 cm-1 (shown in Fig. +4(a)) corresponds to the presence of E12g and A1g modes respectively in WS2 sample. The + +7 + +intensity ratio of E12g and A1g modes was estimated E12g/A1g i.e. = 1.26, which is higher +than the intensity ratio of bulk WS2 (E12g/A1g = 0.47) and lower than the monolayer WS2 +(E12g/A1g = 2.2) [34,35]. This calculated intensity ratio (E12g/A1g = 1.26) is compatible +with the range of 2-3 layers of WS2. + + + + + + + + + + + + + + + +Fig. 3: XRD patterns of (a) Pristine MgH2, (b) MoS2, (c) WS2, (d) MgH2-MoS2, and (e) +MgH2-WS2. + + +o-Parafilm, +*-MgH2, +t-Ws2, u -Mos2 +(e)MgH2-Ws +52 +T +* +* +* +* +(d) mgh2-Mos2 +* +Intensity (wt%) +(c) WS 2 +(002) +-(004) + (100) +(101) +(900) +(105) +(110) +(112) +-(114) +(203) +(116) +8 +tt +T +T +.1 +1 +T +(b)Mos. +(00L)2 +2 +(002) +U +C(105) +(102) +(103) +C(110) +(112) +c(108) +(203) +U +(a) Pristine +MgH2 +* +(200) +(110) +(220) +*(002) +(310) +(112) +(301) +(202) +(211) +* +8 +8 +* +* +¥ +10 +20 +30 +40 +50 +60 +70 +80 +2e(degree8 + + + + + + + + + + + +Fig. 4: Raman spectra of (a) WS2 and (b) MoS2. + + + +The information about stacking layers in 2D layered materials (like WS2 and +MoS2) can also be verified by AFM analysis. The surface topography and height profile +of prepared MoS2, and WS2 were examined along the blue dotted line as shown in Fig. +S1(a-b) (given in supporting information). The layered surface morphology along with +height profile (shown in Fig. S1(a-a1)) shown the average thickness of MoS2 is ~1.3 nm, +that indicates the presence of ~2 layers of stacking in the MoS2 sample [36,37]. The ~7-8 +layers of stacking were present in the case of WS2 (shown in Fig. S1(b-b1)) with a +monolayer height of ~0.7 nm [38]. + + + + +(b) Raman spectra of MoS2 +(370) +A1g +(a) Raman spectra of WS2 +(345) +2g +Intensity (a.u.) +(384) +2g +A1 +(316) +175200225250275300325 +350 +375400 +425 +450475500 +Raman shift (cm9 + +. + +3.2 De/Re-hydrogenation kinetics of catalyzed MgH2 +To identify the optimal percentage of catalyst in MgH2 with optimum temperature range +where material performed promptly, we have characterized as-prepared samples for the +temperature programmed desorption (TPD) analysis. The TPD curves of MgH2-MoS2 +have seen in Fig. S2 (given in supporting information). The MgH2-5%MoS2, MgH2- +10%MoS2, and MgH2-12%MoS2, starts releasing hydrogen at ~ 357 °C, ~ 330 °C, ~ 302 +°C with ~ 6.41 wt%, ~ 6.00 wt%, ~ 4.88 wt% of hydrogen storage capacity respectively. +On the other hand, MgH2-5%WS2, MgH2-10%WS2, and MgH2-12%WS2, starts releasing +hydrogen at ~ 339 °C, ~ 277 °C, ~ 258 °C with ~ 6.54 wt%, ~ 5.95 wt%, ~ 5.14 wt% of +hydrogen storage capacity respectively (shown in Fig. S3 in supporting information). +Based on TPD analysis, the optimum catalyst concentration for catalyzing MgH2 is 10 +wt% for all catalysts. +After getting information about the optimum catalyst for MgH2, we compared the TPD +analysis of all optimum catalyzed samples with pristine MgH2, as shown in Fig. 5. The +TPD of pristine MgH2 (shown in Fig. 5(a)) was then carried out to compare hydrogen +storage properties with catalyzed samples. The pristine MgH2 has an onset desorption +temperature of 376 +oC with a total release of ~7.45 wt% storage capacity. The onset +desorption temperature of MgH2-MoS2 (MgH2-10%MoS2) is ~ 330 +oC, and it desorbs ~ +6.00 wt% hydrogen while the desorption gets completed at 396 +oC (Fig. 5(b)). In the case +of MgH2-WS2 (MgH2-10%WS2), it starts desorbing hydrogen at ~ 277 + oC with a storage +capacity of 5.95 wt% (Fig. 5(c)). + +10 + + + + + + + + + + + + + +Fig. 5: Comparative TPD analysis of (a) Pristine MgH2, (b) MgH2-MoS2 and (c) MgH2- +WS2. + +The desorbed samples then proceed for re/de-hydrogenation to check the cyclic stability +and reversibility of catalyzed and pristine MgH2. The re-hydrogenation kinetics was +carried out at 300 +oC under 13 atm hydrogen pressures, as shown in Fig. 6. It can be seen, +the pristine MgH2 absorbed ~1.16 wt% hydrogen in 1.2 minutes whereas MgH2-MoS2, +MgH2-WS2 absorbed 4.60 wt%, 3.72 wt%, hydrogen, respectively, under similar +conditions of temperature and pressure. + + + + +0 +Hydrogen desorbed (wt%) +(a) +(b) +(c) +(a)PristineMgH +5 +(b) MgH,-Mos, +6 +(c) MgH,-WS, +7 +8 +200 +225 +250 +275 +300 +325 +350 +375 +400 +425 +Temperature (C)11 + + +Fig. 6: Rehydrogenation kinetics curves at 300 °C under 13 atm H2 pressure of (a) b) +MgH2-WS2, (c) MgH2-MoS2 and (e) Pristine MgH2. + +The rehydrogenated samples were then dehydrogenated at 300 +oC under 1 atm +hydrogen pressure. It can be seen clearly in Fig. 7, that the MgH2-WS2 sample releases +5.57 wt% hydrogen within 20 minutes while MgH2-MoS2 and pristine MgH2 releasees +2.25 wt%, and 0.23 wt% of hydrogen under similar temperature and pressure conditions, +which is 3.32 wt%, and 4.48 wt% more than pristine MgH2, MgH2-MoS2, respectively. +Based on the above re/de-hydrogenation kinetics study, it is clearly shown that WS2 +works as a superior catalyst to MoS2 for catalyzing MgH2. Therefore, in present study +WS2 is a prominent catalyst to catalyze MgH2. + +(b) +5. +Hydrogen absorbed (wt%) +(a) +(c) +- (a) MgH,-WS + (b) MgH,-Mos + (c) Pristine MgH, +0 +0 +2 +4 +6 +8 +10 +12 +14 +16 +18 +20 +22 +24 +Time (Min.)12 + + + + + + + + + + + + + + + +Fig. 7: Dehydrogenation kinetics curves at 300 °C under 1 atm H2 pressure of (a) MgH2- +WS2, (b) MgH2-MoS2, and (c) Pristine MgH2. + +3.3. Study of kinetics: Estimation of activation energy +The DSC was carried out to determine the hydrogen desorption activation energy barrier +to convert MgH2 into Mg. The DSC profile of MgH2-MoS2, MgH2-WS2, are shown in +Figs. 8-9. In the case of MgH2-WS2, the peak desorption temperature found from DSC is +~ 380 +oC, while the onset desorption temperature found from TPD is ~ 277 +oC. There is a +difference in desorption temperature in TPD (Fig. 5(c)) and DSC (Fig. 9(a)) curves due to +the TPD being performed under vacuum with a temperature ramping rate of 5 + oC/min +while DSC was performed under N2 atmosphere with a temperature ramping rate of 15 + +oC/min. For calculating the desorption activation energy, we have performed DSC with a +set of the various rate of heating (15, 18, 21, 24 +oC/min) and plotted the Kissinger curve +by using the Kissinger equation[39] as given: + +(a) Pristine MgH, +- (b) MgH,-MoS, +Hydrogen desorbed (wt%) +5 + (c) MgH,-WS +(a) +(b) +2 +(c) +0 +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60 +Time (min.)13 + + + + + + + +(1) +Where β, Tp, and Ea are the heating rate, corresponding peak desorption temperature, and +activation energy, respectively. The slope of Kissinger plot (ln(β/Tp +2) vs. 1000/Tp +2 plot) +(Figs. 8-9) is used to calculate the desorption activation energy. The calculated activation +energy for MgH2-MoS2, and MgH2-WS2 is 117.09 kJ/mol (± 1.60 kJ/mol), and 104.00 +kJ/mol (± 2.74 kJ/mol) respectively. This activation energy indicates that ~104 kJ/mol +energy is required to overcome the barrier to convert MgH2 into Mg in the presence of a +WS2 catalyst. These calculated activation energies are significantly lower than the +activation energy of pristine MgH2 [3,40]. +Table 1: Table for plateau pressures at corresponding temperatures, change in enthalpy, +and activation energy of MgH2-MoS2, and MgH2-WS2. + + + +S.No. +Sample +name +Plateaus +pressure + (atm) +Temperature +( +ºC) +Change +in +enthalpy + (kJ/mol) +Activation +energy +(kJ/mol) +1. +MgH2- +MoS2 +1.03 +272.62 + + -78.33 + +117.09 +2.03 +292.28 +3.77 +313.28 +2. +MgH2- +WS2 +1.52 +281.26 + + -77.44 + +104.66 +2.92 +300.60 +3.45 +316.29 + +14 + + + + +Fig. 8: (i) DSC profile for desorption of MgH2-MoS2 with the heating rate (a) 15 ºC/min, +(b) 18 ºC/min, (c) 21 ºC/min, (d) 24 ºC/min, and (ii) corresponding Kissinger plot for +evaluating the desorption activation energy of MgH2-MoS2. + + +DSCprofilefor MgH2-MoS2 +-9.8 +Kissinger plot for MgHb-MoS2 +Linear fit +(d) 24°C/min +-9.9 +(a.u.) +-10.0 +(c)21cC/min +Heatflow( +P +-10.1 +Endo up +(b) 18 C/min +Eguation +y=a+b +-10.2 +Adj. R-Squ +0.99937 +Value +Standard Er +-10.3 +In(beta/Tp2) Irtercept +11.212 +0.30766 +(a) 15 C/min +In(beta/Tp2) Slope +-14.083 +0.20379 +1.4881.4941.5001.5061.5121.5181.5241.530 +250 +275 +300 +325 +350 +375 +400 +425 +450 +1000/T,(K1) +Temperature (cC)DSCprofileforMgH2-WS2 +Kissinger plot for MgH2-WS2 +-9.8 +(d) 24 C/min +Linear fit +-9.9 +Heat flow (a.u.) +(c) 21 °C/min +-10.0 +[β/T, +(b) 18 °C/min +-10.1 +Endo +Equation +=a+ +Adj. R-Sq +0.9979 +-10.2 +Value + Standard +(a) 15 °C/min +In(beta/Tp Interce +9.3313 +0.50735 +In(beta/Tp Slope +-12.58 +0.33004 +-10.3 +1.520 +1.525 +1.530 +1.535 +1.540 +1.545 +1.550 +1.555 +1000/T(K +320330340350360370380390400410420430440450 +Temperature (C)15 + +Fig. 9: (i) DSC profile for desorption of MgH2-WS2 with the heating rate (a) 15 ºC/min, +(b) 18 ºC/min, (c) 21 ºC/min, (d) 24 ºC/min, and (ii) corresponding Kissinger plot for +evaluating the desorption activation energy of MgH2-WS2. + +3.4. Study of thermodynamics +After the kinetics and reversibility study, we have proceeded with the thermodynamic +analysis of catalyzed MgH2 for comparing the change in enthalpy and entropy of the +system using well known Van’t Hoff equation [41]. + + + +lnP = (ΔH/RT) - (ΔS/R) + + +(2) +Where P, ∆H, R, T, and ∆S are the pressure, change in enthalpy, gas constant, absolute +temperature, and change in entropy, respectively. The PCI isotherms (Figs. 10(i)-11(i) +and Van’t Hoff plots (Figs. 10(ii)-11(ii)) were used for the calculation of change in +enthalpy of MgH2-MoS2 and MgH2-WS2, respectively. The calculated change in +desorption enthalpy was found to be 78.33 kJ/mol (± 1.40 kJ/mol), and 77.44 kJ/mol (± +1.13 kJ/mol), for MgH2-MoS2 and MgH2-WS2 respectively. It is clear from the above +estimation of change in enthalpy, that there is no significant enthalpy change in the +presence of a catalyst. Thus MoS2, WS2 have not positively impacted the thermodynamic +barrier of the MgH2. The plateau pressure at corresponding temperatures, change in +enthalpy, and activation energy has been tabulated in Table 1. + +(i) PCl desorption for MgH2-MoS2 +1.4. +(ii) Vant's Hoff plot for MgH2-MoS2 +6. +- Linear fit +1.2 +5. +1.0 +(atm) +320°C +4 +0.8. +Pressure ( +P +三 0.6 +3. +300°C +0.4 +2 +Equation +y=a+b* +0.2- +Adj. R-Squar0.99936 +280 °C +Value +Standard Err +InP +Intercept +17.3878 +0.298 +0.0 +InP +Slope +9.4207 +0.16804 +0 ++ +1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 +0 +1 +2 +3 +4 +5 +1000/T (K +Hydropgen capacity (wt%)16 + +Fig. 10: (i) PCI desorption plots for MgH2-MoS2 at different temperatures and (ii) +corresponding Van't Hoff plot for calculating the change in enthalpy + +Fig. 11: (i) PCI desorption plots for MgH2-WS2 at different temperatures and (ii) +corresponding Van't Hoff plot for calculating the change in enthalpy +3.5 Cyclic stability of catalyzed MgH2 +The WS2 (optimum catalyst) plays a significant role in improving the kinetics of MgH2. +The cyclic stability is an essential characteristic of the hydride material (MgH2) besides +kinetic and thermodynamics, making it a worthy hydrogen storage material. Therefore, it +is crucial to look at the cyclic stability of the catalyzed MgH2 samples. We have +performed 25 cycles of dehydrogenation (under 1 atm hydrogen pressure at 300 °C) and +re-hydrogenation (under 13 atm hydrogen pressure at 300 °C) to ensure cyclic stability of +catalyzed MgH2. The cyclic stability curve of MgH2-MoS2 and MgH2-WS2 are shown in +Fig. 12. From Fig. 12(a) MgH2-MoS2 shows the ~ 0.42 wt% (from 5.77 wt% to 5.35 +wt%) degradation in hydrogen storage capacity during rehydrogenation and ~ 0.38 wt% +(from 5.69 wt% to 5.31 wt%) in dehydrogenation. The MgH2-WS2 has the loss of +hydrogen storage capacity ~ 0.3 wt% (from 5.80 wt% to 5.50 wt%) during re- +hydrogenation and ~ 0.36 wt% (from 5.76 wt% to 5.40 wt%) during dehydrogenation. +Thus, MgH2-WS2 has more substantial cyclic stability than MgH2-MoS2 under similar + +8 +(i) PCI desorption for MgH2-WS2 +1.4 +(ii) Vant's Hoff plot for MgH2-WS2 +1.2 +Linear fit +6 +(atm) +1.0 +5 +Pressure +320 °C +InP +0.8 +300°℃ +3 +0.6 +Equation +y=a+ +Adj. R-Squ0.9995 +2 +280°C +Value +Standard E +0.4 . +InP +Intercep +17.038 +0.23617 +Inp +Slope +-9.314 +0.1362 +0.2 +1.68 +1.70 +1.72 +1.74 +1.76 +1.78 +0 +1.80 +1000/T (K-1) +0 +1 +2 +3 +4 +5 +6 +Hydrogen capacity (wt%)17 + +temperature and pressure conditions. The comparative study for hydrogen storage +properties of different recently used 2D materials as the catalyst for MgH2 is explored in +Table 2. + +Fig. 12: Cyclic stability of (a) MgH2-MoS2 and (b) MgH2-WS2. + +Table 2: Table for different 2D materials as the catalyst for hydrogen storage application. +S. +No. +Material +2D- based +catalyst +Hydrogen +storage +capacity +(wt%) +Onset +dehydrogen +ation +temperature +(ºC) + +Activation +energy +(kJ/mol) +Change +in +enthalpy +(kJ/mol) + +Ref. +1. +Mg6C2N +C2N +6.79 +-- +-- +-- +[20] +2. +MgH2-LiAlH4- +Ti3C2 +Ti3C2 +6.50 +63.0 +128.4 +74.3 +[22] +3. +MgH2- +Nb4C3Tx +Nb4C3Tx +3.50 +150.6 +81.2 +-- +[21] +4. +1T’-MoS2 + +3.90 +-- +-- +-- +[42] +5. +MgH2-Gr +Graphene +5.80 +300.0 +-- +-- +[43] + +Cyclic stability for MgH,-MoS +capacity (wt%) +6 +00300 +=0=0-0: +5 +-I- Rehydrogenation +- Dehydrogenation +4 +3 +Degradation during rehydrogenation=0.42 wt% +Degradationduring dehydrogenation=0.38 wt% +Hydrogen : +2 +1 +0 +6 +8 +10 +16 +18 +222426 +No.of cycleCyclic stability for MgH,-WS +6 +5. + Rehydrogenation +4. ++- Dehydrogenation +3 +Degradation during rehydrogenation=0.30 wt% +Degradation during dehydrogenation=0.36 wt% +Hydrogen : +2 +0 +10 +12 +16 +18.20 +222426 +No. of cycle18 + +6. +MgH2- +TiH2@Gr +Graphene +6.77 +204.0 +88.89 +74.54 +[3] +MgH2- +TiO2@Gr +Graphene +5.98 +240.0 +98.00 +76.87 +MgH2-Ti@Gr +Graphene +5.70 +235.0 +103.03 +75.65 +7. +MgH2-Gr +Graphene +6.14 +300.0 +134.95 +77.90 +[13] +8. +MgH2-VS2 +VS2 +6.51 +242.0 +98.10 +76.83 +9. +MgH2-WS2 +WS2 +5.95 +277.0 +104.66 +77.44 +Pres +ent +stud +y +10. +MgH2-MoS2 +MoS2 +6.00 +330.0 +117.09 +78.33 +Pres +ent +stud +y + +4. Conclusions + + The catalytic effect of MoS2, and WS2 on MgH2 was evaluated and compared. +Based on the de/re-hydrogenation study, it is found that WS2 works as an optimum +catalyst over MoS2 for MgH2. The MgH2-WS2 has an onset de-hydrogenation ~277 oC +with a hydrogen storage capacity of 5.95 wt%. The MgH2-WS2 absorbed hydrogen ~ 3.72 +wt% within 1.3 minutes at 300 oC under 13 atm hydrogen pressure and it desorbed ~5.57 +wt% within 20 minutes at 300 oC under 1 atm hydrogen pressure. The MgH2-WS2 shows +a minimum degradation of hydrogen storage capacity ~ 0.3 wt% upto 25 cycles which +shows a better cyclic stability than cyclic stability of MgH2-MoS2 (~ 0.4 wt% loss in +hydrogen storage capacity). MgH2-WS2 also shows the lower reaction activation energy +~117 kJ/mol as compare to other catalyzed and uncatalyzed samples. On the other hand, +these catalysts (WS2 and MoS2) do not have any impact on the thermodynamical +parameters that is change in enthalpy. This study opens a new era to further applications +of 2D layered materials for various applications like template materials. + +19 + +Acknowledgments +We gratefully accept funding assistance from the Department of Science and Technology +(DST), New Delhi, India. The Council of Scientific and Industrial Research (CSIR), New +Delhi, India, has awarded the author (S.K.V.) a CSIR-Senior Research Fellowship +(Award No. 09/013(0872)/2019-EMR-I), for which the author is grateful. +Conflict of Interest Declaration +There are no conflicts of interest among the authors. + + +References +[1] +TP Yadav, A Kumar, SK Verma, NK Mukhopadhyay, High-Entropy Alloys for +Solid Hydrogen Storage: Potentials and Prospects, Transactions of the Indian +National Academy of Engineering, 7 (2022) 147–156. +https://doi.org/10.1007/s41403-021-00316-w. +[2] +A. Kumar, T.P. Yadav, N. K. Mukhopadhyay, Notable hydrogen storage in Ti–Zr– +V–Cr–Ni high entropy alloy, International Journal of Hydrogen Energy 47 (2022) +22893-22900. https://doi.org/10.1016/j.ijhydene.2022.05.107 +[3] +Verma SK, Bhatnagar A, Shukla V, Soni PK, Pandey AP, Yadav TP, et al. +Multiple improvements of hydrogen sorption and their mechanism for MgH2 +catalyzed through TiH2@Gr. Int J Hydrogen Energy 2020;45:19516–30. +https://doi.org/10.1016/j.ijhydene.2020.05.031. +[4] +SK Pandey, SK Verma, A Bhatnagar, TP Yadav, Catalytic characteristics of +titanium‐(IV)‐isopropoxide (TTIP) on de/re‐hydrogenation of wet ball‐milled +MgH2/Mg, International Journal of Energy Research 46 (12) (2022) 17602-17615. +https://doi.org/10.1002/er.8427. +[5] +Shukla V, Bhatnagar A, Verma SK, Pandey AP, Vishwakarma AK, Srivastava P, +et al. Simultaneous improvement of kinetics and thermodynamics based on SrF2 +and SrF2@Gr additives on hydrogen sorption in MgH2. Mater Adv 2021;2:4277– +90. https://doi.org/10.1039/D1MA00012H. +[6] +Srivastava ON, Yadav TP, Shahi RR, Pandey SK, Shaz MA, Bhatnagar A. + +20 + +Hydrogen energy in India: Storage to application. Proc Indian Natl Sci Acad +2015;81:915–37. https://doi.org/10.16943/ptinsa/2015/v81i4/48303. +[7] +US DoE. Target Explanation Document: Onboard Hydrogen Storage for Light- +Duty Fuel Cell Vehicles. US Drive 2017:1–29. +[8] +Bhatnagar A, Pandey SK, Vishwakarma AK, Singh S, Shukla V, Soni PK, et al. +Fe3O4 @graphene as a superior catalyst for hydrogen de/absorption from/in MgH 2 +/Mg. J Mater Chem A 2016;4:14761–72. https://doi.org/10.1039/c6ta05998h. +[9] +Sadhasivam T, Kim H-T, Jung S, Roh S-H, Park J-H, Jung H-Y. Dimensional +effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. +Renew Sustain Energy Rev 2017;72:523–34. +https://doi.org/https://doi.org/10.1016/j.rser.2017.01.107. +[10] Yartys VA, Lototskyy M V, Akiba E, Albert R, Antonov VE, Ares JR, et al. +Magnesium based materials for hydrogen based energy storage: Past, present and +future. Int J Hydrogen Energy 2019;44:7809–59. +https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.12.212. +[11] SK Pandey, A Bhatnagar, SS Mishra, TP Yadav, MA Shaz, ON Srivastava, +Curious Catalytic Characteristics of Al–Cu–Fe Quasicrystal for +e/Rehydrogenation of MgH2, The Journal of Physical Chemistry C 121 (45) (2017) +24936-24944. https://doi.org/10.1021/acs.jpcc.7b07336 +[12] V Shukla, TP Yadav, Notable catalytic activity of CuO nanoparticles derived from +metal‐organic frameworks for improving the hydrogen sorption properties of +MgH2, International Journal of Energy Research, 46 (9) (2022) 12804-12819. +https://doi.org/10.1002/er.8050. +[13] Verma SK, Shaz MA, Yadav TP. Enhanced hydrogen absorption and desorption +properties of MgH2 with graphene and vanadium disulfide. Int J Hydrogen Energy +2022. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.12.269. +[14] Patelli N, Calizzi M, Migliori A, Morandi V, Pasquini L. Hydrogen Desorption +Below 150 °C in MgH2–TiH2 Composite Nanoparticles: Equilibrium and Kinetic +Properties. J Phys Chem C 2017;121:11166–77. +https://doi.org/10.1021/acs.jpcc.7b03169. +[15] Korablov D, Besenbacher F, Jensen TR. Kinetics and thermodynamics of + +21 + +hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb or V) composites +synthesized by reactive ball milling in hydrogen. Int J Hydrogen Energy +2018;43:16804–14. https://doi.org/10.1016/j.ijhydene.2018.05.091. +[16] Bhatnagar A, Johnson JK, Shaz MA, Srivastava ON. TiH 2 as a Dynamic Additive +for Improving the De/Rehydrogenation Properties of MgH 2 : A Combined +Experimental and Theoretical Mechanistic Investigation. J Phys Chem C +2018;122:21248–61. https://doi.org/10.1021/acs.jpcc.8b07640. +[17] Zhang J, Xia G, Guo Z, Zhou D. Synergetic Effects toward Catalysis and +Confinement of Magnesium Hydride on Modified Graphene: A First-Principles +Study. J Phys Chem C 2017;121:18401–11. +https://doi.org/10.1021/acs.jpcc.7b05848. +[18] Singh MK, Bhatnagar A, Pandey SK, Mishra PC, Srivastava ON. Experimental +and first principle studies on hydrogen desorption behavior of graphene nanofibre +catalyzed MgH2. Int J Hydrogen Energy 2017;42:960–8. +https://doi.org/10.1016/J.IJHYDENE.2016.09.210. +[19] Liu G, Wang Y, Jiao L, Yuan H. Understanding the role of few-layer graphene +nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride. +ACS Appl Mater Interfaces 2014;6:11038–46. https://doi.org/10.1021/am502755s. +[20] Varunaa R, Ravindran P. Potential hydrogen storage materials from metal +decorated 2D-C2N: An: ab initio study. Phys Chem Chem Phys 2019;21:25311– +22. https://doi.org/10.1039/c9cp05105h. +[21] Liu Y, Gao H, Zhu Y, Li S, Zhang J, Li L. Excellent catalytic activity of a two- +dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Appl Surf Sci +2019;493:431–40. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.07.037. +[22] Chen G, Zhang Y, Cheng H, Zhu Y, Li L, Lin H. Effects of two-dimension MXene +Ti3C2 on hydrogen storage performances of MgH2-LiAlH4 composite. Chem +Phys 2019;522:178–87. +https://doi.org/https://doi.org/10.1016/j.chemphys.2019.03.001. +[23] Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for +electrochemical energy storage. Nat Mater 2015;14:271–9. +https://doi.org/10.1038/nmat4170. + +22 + +[24] Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci +2011;4:668–74. https://doi.org/10.1039/C0EE00295J. +[25] Singh S, Bhatnagar A, Shukla V, Vishwakarma AK, Soni PK, Verma SK, et al. +Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst +for hydrogen sorption in MgH2. Int J Hydrogen Energy 2020;45:774–86. +https://doi.org/10.1016/j.ijhydene.2019.10.204. +[26] Liu G, Wang Y, Xu C, Qiu F, An C, Li L, et al. Excellent catalytic effects of +highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of +magnesium hydride. Nanoscale 2013;5:1074–81. +https://doi.org/10.1039/c2nr33347c. +[27] Huang Y, Xia G, Chen J, Zhang B, Li Q, Yu X. One-step uniform growth of +magnesium hydride nanoparticles on graphene. Prog Nat Sci Mater Int +2017;27:81–7. https://doi.org/https://doi.org/10.1016/j.pnsc.2016.12.015. +[28] Liu R, Zhao Y, Chu T. Theoretical exploration of MgH2 and graphene nano-flakes +in cyclohexane: proposing a new perspective toward functional hydrogen storage +material. Chem Commun 2015;51:2429–32. +https://doi.org/10.1039/C4CC09424G. +[29] Li W, Huang J, Feng L, Cao L, Feng Y, Wang H, et al. Facile: In situ synthesis of +crystalline VOOH-coated VS2 microflowers with superior sodium storage +performance. J Mater Chem A 2017;5:20217–27. +https://doi.org/10.1039/c7ta05205g. +[30] Fang W, Zhao H, Xie Y, Fang J, Xu J, Chen Z. Facile Hydrothermal Synthesis of +VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium- +Ion Battery Cathodes. ACS Appl Mater Interfaces 2015;7:13044–52. +https://doi.org/10.1021/acsami.5b03124. +[31] Ma H, Shen Z, Ben S. Understanding the exfoliation and dispersion of MoS2 +nanosheets in pure water. J Colloid Interface Sci 2018;517:204–12. +https://doi.org/10.1016/j.jcis.2017.11.013. +[32] Lu X, Utama MIB, Zhang J, Zhao Y, Xiong Q. Layer-by-layer thinning of MoS2 +by thermal annealing. Nanoscale 2013;5:8904–8. +https://doi.org/10.1039/C3NR03101B. + +23 + +[33] Chakraborty B, Matte HSSR, Sood AK, Rao CNR. Layer-dependent resonant +Raman scattering of a few layer MoS2. J Raman Spectrosc 2013;44:92–6. +https://doi.org/https://doi.org/10.1002/jrs.4147. +[34] Hazarika SJ, Mohanta D. Inorganic fullerene-type WS2 nanoparticles: processing, +characterization and its photocatalytic performance on malachite green. Appl Phys +A 2017;123:381. https://doi.org/10.1007/s00339-017-0965-7. +[35] Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia +C-I, et al. Identification of individual and few layers of WS2 using Raman +Spectroscopy. Sci Rep 2013;3:1755. https://doi.org/10.1038/srep01755. +[36] Frindt RF. Single Crystals of MoS2 Several Molecular Layers Thick. J Appl Phys +1966;37:1928–9. https://doi.org/10.1063/1.1708627. +[37] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 +transistors. Nat Nanotechnol 2011;6:147–50. +https://doi.org/10.1038/nnano.2010.279. +[38] Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A. Electrical Transport +Properties of Single-Layer WS2. ACS Nano 2014;8:8174–81. +https://doi.org/10.1021/nn502362b. +[39] Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem +1957;29:1702–6. https://doi.org/10.1021/ac60131a045. +[40] Wu Z, Fang J, Liu N, Wu J, Kong L. The Improvement in Hydrogen Storage +Performance of MgH2 Enabled by Multilayer Ti3C2. Micromachines 2021;12. +https://doi.org/10.3390/mi12101190. +[41] Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I. A +critical review of the estimation of the thermodynamic parameters on adsorption +equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for +calculation of thermodynamic parameters of adsorption. J Mol Liq 2019;273:425– +34. https://doi.org/https://doi.org/10.1016/j.molliq.2018.10.048. +[42] Chen J, Cao J, Zhou J, Zhang Y, Li M, Wang W, et al. Mechanism of highly +enhanced hydrogen storage by two-dimensional 1T′ MoS2. Phys Chem Chem +Phys 2020;22:430–6. https://doi.org/10.1039/c9cp04402g. +[43] Singh MK, Bhatnagar A, Pandey SK, Mishra PC, Srivastava ON. Experimental + +24 + +and first principle studies on hydrogen desorption behavior of graphene nanofibre +catalyzed MgH 2. Int J Hydrogen Energy 2017;42:960–8. +https://doi.org/10.1016/j.ijhydene.2016.09.210. + diff --git a/GNE1T4oBgHgl3EQfFANy/content/tmp_files/load_file.txt b/GNE1T4oBgHgl3EQfFANy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..19caf6a7a69d1a498833c62b6e538655fffff2f4 --- /dev/null +++ b/GNE1T4oBgHgl3EQfFANy/content/tmp_files/load_file.txt @@ -0,0 +1,824 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf,len=823 +page_content='1 Catalytic action of two-dimensional layered materials (WS2, and MoS2) on hydrogen sorption properties of MgH2 Satish Kumar Verma1, Mohammad Abu Shaz1, Thakur Prasad Yadav1,2* 1Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi- 221005, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2Department of Physics, Faculty of Science, University of Allahabad, Prayagraj-211002, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Abstract: The present study reports the catalytic action of two-dimensional (2D) layered materials (MoS2 and WS2) for improving the de/re-hydrogenation kinetics of MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2 start desorbing at 277 ºC with a hydrogen storage capacity of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 wt% in the presence of WS2 catalyst whereas onset desorption temperature of MgH2 catalyzed by MoS2 is 330 ºC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-WS2 absorbed hydrogen ~ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72 wt% within 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 minutes at 300 ºC under 13 atm hydrogen pressure and it desorbed ~5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='57 wt% within 20 minutes at 300 ºC under 1 atm hydrogen pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' We have performed 25 cycles of dehydrogenation (under 1 atm hydrogen pressure at 300 ºC) and re-hydrogenation (under 13 atm hydrogen pressure at 300 °C) to ensure cyclic stability of catalyzed version of MgH2 where MgH2-WS2 shows better cyclic stability than MgH2-MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2-WS2 also shows the lower reaction activation energy ~117 kJ/mol as compare to other catalyzed and uncatalyzed samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' On the other hand, these catalysts (WS2 and MoS2) do not have any impact on the thermodynamical parameters that is change in enthalpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Key words: 2D layered materials, De/re-hydrogenation kinetics, Activation energy, MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' *Corresponding author Email: yadavtp@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='com 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Introduction A crucial and promising area of research for onboard hydrogen applications is the development of safe and efficient hydrogen storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The solid-state approach is one of the most appropriate, secure, and effective ways to store hydrogen among the several methods that can be used, including gaseous, liquid, and solid-state storage [1,2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Due to its high hydrogen storage capacity (110 g/L volumetric and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6 wt% gravimetric), low cost, light weight, and large abundance (in the form of Mg) in earth crust (8th most) and seawater (3rd most), MgH2 is a leading choice for hydrogen storage in the solid-state mode [3–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' According to the United States Department of Energy (US DOE) technical targets for hydrogen storage systems [7], MgH2 has certain advantages that make it a viable option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The high dehydrogenation temperature (above 400 ºC), slow kinetics (hydrogen de/re-hydrogenation kinetics 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4 kg-H2/min), and high thermodynamic properties (high reaction enthalpy 74 kJ/mol) of MgH2 prevent it from being a suitable material for onboard applications even with these advantages [8–10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' In recent years, the creation of suitable catalyst(s), alloys, composite materials with complicated hydrides, and scaffolding have all been used as feasible methods to improve the hydrogen storage performance of MgH2 [11,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The use of various types of catalysts and additives to enhance the performance of Mg/MgH2 has been the subject of several studies by various research organizations [13–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Another application for the 2D materials is as a catalyst for improving the hydrogen characteristics of MgH2 [18–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Due to its enormous surface area, ballistic conduction, thermal conductivity, mechanical stability, and light weight, graphene, which has a 2D planer structure with sp2 carbon atoms arranged in a hexagonal framework, has attracted a lot of attention as a catalyst and as a template material for hydrogen storage application in MgH2 [23,24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=" MgH2's de/rehydrogenation kinetics exhibit effective catalytic behavior in the graphene layer, which also inhibits MgH2's agglomeration and grain growth [3,5,25]." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=', for instance, have created MgH2-5% Gr nanosheets [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' They have demonstrated that graphene nanosheets offer a significant hydrogen diffusion pathway and prevent MgH2 from aggregating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' According to Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=", [27] report's MgH2 nanoparticles supported by graphene exhibit remarkable hydrogen sorption kinetics and 3 cyclic stability." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Due to the strong interaction between graphene and MgH2 nanoparticles and the prevention of nanoparticle agglomeration, the MgH2 nanoparticles demonstrated excellent hydrogen storage performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Additionally, grapheme prevents the aggregation of nanoparticles during the rehydrogenation of MgH2, according to a theoretical study using molecular dynamics simulation [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Rough studies are still required to determine the impact of graphene and other 2D layered materials on MgH2, even though some prior studies have shown the remarkable catalytic/co-catalytic and agglomeration blocking properties of Gr on MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' We have examined a comparison between WS2 and MoS2 as a catalyst for enhancing hydrogen sorption properties of MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' WS2 and MoS2 are suitable alternatives to graphene for the catalytic action on MgH2 due to their high conductivity (metallic nature), thermal stability, and strong catalytic behavior [29,30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Tungsten (W) and Molybdenum (Mo) are sandwiched between two Sulphur layers with weak Van der Waals interactions in the family of layered transition-metal dichalcogenides (TMDs) materials that include WS2 and MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The re/de-hydrogenation kinetics, and catalytic behavior of WS2 and MoS2 on MgH2 has been investigated in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Experimental section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Synthesis of a few layered WS2 The bulk tungsten sulfide (WS2) (99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='80 %) powder was procured from the Alfa Aesar for the present investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' For the preparation of few layered WS2, WS2 powder was dispersed in de-ionized water and sonicated it for 74 hours using ultrasonicator at 20 kHz frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The sonicated sample was then dried at 50 °C under a dynamic vacuum of order 10-2 torr to form the few layered WS2 powder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' This preparation method can also be understood by the schematic given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1: Schematic diagram for the synthesis of a few layers WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Synthesis of few-layer MoS2 The Otto Chemica bulk molybdenum disulfide (MoS2) (99 %) powder was used for the present investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MoS2 powder was dispersed in de-ionized water and sonicate it for 74 hours using ultrasonicator at 20 kHz frequency to obtain the few-layered MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The sonicated sample was then dried at 50 °C under dynamic vacuum of order 10-2 torr to form the few layered MoS2 powder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2, shows the schematic diagram for preparation of few-layered MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' BulkMoS2 BulkMoS, FewlayeredMoS2 DoublelayeredMoS2 UltrasonicationofbulkMoS,BulkWS2 BulkWs, FewlayeredwS2 DoublelayeredWS2 Ultrasonicationof bulkWS25 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2: Schematic diagram for the synthesis of a few layers MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Synthesis of MgH2 catalyzed by WS2, and MoS2 The pure MgH2 was procured from Fujifilm (Japan) (99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='9%) for the present investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Mechanical ball-milling of MgH2 with graphene at 180 rpm for 24 hours with a ball-to- powder ratio of 50:1 (by weight) using a planetary ball-miller (Retsch PM 400) was used to synthesize MgH2 catalyzed by WS2 (MgH2-WS2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' To explore the optimum catalyst concentration for hydrogen sorption kinetics of Mg/MgH2, we have synthesized a set of different catalyst concentrations (5, 10, 12 wt%) to catalyze MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' For hydrogen sorption in Mg/MgH2, 10 wt% catalysts were found to be optimal (in terms of desorption temperature and hydrogen storage capacity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The ball-miller vials were filled with 5 atm H2 pressure to compensate for the loss of hydrogen from MgH2 during milling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' All the loading and unloading of the samples was done inside the N2-filled glove box (MBRAUM MB10 compact) with O2 and H2O levels < 1 ppm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The synthesis of MgH2 catalyzed by MoS2 (MgH2-MoS2) was done using the same synthesis route as MgH2- WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Characterization techniques The structural characterization of prepared samples was carried out by XRD technique using Empyrean PANalytical X-ray diffractometer equipped with 2D detector with a Cu Kα beam (λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5415 Å) operated at 40 kV and 40 mA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The microstructural and selected area electron diffraction (SAED) analysis of as-prepared samples was carried out by TEM (Technai-20G2) operating at the accelerating voltage of 200 kV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Perkin Elmer (Spectrum 100) spectrometer in transmission mode with attenuated total reflectance (ATR) sampling mode (wavenumber range 500–4000 cm-1) was used to carry out FTIR spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The Raman spectra have been acquired at -60 ºC using Horiba-Jobin-Yvon LABRAM-HR800 spectrometer with diode LASER (532 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The desired thickness and surface topography of the prepared samples were examined by using solver next AFM in non-contact mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The characterized samples then proceed for the hydrogen desorption and absorption using automated two-channel volumetric sieverts type apparatus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The temperature programmed desorption (TPD) was carried out with a heating rate of 5 oC- 6 min-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The activation energy (Ea) study of prepared catalyzed samples has been done by using DSC (Perkin Elmer DSC 8000) with a heating rate of 15 oC/min, 18 oC/min, 21 oC/min, and 24 oC/min under nitrogen atmosphere (20 ml/min).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Results and discussion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Structural, microstructural, and spectroscopic characterization analysis The structural characteristics of as-prepared samples have been examined using the XRD characterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3(a) shows the XRD pattern of pristine MgH2, which matches well with the tetragonal MgH2 with space group P42/mnm (136) and a=b= 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='516 Å, c = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='020 Å (JCPDS no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 740934).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3(b) shows the XRD pattern of MoS2, which matches well with the hexagonal structure of MoS2 with space group P63/mmc(194) and a=b= 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1602 Å, c = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='294 Å (Joint Committee on Powder Diffraction Standards (JCPDS) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 651951).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The XRD pattern of as-prepared WS2 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3(c), that matches well with the hexagonal structure of WS2 with space group P63/mmc(194) and a=b= 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1532 Å, c = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='323 Å (JCPDS no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 841398).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The usual diffraction pattern of MgH2-MoS2, and MgH2-WS2 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3(d-e), respectively, where besides the tetragonal phase of MgH2, some peaks of WS2 and MoS2 are either suppressed or masked by the peaks of MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The diffraction peaks of WS2 and MoS2 are identified and labeled in the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3(d- e), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The different bands position, shapes, and relative intensities of Raman spectra give us essential information about the materials and stacking of layers, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=', Raman spectroscopy can determine the layer thickness at the atomic level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The Raman spectra of as-prepared WS2, and MoS2 have shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' In the case of MoS2, the two Raman modes are appeared at ~ 345 cm-1 and ~ 370 cm-1 corresponds to E12g and A1g modes of vibrations (labeled in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 4(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The indicated modes of MoS2 have frequency difference of ~ 25 cm-1, that means the MoS2 as layered material with few layers of stacking (3-5 layers) [31,32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The FWHM of A1g mode is ~ 7 cm-1, which can also be referred to stacking a few layers of MoS2 [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The Raman shifts at ~316 cm-1 and 384 cm-1 (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 4(a)) corresponds to the presence of E12g and A1g modes respectively in WS2 sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The 7 intensity ratio of E12g and A1g modes was estimated E12g/A1g i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='26, which is higher than the intensity ratio of bulk WS2 (E12g/A1g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='47) and lower than the monolayer WS2 (E12g/A1g = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2) [34,35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' This calculated intensity ratio (E12g/A1g = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='26) is compatible with the range of 2-3 layers of WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3: XRD patterns of (a) Pristine MgH2, (b) MoS2, (c) WS2, (d) MgH2-MoS2, and (e) MgH2-WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' o Parafilm, MgH2, t Ws2, u Mos2 (e)MgH2 Ws 52 T (d) mgh2 Mos2 Intensity (wt%) (c) WS 2 (002) (004) (100) (101) (900) (105) (110) (112) (114) (203) (116) 8 tt T T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1 1 T (b)Mos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' (00L)2 2 (002) U C(105) (102) (103) C(110) (112) c(108) (203) U (a) Pristine MgH2 (200) (110) (220) (002) (310) (112) (301) (202) (211) 8 8 ¥ 10 20 30 40 50 60 70 80 2e(degree8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 4: Raman spectra of (a) WS2 and (b) MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The information about stacking layers in 2D layered materials (like WS2 and MoS2) can also be verified by AFM analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The surface topography and height profile of prepared MoS2, and WS2 were examined along the blue dotted line as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S1(a-b) (given in supporting information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The layered surface morphology along with height profile (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S1(a-a1)) shown the average thickness of MoS2 is ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 nm, that indicates the presence of ~2 layers of stacking in the MoS2 sample [36,37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The ~7-8 layers of stacking were present in the case of WS2 (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S1(b-b1)) with a monolayer height of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='7 nm [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' (b) Raman spectra of MoS2 (370) A1g (a) Raman spectra of WS2 (345) 2g Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=') (384) 2g A1 (316) 175200225250275300325 350 375400 425 450475500 Raman shift (cm9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 De/Re-hydrogenation kinetics of catalyzed MgH2 To identify the optimal percentage of catalyst in MgH2 with optimum temperature range where material performed promptly, we have characterized as-prepared samples for the temperature programmed desorption (TPD) analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The TPD curves of MgH2-MoS2 have seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S2 (given in supporting information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-5%MoS2, MgH2- 10%MoS2, and MgH2-12%MoS2, starts releasing hydrogen at ~ 357 °C, ~ 330 °C, ~ 302 °C with ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='41 wt%, ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='00 wt%, ~ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='88 wt% of hydrogen storage capacity respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' On the other hand, MgH2-5%WS2, MgH2-10%WS2, and MgH2-12%WS2, starts releasing hydrogen at ~ 339 °C, ~ 277 °C, ~ 258 °C with ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='54 wt%, ~ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 wt%, ~ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='14 wt% of hydrogen storage capacity respectively (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S3 in supporting information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Based on TPD analysis, the optimum catalyst concentration for catalyzing MgH2 is 10 wt% for all catalysts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' After getting information about the optimum catalyst for MgH2, we compared the TPD analysis of all optimum catalyzed samples with pristine MgH2, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The TPD of pristine MgH2 (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5(a)) was then carried out to compare hydrogen storage properties with catalyzed samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The pristine MgH2 has an onset desorption temperature of 376 oC with a total release of ~7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='45 wt% storage capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The onset desorption temperature of MgH2-MoS2 (MgH2-10%MoS2) is ~ 330 oC, and it desorbs ~ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='00 wt% hydrogen while the desorption gets completed at 396 oC (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' In the case of MgH2-WS2 (MgH2-10%WS2), it starts desorbing hydrogen at ~ 277 oC with a storage capacity of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 wt% (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5(c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 10 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5: Comparative TPD analysis of (a) Pristine MgH2, (b) MgH2-MoS2 and (c) MgH2- WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The desorbed samples then proceed for re/de-hydrogenation to check the cyclic stability and reversibility of catalyzed and pristine MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The re-hydrogenation kinetics was carried out at 300 oC under 13 atm hydrogen pressures, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' It can be seen, the pristine MgH2 absorbed ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='16 wt% hydrogen in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 minutes whereas MgH2-MoS2, MgH2-WS2 absorbed 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='60 wt%, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72 wt%, hydrogen, respectively, under similar conditions of temperature and pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 0 Hydrogen desorbed (wt%) (a) (b) (c) (a)PristineMgH 5 (b) MgH, Mos, 6 (c) MgH, WS, 7 8 200 225 250 275 300 325 350 375 400 425 Temperature (C)11 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 6: Rehydrogenation kinetics curves at 300 °C under 13 atm H2 pressure of (a) b) MgH2-WS2, (c) MgH2-MoS2 and (e) Pristine MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The rehydrogenated samples were then dehydrogenated at 300 oC under 1 atm hydrogen pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' It can be seen clearly in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 7, that the MgH2-WS2 sample releases 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='57 wt% hydrogen within 20 minutes while MgH2-MoS2 and pristine MgH2 releasees 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='25 wt%, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='23 wt% of hydrogen under similar temperature and pressure conditions, which is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='32 wt%, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='48 wt% more than pristine MgH2, MgH2-MoS2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Based on the above re/de-hydrogenation kinetics study, it is clearly shown that WS2 works as a superior catalyst to MoS2 for catalyzing MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Therefore, in present study WS2 is a prominent catalyst to catalyze MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' (b) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Hydrogen absorbed (wt%) (a) (c) (a) MgH, WS (b) MgH, Mos (c) Pristine MgH, 0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' )12 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 7: Dehydrogenation kinetics curves at 300 °C under 1 atm H2 pressure of (a) MgH2- WS2, (b) MgH2-MoS2, and (c) Pristine MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Study of kinetics: Estimation of activation energy The DSC was carried out to determine the hydrogen desorption activation energy barrier to convert MgH2 into Mg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The DSC profile of MgH2-MoS2, MgH2-WS2, are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 8-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' In the case of MgH2-WS2, the peak desorption temperature found from DSC is ~ 380 oC, while the onset desorption temperature found from TPD is ~ 277 oC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' There is a difference in desorption temperature in TPD (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 5(c)) and DSC (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 9(a)) curves due to the TPD being performed under vacuum with a temperature ramping rate of 5 oC/min while DSC was performed under N2 atmosphere with a temperature ramping rate of 15 oC/min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' For calculating the desorption activation energy, we have performed DSC with a set of the various rate of heating (15, 18, 21, 24 oC/min) and plotted the Kissinger curve by using the Kissinger equation[39] as given: (a) Pristine MgH, (b) MgH, MoS, Hydrogen desorbed (wt%) 5 (c) MgH, WS (a) (b) 2 (c) 0 0 5 10 15 20 25 30 35 40 45 50 55 60 Time (min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' )13 (1) Where β, Tp, and Ea are the heating rate, corresponding peak desorption temperature, and activation energy, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The slope of Kissinger plot (ln(β/Tp 2) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 1000/Tp 2 plot) (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 8-9) is used to calculate the desorption activation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The calculated activation energy for MgH2-MoS2, and MgH2-WS2 is 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='09 kJ/mol (± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='60 kJ/mol), and 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='00 kJ/mol (± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='74 kJ/mol) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' This activation energy indicates that ~104 kJ/mol energy is required to overcome the barrier to convert MgH2 into Mg in the presence of a WS2 catalyst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' These calculated activation energies are significantly lower than the activation energy of pristine MgH2 [3,40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Table 1: Table for plateau pressures at corresponding temperatures, change in enthalpy, and activation energy of MgH2-MoS2, and MgH2-WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Sample name Plateaus pressure (atm) Temperature ( ºC) Change in enthalpy (kJ/mol) Activation energy (kJ/mol) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 MoS2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='03 272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='62 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='33 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='09 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='03 292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='77 313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 WS2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='52 281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='26 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='44 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='66 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='92 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='60 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='45 316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='29 14 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 8: (i) DSC profile for desorption of MgH2-MoS2 with the heating rate (a) 15 ºC/min, (b) 18 ºC/min, (c) 21 ºC/min, (d) 24 ºC/min, and (ii) corresponding Kissinger plot for evaluating the desorption activation energy of MgH2-MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' DSCprofilefor MgH2 MoS2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8 Kissinger plot for MgHb MoS2 Linear fit (d) 24°C/min 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='9 (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=') 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 (c)21cC/min Heatflow( P 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1 Endo up (b) 18 C/min Eguation y=a+b 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 Adj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' R Squ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='99937 Value Standard Er 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 In(beta/Tp2) Irtercept 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='212 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='30766 (a) 15 C/min In(beta/Tp2) Slope 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='083 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='20379 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4941.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5061.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='530 250 275 300 325 350 375 400 425 450 1000/T,(K1) Temperature (cC)DSCprofileforMgH2 WS2 Kissinger plot for MgH2 WS2 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8 (d) 24 C/min Linear fit 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='9 Heat flow (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=') (c) 21 °C/min 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 [β/T, (b) 18 °C/min 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1 Endo Equation =a+ Adj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' R Sq 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='9979 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 Value Standard (a) 15 °C/min In(beta/Tp Interce 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3313 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='50735 In(beta/Tp Slope 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='33004 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='520 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='525 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='530 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='535 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='540 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='545 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='555 1000/T(K 320330340350360370380390400410420430440450 Temperature (C)15 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 9: (i) DSC profile for desorption of MgH2-WS2 with the heating rate (a) 15 ºC/min, (b) 18 ºC/min, (c) 21 ºC/min, (d) 24 ºC/min, and (ii) corresponding Kissinger plot for evaluating the desorption activation energy of MgH2-WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Study of thermodynamics After the kinetics and reversibility study, we have proceeded with the thermodynamic analysis of catalyzed MgH2 for comparing the change in enthalpy and entropy of the system using well known Van’t Hoff equation [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' lnP = (ΔH/RT) (ΔS/R) (2) Where P, ∆H, R, T, and ∆S are the pressure, change in enthalpy, gas constant, absolute temperature, and change in entropy, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The PCI isotherms (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 10(i)-11(i) and Van’t Hoff plots (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 10(ii)-11(ii)) were used for the calculation of change in enthalpy of MgH2-MoS2 and MgH2-WS2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The calculated change in desorption enthalpy was found to be 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='33 kJ/mol (± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='40 kJ/mol), and 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='44 kJ/mol (± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='13 kJ/mol), for MgH2-MoS2 and MgH2-WS2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' It is clear from the above estimation of change in enthalpy, that there is no significant enthalpy change in the presence of a catalyst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Thus MoS2, WS2 have not positively impacted the thermodynamic barrier of the MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The plateau pressure at corresponding temperatures, change in enthalpy, and activation energy has been tabulated in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' (i) PCl desorption for MgH2-MoS2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=" (ii) Vant's Hoff plot for MgH2-MoS2 6." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' - Linear fit 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 (atm) 320°C 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Pressure ( P 三 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 300°C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4 2 Equation y=a+b* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2- Adj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' R-Squar0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='99936 280 °C Value Standard Err InP Intercept 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 InP Slope 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4207 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='16804 0 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='74 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='78 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='82 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='84 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='86 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='88 0 1 2 3 4 5 1000/T (K Hydropgen capacity (wt%)16 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=" 10: (i) PCI desorption plots for MgH2-MoS2 at different temperatures and (ii) corresponding Van't Hoff plot for calculating the change in enthalpy Fig." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=" 11: (i) PCI desorption plots for MgH2-WS2 at different temperatures and (ii) corresponding Van't Hoff plot for calculating the change in enthalpy 3." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5 Cyclic stability of catalyzed MgH2 The WS2 (optimum catalyst) plays a significant role in improving the kinetics of MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The cyclic stability is an essential characteristic of the hydride material (MgH2) besides kinetic and thermodynamics, making it a worthy hydrogen storage material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Therefore, it is crucial to look at the cyclic stability of the catalyzed MgH2 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' We have performed 25 cycles of dehydrogenation (under 1 atm hydrogen pressure at 300 °C) and re-hydrogenation (under 13 atm hydrogen pressure at 300 °C) to ensure cyclic stability of catalyzed MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The cyclic stability curve of MgH2-MoS2 and MgH2-WS2 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 12(a) MgH2-MoS2 shows the ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='42 wt% (from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='77 wt% to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='35 wt%) degradation in hydrogen storage capacity during rehydrogenation and ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='38 wt% (from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='69 wt% to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='31 wt%) in dehydrogenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-WS2 has the loss of hydrogen storage capacity ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 wt% (from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='80 wt% to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='50 wt%) during re- hydrogenation and ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='36 wt% (from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='76 wt% to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='40 wt%) during dehydrogenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Thus, MgH2-WS2 has more substantial cyclic stability than MgH2-MoS2 under similar 8 (i) PCI desorption for MgH2-WS2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content="4 (ii) Vant's Hoff plot for MgH2-WS2 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 Linear fit 6 (atm) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 5 Pressure 320 °C InP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8 300°℃ 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6 Equation y=a+ Adj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' R-Squ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='9995 2 280°C Value Standard E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' InP Intercep 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='23617 Inp Slope -9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='314 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='68 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='70 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='74 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='76 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='78 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='80 1000/T (K-1) 0 1 2 3 4 5 6 Hydrogen capacity (wt%)17 temperature and pressure conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The comparative study for hydrogen storage properties of different recently used 2D materials as the catalyst for MgH2 is explored in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 12: Cyclic stability of (a) MgH2-MoS2 and (b) MgH2-WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Table 2: Table for different 2D materials as the catalyst for hydrogen storage application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Material 2D- based catalyst Hydrogen storage capacity (wt%) Onset dehydrogen ation temperature (ºC) Activation energy (kJ/mol) Change in enthalpy (kJ/mol) Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Mg6C2N C2N 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='79 [20] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 LiAlH4 Ti3C2 Ti3C2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='50 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 [22] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 Nb4C3Tx Nb4C3Tx 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='50 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2 [21] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 1T’ MoS2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='90 [42] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 Gr Graphene 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='80 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 [43] Cyclic stability for MgH,-MoS capacity (wt%) 6 00300 =0=0-0: 5 -I- Rehydrogenation - Dehydrogenation 4 3 Degradation during rehydrogenation=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='42 wt% Degradationduring dehydrogenation=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='38 wt% Hydrogen : 2 1 0 6 8 10 16 18 222426 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='of cycleCyclic stability for MgH,-WS 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Rehydrogenation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' +- Dehydrogenation 3 Degradation during rehydrogenation=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='30 wt% Degradation during dehydrogenation=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='36 wt% Hydrogen : 2 0 10 12 16 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='20 222426 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' of cycle18 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 TiH2@Gr Graphene 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='77 204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='89 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='54 [3] MgH2 TiO2@Gr Graphene 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='98 240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='00 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='87 MgH2 Ti@Gr Graphene 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='70 235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='03 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='65 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 Gr Graphene 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='14 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='90 [13] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 VS2 VS2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='51 242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='10 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='83 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 WS2 WS2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='66 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='44 Pres ent stud y 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2 MoS2 MoS2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='00 330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='0 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='09 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='33 Pres ent stud y 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Conclusions The catalytic effect of MoS2, and WS2 on MgH2 was evaluated and compared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Based on the de/re-hydrogenation study, it is found that WS2 works as an optimum catalyst over MoS2 for MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-WS2 has an onset de-hydrogenation ~277 oC with a hydrogen storage capacity of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='95 wt%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-WS2 absorbed hydrogen ~ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72 wt% within 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 minutes at 300 oC under 13 atm hydrogen pressure and it desorbed ~5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='57 wt% within 20 minutes at 300 oC under 1 atm hydrogen pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The MgH2-WS2 shows a minimum degradation of hydrogen storage capacity ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3 wt% upto 25 cycles which shows a better cyclic stability than cyclic stability of MgH2-MoS2 (~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4 wt% loss in hydrogen storage capacity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' MgH2-WS2 also shows the lower reaction activation energy ~117 kJ/mol as compare to other catalyzed and uncatalyzed samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' On the other hand, these catalysts (WS2 and MoS2) do not have any impact on the thermodynamical parameters that is change in enthalpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' This study opens a new era to further applications of 2D layered materials for various applications like template materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 19 Acknowledgments We gratefully accept funding assistance from the Department of Science and Technology (DST), New Delhi, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The Council of Scientific and Industrial Research (CSIR), New Delhi, India, has awarded the author (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=') a CSIR-Senior Research Fellowship (Award No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 09/013(0872)/2019-EMR-I), for which the author is grateful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Conflict of Interest Declaration There are no conflicts of interest among the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' References [1] TP Yadav, A Kumar, SK Verma, NK Mukhopadhyay, High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects, Transactions of the Indian National Academy of Engineering, 7 (2022) 147–156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1007/s41403-021-00316-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Kumar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Yadav, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Mukhopadhyay, Notable hydrogen storage in Ti–Zr– V–Cr–Ni high entropy alloy, International Journal of Hydrogen Energy 47 (2022) 22893-22900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='107 [3] Verma SK, Bhatnagar A, Shukla V, Soni PK, Pandey AP, Yadav TP, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='45:19516–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='031.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [4] SK Pandey, SK Verma, A Bhatnagar, TP Yadav, Catalytic characteristics of titanium‐(IV)‐isopropoxide (TTIP) on de/re‐hydrogenation of wet ball‐milled MgH2/Mg, International Journal of Energy Research 46 (12) (2022) 17602-17615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1002/er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8427.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [5] Shukla V, Bhatnagar A, Verma SK, Pandey AP, Vishwakarma AK, Srivastava P, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Simultaneous improvement of kinetics and thermodynamics based on SrF2 and SrF2@Gr additives on hydrogen sorption in MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Mater Adv 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2:4277– 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/D1MA00012H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [6] Srivastava ON, Yadav TP, Shahi RR, Pandey SK, Shaz MA, Bhatnagar A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 20 Hydrogen energy in India: Storage to application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Proc Indian Natl Sci Acad 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='81:915–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='16943/ptinsa/2015/v81i4/48303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [7] US DoE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Target Explanation Document: Onboard Hydrogen Storage for Light- Duty Fuel Cell Vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' US Drive 2017:1–29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [8] Bhatnagar A, Pandey SK, Vishwakarma AK, Singh S, Shukla V, Soni PK, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Fe3O4 @graphene as a superior catalyst for hydrogen de/absorption from/in MgH 2 /Mg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Mater Chem A 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4:14761–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/c6ta05998h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [9] Sadhasivam T, Kim H-T, Jung S, Roh S-H, Park J-H, Jung H-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Renew Sustain Energy Rev 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='72:523–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='rser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [10] Yartys VA, Lototskyy M V, Akiba E, Albert R, Antonov VE, Ares JR, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Magnesium based materials for hydrogen based energy storage: Past, present and future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='44:7809–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [11] SK Pandey, A Bhatnagar, SS Mishra, TP Yadav, MA Shaz, ON Srivastava, Curious Catalytic Characteristics of Al–Cu–Fe Quasicrystal for e/Rehydrogenation of MgH2, The Journal of Physical Chemistry C 121 (45) (2017) 24936-24944.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='jpcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='7b07336 [12] V Shukla, TP Yadav, Notable catalytic activity of CuO nanoparticles derived from metal‐organic frameworks for improving the hydrogen sorption properties of MgH2, International Journal of Energy Research, 46 (9) (2022) 12804-12819.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1002/er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [13] Verma SK, Shaz MA, Yadav TP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Enhanced hydrogen absorption and desorption properties of MgH2 with graphene and vanadium disulfide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [14] Patelli N, Calizzi M, Migliori A, Morandi V, Pasquini L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Hydrogen Desorption Below 150 °C in MgH2–TiH2 Composite Nanoparticles: Equilibrium and Kinetic Properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Phys Chem C 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='121:11166–77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='jpcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='7b03169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [15] Korablov D, Besenbacher F, Jensen TR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Kinetics and thermodynamics of 21 hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='43:16804–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [16] Bhatnagar A, Johnson JK, Shaz MA, Srivastava ON.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' TiH 2 as a Dynamic Additive for Improving the De/Rehydrogenation Properties of MgH 2 : A Combined Experimental and Theoretical Mechanistic Investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Phys Chem C 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='122:21248–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='jpcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8b07640.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [17] Zhang J, Xia G, Guo Z, Zhou D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Phys Chem C 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='121:18401–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='jpcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='7b05848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [18] Singh MK, Bhatnagar A, Pandey SK, Mishra PC, Srivastava ON.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Experimental and first principle studies on hydrogen desorption behavior of graphene nanofibre catalyzed MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='42:960–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='IJHYDENE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [19] Liu G, Wang Y, Jiao L, Yuan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' ACS Appl Mater Interfaces 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6:11038–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/am502755s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [20] Varunaa R, Ravindran P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Potential hydrogen storage materials from metal decorated 2D-C2N: An: ab initio study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Phys Chem Chem Phys 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='21:25311– 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/c9cp05105h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [21] Liu Y, Gao H, Zhu Y, Li S, Zhang J, Li L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Excellent catalytic activity of a two- dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Appl Surf Sci 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='493:431–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='apsusc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='037.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [22] Chen G, Zhang Y, Cheng H, Zhu Y, Li L, Lin H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Effects of two-dimension MXene Ti3C2 on hydrogen storage performances of MgH2-LiAlH4 composite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Chem Phys 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='522:178–87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='chemphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [23] Raccichini R, Varzi A, Passerini S, Scrosati B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The role of graphene for electrochemical energy storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Nat Mater 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='14:271–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1038/nmat4170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 22 [24] Pumera M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Graphene-based nanomaterials for energy storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Energy Environ Sci 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4:668–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/C0EE00295J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [25] Singh S, Bhatnagar A, Shukla V, Vishwakarma AK, Soni PK, Verma SK, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='45:774–86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [26] Liu G, Wang Y, Xu C, Qiu F, An C, Li L, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Nanoscale 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5:1074–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/c2nr33347c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [27] Huang Y, Xia G, Chen J, Zhang B, Li Q, Yu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' One-step uniform growth of magnesium hydride nanoparticles on graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Prog Nat Sci Mater Int 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='27:81–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='pnsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [28] Liu R, Zhao Y, Chu T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Theoretical exploration of MgH2 and graphene nano-flakes in cyclohexane: proposing a new perspective toward functional hydrogen storage material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Chem Commun 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='51:2429–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/C4CC09424G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [29] Li W, Huang J, Feng L, Cao L, Feng Y, Wang H, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Facile: In situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Mater Chem A 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5:20217–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/c7ta05205g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [30] Fang W, Zhao H, Xie Y, Fang J, Xu J, Chen Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium- Ion Battery Cathodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' ACS Appl Mater Interfaces 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='7:13044–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/acsami.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5b03124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [31] Ma H, Shen Z, Ben S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Colloid Interface Sci 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='517:204–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='jcis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [32] Lu X, Utama MIB, Zhang J, Zhao Y, Xiong Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Layer-by-layer thinning of MoS2 by thermal annealing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Nanoscale 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='5:8904–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/C3NR03101B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' 23 [33] Chakraborty B, Matte HSSR, Sood AK, Rao CNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Layer-dependent resonant Raman scattering of a few layer MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Raman Spectrosc 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='44:92–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1002/jrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='4147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [34] Hazarika SJ, Mohanta D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Appl Phys A 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='123:381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1007/s00339-017-0965-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [35] Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Identification of individual and few layers of WS2 using Raman Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Sci Rep 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3:1755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1038/srep01755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [36] Frindt RF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Single Crystals of MoS2 Several Molecular Layers Thick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Appl Phys 1966;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='37:1928–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1708627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [37] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Single-layer MoS2 transistors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Nat Nanotechnol 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='6:147–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1038/nnano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='279.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [38] Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Electrical Transport Properties of Single-Layer WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' ACS Nano 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='8:8174–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/nn502362b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [39] Kissinger HE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Reaction Kinetics in Differential Thermal Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Anal Chem 1957;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='29:1702–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1021/ac60131a045.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [40] Wu Z, Fang J, Liu N, Wu J, Kong L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Micromachines 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='3390/mi12101190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [41] Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' A critical review of the estimation of the thermodynamic parameters on adsorption equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' J Mol Liq 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='273:425– 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='molliq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [42] Chen J, Cao J, Zhou J, Zhang Y, Li M, Wang W, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Mechanism of highly enhanced hydrogen storage by two-dimensional 1T′ MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Phys Chem Chem Phys 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='22:430–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1039/c9cp04402g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' [43] Singh MK, Bhatnagar A, Pandey SK, Mishra PC, Srivastava ON.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Experimental 24 and first principle studies on hydrogen desorption behavior of graphene nanofibre catalyzed MgH 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' Int J Hydrogen Energy 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='42:960–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='ijhydene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GNE1T4oBgHgl3EQfFANy/content/2301.02897v1.pdf'} diff --git a/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/2301.05555v1.pdf.txt b/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/2301.05555v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..26eb0101b592d23e1a30cc46302ffd55fae0bea3 --- /dev/null +++ b/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/2301.05555v1.pdf.txt @@ -0,0 +1,1575 @@ +Magnetic phase diagram of the breathing-kagome antiferromagnet Nd3BWO9 +D. Flavi´an,1, ∗ J. Nagl,1 S. Hayashida,1, 2 M. Yan,1 O. Zaharko,3 +T. Fennell,3 D. Khalyavin,4 Z. Yan,1 S. Gvasaliya,1 and A. Zheludev1, † +1Laboratory for Solid State Physics, ETH Z¨urich, 8093 Z¨urich, Switzerland +2Max-Planck-Institut f¨ur Festk¨orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany +3Laboratory for Neutron Scattering and Imaging, +Paul Scherrer Institut, 5232 Villigen, Switzerland +4ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom +(Dated: January 16, 2023) +The highly-frustrated rare-earth based magnet Nd3BWO9 is a promising candidate in the search +for proximate spin liquid physics. We present a thorough investigation on single crystals of this ma- +terial using bulk and microscopic techniques. Magnetization data reveal a fractional magnetization +plateau for three different investigated field directions. The magnetic phase diagram is mapped out +from calorimetric data and exhibits several domes of magnetic order below 0.3 K. Propagation vec- +tors for all ordered phases are presented. The results suggest complex ordering in this material, and +unveil the existence of a commensuration transition of the propagation vector at zero magnetic field. +A scenario where interplane exchange interactions are essential to a magnetic model of Nd3BWO9 +is discussed. +I. +INTRODUCTION +Strongly frustrated quantum antiferromagnets (AFM) +are known to realize a panoply of magnetic states due +to the delicate equilibrium between the magnetic in- +teractions. +In the presence of magnetic fields, the +large ground state degeneracy is lifted in subtle and +diverse ways, which leads to extremely rich phase di- +agrams. Realization of spin-density waves [1], magne- +tization plateaus [2, 3] commensurate-incommensurate +transitions [4], and even more exotic order like spin +nematicity [5, 6] is not rare, particularly in quasi-low- +dimensional systems. +The archetypal model in 2D frustrated magnetism is +the kagome lattice Heisenberg S = 1/2 AFM (KHAF). +The impossibility of satisfying all magnetic interactions +in this lattice results in a macroscopic degeneracy of the +ground state already at a classical level [7]. Turning to +S = 1/2 spins promotes the quantum fluctuations on the +ground state giving rise to highly non-trivial phases [8]. +Arguably, the most intriguing state is the hypothesized +Quantum Spin Liquid (QSL) [9] ground state. The pre- +diction of fractionalization of quasiparticles in a 2D sys- +tem triggered extensive effort from both theory and ex- +perimental perspectives [10, 11]. Nevertheless, the QSL +phase remains elusive [12] as it constitutes a very frag- +ile state. One of the main causes of the instability of +the QSL states is the presence of terms in the Hamilto- +nian that lift the ground state degeneracy [13, 14]. The +many different ways to lift this degeneracy have led to +a flurry of new magnetic structures [15–18]. However, +occasionally deviations from a putative KHAF tend to +stabilize QSL phases. In particular, the so called breath- +ing anisotropy has been predicted to favor a resonance +∗ daniefla@ethz.ch +† zhelud@ethz.ch; http://www.neutron.ethz.ch/ +valence bond solid ground state for a wide range of cou- +pling parameters [19, 20]. +In +this +context, +the +recently +discovered +family +R3BWO9 of rare-earth antiferromagnets is an optimal +platform for the search of spin-liquid candidates [21]. +Here R is a trivalent rare-earth element and the large +difference in size of the constituent atoms prevents anti- +site chemical disorder. All of the members of the family +realize a breathing kagome lattice in their basal plane +and show no sign of magnetic ordering down to 2 K. +The strong spin-orbit coupling in combination with crys- +tal electric field effects opens the possibility of realizing +effective Jeff = 1/2 magnetic moments. +Among all compounds in the family, the most promis- +ing is Nd3BWO9. A large Weiss temperature [21] has +been reported and the total angular momentum of Nd3+ +(J = 9/2) makes it a Kramers-doublet system. No mag- +netic long-range order has been found in previous studies +down to 1.8 K. However, little is known so far about its +magnetism. In this study we report on the low tempera- +ture properties of single crystals of Nd3BWO9. We found +static magnetic long-range order below 0.3 K. The ob- +served magnetism suggests a three dimensional network +of exchange interactions. Nonetheless, due to the highly +frustrated interaction a complex phase diagram is real- +ized. +The paper is structured as follows. First, a summary +of the various methods used is provided. Then, we out- +line the main results of the experiments. Subsequently, +a detailed discussion of the main outcome is provided, +including a thorough description of the magnetic struc- +ture and a detailed picture of the magnetic phase dia- +gram under applied fields. Finally, the main conclusions +are drawn and further steps in the search of QSL physics +are examined. +arXiv:2301.05555v1 [cond-mat.str-el] 13 Jan 2023 + +(b) +(e) +2 mm +a +b +c +2.66 Å +2.57 Å +2.25 Å +2.49 Å +2.38 Å +2.36 Å +Nd +2.55 Å +2.42 Å +c +WO6 +B +NdO8 +a +b*a* +b +c +(a) +(d) +Nd +a +b +c +l = 16.44 Å +(c) +3.95 Å +4.92 Å +4.25 Å +FIG. 1. +Crystal structure and superexchange topology in +Nd3BWO9. (a) Schematic structure reflecting the purported +kagome interaction in the crystallographic ab plane. +Only +atoms with 0 ≤ z ≤ 0.5 are shown here. There is an addi- +tional kagome plane displaced by half lattice parameter along +the c crystallographic direction. (b) The shortest superex- +change Nd-O-Nd bond links neodymium atoms in different +kagome planes, forming isolated spin tubes along the c axis +arranged in a triangular lattice. The kagome bonds are shown +for reference along with bond distances. (c) A typical single +crystal sample of Nd3BWO9. (d) A single spin tube is unfrus- +trated. However, further-neighbor interactions frustrate the +system. An arrow indicates the size of the magnetic supercell +at zero field. (e) The environment of neodymium has very +low symmetry, resulting in a C1 point group for the magnetic +ion. Nd-O distances are indicated. +II. +METHODS +Nd3BWO9 crystallizes in a hexagonal structure, with +space group P63 (No. 173), where the magnetism stems +from the effective magnetic moment of the Nd3+ ions. +Single crystal samples were grown by spontaneous crys- +tallization using a flux method as described in [22]. Pur- +ple transparent single crystals with well defined facets +were obtained [Fig. 1(c)]. +Typical masses range from +a few micrograms to 40 mg and different samples were +used in this study, depending on the technique. +The +chemical structure of the different single-crystal samples +used in this study was validated using single-crystal X- +ray diffraction on a Bruker APEX-II instrument, and was +found to be in agreement with previous reports [21]. The +structure is schematically depicted in Fig. 1, where the +kagome-lattice bonds can be readily identified. Powder +samples of Nd3BWO9, as well as of the non-magnetic +La3BWO9, were synthesized by a solid state reaction. +The correct chemical structure and the quality of the +powders was checked with powder X-ray diffraction in +a Rigaku MiniFlex diffractometer. +Boron-11 enriched +samples (both powder and single crystals) were also pre- +pared for their use in neutron scattering experiments. +Measurements of heat capacity, magnetocaloric effect +(MCE), magnetization and magnetic torque were carried +out using a 3He-4He dilution refrigerator insert for the +Quantum Design Physical Property Measurement Sys- +tem (PPMS). A sample of mass 0.131 mg was used for +both heat capacity and MCE measurements. Heat ca- +pacity data were collected using a standard relaxation +method from Quantum Design for temperatures 100 mK +< T < 4 K in applied fields of 0 T < µ0H < 3 T. The +magnetic field was applied along the crystallographic a∗, +and c directions. In zero field, data were collected from +100 mK to 300 K. Heat capacity data of La3BWO9 were +measured down to 2 K and extrapolated to lower tem- +peratures from an empirical fit to a T 3-power law. MCE +data were measured using the same puck as for heat ca- +pacity. The change of temperature of the sample was +recorded as the magnetic field was swept up and down +at a constant rate. In order to avoid self heating of the +puck, the field change rate was optimized and a value of +0.5 mT/s was selected. In the terminology of MCE mea- +surements, our experiment was conducted under equilib- +rium conditions. +Magnetization was measured using an in house made +Faraday-balance capacitive magnetometer [23] at 120 +mK and 2 K and magnetic fields applied along three ori- +entations: a∗, and b, and c. Additional measurements +of magnetization carried out in the MPMS system at 2 +K were used to calibrate the low temperature data and +obtain absolute units (not shown here). Using the same +setup, magnetic torque was measured up to 3 T and +for temperature from 120 mK to 600 mK. The torque +data correspond to the deflection of a small cantilever +on which the sample is mounted. +The magnetic field +sweeping rate was also optimized to minimize heating +due to eddy currents. +Magnetic susceptibility was measured using the Quan- +tum Design Magnetic Property Measurement System +(MPMS) SQUID Magnetometer. +The temperature +range from 1.8 K to 300 K was probed using a small po- +larizing field applied along three crystal directions: a∗, +and b, and c. The probing field was µ0H = 0.1 T, where +µ0 denotes the permeability of vacuum. +Inelastic neutron scattering on powder samples of +Nd3BWO9 was measured to investigate the crystal elec- +tric field induced scheme of total angular momentum +states. The instrument of choice was the thermal neu- +tron triple-axis-spectrometer EIGER at PSI. 11.1 g of +Nd3 11BWO9 was sealed in an aluminum can and in- +stalled in a standard 4He orange cryostat. A final wave- +length of kf= 2.66 ˚A−1 (λ = 2.36 ˚A) was chosen, us- +ing a pyrolytic graphite filter to eliminate higher-order +neutrons without further collimation. Data were mea- +sured at constant scattering angle, 2θ. The background +was investigated to select the optimal value for the scat- +tering angle, sufficiently far from the direct beam and +low enough to have good counting and small decay in +the signals due to magnetic structure factors. A value +of 2θ = 10◦ was chosen, and the incident energy was +scanned at three different temperatures: 1.5 K, 100 K +and 300 K. +Neutron single crystal diffraction was used to investi- +2 + +J0 +100 +200 +300 +T (K) +0 +50 +100 +150 +200 +-1 (mol T μB ) +H || a* +θCW = -3.76 K +μ0H = 0.1 T +H || b +H || c +-1 +FIG. 2. +Inverse magnetic susceptibility on single crystals. +Data show measurements for three field orientations. A small +probing field of 0.1 T was used for all measurements. The +black solid line represents a Curie-Weiss model with the av- +erage Weiss temperature and effective moment parameters, +given in Table. I. +gate the magnetic structures in the ordered phases. A +single crystal sample of 18 mg in mass of Nd3 11BWO9 +and 5.5×1.4×0.8 mm3 was studied using two different +instruments. Measurements with H ∥ a∗ were carried +out at the Thermal Single Crystal Diffractometer ZE- +BRA at the Swiss Spallation Neutron Source, SINQ, +in the Paul Scherrer Institut (PSI, Switzerland). +The +diffractometer was used in conjunction with a 3He-4He +dilution refrigerator and a 6-T magnet. +The crystal +was aligned with its a∗ axis vertical, the same direc- +tion as the applied magnetic field. Neutron wavelengths +of λ = 2.314 ˚A and 1.383 ˚A were selected, provided by +the PG(200) and Ge(220) monochromators. Additional +measurements with H ∥ c were carried out in the time- +of-flight diffractometer WISH at the ISIS facility in the +Rutherford Appleton Laboratory, in the United King- +dom. The sample was mounted with its c axis vertical +and parallel to the magnetic field. A 3He-4He dilution +refrigerator and a 10-T magnet were used to access the +ordered states in Nd3BWO9. +III. +EXPERIMENTAL RESULTS +A. +Magnetic susceptibility +Figure 2 shows inverse susceptibility measurements for +probing fields applied along the crystallographic direc- +tions a∗b, and c. +Down to the lowest accessible tem- +perature of 1.8 K, these data show no sign of magnetic +ordering. +A fit of the experimental data to a Curie-Weiss model +is shown overlaid on the experimental results. A good +TABLE I. Fitting parameters from the Curie-Weiss model for +data shown in Fig. +2. +200 K ≤ T ≤ 300 K 20 K ≤ T ≤ 60 K +θW (K) +µeff (µB) +θW (K) µeff (µB) +H ∥ a∗ +-54.3 +3.76 +-3.78 +2.94 +H ∥ b +-54.7 +3.79 +-3.82 +2.90 +H ∥ c +-59.2 +3.77 +-3.68 +2.91 +agreement is found for data above 130 K, with a large, +negative Weiss temperature. The resulting Weiss tem- +peratures, θW are given in Table. I, as well as the cor- +responding effective magnetic moments extracted from +the Curie constants as C = NAµ0µ2 +eff/(3kB). The ob- +tained effective magnetic moments are close to the value +expected for a free Nd3+ ion: µeff = gJ +� +J(J + 1)µB = +3.6µB. Importantly, the susceptibility data show little +dependence on the direction of the magnetic field, which +suggests that, the resulting magnetic anisotropy remains +quite small. +Our results are consistent with those re- +ported in Ref.[21] on polycrystal samples. +Below 130 K a clear deviation from the high temper- +ature fit is observed. +This is roughly consistent with +the existence of a crystal electric field (CEF) level at +15.9 meV (see below), signaling the total depletion of +the population of the first excited state. A Curie-Weiss +analysis is heavily affected by the partial population of +excited multiplets and lead to an overestimation of ex- +change parameters and exchange couplings. Therefore, +an additional fit to a Curie-Weiss law for a tempera- +ture range far enough from the CEF resonance has been +performed. +The results are also summarized in Table +I. Temperatures in the range between 20 K and 60 K +were considered for this fit. The resulting Weiss temper- +atures are much reduced compared to the high temper- +ature fit. However, they still reflect a predominant an- +tiferromagnetic interaction in Nd3BWO9. The effective +magnetic moments are also reduced with respect to their +high temperature value, yielding an average moment of +µeff = 2.92µB. +B. +CEF level scheme +The inelastic neutron scattering spectra are shown in +Fig. 3. +Large intensity at zero energy transfer corre- +sponds to quasielastic scattering. Three resonances are +identified at 15.9, 32.8, and 43.7 meV, which we ascribe +to CEF induced levels due to their temperature depen- +dence. Importantly, no resonance is found below 15.9 +meV. Since the total angular momentum J = 9/2 of the +free Nd3+ is expected to be fully split into five Kramers +doublets, this suggests that the low temperature physics +of Nd3BWO9 can indeed be described in terms of the +lowest laying doublet, giving rise to an effective two-level +system well below ∆ = 15.9 meV ≈ 180 K. +3 + +0 +10 +20 +30 +40 +0 +0 +0 +ħω (meV) +T = 1.5 K +T = 100 K +T = 300 K +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Ef = 14.7 meV +2θ = 10° +Intensity (arb. units) +FIG. 3. Inelastic neutron scattering intensity at a constant +scattering angle for three different temperatures. The final +energy of Ef= 14.7 meV was fixed and incident energy var- +ied, fixing a 10 degree scattering angle. CEF resonances are +indicated by black arrows. An offset of 0.25 and 0.50 units +was added for visibility, a dashed line indicates the reference +zero for those data sets. +C. +Specific heat +Specific heat as a function of temperature and mag- +netic field is used to unveil the magnetic phase diagram +of Nd3BWO9 at ultra-low temperatures. Data obtained +at zero field are shown in Fig. 4. Nd3BWO9 shows an up- +turn in specific heat below 4 K with two clearly distinct +features [Fig. 4(a)]. Around 1 K, a hump in specific heat +suggests the onset of short-range magnetic correlations +[24]. At TN = 300 mK we found a sharp lambda anomaly +representing the transition into magnetic long range or- +der. +Below TN the specific heat signal remains large +down to the lowest accessible temperatures in our setup, +likely due to nuclear specific heat from the rare-earth +ions. In order to understand exactly the nature of the +magnetic specific heat, we have examined the different +contributions and subtracted them from the measured +total specific heat. +To estimate the phononic contribution, we synthesized +the non-magnetic isostructural material La3BWO9 and +measured its specific heat in the same range of temper- +atures. +This is shown in Fig. 4(a) and represents the +lattice contribution, CL, in Fig. 4(b). +An accurate estimation of the nuclear contribution to +specific heat is usually much more complicated, as a +1 +10 +100 +T (K) +0 +10 +20 +30 +40 +50 +Cp (J mol-1 K-1) +Nd3BWO9 +Nd3BWO9 +TN +La3BWO9 +0.1 +0.4 +1 +4 +10 +T (K) +Rln(2) +0 +10 +20 +Cp/T (J mol-1 K-2) +CL +CN +Ctot +Cmag +0 +1 +2 +3 +4 +T (K) +0 +2 +4 +6 +8 +Smag (J mol-1 +NdK-1) +(a) μ0H = 0 T +(b) +(c) +TN +FIG. 4. +(a) Total specific heat at zero magnetic field for +Nd3BWO9 and the nonmagnetic isostructural compound +La3BWO9. +Nd3BWO9 shows a substantial magnetic con- +tribution to specific heat below 3 K. (b) Total specific heat +(open circles) and magnetic specific heat (filled circles) after +subtraction of lattice and nuclear degrees of freedom. Lat- +tice (CL) and nuclear (CN) contribution are estimated as +discussed in the text. A lambda anomaly can be found at +TN = 0.30 K, signaling the onset of long-range magnetic or- +der. (c) The magnetic entropy per Nd3+ ion saturates above +3 K. A dashed line represents the expected value for a two- +level system at infinite temperature. +variety of effects has to be considered. +These include +dipole and quadrupolar splitting, or hyperfine coupling +between nuclei and electrons (which can be quite signif- +icant in magnetically ordered materials). +Neodymium +has two isotopes with nonzero dipolar and quadrupolar +momenta, out of its 7 stable isotopes. Following the rea- +soning in Ref. [25], the effect of quadrupolar splitting is +assumed to be small compared to that of hyperfine cou- +pling, and we neglect it here. In a magnetized phase, +local fields are expected to be sizable and therefore hy- +perfine coupling may significantly contribute to specific +heat. The contribution from dipole field splitting from a +single isotopic species is given by +4 + +Cp/T (J/molK-2) +(a) H || a* +0 +0.5 +1 +1.5 +T (K) +0 +20 +40 +60 +80 +Cp/T (J/molK-2) +0 T +0.85 T +0.55 T +1.2 T +0 +10 +20 +30 +40 +50 +60 +70 +0 T +0.85 T +0.975 T +(b) H || c +FIG. 5. Typical temperature scans of specific heat for differ- +ent fixed values of magnetic field applied along (a) H ∥ c and +(b) H ∥ a∗. An offset of 15 J/mol/K2 has been added for +visibility. Solid filled triangles show features associated with +the phase transitions discussed in the main text. +CH,i = +NAkB +α2 +i +4I2 +i +� +� +1 +sinh2 � +αi +2Ii +� − +(2Ii + 1)2 +sinh2 � +(2Ii+1)αi +2Ii +� +� +� +(1) +where αi = AH(µNd +Hyp/gJ)Ii/kBT, and Ii is the nuclear +spin, gJ = 8/11 (Land´e factor for Nd), NA is the Avo- +gadro constant, and kB the Boltzmann constant. AHyp +represents the strength of the hyperfine coupling and +here we made a second approximation. We assume all +the nuclei couple equally to the electron density and the +value of AHyp is approximated as that of Nd metal [26]. +µNd +Hyp denotes the static dipole moment of the Nd3+ ions. +This is precisely the origin of the local field and for its +value we chose the averaged effective magnetic moment +from the magnetic susceptibility data at low tempera- +tures µNd +Hyp = 2.914µB. Finally, the different species are +summed, weighted by their isotopical abundance to ob- +tain the temperature dependence of nuclear specific heat. +This model with no free parameters is in excellent +agreement with the lowest temperature data, as shown in +Fig. 4(b). Having modeled the nuclear specific heat, the +magnetic specific heat can be extracted by subtraction. +The magnetic specific heat was subsequently integrated +to obtain the temperature dependence of magnetic en- +Cp/T (J/mol K-2) +150 mK +250 mK +350 mK +500 mK +800 mK +0 +0.5 +1 +1.5 +2 +2.5 +3 +0H (T) +0 +20 +40 +60 +Cp/T (J/mol K-2) +(a) H || a* +0 +20 +40 +60 +80 +150 mK +250 mK +350 mK +500 mK +800 mK +(b) H || c +* +FIG. 6. Typical field scans of specific heat measured at con- +stant temperature in Nd3BWO9 for (a) H ∥ c and (b) H ∥ a∗. +An offset of 10 or 15 J/mol/K2 is added for visibility be- +tween the scans for (a) and (b), respectively. +Solid filled +triangles show features associated with the phase transitions +discussed in the main text. Black arrows signal the existence +of broad double-hump features, described in the text. +An +asterisk shows a feature above the saturation transition. +tropy, depicted in Fig. 4(c). The high temperature trend +of this quantity approaches the value of R ln(2), the ex- +pected value of a two-level system. +In a magnetic field, a simple estimation of the contri- +bution of the nuclear spin due to Zeeman splitting could +not account for the effects observed here. Low tempera- +ture data in Fig. 5 show that the effect of nuclear specific +heat is of the same order of magnitude up to 1.2 T and it +is not strongly field dependent. This suggests that also +in a field the main contribution comes from hyperfine +coupling. However, a quantitative determination of this +effect under magnetic fields becomes paramount. +The evolution of the specific heat of Nd3BWO9 under +magnetic fields is shown in Fig. 6 for fields along two +different crystallographic directions. The total heat ca- +pacity is displayed here, without subtraction of lattice +or nuclear degrees of freedom. Typical-field scans show +a number of anomalies that are consistent with the exis- +tence of three different phases with static magnetic order +at low temperatures. +Up to three distinct features can be observed for +H ∥ a∗ at the lowest temperature, at 0.45, 0.62 and 1.05 +T and are marked with triangles in Fig. 6(a).These fea- +5 + +tures are rather spread in fields, specially at saturation. +However, the existence of thermodynamic transitions has +been confirmed by neutron diffraction (as discussed be- +low). The two lower field anomalies move apart as the +temperature is increased. The two higher field anoma- +lies merge at 0.25 K, denoting the highest temperature +of the ordered phase. Though the specific heat anoma- +lies in Fig. 6(a) are too broad for a precise estimation +of the upper critical field, this quantity can be deduced +from magnetocaloric effect measurements (see below). +For fields orthogonal to the hexagonal plane (H ∥ c) +at the lowest temperature one finds two anomalies at 0.5 +T, 0.8 T and a sharper one at 0.95 T. [Fig. 6(b)] Notably, +in this configuration the different anomalies appear nar- +rower than for H ∥ a∗, especially at the saturation field. +The first two anomalies move apart as the temperature +is increased, while the higher field anomaly barely shifts +in position up to 0.2 K. The low field anomaly shifts to- +wards zero field and disappears as TN is reached. The +two high-field anomalies merge at T = 0.2 K. From the +high field anomaly we extract an estimate of the satura- +tion field of µ0Hc = 0.975(3) T. Interestingly, an extra +feature can be identified above saturation (asterisk in +Fig. 6(a)). +This feature shifts to higher fields as the +temperature is increased and decreases rapidly in mag- +nitude. Above 0.2 K it is hardly identifiable. +Finally, double-hump features can be observed above +0.3 K for both magnetic field configurations. These are +significant up to the highest measured temperatures and +particularly prominent around the saturation field (black +arrows in Fig. 6). +For H ∥ c the amplitude of these +modulations is larger than in H ∥ a∗. Such features are +often associated with a low-dimensional crossover from +the zero field disordered phase to the fully polarized state +without the occurrence of a phase transition [27–30]. +D. +Magnetocaloric effect +Magnetocaloric +effect +(MCE) +measurements +in +Nd3BWO9 provide key information on the nature of the +various phase transitions found with other techniques +[31–33]. +Representative temperature profiles are sum- +marized in Fig. +7. Several crossings can be observed +for both configurations. +The observed anomalies are +too broad to assign exactly a transition point. +Due +to the proximity of the thermodynamic transitions +in the phase diagram, features corresponding to both +transitions merge and overlap. +In our measurements +the field is swept slow enough as to ensure equilibrium +conditions. +Data measured with H ∥ a∗ show mostly symmetric +features around the crossing points. +Particularly, this +suggests that the measured phase transitions are of sec- +ond order. In contrast, the low temperature profiles for +H ∥ c show two distinct behaviors. At 0.6 T one finds a +roughly symmetric feature, suggesting again a second or- +der phase transition. This is different at 0.975 T, where +a very asymmetric feature appears, pointing to a first +0 +μ +μ +1 +2 +0H (T) +0.1 +0.2 +0.3 +0.5 mT/s +0.5 mT/s +0.4 +0.5 +0.6 +0.7 +T (K) +0 +1 +2 +0H (T) +(b) H || c +(a) H || a* +FIG. 7. Plots of the magnetocaloric effect in Nd3BWO9 for +different base temperatures and fields applied along (a) H ∥ +a∗ and (b) H ∥ c. For all the scans, red (blue) color represents +data measured while driving the magnetic field up (down). +A ramping rate of 0.5 mT/s was used throughout all the +measurements. +Small prominent features (specially at low +fields) are spurious and the result of an unstable platform. +order or discontinuous transition. +Finally, the absence of anomalies above the saturation +field for H ∥ c must be noted. The features observed in +the fully polarized phase in Fig. 6(b) leave no trace in +the MCE data in the same configuration. +The MCE technique is based on the change of entropy +in a magnetic system as it is driven through a phase +transition, crossover, level crossing, etc. Consequently, +one can retrieve the change in entropy in a system from +the change in temperature against magnetic field [31]. +Under equilibrium conditions, we obtain the entropy as +∆S = S(H) − S0 = − +� +κT − Tbath +T +dt +(2) +where κ is the thermal conductivity of the thermal +link in the calorimeter, T is the sample temperature, and +Tbath is the thermal bath temperature. Integration of the +data in Fig. 7 gives rise to the entropy maps displayed in +Fig. 8. The data above 0.2 K are a good picture of the +entropy stored in the magnetic subsystem. However, for +temperatures below 0.15 K imperfect equilibrium condi- +tions prevent a reliable estimation of entropy. A strong +accumulation of entropy is observed above the saturation +transitions for both field configurations. The position of +the peaks in entropy match the estimated position of the +critical fields from specific heat. For H ∥ a∗, the maxima +in entropy at different temperatures were used to obtain +an accurate estimate of the upper critical field. +A fit +to the data provides Hc,a∗ = 1.187(13) T. This value is +consistent with the various probes used in this study. +6 + +0 +0.5 +1 +1.5 +2 +0 +0.2 +0.4 +0.6 +0.8 +T (K) +μ0H (T) +0 +0.2 +0.4 +0.6 +0.8 +T (K) +(a) H || a* +A +B +S (J molNd K-1) +-1 +0 +1 +2 +3 +(b) H || c +A +C +FIG. 8. Entropy maps in false color for two magnetic field +orientations. In false color plots, the change in entropy ex- +tracted from magnetocaloric data from Fig. 7. Filled circles +(diamonds) denote phase anomalies associated with phase +transitions from specific heat field (temperature) scans for +(a) H ∥ a∗ and (b) H ∥ c. +In (a) red squares show the +maxima of entropy at the measured temperatures. A white +dashed line is a power law fit to the data showing the best +estimate for the upper critical field. +E. +Magnetization +The evolution of magnetization under a magnetic field +provides insight on the type of order in Nd3BWO9. +Strikingly, a fractional magnetization plateau is observed +for all measured configurations, as displayed in Fig. 9. +The value of magnetization is consistent with a fractional +m=1/3 plateau and spans a range of fields of 0.2-0.3 T. +In addition, the zero field phase shows zero magnetiza- +tion for all applied fields, which indicates the realization +of a gapped phase at T = 0. Magnetization data for in- +equivalent directions in the hexagonal plane show very +similar behavior, but differ from the results perpendicu- +lar to the plane. +For H ∥ a∗ and H ∥ b the zero magnetization phase +extends up to 0.4 T. Above 0.5 T the system transitions +into the factional magnetization plateau state up to a +0 +0.5 +1 +1.5 +2 +0H (T) +0 +0.5 +1 +1.5 +2 +2.5 +M ( B/Nd3+) +0 +2 +4 +6 +8 +10 +12 +Ms,c/3 +(a.u.) +H || a* +H || b +H || c +T = 120 mK +Magnetometer +H||c +(0,2,0), 55 mK +H||a* +(0,0,2), 130 mK +Ms,a*/3 +Ms,b/3 +FIG. 9. Magnetization per Nd3+ ion measured at 120 mK +in Nd3BWO9 for magnetic fields along the crystallographic +directions a∗, b, and c from bulk measurements (left axis). +Magnetization extracted from neutron diffraction intensity +of nuclear reflections is superimposed to the corresponding +bulk data. Plotted is the rescaled square root of the static, +magnetic structure factor S∞ +z,z(q) (right axis). The measured +reflections (Q) are indicated in the figure. Two of the data +sets have been offset vertically by 0.5 and 1.0 units to improve +visibility (a dashed line indicates their respective zero). The +magnetization value at 1/3 of saturation is indicated for each +individual data set by an arrow next to the plateau state. +marked limit at 1 T. The transition into the fully satu- +rated phase is gradual between 1 T and 1.3 T. +In contrast, much sharper features are found when +fields H ∥ c are applied. A non-magnetizable phase ap- +pears up to 0.5 T, above which the system jumps rapidly +into the plateau state at 0.65 T. The plateau terminates +in a first-order jump to saturation around 1 T. Notably, +despite the presence of a first-order transition, our mea- +surements did not show signatures of hysteresis across +the saturation transition for H ∥ c. +Saturation fields extracted from magnetization data +are consistent with those found in the specific heat +data. The values for saturation magnetization show little +anisotropy, finding 1.34(6) µB, 1.31(3) µB, and 1.35(4) +µB per magnetic ion for configurations a∗, b, and c re- +spectively. It suggests a nearly isotropic g-tensor in the +material. +F. +Magnetic torque +Magnetic torque is arguably the most sensitive tech- +nique to magnetic phase transitions. +Raw data are +presented as the change in the measured capacitance +7 + +-0.2 +-0.15 +-0.1 +-0.05 +0 +-0.5 +0 +0.5 +-0.4 +-0.2 +0 +0.2 +C (fF) +-2 +-1 +0 +1 +dC/dH (fF/T) +0 +1 +2 +0 +0.2 +0.4 +0.6 +0 +1 +2 +0H (T) +-0.5 +0 +0.5 +1 +1.5 +2 +2.5 +175 mK +200 mK +225 mK +250 mK +275 mK +300 mK +350 mK +400 mK +500 mK +600 mK +(a) H || a* +(b) H || a* +(c) H || b +(d) H || b +(e) H || c +(f) H || c +FIG. 10. Magnetic torque (∆C) and its field derivative mea- +sured at constant temperatures against magnetic field, for +three field orientations: (a,b) a∗, (c,d) b, and (d,e) c. For all +data sets, a reference value of capacitance at zero field has +been chosen and subtracted. Black arrows indicate features +that may be identified with phase transitions. +∆C = C(H) − C(H = 0 T) as a function of magnetic +field for each temperature (Fig. 10). The torque data +show strong differences between the measurements in the +basal plane and perpendicular to it, but the obtained re- +sults are very similar for both measurements within the +plane. The raw data show some structure, but not sharp +features as is customary in such measurements. Phase +transitions are best captured in the first derivative of the +raw data 10. +Field derivative data show features that correspond +with transitions observed in the other techniques re- +ported in this study. Direct comparison with the other +data sets is necessary to pinpoint what anomalies repre- +sent real phase transitions. These features are indicated +with arrows in the field derivative data [Fig. 10(b), 10(d), +and 10(f)]. For H ∥ a∗ two distinct anomalies can be ob- +served in the scan at 175 mK, at 0.68 T and at 0.99 T. +These correspond to the lower and upper boundaries of +the plateau phase. Data for H ∥ b show three anomalies +at 0.68 T, 1.02 T and 1.28 T. The lower fields correspond +again to the boundaries of the plateau phase. Notably, +these two anomalies come together as the temperature is +increased and disappear above 300 mK. The higher field +anomaly, which is broader and less sharp, corresponds +to the crossover into the fully saturated state. Finally, +fields applied along the c direction reveal a completely +different structure. Three anomalies can be identified at +0.48 T, 0.71 T, and 0.95 T. The associated transitions in +this case are the boundaries of the plateau for the high +field features and the transition from the low field phase +to paramagnet for the low field anomaly. The low field +features, though weak, fade away as the transition tem- +perature is overcome. The high field anomaly remains up +to the highest temperatures representing the crossover of +the system into the fully polarized pseudospin. +G. +Neutron diffraction +We resorted to single-crystal neutron diffraction to in- +vestigate the magnetic structures realized in the low field +and the plateau phases. Figure 11 summarizes the re- +sults obtained from the different instruments. The field +dependence of the order parameter is depicted for both +field configurations, which is in perfect agreement with +our thermodynamic measurement data. +Zero field data from both experiments unveil a com- +mensurate phase with propagation vector Q = (0, 0,1/3). +Fig. +11(a) and Fig. +11(b) show that magnetic reflec- +tion (1,1,-1/3) is present throughout phase A for both +field orientations. +The phase is consistent with fully +commensurate order, which leads to the appearance of a +magnetic supercell, as is shown in Fig. 1(d). Integrated +intensity of reflection (1,1,-1/3) drops at the intermedi- +ate transition field, above which a different type of or- +der is found depending on the direction of the magnetic +field. For phase B (H ∥ a∗) we found magnetic reflec- +tions (0,1/2,1/2) and (1/2,0,1/2). These reflections van- +ish at fields slightly below saturation. Finally, phase C +(H ∥ c) has been found to realize order with propaga- +tion vector (1/3,1/3,1/3). Magnetic reflection (1/3,1/3,- +1/3), which is inequivalent to the former, has also been +found. Fig. 11(b) shows an abrupt drop in the intensity +of reflection (1/3,1/3,1/3), consistent with a first order +transition to saturation. +An external magnetic field induces a ferromagnetic +component in every lattice site that gives rise to the +bulk magnetization. This produces extra scattering pro- +portional to the square of the induced magnetic mo- +mentum at the position of each nuclear peak . Fig. 9 +shows the uniform magnetization density extracted from +two nuclear reflections: (020) for H ∥ a∗ and (200) for +H ∥ c. We selected reflections where nuclear contribu- +tion is minimal while a measurable magnetic intensity +can be observed. The zero-field integrated intensity is +subtracted from the data in a field to obtain the cor- +8 + +0 +2 +4 +6 +0.1 +0 +0.5 +1 +1.5 +0H (T) +0 +5 +10 +Integrated Intensity (arb. units) +0.2 +0.3 +0.1 +0.3 +0.1 +0.4 +T (K) +0 +1 +2 +3 +4 +5 +Int.(arb. units) +0.2 +0.4 +T (K) +0.36 +0.35 +0.34 +0.33 +0.32 +(1,1,-l) (r.l.u.) +Q = (1, 1, -1/3) +Q = (0, 1/2, 1/2) +Q = (1, 1, -1/3) +Q = (1/3, 1/3, 1/3) +T = 120 mK +A +B +C +A +(a) +(b) +μ0H || a* +ZEBRA +ZEBRA +T = 55 mK +μ0H || c +WISH +(d) +µ0H = 0 T +0.1 +1.0 +Int. +(a. u.) +(c) +Q = (1, 1,-⅓-δ) +µ0H = 0 T +FIG. 11. Results from single crystal magnetic neutron diffrac- +tion. (a,b) Field dependence of the integrated neutron inten- +sity at the magnetic propagation vectors for: (a) H ∥ a∗ +(ZEBRA, PSI) and (b) H ∥ c (WISH, ISIS). Note that in (a) +the intensity of the (0,1/2,1/2) reflection has been rescaled by +×0.1. In (b) the limits of the ordered phases are highlighted +and shown with arrows. (c) Evolution of the integrated in- +tensity of the reflection (1,1,-1/3) with temperature at zero +magnetic field. (d) Incommensuration of the propagation vec- +tor at zero field against temperature, shown as a shift in the +peak position of the (1,1,l) reflection. +responding magnetic scattering. Longitudinal magneti- +zation is then plotted as the square root of mangetic +intensity. The agreement with bulk measurements is re- +markable and further highlights the existence of magne- +tization plateaus regardless of field orientation. +Finally, zero field neutron diffraction reveals an incom- +mensurate state between the low temperature ordered +phase and the paramagnetic phase. +The onset of in- +commensurate magnetic order appears around 0.34 K at +the wavevector Q = (0, 0, 1/3 + δ). +Temperature de- +pendence of the intensity around the (1,1,l) reflection +in Fig. 11(d), where the peak position is superimposed, +shows this incommensuration. +Reduction of the tem- +perature leads to a change in the incommensurate prop- +agation vector roughly linearly with temperature. +At +0.26 K the propagation vector locks into the commensu- +rate Q = (0, 0, 1/3), as observed for the low temperature +structure. The robustness of this evolution to commen- +suration has been verified for several additional magnetic +reflections. +IV. +DISCUSSION +The purported breathing kagome structure is shown in +Fig. 1. Unequal Nd-Nd distances and Nd-O-Nd angles +result in inequivalent exchange parameters for neighbor- +ing corner-sharing triangles [21]. This is represented by +the exchange constants J△ and J▽, respectively. How- +ever, a crystallographic analysis cannot rule out the ex- +istence of interaction between adjacent kagome planes. +Due to the short distances between kagome planes, the +topology of the exchange interaction in Nd3BWO9 is +likely three dimensional. In fact, the shortest superex- +change Nd-O-Nd pathway (nearest neighbors, J1) links +rare-earth ions belonging to different kagome planes [Fig. +1(b)]. These couplings are arranged into isolated twisted +3-legged spin tubes, one-dimensional structures that ex- +tend perpendicular to the kagome planes [see Fig. 1(c)]. +Noteworthy, the resulting structure considering only +nearest neighbor coupling is bipartite. +A single tube +would show no frustration, highlighting the relevance +of further neighbor interactions. +A three-dimensional +structure with several exchange parameters may have +to be regarded, as opposed to the originally suggested +kagome structure. Yet, the onset of static magnetic or- +der is extremely suppressed by the strong magnetic frus- +tration f = −θW /TN ≈ 12.6, confirmed from magnetic +susceptibility. +Six magnetic rare-earth Nd3+ ions occupy general +Wyckoff positions in the unit cell. The reduced point +symmetry around the Nd3+ ions [Fig. +1(e)] fully lifts +the degeneracy of the total angular momentum levels (J += 9/2) into five Kramers doublets. The strong CEF iso- +lates a single Kramers doublet with a large gap to excited +multiplets. The obtained zero-field entropy is consistent +with a value of S = R ln(2). +These two observations +show that Nd3BWO9 can be described as an effective +spin S = 1/2 system below 100 K. However, the low +symmetry precludes attempts to identify unequivocally +a CEF-Hamiltonian and to extract the eigenstates of the +lowest energy multiplet. +Both magnetization and susceptibility suggest very lit- +tle magneto-crystalline anisotropy. Susceptibility mea- +surements suggest no preferential direction in the high +temperature paramagnetic state. +In addition, low- +temperature magnetization in the fully saturated pseu- +dospin phase shows no increase up to the highest probed +fields. The increase of magnetization may be a rough +estimator of the eigenstate admixing due to anisotropies +(via Van-Vleck terms). No appreciable change in mag- +netization is observed up to 2 T, indicating the total +magnetization in the restricted pseudospin subspace is +likely to be an approximately good quantum number. It +9 + +is, thus, likely that the low energy physics in Nd3BWO9 +can be described in terms of a highly symmetric spin +Hamiltonian. A small axial anisotropy may be needed +to account for the sharp features found for H ∥ c. +To map out the phase diagram in the low tempera- +ture regime for Nd3BWO9 we use specific heat measure- +ments. Using a combination of all outlined techniques,we +identify several regions of magnetic order. +As shown +in Fig. 12, the system reveals complex behaviour, with +two different domes of long-range order observed for each +configuration. +A low field phase (A) extends roughly up to 0.6 T +for both studied orientations. This phase possesses com- +mensurate order with propagation vector Q =(0,0,1/3). +Magnetization measurements show that this phase is +hardly magnetizable, suggesting a gapped state in this +field range. Although further analysis is needed to un- +derstand the magnetic structures of the different phases +in detail, a series of general remarks can be deduced +from the data. For phase A, the presence of reflections +(0,0,±2/3) forbids the existence of a collinear structure +with spins parallel to c. Thus, a coplanar structure in +the ab plane is likely realized. +By increasing the magnetic field the system transitions +into a field-induced ordered phase. A field H ∥ a∗ leads +to the fractional m = 1/3 plateau phase B, characterized +by a propagation vector Q =(0,1/2,1/2). The additional +presence of wavevectors (1/2,0,1/2) and equivalent sug- +gests a multi-Q structure or the presence of domains in +the B phase. +Strikingly, the order realized in the plateau is com- +pletely different when fields are applied in the basal ab +plane or perpendicular to it. In a field H ∥ c, phase C +is found with propagation vector Q =(1/3,1/3,1/3). In +contrast, saturation H ∥ c occurs through a sharp first +order phase transition. Magnetocaloric effect supports +this claim. A tricritical termination point appears where +first and second order transition lines converge as shown +in Fig. 12(b), at 0.20 K and 0.975 T. The presence of +magnetic reflections (1/3,1/3,-1/3) and equivalent also +indicates a complex spin texture, with either a multi-Q +structure or the presence of domains.While here domains +may be consistent with the observed first order transition +to saturation, it is not possible at this stage to exclude +either possibility. +The existence of a tricritical point only for one ori- +entation may be related to the large spin-lattice inter- +action stemming from strong spin-orbit coupling. The +transition to saturation for H ∥ c can be prematurely +precipitated via an ’order by distortion’ [34] mechanism. +A gain in magnetic energy compensates a small loss in +elastic energy, leading to a first order transition to sat- +uration. Though our neutron diffraction data show no +evident change in the space group or lattice parameters +in the high field phase, a detailed study would be neces- +sary to discard this possibility. +Phases A and B appear to merge below 100 mK at +0.56 T. A first order phase transition is speculated be- +tween A and B, with a termination bicritical point where +0 +0.2 +0.4 +0.6 +0.8 +T (K) +0 +5 +10 +15 +Cp/T (J mol-1K-2) +(b) µ0H || c +(a) µ0H || a* +A +A +C +B +0 +0.5 ? +(0,0,⅓) +(0,0,⅓) +(0,½,½) +(⅓,⅓,⅓) +1 +μ0H (T) +0 +0.2 +0.4 +0.6 +FPP +20 +25 +30 +FPP +1.5 +2 +FIG. 12. Magnetic phase diagram of Nd3BWO9 in a mag- +netic field applied along the principal directions: (a) a∗ and +(b) c. The background depicts false color maps of Cp(H, T), +with a shared color scale. Symbols: white circles and dia- +monds represent transitions obtained from field and tempera- +ture scans of specific heat, respectively. Green squares repre- +sent the phase boundaries extracted from neutron diffraction +data in Fig. 11. Upward-facing blue triangles show transi- +tions extracted from bulk magnetization, downward facing +pink triangles transitions from magnetic torque. A red dia- +mond denotes the estimated position of the tricritical point +for H ∥ c. An orange star shows the upper critical field es- +timated in Fig. 8. Solid and dashed lines are a guide to the +eye, representing second and first order transitions, respec- +tively. The different phases are labeled as: A, B, C and Fully +Polarized Pseudospin (FPP). The ordered phases show their +corresponding magnetic propagation vector, as discussed in +the text. +all phase boundaries meet. Neutron diffraction data in +Fig. 11(a) indicate the phases will likely merge slightly +below 120 mK. Interestingly, between A and C the phase +boundaries seem to develop smoothly down to the lowest +measured temperatures and converge at T = 0. Neutron +data at 55 mK show the phases are still separated by +paramagnetism at this temperature Fig. 11(b). A highly +non-trivial order-to-order quantum phase transition may +take place between A and C at zero temperature (indi- +cated with a question mark). Precise measurements in +10 + +the vicinity of these phase transitions would provide im- +portant insight on their nature. However, the strong sig- +nal from nuclear degrees of freedom and the extremely +low temperatures involved prevent further investigation. +The double hump features in specific above the transi- +tion temperature represent a crossover from the low field +disordered phase to the high field polarized phase. Such +features can be understood in terms of models of hard- +core bosons and are usually associated with quantum +critical behaviour in one dimensional magnets [35, 36]. +They can be observed in several quasi-1D antiferromag- +nets [27, 28], and therefore suggest the relevance of one- +dimensional correlations for the physics of Nd3BWO9. +These modulations are accentuated when the field is +applied along the direction of the spin tubes (H ∥ c). +Notably, despite the first-order nature of the transition +these modulations are still present and seem to be most +prominent around the tricritical termination point. +Plateaux in the magnetically ordered sector are a hall- +mark of frustrated magnets. The existence of magneti- +zation plateaus (and particularly at 1/3 of saturation) +has been predicted for both kagome antiferromagnets +[37, 38], as well as for a model of isolated spin tubes with +a weak triangular rung interaction (see Fig. 1(c)) [39–41]. +The presence of magnetization plateaux independent of +the orientation of the applied magnetic field suggests an +stabilizing interplay between frustration mechanisms. +Finally, +we comment on the origin of the ob- +served incommensurate-commensurate (IC-C) transi- +tion. +Dipolar interactions are not uncommon in the +study of rare-earth based magnets due to their large +magnetic moments (µ(Nd3+) = 3.6µB) [42]. Their sta- +bilizing role on incommensurate structures at temper- +atures above commensurate order has been argued in +several systems with hexagonal structure [43–45]. The +realization of a IC-C transition at zero field opens the +question to the importance of dipolar coupling for the +low temperature properties of Nd3BWO9. +We conclude the discussion by comparing Nd3BWO9 +to its isostructural compounds. To this point, only two +other systems in the R3BWO9 family have been studied +at low temperatures. NMR spectra reveal an inconm- +mensurate magnetic structure in Sm3BWO9[46], while a +dynamical state has been proposed for Pr3BWO9 at tem- +peratures as low as 90 mK [47]. These two systems have +been analyzed in terms of 2D Hamiltonians based on +the existence of the kagome planes. However, our work +highlights the presence of three-dimensional couplings +and the potential dominance of the one-dimensional spin +tubes. The discussion outlined here is inevitably rele- +vant for investigations on other members of the family +of R3BWO9. +V. +CONCLUSION +We have presented a comprehensive study of the low +temperature physics of the highly frustrated quantum +antiferromagnet Nd3BWO9. Calorimetric and neutron +scattering data support the realization of strongly in- +teracting effective spin-1/2 moments below 100 K. Our +measurements reveal a complex magnetic phase diagram +below 300 mK, featuring magnetization plateaux for all +field orientations. The ordering brings about important +insight about the relevant magnetic interactions. Differ- +ent magnetic structures are realized in the plateau states, +depending on the direction of the magnetic field. Even +though the phase diagram is considerably anisotropic, it +can be described in terms of an effective S = 1/2 pseu- +dospin. +The experimental framework provided here is key for +future studies on Nd3BWO9 and in the remaining mem- +bers of the R3BWO9. +The presence of the spin-tube +structures perpendicular to the kagome planes is indi- +cates that the magnetic properties of these highly frus- +trated systems cannot be understood in terms of kagome- +lattice physics. Further work is needed to fathom the +effective dimensionality of the magnetic lattice. +VI. +ACKNOWLEDGEMENTS +This work is supported by a MINT grant of the Swiss +National Science Foundation. +[1] L. Facheris, K. Y. Povarov, S. D. Nabi, D. G. Mazzone, +J. Lass, B. Roessli, E. Ressouche, Z. Yan, S. Gvasaliya, +and A. Zheludev, Phys. Rev. Lett. 129, 087201 (2022). +[2] A. I. Smirnov, H. Yashiro, S. Kimura, M. Hagiwara, +Y. Narumi, K. Kindo, A. Kikkawa, K. Katsumata, A. Y. +Shapiro, +and a. L. N. Demianets, Phys. Rev. B 75, +134412 (2007). +[3] F. Levy, I. Sheikin, C. Berthier, M. Horvati´c, M. Taki- +gawa, H. Kageyama, T. Waki, and Y. Ueda, EPL (Eu- +rophysics Letters) 81, 67004 (2008). +[4] N. Wada, K. Ubukoshi, and K. Hirakawa, J. Phys. Soc. +Jpn. 51, 2833 (1982). +[5] M. Mourigal, M. Enderle, B. F˚ak, R. K. Kremer, J. M. +Law, A. Schneidewind, A. Hiess, and A. Prokofiev, Phys. +Rev. Lett. 109, 027203 (2012). +[6] V. K. Bhartiya, K. Y. Povarov, D. Blosser, S. Bet- +tler, Z. Yan, S. Gvasaliya, S. Raymond, E. Ressouche, +K. Beauvois, J. Xu, et al., Phys. Rev. Research 1, 033078 +(2019). +[7] E. Kermarrec, +R. Kumar, +G. Bernard, +R. Henaff, +P. Mendels, F. Bert, P. L. Paulose, B. K. Hazra, +and +B. Koteswararao, Phys. Rev. Lett. 127, 157202 (2021). +[8] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973). +[9] Y. Zhou, K. Kanoda, +and T.-K. Ng, Rev. Mod. Phys. +89, 025003 (2017). +[10] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 +(2016). +11 + +[11] J. R. Chamorro, T. M. McQueen, +and T. T. Tran, +Chem. Rev. 121, 2898 (2020). +[12] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, +M. R. Norman, and T. Senthil, Science 367 (2020). +[13] B. +Bernu, +C. +Lhuillier, +E. +Kermarrec, +F. +Bert, +P. Mendels, R. H. Colman, and A. S. Wills, Phys. Rev. +B 87, 155107 (2013). +[14] H. K. Yoshida, J. Phys. Soc. Jpn. 91, 101003 (2022). +[15] M. D. LeBlanc, M. L. Plumer, J. P. Whitehead, +and +B. W. Southern, Phys. Rev. B 88, 094406 (2013). +[16] H. Yoshida, +N. Noguchi, +Y. Matsushita, +Y. Ishii, +Y. +Ihara, +M. +Oda, +H. +Okabe, +S. +Yamashita, +Y. Nakazawa, A. Takata, et al., J. Phys. Soc. Jpn. 86, +033704 (2017). +[17] R. Okuma, +D. Nakamura, +T. Okubo, +A. Miyake, +A. Matsuo, K. Kindo, M. Tokunaga, N. Kawashima, +S. Takeyama, and Z. Hiroi, Nat. Comm. 10, 1 (2019). +[18] H. O. Jeschke, H. Nakano, and T. Sakai, Phys. Rev. B +99, 140410(R) (2019). +[19] M. Iqbal, D. Poilblanc, +and N. Schuch, Phys. Rev. B +101, 155141 (2020). +[20] S. Jahromi, R. Orus, D. Poilblanc, and F. Mila, SciPost +Phys. 9, 092 (2020). +[21] M. Ashtar, J. Guo, Z. Wan, Y. Wang, G. Gong, Y. Liu, +Y. Su, and Z. Tian, Inor. Chem. 59, 5368 (2020). +[22] A. Majchrowski, E. Michalski, and A. Brenier, J. Cryst. +Growth 247, 467 (2003). +[23] D. Blosser, L. Facheris, +and A. Zheludev, Rev. of Sci. +Instr. 91, 073905 (2020). +[24] S. E. Dutton, M. Kumar, M. Mourigal, Z. G. Soos, J.- +J. Wen, C. L. Broholm, N. H. Andersen, Q. Huang, +M. Zbiri, R. Toft-Petersen, and R. J. Cava, Phys. Rev. +Lett. 108, 187206 (2012). +[25] K. Kimura, S. Nakatsuji, J. J. Wen, C. Broholm, M. B. +Stone, E. Nishibori, +and H. Sawa, Nat. Comm. 4, 1 +(2013). +[26] B. Bleaney, J. Appl. Phys. 34, 1024 (1963). +[27] C. R¨uegg, K. Kiefer, B. Thielemann, D. F. McMor- +row, V. Zapf, B. Normand, M. B. Zvonarev, P. Bouil- +lot, C. Kollath, T. Giamarchi, S. Capponi, D. Poilblanc, +D. Biner, +and K. W. Kr¨amer, Phys. Rev. Lett. 101, +247202 (2008). +[28] D. Blosser, V. K. Bhartiya, D. J. Voneshen, and A. Zhe- +ludev, Phys. Rev. Lett. 121, 247201 (2018). +[29] S. Hayashida, D. Blosser, K. Y. Povarov, Z. Yan, +S. Gvasaliya, A. N. Ponomaryov, S. A. Zvyagin, +and +A. Zheludev, Phys. Rev. B 100, 134427 (2019). +[30] D. Flavi´an, S. Hayashida, L. Huberich, D. Blosser, K. Y. +Povarov, Z. Yan, S. Gvasaliya, and A. Zheludev, Phys. +Rev. B 101, 224408 (2020). +[31] V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. +86, 563 (2014). +[32] Y. Kohama, C. Marcenat, T. Klein, and M. Jaime, Rev. +Sci. Instrum. 81, 104902 (2010). +[33] Y. Kohama, J. Phys. Soc. Jpn. 91, 101004 (2022). +[34] O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. +Rev. Lett. 88, 067203 (2002). +[35] V. E. Korepin and N. A. Slavnov, Commun. Math. Phys. +129, 103 (1990). +[36] S. Sachdev, T. Senthil, +and R. Shankar, Phys. Rev. B +50, 258 (1994). +[37] T. Sakai and H. Nakano, Phys. Rev. B 83, 100405(R) +(2011). +[38] S. Capponi, O. Derzhko, A. Honecker, A. M. L¨auchli, +and J. Richter, Phys. Rev. B 88, 144416 (2013). +[39] J.-B. Fouet, A. L¨auchli, S. Pilgram, R. M. Noack, and +F. Mila, Phys. Rev. B 73, 014409 (2006). +[40] K. Yonaga and N. Shibata, J. Phys. Soc. Jpn. 84, 094706 +(2015). +[41] T. Sakai, M. Sato, K. Okunishi, K. Okamoto, +and +C. Itoi, in J. Phys., Vol. 400 (IOP Publishing, 2012). +[42] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 +(2000). +[43] H. Shiba and N. Suzuki, J. Phys. Soc. Jpn. 51, 3488 +(1982). +[44] N. Suzuki, J. Phys. Soc. Jpn. 52, 3199 (1983). +[45] R. S. Gekht and V. I. Ponomarev, Phase Transitions 20, +27 (1990). +[46] K.-Y. Zeng, F.-Y. Song, L.-S. Ling, W. Tong, S.-L. Li, +Z.-M. Tian, L. Ma, and L. Pi, Chinese Phys. Lett. 39, +107501 (2022). +[47] K. Y. Zeng, F. Y. Song, Z. M. Tian, Q. Chen, S. Wang, +B. Liu, S. Li, L. S. Ling, W. Tong, L. Ma, et al., Phys. +Rev. B 104, 155150 (2021). +12 + diff --git a/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/load_file.txt b/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb47ebc5a591f348b8eb1bc3eef9fdb09db98557 --- /dev/null +++ b/GtE5T4oBgHgl3EQfWA9Z/content/tmp_files/load_file.txt @@ -0,0 +1,1194 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf,len=1193 +page_content='Magnetic phase diagram of the breathing-kagome antiferromagnet Nd3BWO9 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Flavi´an,1, ∗ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nagl,1 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hayashida,1, 2 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan,1 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zaharko,3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fennell,3 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Khalyavin,4 Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan,1 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gvasaliya,1 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zheludev1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' † 1Laboratory for Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' ETH Z¨urich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 8093 Z¨urich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Switzerland 2Max-Planck-Institut f¨ur Festk¨orperforschung,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Heisenbergstraße 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 70569 Stuttgart,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Germany 3Laboratory for Neutron Scattering and Imaging,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Paul Scherrer Institut,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 5232 Villigen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Switzerland 4ISIS Facility,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rutherford Appleton Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Chilton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Didcot,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Oxon OX11 0QX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' United Kingdom (Dated: January 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 2023) The highly-frustrated rare-earth based magnet Nd3BWO9 is a promising candidate in the search for proximate spin liquid physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' We present a thorough investigation on single crystals of this ma- terial using bulk and microscopic techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization data reveal a fractional magnetization plateau for three different investigated field directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The magnetic phase diagram is mapped out from calorimetric data and exhibits several domes of magnetic order below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Propagation vec- tors for all ordered phases are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The results suggest complex ordering in this material, and unveil the existence of a commensuration transition of the propagation vector at zero magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A scenario where interplane exchange interactions are essential to a magnetic model of Nd3BWO9 is discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' INTRODUCTION Strongly frustrated quantum antiferromagnets (AFM) are known to realize a panoply of magnetic states due to the delicate equilibrium between the magnetic in- teractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In the presence of magnetic fields, the large ground state degeneracy is lifted in subtle and diverse ways, which leads to extremely rich phase di- agrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Realization of spin-density waves [1], magne- tization plateaus [2, 3] commensurate-incommensurate transitions [4], and even more exotic order like spin nematicity [5, 6] is not rare, particularly in quasi-low- dimensional systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The archetypal model in 2D frustrated magnetism is the kagome lattice Heisenberg S = 1/2 AFM (KHAF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The impossibility of satisfying all magnetic interactions in this lattice results in a macroscopic degeneracy of the ground state already at a classical level [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Turning to S = 1/2 spins promotes the quantum fluctuations on the ground state giving rise to highly non-trivial phases [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Arguably, the most intriguing state is the hypothesized Quantum Spin Liquid (QSL) [9] ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The pre- diction of fractionalization of quasiparticles in a 2D sys- tem triggered extensive effort from both theory and ex- perimental perspectives [10, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nevertheless, the QSL phase remains elusive [12] as it constitutes a very frag- ile state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' One of the main causes of the instability of the QSL states is the presence of terms in the Hamilto- nian that lift the ground state degeneracy [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The many different ways to lift this degeneracy have led to a flurry of new magnetic structures [15–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, occasionally deviations from a putative KHAF tend to stabilize QSL phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In particular, the so called breath- ing anisotropy has been predicted to favor a resonance ∗ daniefla@ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='ch † zhelud@ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='ch;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='neutron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='ethz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='ch/ valence bond solid ground state for a wide range of cou- pling parameters [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In this context, the recently discovered family R3BWO9 of rare-earth antiferromagnets is an optimal platform for the search of spin-liquid candidates [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Here R is a trivalent rare-earth element and the large difference in size of the constituent atoms prevents anti- site chemical disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' All of the members of the family realize a breathing kagome lattice in their basal plane and show no sign of magnetic ordering down to 2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The strong spin-orbit coupling in combination with crys- tal electric field effects opens the possibility of realizing effective Jeff = 1/2 magnetic moments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Among all compounds in the family, the most promis- ing is Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A large Weiss temperature [21] has been reported and the total angular momentum of Nd3+ (J = 9/2) makes it a Kramers-doublet system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' No mag- netic long-range order has been found in previous studies down to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, little is known so far about its magnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In this study we report on the low tempera- ture properties of single crystals of Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' We found static magnetic long-range order below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The ob- served magnetism suggests a three dimensional network of exchange interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nonetheless, due to the highly frustrated interaction a complex phase diagram is real- ized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' First, a summary of the various methods used is provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Then, we out- line the main results of the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Subsequently, a detailed discussion of the main outcome is provided, including a thorough description of the magnetic struc- ture and a detailed picture of the magnetic phase dia- gram under applied fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, the main conclusions are drawn and further steps in the search of QSL physics are examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='05555v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='str-el] 13 Jan 2023 (b) (e) 2 mm a b c 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='66 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='57 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='25 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='49 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='38 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='36 Å Nd 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='55 Å 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='42 Å c WO6 B NdO8 a b*a* b c (a) (d) Nd a b c l = 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='44 Å (c) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='95 Å 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='92 Å 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='25 Å FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Crystal structure and superexchange topology in Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (a) Schematic structure reflecting the purported kagome interaction in the crystallographic ab plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Only atoms with 0 ≤ z ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 are shown here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' There is an addi- tional kagome plane displaced by half lattice parameter along the c crystallographic direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (b) The shortest superex- change Nd-O-Nd bond links neodymium atoms in different kagome planes, forming isolated spin tubes along the c axis arranged in a triangular lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The kagome bonds are shown for reference along with bond distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (c) A typical single crystal sample of Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (d) A single spin tube is unfrus- trated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, further-neighbor interactions frustrate the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An arrow indicates the size of the magnetic supercell at zero field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (e) The environment of neodymium has very low symmetry, resulting in a C1 point group for the magnetic ion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nd-O distances are indicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' METHODS Nd3BWO9 crystallizes in a hexagonal structure, with space group P63 (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 173), where the magnetism stems from the effective magnetic moment of the Nd3+ ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Single crystal samples were grown by spontaneous crys- tallization using a flux method as described in [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Pur- ple transparent single crystals with well defined facets were obtained [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(c)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Typical masses range from a few micrograms to 40 mg and different samples were used in this study, depending on the technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The chemical structure of the different single-crystal samples used in this study was validated using single-crystal X- ray diffraction on a Bruker APEX-II instrument, and was found to be in agreement with previous reports [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The structure is schematically depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1, where the kagome-lattice bonds can be readily identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Powder samples of Nd3BWO9, as well as of the non-magnetic La3BWO9, were synthesized by a solid state reaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The correct chemical structure and the quality of the powders was checked with powder X-ray diffraction in a Rigaku MiniFlex diffractometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Boron-11 enriched samples (both powder and single crystals) were also pre- pared for their use in neutron scattering experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Measurements of heat capacity, magnetocaloric effect (MCE), magnetization and magnetic torque were carried out using a 3He-4He dilution refrigerator insert for the Quantum Design Physical Property Measurement Sys- tem (PPMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A sample of mass 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='131 mg was used for both heat capacity and MCE measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Heat ca- pacity data were collected using a standard relaxation method from Quantum Design for temperatures 100 mK < T < 4 K in applied fields of 0 T < µ0H < 3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The magnetic field was applied along the crystallographic a∗, and c directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In zero field, data were collected from 100 mK to 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Heat capacity data of La3BWO9 were measured down to 2 K and extrapolated to lower tem- peratures from an empirical fit to a T 3-power law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' MCE data were measured using the same puck as for heat ca- pacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The change of temperature of the sample was recorded as the magnetic field was swept up and down at a constant rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In order to avoid self heating of the puck, the field change rate was optimized and a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 mT/s was selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In the terminology of MCE mea- surements, our experiment was conducted under equilib- rium conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization was measured using an in house made Faraday-balance capacitive magnetometer [23] at 120 mK and 2 K and magnetic fields applied along three ori- entations: a∗, and b, and c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Additional measurements of magnetization carried out in the MPMS system at 2 K were used to calibrate the low temperature data and obtain absolute units (not shown here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Using the same setup, magnetic torque was measured up to 3 T and for temperature from 120 mK to 600 mK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The torque data correspond to the deflection of a small cantilever on which the sample is mounted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The magnetic field sweeping rate was also optimized to minimize heating due to eddy currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic susceptibility was measured using the Quan- tum Design Magnetic Property Measurement System (MPMS) SQUID Magnetometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The temperature range from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 K to 300 K was probed using a small po- larizing field applied along three crystal directions: a∗, and b, and c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The probing field was µ0H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 T, where µ0 denotes the permeability of vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Inelastic neutron scattering on powder samples of Nd3BWO9 was measured to investigate the crystal elec- tric field induced scheme of total angular momentum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The instrument of choice was the thermal neu- tron triple-axis-spectrometer EIGER at PSI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 g of Nd3 11BWO9 was sealed in an aluminum can and in- stalled in a standard 4He orange cryostat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A final wave- length of kf= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='66 ˚A−1 (λ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='36 ˚A) was chosen, us- ing a pyrolytic graphite filter to eliminate higher-order neutrons without further collimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Data were mea- sured at constant scattering angle, 2θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The background was investigated to select the optimal value for the scat- tering angle, sufficiently far from the direct beam and low enough to have good counting and small decay in the signals due to magnetic structure factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A value of 2θ = 10◦ was chosen, and the incident energy was scanned at three different temperatures: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 K, 100 K and 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neutron single crystal diffraction was used to investi- 2 J0 100 200 300 T (K) 0 50 100 150 200 1 (mol T μB ) H || a* θCW = -3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='76 K μ0H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 T H || b H || c 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Inverse magnetic susceptibility on single crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Data show measurements for three field orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A small probing field of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 T was used for all measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The black solid line represents a Curie-Weiss model with the av- erage Weiss temperature and effective moment parameters, given in Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' gate the magnetic structures in the ordered phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A single crystal sample of 18 mg in mass of Nd3 11BWO9 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5×1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4×0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 mm3 was studied using two different instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Measurements with H ∥ a∗ were carried out at the Thermal Single Crystal Diffractometer ZE- BRA at the Swiss Spallation Neutron Source, SINQ, in the Paul Scherrer Institut (PSI, Switzerland).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The diffractometer was used in conjunction with a 3He-4He dilution refrigerator and a 6-T magnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The crystal was aligned with its a∗ axis vertical, the same direc- tion as the applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neutron wavelengths of λ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='314 ˚A and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='383 ˚A were selected, provided by the PG(200) and Ge(220) monochromators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Additional measurements with H ∥ c were carried out in the time- of-flight diffractometer WISH at the ISIS facility in the Rutherford Appleton Laboratory, in the United King- dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The sample was mounted with its c axis vertical and parallel to the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A 3He-4He dilution refrigerator and a 10-T magnet were used to access the ordered states in Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' EXPERIMENTAL RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic susceptibility Figure 2 shows inverse susceptibility measurements for probing fields applied along the crystallographic direc- tions a∗b, and c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Down to the lowest accessible tem- perature of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 K, these data show no sign of magnetic ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A fit of the experimental data to a Curie-Weiss model is shown overlaid on the experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A good TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fitting parameters from the Curie-Weiss model for data shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 200 K ≤ T ≤ 300 K 20 K ≤ T ≤ 60 K θW (K) µeff (µB) θW (K) µeff (µB) H ∥ a∗ 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='76 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='78 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='94 H ∥ b 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='79 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='82 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='90 H ∥ c 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='77 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='68 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='91 agreement is found for data above 130 K, with a large, negative Weiss temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The resulting Weiss tem- peratures, θW are given in Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' I, as well as the cor- responding effective magnetic moments extracted from the Curie constants as C = NAµ0µ2 eff/(3kB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The ob- tained effective magnetic moments are close to the value expected for a free Nd3+ ion: µeff = gJ � J(J + 1)µB = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6µB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Importantly, the susceptibility data show little dependence on the direction of the magnetic field, which suggests that, the resulting magnetic anisotropy remains quite small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Our results are consistent with those re- ported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [21] on polycrystal samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Below 130 K a clear deviation from the high temper- ature fit is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This is roughly consistent with the existence of a crystal electric field (CEF) level at 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='9 meV (see below), signaling the total depletion of the population of the first excited state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A Curie-Weiss analysis is heavily affected by the partial population of excited multiplets and lead to an overestimation of ex- change parameters and exchange couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Therefore, an additional fit to a Curie-Weiss law for a tempera- ture range far enough from the CEF resonance has been performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The results are also summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Temperatures in the range between 20 K and 60 K were considered for this fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The resulting Weiss temper- atures are much reduced compared to the high temper- ature fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, they still reflect a predominant an- tiferromagnetic interaction in Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The effective magnetic moments are also reduced with respect to their high temperature value, yielding an average moment of µeff = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='92µB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' CEF level scheme The inelastic neutron scattering spectra are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Large intensity at zero energy transfer corre- sponds to quasielastic scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Three resonances are identified at 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='9, 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8, and 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 meV, which we ascribe to CEF induced levels due to their temperature depen- dence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Importantly, no resonance is found below 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='9 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Since the total angular momentum J = 9/2 of the free Nd3+ is expected to be fully split into five Kramers doublets, this suggests that the low temperature physics of Nd3BWO9 can indeed be described in terms of the lowest laying doublet, giving rise to an effective two-level system well below ∆ = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='9 meV ≈ 180 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 3 0 10 20 30 40 0 0 0 ħω (meV) T = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 K T = 100 K T = 300 K 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='9 1 Ef = 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 meV 2θ = 10° Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' units) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Inelastic neutron scattering intensity at a constant scattering angle for three different temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The final energy of Ef= 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 meV was fixed and incident energy var- ied, fixing a 10 degree scattering angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' CEF resonances are indicated by black arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An offset of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='25 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='50 units was added for visibility, a dashed line indicates the reference zero for those data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Specific heat Specific heat as a function of temperature and mag- netic field is used to unveil the magnetic phase diagram of Nd3BWO9 at ultra-low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Data obtained at zero field are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nd3BWO9 shows an up- turn in specific heat below 4 K with two clearly distinct features [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4(a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Around 1 K, a hump in specific heat suggests the onset of short-range magnetic correlations [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' At TN = 300 mK we found a sharp lambda anomaly representing the transition into magnetic long range or- der.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Below TN the specific heat signal remains large down to the lowest accessible temperatures in our setup, likely due to nuclear specific heat from the rare-earth ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In order to understand exactly the nature of the magnetic specific heat, we have examined the different contributions and subtracted them from the measured total specific heat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' To estimate the phononic contribution, we synthesized the non-magnetic isostructural material La3BWO9 and measured its specific heat in the same range of temper- atures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4(a) and represents the lattice contribution, CL, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An accurate estimation of the nuclear contribution to specific heat is usually much more complicated, as a 1 10 100 T (K) 0 10 20 30 40 50 Cp (J mol-1 K-1) Nd3BWO9 Nd3BWO9 TN La3BWO9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 1 4 10 T (K) Rln(2) 0 10 20 Cp/T (J mol-1 K-2) CL CN Ctot Cmag 0 1 2 3 4 T (K) 0 2 4 6 8 Smag (J mol-1 NdK-1) (a) μ0H = 0 T (b) (c) TN FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (a) Total specific heat at zero magnetic field for Nd3BWO9 and the nonmagnetic isostructural compound La3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nd3BWO9 shows a substantial magnetic con- tribution to specific heat below 3 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (b) Total specific heat (open circles) and magnetic specific heat (filled circles) after subtraction of lattice and nuclear degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lat- tice (CL) and nuclear (CN) contribution are estimated as discussed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A lambda anomaly can be found at TN = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='30 K, signaling the onset of long-range magnetic or- der.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (c) The magnetic entropy per Nd3+ ion saturates above 3 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A dashed line represents the expected value for a two- level system at infinite temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' variety of effects has to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These include dipole and quadrupolar splitting, or hyperfine coupling between nuclei and electrons (which can be quite signif- icant in magnetically ordered materials).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neodymium has two isotopes with nonzero dipolar and quadrupolar momenta, out of its 7 stable isotopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Following the rea- soning in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [25], the effect of quadrupolar splitting is assumed to be small compared to that of hyperfine cou- pling, and we neglect it here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In a magnetized phase, local fields are expected to be sizable and therefore hy- perfine coupling may significantly contribute to specific heat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The contribution from dipole field splitting from a single isotopic species is given by 4 Cp/T (J/molK-2) (a) H || a* 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 T (K) 0 20 40 60 80 Cp/T (J/molK-2) 0 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='85 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='55 T 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 T 0 10 20 30 40 50 60 70 0 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='85 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='975 T (b) H || c FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Typical temperature scans of specific heat for differ- ent fixed values of magnetic field applied along (a) H ∥ c and (b) H ∥ a∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An offset of 15 J/mol/K2 has been added for visibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Solid filled triangles show features associated with the phase transitions discussed in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' CH,i = NAkB α2 i 4I2 i � � 1 sinh2 � αi 2Ii � − (2Ii + 1)2 sinh2 � (2Ii+1)αi 2Ii � � � (1) where αi = AH(µNd Hyp/gJ)Ii/kBT, and Ii is the nuclear spin, gJ = 8/11 (Land´e factor for Nd), NA is the Avo- gadro constant, and kB the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' AHyp represents the strength of the hyperfine coupling and here we made a second approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' We assume all the nuclei couple equally to the electron density and the value of AHyp is approximated as that of Nd metal [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' µNd Hyp denotes the static dipole moment of the Nd3+ ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This is precisely the origin of the local field and for its value we chose the averaged effective magnetic moment from the magnetic susceptibility data at low tempera- tures µNd Hyp = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='914µB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, the different species are summed, weighted by their isotopical abundance to ob- tain the temperature dependence of nuclear specific heat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This model with no free parameters is in excellent agreement with the lowest temperature data, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Having modeled the nuclear specific heat, the magnetic specific heat can be extracted by subtraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The magnetic specific heat was subsequently integrated to obtain the temperature dependence of magnetic en- Cp/T (J/mol K-2) 150 mK 250 mK 350 mK 500 mK 800 mK 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 3 0H (T) 0 20 40 60 Cp/T (J/mol K-2) (a) H || a* 0 20 40 60 80 150 mK 250 mK 350 mK 500 mK 800 mK (b) H || c FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Typical field scans of specific heat measured at con- stant temperature in Nd3BWO9 for (a) H ∥ c and (b) H ∥ a∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An offset of 10 or 15 J/mol/K2 is added for visibility be- tween the scans for (a) and (b), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Solid filled triangles show features associated with the phase transitions discussed in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Black arrows signal the existence of broad double-hump features, described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An asterisk shows a feature above the saturation transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' tropy, depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The high temperature trend of this quantity approaches the value of R ln(2), the ex- pected value of a two-level system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In a magnetic field, a simple estimation of the contri- bution of the nuclear spin due to Zeeman splitting could not account for the effects observed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Low tempera- ture data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 5 show that the effect of nuclear specific heat is of the same order of magnitude up to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 T and it is not strongly field dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This suggests that also in a field the main contribution comes from hyperfine coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, a quantitative determination of this effect under magnetic fields becomes paramount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The evolution of the specific heat of Nd3BWO9 under magnetic fields is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6 for fields along two different crystallographic directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The total heat ca- pacity is displayed here, without subtraction of lattice or nuclear degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Typical-field scans show a number of anomalies that are consistent with the exis- tence of three different phases with static magnetic order at low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Up to three distinct features can be observed for H ∥ a∗ at the lowest temperature, at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='45, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='62 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='05 T and are marked with triangles in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='These fea- 5 tures are rather spread in fields, specially at saturation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, the existence of thermodynamic transitions has been confirmed by neutron diffraction (as discussed be- low).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The two lower field anomalies move apart as the temperature is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The two higher field anoma- lies merge at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='25 K, denoting the highest temperature of the ordered phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Though the specific heat anoma- lies in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6(a) are too broad for a precise estimation of the upper critical field, this quantity can be deduced from magnetocaloric effect measurements (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For fields orthogonal to the hexagonal plane (H ∥ c) at the lowest temperature one finds two anomalies at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 T, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 T and a sharper one at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='95 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6(b)] Notably, in this configuration the different anomalies appear nar- rower than for H ∥ a∗, especially at the saturation field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The first two anomalies move apart as the temperature is increased, while the higher field anomaly barely shifts in position up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The low field anomaly shifts to- wards zero field and disappears as TN is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The two high-field anomalies merge at T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' From the high field anomaly we extract an estimate of the satura- tion field of µ0Hc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='975(3) T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Interestingly, an extra feature can be identified above saturation (asterisk in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This feature shifts to higher fields as the temperature is increased and decreases rapidly in mag- nitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 K it is hardly identifiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, double-hump features can be observed above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 K for both magnetic field configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These are significant up to the highest measured temperatures and particularly prominent around the saturation field (black arrows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For H ∥ c the amplitude of these modulations is larger than in H ∥ a∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Such features are often associated with a low-dimensional crossover from the zero field disordered phase to the fully polarized state without the occurrence of a phase transition [27–30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetocaloric effect Magnetocaloric effect (MCE) measurements in Nd3BWO9 provide key information on the nature of the various phase transitions found with other techniques [31–33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Representative temperature profiles are sum- marized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Several crossings can be observed for both configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The observed anomalies are too broad to assign exactly a transition point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Due to the proximity of the thermodynamic transitions in the phase diagram, features corresponding to both transitions merge and overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In our measurements the field is swept slow enough as to ensure equilibrium conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Data measured with H ∥ a∗ show mostly symmetric features around the crossing points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Particularly, this suggests that the measured phase transitions are of sec- ond order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In contrast, the low temperature profiles for H ∥ c show two distinct behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' At 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 T one finds a roughly symmetric feature, suggesting again a second or- der phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This is different at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='975 T, where a very asymmetric feature appears, pointing to a first 0 μ μ 1 2 0H (T) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 mT/s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 mT/s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='7 T (K) 0 1 2 0H (T) (b) H || c (a) H || a* FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Plots of the magnetocaloric effect in Nd3BWO9 for different base temperatures and fields applied along (a) H ∥ a∗ and (b) H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For all the scans, red (blue) color represents data measured while driving the magnetic field up (down).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A ramping rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 mT/s was used throughout all the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Small prominent features (specially at low fields) are spurious and the result of an unstable platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' order or discontinuous transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, the absence of anomalies above the saturation field for H ∥ c must be noted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The features observed in the fully polarized phase in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6(b) leave no trace in the MCE data in the same configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The MCE technique is based on the change of entropy in a magnetic system as it is driven through a phase transition, crossover, level crossing, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Consequently, one can retrieve the change in entropy in a system from the change in temperature against magnetic field [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Under equilibrium conditions, we obtain the entropy as ∆S = S(H) − S0 = − � κT − Tbath T dt (2) where κ is the thermal conductivity of the thermal link in the calorimeter, T is the sample temperature, and Tbath is the thermal bath temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Integration of the data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 7 gives rise to the entropy maps displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The data above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 K are a good picture of the entropy stored in the magnetic subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, for temperatures below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='15 K imperfect equilibrium condi- tions prevent a reliable estimation of entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A strong accumulation of entropy is observed above the saturation transitions for both field configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The position of the peaks in entropy match the estimated position of the critical fields from specific heat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For H ∥ a∗, the maxima in entropy at different temperatures were used to obtain an accurate estimate of the upper critical field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A fit to the data provides Hc,a∗ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='187(13) T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This value is consistent with the various probes used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 T (K) μ0H (T) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 T (K) (a) H || a* A B S (J molNd K-1) 1 0 1 2 3 (b) H || c A C FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Entropy maps in false color for two magnetic field orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In false color plots, the change in entropy ex- tracted from magnetocaloric data from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Filled circles (diamonds) denote phase anomalies associated with phase transitions from specific heat field (temperature) scans for (a) H ∥ a∗ and (b) H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In (a) red squares show the maxima of entropy at the measured temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A white dashed line is a power law fit to the data showing the best estimate for the upper critical field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization The evolution of magnetization under a magnetic field provides insight on the type of order in Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Strikingly, a fractional magnetization plateau is observed for all measured configurations, as displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The value of magnetization is consistent with a fractional m=1/3 plateau and spans a range of fields of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In addition, the zero field phase shows zero magnetiza- tion for all applied fields, which indicates the realization of a gapped phase at T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization data for in- equivalent directions in the hexagonal plane show very similar behavior, but differ from the results perpendicu- lar to the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For H ∥ a∗ and H ∥ b the zero magnetization phase extends up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 T the system transitions into the factional magnetization plateau state up to a 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 0H (T) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 M ( B/Nd3+) 0 2 4 6 8 10 12 Ms,c/3 (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=') H || a* H || b H || c T = 120 mK Magnetometer H||c (0,2,0), 55 mK H||a* (0,0,2), 130 mK Ms,a*/3 Ms,b/3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization per Nd3+ ion measured at 120 mK in Nd3BWO9 for magnetic fields along the crystallographic directions a∗, b, and c from bulk measurements (left axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization extracted from neutron diffraction intensity of nuclear reflections is superimposed to the corresponding bulk data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Plotted is the rescaled square root of the static, magnetic structure factor S∞ z,z(q) (right axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The measured reflections (Q) are indicated in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Two of the data sets have been offset vertically by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='0 units to improve visibility (a dashed line indicates their respective zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The magnetization value at 1/3 of saturation is indicated for each individual data set by an arrow next to the plateau state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' marked limit at 1 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The transition into the fully satu- rated phase is gradual between 1 T and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In contrast, much sharper features are found when fields H ∥ c are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A non-magnetizable phase ap- pears up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 T, above which the system jumps rapidly into the plateau state at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='65 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The plateau terminates in a first-order jump to saturation around 1 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Notably, despite the presence of a first-order transition, our mea- surements did not show signatures of hysteresis across the saturation transition for H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Saturation fields extracted from magnetization data are consistent with those found in the specific heat data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The values for saturation magnetization show little anisotropy, finding 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='34(6) µB, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='31(3) µB, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='35(4) µB per magnetic ion for configurations a∗, b, and c re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' It suggests a nearly isotropic g-tensor in the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic torque Magnetic torque is arguably the most sensitive tech- nique to magnetic phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Raw data are presented as the change in the measured capacitance 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 C (fF) 2 1 0 1 dC/dH (fF/T) 0 1 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0 1 2 0H (T) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 175 mK 200 mK 225 mK 250 mK 275 mK 300 mK 350 mK 400 mK 500 mK 600 mK (a) H || a* (b) H || a* (c) H || b (d) H || b (e) H || c (f) H || c FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic torque (∆C) and its field derivative mea- sured at constant temperatures against magnetic field, for three field orientations: (a,b) a∗, (c,d) b, and (d,e) c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For all data sets, a reference value of capacitance at zero field has been chosen and subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Black arrows indicate features that may be identified with phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' ∆C = C(H) − C(H = 0 T) as a function of magnetic field for each temperature (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The torque data show strong differences between the measurements in the basal plane and perpendicular to it, but the obtained re- sults are very similar for both measurements within the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The raw data show some structure, but not sharp features as is customary in such measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phase transitions are best captured in the first derivative of the raw data 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Field derivative data show features that correspond with transitions observed in the other techniques re- ported in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Direct comparison with the other data sets is necessary to pinpoint what anomalies repre- sent real phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These features are indicated with arrows in the field derivative data [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 10(b), 10(d), and 10(f)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For H ∥ a∗ two distinct anomalies can be ob- served in the scan at 175 mK, at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='68 T and at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='99 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These correspond to the lower and upper boundaries of the plateau phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Data for H ∥ b show three anomalies at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='68 T, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='02 T and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='28 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The lower fields correspond again to the boundaries of the plateau phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Notably, these two anomalies come together as the temperature is increased and disappear above 300 mK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The higher field anomaly, which is broader and less sharp, corresponds to the crossover into the fully saturated state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, fields applied along the c direction reveal a completely different structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Three anomalies can be identified at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='48 T, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='71 T, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='95 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The associated transitions in this case are the boundaries of the plateau for the high field features and the transition from the low field phase to paramagnet for the low field anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The low field features, though weak, fade away as the transition tem- perature is overcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The high field anomaly remains up to the highest temperatures representing the crossover of the system into the fully polarized pseudospin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neutron diffraction We resorted to single-crystal neutron diffraction to in- vestigate the magnetic structures realized in the low field and the plateau phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Figure 11 summarizes the re- sults obtained from the different instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The field dependence of the order parameter is depicted for both field configurations, which is in perfect agreement with our thermodynamic measurement data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zero field data from both experiments unveil a com- mensurate phase with propagation vector Q = (0, 0,1/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(a) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(b) show that magnetic reflec- tion (1,1,-1/3) is present throughout phase A for both field orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The phase is consistent with fully commensurate order, which leads to the appearance of a magnetic supercell, as is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Integrated intensity of reflection (1,1,-1/3) drops at the intermedi- ate transition field, above which a different type of or- der is found depending on the direction of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For phase B (H ∥ a∗) we found magnetic reflec- tions (0,1/2,1/2) and (1/2,0,1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These reflections van- ish at fields slightly below saturation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, phase C (H ∥ c) has been found to realize order with propaga- tion vector (1/3,1/3,1/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic reflection (1/3,1/3,- 1/3), which is inequivalent to the former, has also been found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(b) shows an abrupt drop in the intensity of reflection (1/3,1/3,1/3), consistent with a first order transition to saturation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An external magnetic field induces a ferromagnetic component in every lattice site that gives rise to the bulk magnetization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This produces extra scattering pro- portional to the square of the induced magnetic mo- mentum at the position of each nuclear peak .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 9 shows the uniform magnetization density extracted from two nuclear reflections: (020) for H ∥ a∗ and (200) for H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' We selected reflections where nuclear contribu- tion is minimal while a measurable magnetic intensity can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The zero-field integrated intensity is subtracted from the data in a field to obtain the cor- 8 0 2 4 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 0H (T) 0 5 10 Integrated Intensity (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' units) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 T (K) 0 1 2 3 4 5 Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='(arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' units) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 T (K) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='32 (1,1,-l) (r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=') Q = (1, 1, -1/3) Q = (0, 1/2, 1/2) Q = (1, 1, -1/3) Q = (1/3, 1/3, 1/3) T = 120 mK A B C A (a) (b) μ0H || a* ZEBRA ZEBRA T = 55 mK μ0H || c WISH (d) µ0H = 0 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='0 Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=') (c) Q = (1, 1,-⅓-δ) µ0H = 0 T FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Results from single crystal magnetic neutron diffrac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (a,b) Field dependence of the integrated neutron inten- sity at the magnetic propagation vectors for: (a) H ∥ a∗ (ZEBRA, PSI) and (b) H ∥ c (WISH, ISIS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Note that in (a) the intensity of the (0,1/2,1/2) reflection has been rescaled by ×0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In (b) the limits of the ordered phases are highlighted and shown with arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (c) Evolution of the integrated in- tensity of the reflection (1,1,-1/3) with temperature at zero magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (d) Incommensuration of the propagation vec- tor at zero field against temperature, shown as a shift in the peak position of the (1,1,l) reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' responding magnetic scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Longitudinal magneti- zation is then plotted as the square root of mangetic intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The agreement with bulk measurements is re- markable and further highlights the existence of magne- tization plateaus regardless of field orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, zero field neutron diffraction reveals an incom- mensurate state between the low temperature ordered phase and the paramagnetic phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The onset of in- commensurate magnetic order appears around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='34 K at the wavevector Q = (0, 0, 1/3 + δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Temperature de- pendence of the intensity around the (1,1,l) reflection in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(d), where the peak position is superimposed, shows this incommensuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Reduction of the tem- perature leads to a change in the incommensurate prop- agation vector roughly linearly with temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' At 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='26 K the propagation vector locks into the commensu- rate Q = (0, 0, 1/3), as observed for the low temperature structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The robustness of this evolution to commen- suration has been verified for several additional magnetic reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' DISCUSSION The purported breathing kagome structure is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Unequal Nd-Nd distances and Nd-O-Nd angles result in inequivalent exchange parameters for neighbor- ing corner-sharing triangles [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This is represented by the exchange constants J△ and J▽, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' How- ever, a crystallographic analysis cannot rule out the ex- istence of interaction between adjacent kagome planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Due to the short distances between kagome planes, the topology of the exchange interaction in Nd3BWO9 is likely three dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In fact, the shortest superex- change Nd-O-Nd pathway (nearest neighbors, J1) links rare-earth ions belonging to different kagome planes [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(b)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These couplings are arranged into isolated twisted 3-legged spin tubes, one-dimensional structures that ex- tend perpendicular to the kagome planes [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(c)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Noteworthy, the resulting structure considering only nearest neighbor coupling is bipartite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A single tube would show no frustration, highlighting the relevance of further neighbor interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A three-dimensional structure with several exchange parameters may have to be regarded, as opposed to the originally suggested kagome structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yet, the onset of static magnetic or- der is extremely suppressed by the strong magnetic frus- tration f = −θW /TN ≈ 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6, confirmed from magnetic susceptibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Six magnetic rare-earth Nd3+ ions occupy general Wyckoff positions in the unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The reduced point symmetry around the Nd3+ ions [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(e)] fully lifts the degeneracy of the total angular momentum levels (J = 9/2) into five Kramers doublets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The strong CEF iso- lates a single Kramers doublet with a large gap to excited multiplets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The obtained zero-field entropy is consistent with a value of S = R ln(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These two observations show that Nd3BWO9 can be described as an effective spin S = 1/2 system below 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, the low symmetry precludes attempts to identify unequivocally a CEF-Hamiltonian and to extract the eigenstates of the lowest energy multiplet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Both magnetization and susceptibility suggest very lit- tle magneto-crystalline anisotropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Susceptibility mea- surements suggest no preferential direction in the high temperature paramagnetic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In addition, low- temperature magnetization in the fully saturated pseu- dospin phase shows no increase up to the highest probed fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The increase of magnetization may be a rough estimator of the eigenstate admixing due to anisotropies (via Van-Vleck terms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' No appreciable change in mag- netization is observed up to 2 T, indicating the total magnetization in the restricted pseudospin subspace is likely to be an approximately good quantum number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' It 9 is, thus, likely that the low energy physics in Nd3BWO9 can be described in terms of a highly symmetric spin Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A small axial anisotropy may be needed to account for the sharp features found for H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' To map out the phase diagram in the low tempera- ture regime for Nd3BWO9 we use specific heat measure- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Using a combination of all outlined techniques,we identify several regions of magnetic order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 12, the system reveals complex behaviour, with two different domes of long-range order observed for each configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A low field phase (A) extends roughly up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 T for both studied orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' This phase possesses com- mensurate order with propagation vector Q =(0,0,1/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetization measurements show that this phase is hardly magnetizable, suggesting a gapped state in this field range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Although further analysis is needed to un- derstand the magnetic structures of the different phases in detail, a series of general remarks can be deduced from the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' For phase A, the presence of reflections (0,0,±2/3) forbids the existence of a collinear structure with spins parallel to c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Thus, a coplanar structure in the ab plane is likely realized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' By increasing the magnetic field the system transitions into a field-induced ordered phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A field H ∥ a∗ leads to the fractional m = 1/3 plateau phase B, characterized by a propagation vector Q =(0,1/2,1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The additional presence of wavevectors (1/2,0,1/2) and equivalent sug- gests a multi-Q structure or the presence of domains in the B phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Strikingly, the order realized in the plateau is com- pletely different when fields are applied in the basal ab plane or perpendicular to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In a field H ∥ c, phase C is found with propagation vector Q =(1/3,1/3,1/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' In contrast, saturation H ∥ c occurs through a sharp first order phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetocaloric effect supports this claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A tricritical termination point appears where first and second order transition lines converge as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 12(b), at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='20 K and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='975 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The presence of magnetic reflections (1/3,1/3,-1/3) and equivalent also indicates a complex spin texture, with either a multi-Q structure or the presence of domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='While here domains may be consistent with the observed first order transition to saturation, it is not possible at this stage to exclude either possibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The existence of a tricritical point only for one ori- entation may be related to the large spin-lattice inter- action stemming from strong spin-orbit coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The transition to saturation for H ∥ c can be prematurely precipitated via an ’order by distortion’ [34] mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A gain in magnetic energy compensates a small loss in elastic energy, leading to a first order transition to sat- uration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Though our neutron diffraction data show no evident change in the space group or lattice parameters in the high field phase, a detailed study would be neces- sary to discard this possibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phases A and B appear to merge below 100 mK at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='56 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A first order phase transition is speculated be- tween A and B, with a termination bicritical point where 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='8 T (K) 0 5 10 15 Cp/T (J mol-1K-2) (b) µ0H || c (a) µ0H || a* A A C B 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' (0,0,⅓) (0,0,⅓) (0,½,½) (⅓,⅓,⅓) 1 μ0H (T) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6 FPP 20 25 30 FPP 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='5 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Magnetic phase diagram of Nd3BWO9 in a mag- netic field applied along the principal directions: (a) a∗ and (b) c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The background depicts false color maps of Cp(H, T), with a shared color scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Symbols: white circles and dia- monds represent transitions obtained from field and tempera- ture scans of specific heat, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Green squares repre- sent the phase boundaries extracted from neutron diffraction data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Upward-facing blue triangles show transi- tions extracted from bulk magnetization, downward facing pink triangles transitions from magnetic torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A red dia- mond denotes the estimated position of the tricritical point for H ∥ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' An orange star shows the upper critical field es- timated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Solid and dashed lines are a guide to the eye, representing second and first order transitions, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The different phases are labeled as: A, B, C and Fully Polarized Pseudospin (FPP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The ordered phases show their corresponding magnetic propagation vector, as discussed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' all phase boundaries meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neutron diffraction data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(a) indicate the phases will likely merge slightly below 120 mK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Interestingly, between A and C the phase boundaries seem to develop smoothly down to the lowest measured temperatures and converge at T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Neutron data at 55 mK show the phases are still separated by paramagnetism at this temperature Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A highly non-trivial order-to-order quantum phase transition may take place between A and C at zero temperature (indi- cated with a question mark).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Precise measurements in 10 the vicinity of these phase transitions would provide im- portant insight on their nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, the strong sig- nal from nuclear degrees of freedom and the extremely low temperatures involved prevent further investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The double hump features in specific above the transi- tion temperature represent a crossover from the low field disordered phase to the high field polarized phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Such features can be understood in terms of models of hard- core bosons and are usually associated with quantum critical behaviour in one dimensional magnets [35, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' They can be observed in several quasi-1D antiferromag- nets [27, 28], and therefore suggest the relevance of one- dimensional correlations for the physics of Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These modulations are accentuated when the field is applied along the direction of the spin tubes (H ∥ c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Notably, despite the first-order nature of the transition these modulations are still present and seem to be most prominent around the tricritical termination point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Plateaux in the magnetically ordered sector are a hall- mark of frustrated magnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The existence of magneti- zation plateaus (and particularly at 1/3 of saturation) has been predicted for both kagome antiferromagnets [37, 38], as well as for a model of isolated spin tubes with a weak triangular rung interaction (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 1(c)) [39–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The presence of magnetization plateaux independent of the orientation of the applied magnetic field suggests an stabilizing interplay between frustration mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Finally, we comment on the origin of the ob- served incommensurate-commensurate (IC-C) transi- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Dipolar interactions are not uncommon in the study of rare-earth based magnets due to their large magnetic moments (µ(Nd3+) = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='6µB) [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Their sta- bilizing role on incommensurate structures at temper- atures above commensurate order has been argued in several systems with hexagonal structure [43–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The realization of a IC-C transition at zero field opens the question to the importance of dipolar coupling for the low temperature properties of Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' We conclude the discussion by comparing Nd3BWO9 to its isostructural compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' To this point, only two other systems in the R3BWO9 family have been studied at low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' NMR spectra reveal an inconm- mensurate magnetic structure in Sm3BWO9[46], while a dynamical state has been proposed for Pr3BWO9 at tem- peratures as low as 90 mK [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' These two systems have been analyzed in terms of 2D Hamiltonians based on the existence of the kagome planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' However, our work highlights the presence of three-dimensional couplings and the potential dominance of the one-dimensional spin tubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The discussion outlined here is inevitably rele- vant for investigations on other members of the family of R3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' CONCLUSION We have presented a comprehensive study of the low temperature physics of the highly frustrated quantum antiferromagnet Nd3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Calorimetric and neutron scattering data support the realization of strongly in- teracting effective spin-1/2 moments below 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Our measurements reveal a complex magnetic phase diagram below 300 mK, featuring magnetization plateaux for all field orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The ordering brings about important insight about the relevant magnetic interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Differ- ent magnetic structures are realized in the plateau states, depending on the direction of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Even though the phase diagram is considerably anisotropic, it can be described in terms of an effective S = 1/2 pseu- dospin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The experimental framework provided here is key for future studies on Nd3BWO9 and in the remaining mem- bers of the R3BWO9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' The presence of the spin-tube structures perpendicular to the kagome planes is indi- cates that the magnetic properties of these highly frus- trated systems cannot be understood in terms of kagome- lattice physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Further work is needed to fathom the effective dimensionality of the magnetic lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' ACKNOWLEDGEMENTS This work is supported by a MINT grant of the Swiss National Science Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [1] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Facheris, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Povarov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nabi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mazzone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lass, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Roessli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ressouche, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gvasaliya, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zheludev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 129, 087201 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Smirnov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yashiro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kimura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hagiwara, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Narumi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kindo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kikkawa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Katsumata, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Shapiro, and a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Demianets, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 75, 134412 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [3] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Levy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sheikin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Berthier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Horvati´c, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Taki- gawa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kageyama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Waki, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ueda, EPL (Eu- rophysics Letters) 81, 67004 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [4] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wada, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ubukoshi, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hirakawa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 51, 2833 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mourigal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Enderle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' F˚ak, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kremer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Law, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Schneidewind, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hiess, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Prokofiev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 109, 027203 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bhartiya, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Povarov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Blosser, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bet- tler, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gvasaliya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Raymond, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ressouche, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Beauvois, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Xu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Research 1, 033078 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kermarrec, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kumar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bernard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Henaff, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mendels, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Paulose, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hazra, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Koteswararao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 127, 157202 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Anderson, Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 8, 153 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zhou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kanoda, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ng, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 89, 025003 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Savary and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Balents, Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 80, 016502 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 11 [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Chamorro, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' McQueen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tran, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 121, 2898 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Broholm, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Cava, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kivelson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nocera, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Norman, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Senthil, Science 367 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [13] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bernu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lhuillier, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kermarrec, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mendels, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Colman, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wills, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 87, 155107 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [14] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yoshida, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 91, 101003 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' LeBlanc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Plumer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Whitehead, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Southern, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 88, 094406 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yoshida, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Noguchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Matsushita, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ishii, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ihara, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Oda, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Okabe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yamashita, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nakazawa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Takata, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 86, 033704 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Okuma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nakamura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Okubo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Miyake, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Matsuo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kindo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tokunaga, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kawashima, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Takeyama, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hiroi, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 10, 1 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [18] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jeschke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nakano, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sakai, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 99, 140410(R) (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Iqbal, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Poilblanc, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Schuch, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 101, 155141 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jahromi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Orus, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Poilblanc, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mila, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 9, 092 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ashtar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Su, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tian, Inor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 59, 5368 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Majchrowski, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Michalski, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Brenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Growth 247, 467 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [23] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Blosser, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Facheris, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zheludev, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' of Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Instr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 91, 073905 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Dutton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kumar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mourigal, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soos, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='- J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Broholm, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Andersen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Huang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zbiri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Toft-Petersen, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Cava, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 108, 187206 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kimura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nakatsuji, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Broholm, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Stone, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nishibori, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sawa, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 4, 1 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [26] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bleaney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 34, 1024 (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' R¨uegg, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kiefer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Thielemann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' McMor- row, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zapf, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Normand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zvonarev, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bouil- lot, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kollath, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Giamarchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Capponi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Poilblanc, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Biner, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kr¨amer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 101, 247202 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [28] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Blosser, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Bhartiya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Voneshen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zhe- ludev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 121, 247201 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hayashida, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Blosser, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Povarov, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gvasaliya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ponomaryov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zvyagin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zheludev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 100, 134427 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [30] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Flavi´an, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Hayashida, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Huberich, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Blosser, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Povarov, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gvasaliya, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zheludev, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 101, 224408 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [31] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zapf, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jaime, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Batista, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 86, 563 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kohama, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Marcenat, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Klein, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jaime, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 81, 104902 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [33] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Kohama, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 91, 101004 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [34] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tchernyshyov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Moessner, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sondhi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 88, 067203 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [35] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Korepin and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Slavnov, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 129, 103 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [36] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sachdev, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Senthil, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Shankar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 50, 258 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [37] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sakai and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Nakano, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 83, 100405(R) (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Capponi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Derzhko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Honecker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L¨auchli, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Richter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 88, 144416 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [39] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Fouet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' L¨auchli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Pilgram, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Noack, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Mila, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 73, 014409 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [40] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Yonaga and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Shibata, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 84, 094706 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [41] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sakai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Sato, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Okunishi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Okamoto, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Itoi, in J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 400 (IOP Publishing, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Palmer and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Chalker, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 62, 488 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [43] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Shiba and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Suzuki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 51, 3488 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [44] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Suzuki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 52, 3199 (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [45] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Gekht and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ponomarev, Phase Transitions 20, 27 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [46] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zeng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Song, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ling, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ma, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Pi, Chinese Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 39, 107501 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' [47] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Zeng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Song, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tian, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ling, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Tong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Ma, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' B 104, 155150 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} +page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GtE5T4oBgHgl3EQfWA9Z/content/2301.05555v1.pdf'} diff --git a/HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf b/HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..693e402ae6611e504b27f1bf0fe935b48a424c39 --- /dev/null +++ b/HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:27221544b4f03a75c2900d5415eeda534149a0e08f3754d5cc561f63cea10b8f +size 2955122 diff --git a/ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf b/ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e3f62fb457cabc4052eb46c91d65a7ea316d4004 --- /dev/null +++ b/ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b5e3e66e2cfa42b21632d9eac84b63956f7eec4cb18b80291495d1742c78a235 +size 3394323 diff --git a/ItFLT4oBgHgl3EQfJS9D/vector_store/index.pkl b/ItFLT4oBgHgl3EQfJS9D/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..318195954b29dd969c10aa760a0db89bc6899eb1 --- /dev/null +++ b/ItFLT4oBgHgl3EQfJS9D/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:538e24c26308d8f9214e59521ef851abba9a18152ace59abe6f821a46ea0c0d3 +size 133300 diff --git a/JNFAT4oBgHgl3EQfvB44/content/tmp_files/2301.08673v1.pdf.txt b/JNFAT4oBgHgl3EQfvB44/content/tmp_files/2301.08673v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1b260e7372d46ca1abdf1e3f04c2527d59adf3e8 --- /dev/null +++ b/JNFAT4oBgHgl3EQfvB44/content/tmp_files/2301.08673v1.pdf.txt @@ -0,0 +1,887 @@ +Disintegration of Long-Period Comet C/2021 A1 (Leonard) +David Jewitt1, Yoonyoung Kim2, Michael Mattiazzo3, Max Mutchler4, Jing Li1 +and Jessica Agarwal2 +1Department of Earth, Planetary and Space Sciences, UCLA +2Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, D-38106 +Braunschweig, Germany +3Swan Hill Observatory, Australia +4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 +jewitt@ucla.edu +Received +; +accepted +Revised 2022 January 16 +arXiv:2301.08673v1 [astro-ph.EP] 20 Jan 2023 + +– 2 – +ABSTRACT +We present imaging observations of the disintegrating long-period comet +C/2021 A1 (Leonard). High resolution observations with Hubble Space Tele- +scope show no evidence for surviving fragments, and place a 3σ upper limit to +their possible radius ∼60 m (albedo 0.1 assumed). In contrast, wide field ob- +servations from the Swan Hill Observatory, Australia, show an extensive debris +cloud, the cross-section and estimated mass of which are consistent with com- +plete disintegration of the nucleus near mid- December 2021 (at about 0.8 au). +Two methods give the pre-disruption nucleus radius, rn = 0.6 ± 0.2 km. Tidal, +collisional, sublimation and pressure-confined explosion models provide implau- +sible explanations of the disintegration. However, rotational instability driven +by outgassing torques has a very short timescale (∼0.1 year) given the orbit and +size of the C/2021 A1 nucleus, and offers the most plausible mechanism for the +disruption. Initial rotational breakup is accelerated by the exposure and strong +sublimation of previously buried volatiles, leading to catastrophic destruction of +the nucleus. +Subject headings: comets: general—comets: individual C/2021 A1 + +– 3 – +1. +INTRODUCTION +Comet C/2021 A1 (Leonard), hereafter “A1”, was discovered on UT 2021 January 3 as +a diffuse V ∼ 19 magnitude object inbound to the Sun at heliocentric distance rH = 5 au +(Leonard 2021). A1 is a long-period comet, with heliocentric osculating semimajor axis a += -6124 au, eccentricity e = 1.0001 and inclination i = 132.6◦, reaching perihelion (at rH += 0.615 au) on UT 2022 January 03.3, about a year after discovery. Although presently +following a weakly hyperbolic orbit, the pre-entry orbital elements (corrected for planetary +perturbations to 1900 January 1, when the heliocentric distance was 137 au) are those of a +bound object, a = 2020 au, e = 0.999696 and i = 132.7◦. A1 is thus not a dynamically new +comet, having passed through the planetary system ∼ 105 years ago. +Comet A1 attained naked eye visibility in late 2021 and then displayed spectacular +gas and dust tails. However, images and commentary recorded in public on-line archives1 +indicate that A1 became photometrically unstable in 2021 December and 2022 January. +Measurements of the OH production rate from the Nancay radio telescope were steady near +QOH = 2.6×1028 s−1 between UT 2021 December 9 and 12, but jumped by a factor of ∼8 +to QOH = 22×1028 s−1 on December 15, even as the heliocentric distance barely decreased +from 0.80 au to 0.74 au (Crovisier et al. 2021). The morphology also changed, becoming +more diffuse and with “the tail being more prominent than the head” on UT 2022 January +222 at rH ∼ 0.74 au outbound. Based on these early observational reports we requested +Director’s Discretionary Time on the Hubble Space Telescope (HST), with the science +objective being to study the presumed breakup of this long-period comet at the highest +angular resolution. Independently, coauthor Mattiazzo also obtained wide-field imaging +data using a private telescope at the Swan Hill Observatory in Australia. The wide-field and +1e.g. https://britastro.org/cometobs/2021a1/thumbnails.html +2https://groups.io/g/comets-ml/message/30541 + +– 4 – +HST data are highly complementary, with the former providing sensitivity to low surface +brightness debris over a wide angle and the latter providing ultra-high resolution and very +deep imaging of the near-nucleus region. +While the phenomenon of cometary breakup has been known for over a century, very +few physical observations of disintegrating comets are to be found in the refereed literature. +In this paper, we present the observations and consider possible causes of the breakup of +comet A1. +2. +OBSERVATIONS +2.1. +Hubble Space Telescope +The 2.4 m diameter Hubble Space Telescope was used to observe disintegrating A1 +under program GO 16929. We used the WFC3 camera, which houses two 2015×4096 pixel +charge coupled devices separated by a 1.2′′ wide gap. The 0.04′′ pixel−1 image scale gives a +full-frame 162′′×162′′ field of view. HST images were taken using the F350 LP filter in order +to maximize throughput. This filter has an effective central wavelength λc = 6230˚A when +observing a Sun-like (G2V) source and a FWHM ∆λ = 4758˚A. We secured four images +each of 450 s duration in each of the first three orbits and five frames of 285 s, with a +sub-frame readout, in the fourth. The first three orbits were obtained in 2022 April with +spacings of one and four days, with the intention being to measure the sky-plane motions +of fragments produced by the break-up of A1. The fourth orbit was scheduled on UT 2022 +June 7 to coincide with the passage of the Earth through the projected orbit plane of the +comet. Observations from this vantage point provide a model-free measure of the thickness +of the dust distribution perpendicular to the plane. Unfortunately, the images from the +fourth orbit suffered from extreme field star contamination, as a result of the low (-6◦) + +– 5 – +galactic latitude of the comet, and were not useful. +2.2. +Swan Hill Observatory +Wide-field observations were taken by co-author Michael Mattiazzo using a 0.28 m +diameter, f/2.2 wide-field telescope at the Swan Hill Observatory (observatory code Q38), +located in Victoria, Australia. A 4655×3522 pixel CMOS imaging device (Panasonic model +QHY163M) provided an image scale of 1.27′′ pixel−1, and a field of view approximately +1.6◦×1.2◦. Each pixel of the 0.28 m telescope subtends a solid angle equal to 103 HST +pixels. Ten images each of 30 s duration were obtained, during which time the comet moved +relative to field stars by about 2.7′′, which is small compared to the 5.1′′ full width at half +maximum of point source objects in the data. The wide field image shows evidence for loss +of sensitivity due to vignetting, especially near the corners of the device. We removed this +by fitting a cubic spline surface to the image, using the median signal within 50×50 pixel +boxes (after checking that the procedure did not self-subtract the comet). +No filter was employed in order to maximize the throughput of the system. The +quantum efficiency of the detector peaks near a central wavelength 5500˚A, and has a +FWHM estimated at ∼4000˚A. The central wavelength is close to that of Johnson V (see +the discussion in Bessel 1990), but the response is so broad that it captures the same light +as the Johnson B, V and R filters (or, equivalently, the Sloan g and r filters) combined. +The large bandwidth and lack of a standard filter together limit the accuracy with which +the measured magnitudes can be related to, for example, the V band magnitudes. We +calibrated the data using measurements of field stars on the Sloan filter system, provided +by the Skymapper southern survey (Wolf et al. 2018). For this purpose we extracted +measurements using circular apertures of projected radius 12.7′′, with sky subtraction from +the median signal within a concentric annulus having inner and outer radii 19.1′′ and 38.1′′, + +– 6 – +respectively. In order to minimize the color term in our photometry, we selected stars with +optical color g-r ∼0.4 to 0.5, so as to approximately match the color of the Sun (given as g-r += 0.45±0.02 by Holmberg et al. 2006). We further selected these stars to lie within ∼1′ of +the comet in order to minimize spatial variations in the photometry caused by imperfect +flatness of the data. +The geometrical circumstances of observation are given in Table 1. +3. +RESULTS +3.1. +High Resolution Data +We combined the four images from each orbit in order to reject cosmic rays, suppress +trailed field objects, and reach a fainter limiting magnitude. The composite from UT 2022 +April 5 is shown in Figure 1; composites from April 6 and 10 look the same. The predicted +location of the nucleus is indicated in the Figure. The JPL Horizons ephemeris for April +5 gives 3σ positional uncertainties of ±1.3′′ in right ascension and ±1.0′′ in declination, +both of which are negligible compared to the 160′′ field of view of WFC3. We searched +for the principal nucleus and discrete fragments in the data by comparing image subsets +to identify correlated motion, but found none. Instead, the images show evidence for +diffuse light scattered from cometary dust, evident in Figure 1 as a region of slightly higher +surface brightness in the south east quadrant of the image (marked by a dashed white +line in the right-hand panel of the figure). Although it at first resembles a flat-field defect +or a smudge of internally scattered light, two lines of evidence show that this region of +diffuse brightness is neither. First, the enhanced region is fixed with respect to the daily +predicted ephemeris position of A1. Second, the enhanced region moves on the detector as +the telescope orientation angle changes. The enhancement appears at the same position in + +– 7 – +image composites from all three dates in April, whereas scattered light from bright stars +outside the WFC3 field of view would vary as the background stars are completely different +from day to day. A flat-field defect would not rotate as the telescope orientation changes. +We conclude that the diffuse light is sunlight scattered from cometary debris released from +the now invisible nucleus of A1. +The on-line WFC3 Exposure Time Calculator3 gives a 3σ limit for detection of point +source objects at V = 26.7, in each of our orbits. This limiting magnitude is consistent +with the measured sky noise in the data. Corrected to absolute magnitude using phase +coefficient β = 0.04 magnitude degree−1, we find H ≥ 22.81. For a nominal albedo, pV = +0.1, this corresponds to a 3σ limit to the fragment radius, r ≤ 60 m. +3.2. +Wide Field Data +The composite wide field image is shown in Figure 2. A low surface brightness dust +structure extends over at least 0.4◦ (2×106 km in the plane of the sky), with a position +angle 120◦±2◦ and no indication of a brightness peak at the expected location of the +nucleus. The latter was determined from the JPL Horizons ephemeris for the mid-time of +the image, and is marked in the figure. Overall, the morphology is similar to that of C/2010 +X1 (Elenin), a long period comet which disintegrated when inbound near rH = 0.6 AU (Li +and Jewitt 2015), and C/2019 J2 (Palomar), which disintegrated pre-perihelion near rH += 1.9 au (Jewitt and Luu 2019). Comparison with Figure 1 shows that the HST, which +was pointed at the expected location of the nucleus, indeed recorded diffuse light from the +western tip of this dust structure. +We estimated the total light from the dust as follows. First, we rotated the image to +3https://etc.stsci.edu/etc/input/wfc3uvis/imaging/ + +– 8 – +bring the long axis of the dust tail to the horizontal (upper panel in Figure 3). Next, we +manually replaced field stars with the average of surrounding pixels. The median signal from +the comet was then computed within a rectangular box, “A” in the lower panel of Figure +3) 1105′′ long by 380′′ tall, and the background sky estimated from equal-sized photometry +boxes contiguous with the comet box but displaced above and below it (“B” and “C” in +Figure 3). Figure 3 shows that the tail extends beyond the left edge of the photometry box +“A” but the increased uncertainty imposed by the sky rendered measurements of this very +faint material impractical. The light from the tail was calculated from fT = fA−(fB+fC)/2, +where fx is the flux in box “x”. Then, applying the calibration obtained from field stars, +we find VT = 10.9±0.5, where the quoted error is our best estimate of the uncertainty +resulting from non-flatness of the data, the transformation from the wide response of the +camera and the effective V magnitude. With assumed phase function 0.02±0.02 magnitude +degree−1 and the geometry given in Table 1, the corresponding absolute magnitude is H = +7.6±0.6, where the larger uncertainty is introduced by the phase correction. The scattering +cross-section needed to give this absolute magnitude is C = 1.4+1.0 +−0.8 × 1010 m2, assuming +geometric albedo pV = 0.1 (appropriate for cometary dust; Zubko et al. 2017). +Figure 4 shows the averaged surface brightness profile from the March 31 image, +measured parallel to the long axis of region A in Figure 3. Most of the scatter in the +surface brightness profile is statistical noise in the data, but larger oscillations (for example +at ∼480′′ and 750′′) result from spatial background variations caused by the digital removal +of field stars. In this plot, the peak of 1000 units corresponds to a surface brightness Σ = +24.4 magnitudes arcsec−1, about 5% of the surface brightness of the night sky. The surface +brightness shows a steep increase, reaching a maximum at about 100′′ from the ephemeris +nucleus location, followed by a steady decline at larger projected angles. This profile shape +is indicative of a suddenly terminated dust mass release, with the peak of the profile giving +the distance traveled by the largest, slowest particles. + +– 9 – +4. +DISCUSSION +4.1. +Radius and Mass of the Nucleus +We use the effective spherical nucleus radius of A1 ¯r = 0.6±0.2 km from Jewitt (2022). +This estimate is based on independent measurements of QH2O(1), the gas production rate +at 1 au, and of α1, the non-gravitational acceleration at 1 au. Comet A1 has QH2O(1) = +1.9×1028 s−1 (only pre-perihelion observations are used because post-perihelion rates are +clearly affected by the breakup) and α1 = 1.3×10−6 m s−2, provided by JPL Horizons. A +substantially smaller nucleus would have a surface area insufficient to supply the QH2O(1), +while a substantially larger nucleus would have too much mass to be accelerated at α1 +given the known gas production rate. Using ¯r and nominal nucleus density ρn = 500 kg +m−3 (Groussin et al. 2019), we estimate the nucleus mass Mn = (4.5+6.5 +−3.2) × 1011 kg. The +largest surviving fragments, with radii <60 m, individually contain < 10−3 of the mass of +the primary. +4.2. +Time of Disruption +Syndynes (the loci of particles having one size, released with zero initial relative +velocity over a range of times; Finson & Probstein (1968)) are curved and do not match +the linear shape of the debris cloud in A1. Instead, the morphology more resembles a +set of synchrones as shown in Figure 5. Synchrones trace the loci of particles in the sky +plane having a range of sizes (hence, radiation pressure accelerations) but released from the +nucleus simultaneously. The position angle of the debris trail in A1 is most compatible with +ejection 110±10 days before the image was taken, i.e. on UT 2021 December 11±10. This is +about a month before reports of distinct morphological change appeared but coincides with +a dramatic increase in the OH production rate from 4.4×1028 s−1 on UT 2021 December + +– 10 – +19 to 14×1028 s−1 on UT 2021 December 21, in unpublished SOHO/SWAN data (personal +communication M. Combi). It is also close to a reported OH outburst on UT 2021 December +15 (Crovisier et al. 2021). While we lack continuous coverage of the gas production from +A1, it is likely that the sublimation rate became highly unstable as a result of the breakup +of the nucleus when close to perihelion. +We assume that the disintegration began on UT 2021 December 11±10. To reach the +far end of the measured debris cloud (an angular distance ∼1500′′, corresponding to linear +distance L = 2.2 × 106 km) under the action of radiation pressure requires an average +acceleration 2L/∆T 2, where ∆T = 111 days (9.6×106 s) is the interval between the time +of disintegration and the Swan Hill image from UT 2022 March 31. In units of the solar +gravitational acceleration at the average rH = 1.3 au heliocentric distance in this period, +β = +2Lr2 +H +g⊙(1)∆T 2 +(1) +where g⊙(1) = 0.006 m s−2 is the solar gravity at 1 au and rH is expressed in au. +Substituting, we obtain β = 0.01. With β ∼ 1/aµm, where aµm is the particle radius +expressed in microns (c.f. Bohren & Huffman (1983)), we infer that the particles at the far +end of the tail in the March 31 image had aµm ∼ 75 µm. All particles in the visible debris +cloud on UT 2022 March 31 must be larger, while smaller particles were presumably ejected +but have been swept by radiation pressure beyond the visible extent of the tail. Particles +near the peak of the surface brightness profile (angular distance ∼100′′, corresponding to +L = 1.4 × 105 km) have β ∼ 10−3 by Equation 1 and, therefore, radii ∼1 mm. + +– 11 – +4.3. +Mass of the Optical Debris +How does the mass of the debris compare with the mass of the nucleus prior to its +disappearance? To answer this question, we treat the debris as consisting of a distribution +of spherical particles with radii between a and a+da written as n(a)da. Then, the combined +mass of the particles between minimum radius a1 and maximum radius a2 is +Md = +� a2 +a1 +4 +3πρa3n(a)da +(2) +while their combined cross-section is +C = +� a2 +a1 +πa2n(a)da +(3) +It is useful to represent the size distribution as a power law +n(a)da = Γa−γda +(4) +where γ is the differential size distribution index and Γ is a normalizing constant. +Substituting equation 4 into equations 2 and 3 and eliminating Γ, we obtain +Md = 4 +3ρC +� a2 +a1 a3−γda +� a2 +a1 a2−γda +(5) +The minimum particle radius is selected as a1 = 75 µm, since all smaller particles +would have been swept out of the image field in the time since ejection. The maximum +radius, a2 = 60 m, is set by the non-detection of larger bodies in our deep HST imaging +data. With these values for a1 and a2, we plot Equation 5 as a function of γ in the range 2.5 +≤ γ ≤ 4.0 (Figure 6). The particle mass required to account for the measured cross-section, + +– 12 – +C, is seen to vary by orders of magnitude for modest changes in the index, γ, with smaller +values (flatter distributions) hiding a larger fraction of the total mass in big bodies. +Also plotted in the figure is the nucleus mass, Mn = (4.5+6.5 +−3.2) × 1011 kg, computed from +the effective radius, rn = 0.6±0.2 km, (Section 4.1), and density, ρn = 500 kg m−3, with the +mass uncertainty marked as a horizontal yellow band. The red point marks the intersection +of the two curves where Md = Mn and shows that, for index γ = 3.5±0.1, the debris mass +and nucleus mass are equal. The upper limit to the size distribution could be substantially +smaller than the 0.6 km limit set by the Hubble data, in which case a smaller value of +the index would be needed for the mass of the debris to equal the mass of the nucleus. +A relevant comparison can be made with the size distribution of the Kreutz sungrazing +comets, which are themselves produced by the fragmentation of a precursor body. The +Kreutz objects have γ = 3.2 in the 5 m to 35 m radius range (Knight et al. 2010), plotted +as a blue square in Figure 6. The uncertainty on γ for the Kreutz objects is not stated; +we have plotted a nominal ±0.1 error bar for reference and note reasonable agreement +with the index deduced for A1 within the uncertainties. Perhaps less relevant are radar +measurements of the debris size distributions in six meteoroid streams, most associated +with decaying comets. These are plotted for comparison using green triangular symbols +(Blaauw et al. (2011)). The formal meteoroid stream index uncertainties are comparable to +the size of the symbols in the figure. The measured indices span the range γ = 3.2 to 3.7, +encompassing the values found for A1 and the Kreutz comets. +We conclude that the optical cross-section presented by the debris in 2022 March is +consistent with the complete disintegration of the original ∼0.6 km scale nucleus into a +power law distribution (index γ = 3.5±0.1) of particle sizes. We emphasize that we possess +no independent evidence that the debris mass and original nucleus mass are equal, although +a consideration of the particle properties using more detailed considerations (section 4.4) + +– 13 – +supports this result. It should also be noted that 60 m is an upper limit to the size of +the largest post-disruption “particles” and our result would be changed if a2 ≪ 60 m, as +it would if the size distribution of particles is not well represented by a single power law +across the full range of sizes. It is also not obvious that the density of the particles should +necessarily be the same as the bulk density of the nucleus, as we have assumed. These and +other physically plausible possibilities lie beyond the observational constraints obtained +from the data. +4.4. +Monte Carlo Simulation +We next used a Monte Carlo simulation as developed by Ishiguro et al. (2007) (see +also Kim et al. (2017)) to model the cometary debris in more detail. The model is +under-constrained and cannot provide unique solutions for the particle properties. It +is nevertheless valuable in allowing us to test the deductions made based on order of +magnitude considerations, and also to more fully explore the range of plausible solutions. +We particularly examined the effect of the particle size distribution index and the minimum +and maximum particles sizes in the distribution. +Figure 7 shows the data with results of simulations for γ = 3.3, 3.4 and 3.5 and size +parameter in the range 7 × 10−4 ≤ β ≤ 0.07, with ejection on 2021 December 11. The +upper limit to β (lower limit to particle radius) is set by the field of view, with smaller +particles have already been pushed out of the field by radiation pressure. We obtain a ≥ +14 µm, different by a factor of five from the limit a ≥ 75 µm estimated by the order of +magnitude procedure, above. The lower limit to β (upper limit to the particle size of ∼1.4 +mm) is determined from the location of the surface brightness peak in Figure 7. This is very +small compared to the 60 m upper limit to the radius of the largest possible fragment, set +by non-detection in the HST images. However, this difference is understandable since, for + +– 14 – +commonly measured cometary size distributions, the scattering cross-section is dominated +by the smallest particles; large particles contribute little to the cross-section and thus are +poorly constrained by scattered light observations. In order to fit the data, we assumed +that the particle ejection speed varies with size parameter as V = V0β1/2, with V0 = 550 +m s−1 being the gas thermal speed. Unlike the particle trails of weakly active comets and +asteroids, a high ejection speed is required in order to fit the large width of the debris cloud +in A1. +As is evident in Figure 7, the plotted models do not perfectly reproduce the measured +surface brightness profile, with larger γ models being 25% to 30% brighter than the data at +large distances from the nucleus and smaller γ models being too sharply peaked compared +to the measurements. If they are real, these differences could result from physical effects not +included in the model. For example, we have ignored dust released before disintegration, +reasoning that the dramatic outbursts and brightening starting in mid-December would +swamp any signal from older material. As another example, large aggregate grains in the +tail might break up into smaller particles which would be quickly swept from the field of +view by radiation pressure, perhaps explaining the lower brightness of the tail ≳1000′′ from +the nucleus. On the other hand, the differences between the models and the measured +profile are certainly affected by systematic uncertainties intrinsic to the wide field data, +particularly by imperfect flatness of the data and by the presence of scattered light from +bright background sources. Rather than over-interpret the data, we conclude from the +Monte Carlo simulation only that γ ∼ 3.4 ± 0.1 provides a broad match to the profile, while +much steeper and much less steep distributions do not. The range of allowable indices +deduced from Monte Carlo models is consistent with γ = 3.5 ± 0.1 as inferred from the +debris mass in Section 4.3 (c.f. Figure 6). +Lastly, we used the Monte Carlo model to test the possibility that the debris observed + +– 15 – +in 2022 March could be long-lived material released before perihelion, in the form of a +so-called “neck-line” structure (e.g. Pansecchi and Fulle 1990). We find that material +ejected in the period 2021 November 15 to December 15 would produce a tail structure +in March having position angle (113◦) distinctly different from that measured (120◦) or +calculated from the impulsive ejection model (119◦). In addition, neck-line structures in +other comets are most prominent when observed from near the projected orbital plane, +whereas our observations were taken ∼20◦ from the orbital plane of C/2021 A1 (c.f. Table +1). The combination of the unfavorable observing geometry, the failure to reproduce the +measured position angle of the dust in 2022 March, and the obvious importance of the +outbursts reported in 2021 December together show that pre-perihelion dust is a negligible +contributor to the post-perihelion appearance. +4.5. +Disintegration Mechanism +The preceding discussion shows that a ∼0.6 km scale nucleus disintegrated into +fragments, the largest of which were no more than about 10% of the radius of the original +body. What process could lead to such a dramatic outcome? +Tidal Breakup: The 0.615 au perihelion distance of A1 far exceeds the Roche radius +of the Sun (∼10−2 au), negating the possibility of a tidal breakup. Comet A1 did pass +within a distance rV = 0.029 au from Venus on UT 2021 December 18 (Zhang et al. 2021) +but this is still ∼300 times the Roche radius (∼10−4 au) of the planet. To within a numerical +multiplier, the differential of the gravitational force on opposite sides of the nucleus is +∆F ∼ (GMV ρnr3 +n/r2 +V )(rn/rV ) giving an order of magnitude tidal stress S ∼ ∆F/r2 +n or +S ∼ GMV ρnr2 +n +r3 +V +, +(6) + +– 16 – +where G = 6.67 × 10−11 N kg−2 m2 is the gravitational constant, MV = 5 × 1024 kg is +the mass of Venus and the other quantities are already defined. Substituting ρn = 500 kg +m−3, rn = 600 m, and rV = 0.029 au, we estimate S ∼ 10−6 N m−2 at closest approach, +which is orders of magnitude smaller even than the cohesive strengths of fine, unconfined +powders (S ≳ 100 N m−2) measured in the laboratory (Garcia-Trinanes et al. 2019). The +disintegration of A1 is very unlikely to be a consequence of tidally induced stresses. +Equilibrium Sublimation: The rate of loss of surface material is drn/dt ∼ −fs/ρ, +where fs ∼ 2 × 10−4 kg m−2 s−1, at 1 au. Substitution gives drn/dt ∼ -3 cm day−1. At this +rate, the timescale for eroding the whole nucleus would be |rn/(drn/dt)| ∼ 40 years, which +is very large compared to the ∼1 year spent by A1 in the vicinity of the Sun. In any case, +sublimation would produce steady erosion of the comet not a catastrophic disintegration +like that observed. Equilibrium sublimation cannot account for the sudden disintegration +of A1. +Collisional Disruption: Collisional disruption timescales for 0.6 km scale objects, +even in the dense parts of the asteroid belt, are measured in hundreds of millions of years +(Bottke et al. 2005). Comet A1 arrived from a high inclination orbit and disintegrated ∼0.5 +au from the ecliptic plane where there are no known objects with which to collide. We +confidently dismiss the possibility that A1 was collisionally disrupted. +Internal Pressure: Could internal pressure build-up from sublimated gases cause +the nucleus to explode (Samarasinha 2001)? The core temperature of the nucleus of A1 +is comparable to the Oort cloud equilibrium temperature of just a few degrees above +absolute zero. Heat transport from the surface to the interior by conduction is controlled +by the thermal diffusivity, which is proportional to the conductivity and which, in turn, +is strongly affected by the particulate nature and porosity of the cometary material. +Laboratory measurements of porous, dielectric powders yield conductivities ∼ 102 to 103 + +– 17 – +times smaller than the solid material (Henke et al. 2012). The expected high porosities +and low thermal diffusivities of cometary material lead to small thermal skin depths that +make deep conduction impossible. Heat applied for a time τ will conduct over a distance +d ∼ (κτ)1/2, where κ is the diffusivity. For example, with κ = 10−8 to 10−9 m2 s−1, even in +the year between discovery at rH = 5 au and perihelion at 0.6 au, conducted heat travelled +into the nucleus by a characteristic distance only d ∼ 0.2 m to 0.5 m. This distance is so +small compared to the nucleus radius that it is difficult to see how subsurface gas produced +by surface heating could have any relevance to the complete disintegration of the nucleus. +Rotational Instability: The remaining possibility for nucleus break-up is also the +most plausible. The timescale for changing the spin angular momentum of a spherical +nucleus through outgassing torques is (Jewitt 2021) +τs = +�16π2 +15 +� � ρnr4 +n +kTVthP +� � 1 +˙M +� +, +(7) +where P is the instantaneous spin-period and kT is the dimensionless moment arm, equal +to the fraction of the outflow momentum that exerts a torque on the nucleus. The median +values in a sample of short-period comet nuclei with perihelia in the range 1 ≤ q ≤ 2 au +are kT = 0.007 and P = 15 hours (5×104 s) (Jewitt 2021). We substitute +˙M = 800 kg +s−1, equal to the sublimation rate at 1 au as measured by Combi’s Lyman-α data, on the +understanding that this sets a lower bound to the mass loss rate at smaller distances and +therefore sets an upper limit to τs. With ρn = 500 kg m−3, rn = 600 m, and Vth = 500 +m s−1, substitution into Equation 7 gives τs < 5 × 106 s (0.16 year, or 2 months), which +compares to the 6 weeks (0.12 year) spent by A1 with rH < 1 au. While this is not proof +that A1 disintegrated through a rotational instability, given the nominal nucleus parameters +and measured mass loss rate, rotational instability does offer a plausible mechanism for +nucleus disintegration. + +– 18 – +Rotational breakup is expected to launch fragments with a velocity dispersion +comparable to the tangential speed of the nucleus due to its rotation. For a strengthless +nucleus, this equals the gravitational escape speed from the primary, in this case ∼0.3 +m s−1. In contrast, the Monte Carlo models show that larger speeds are required to fit +the head width of the debris trail. For example, with V = V0β1/2 and V0 = 550 m s−1, +millimeter sized particles (β = 0.001) would have V ∼ 17 m s−1, about 60 times the escape +speed. We conjecture that these higher speeds result from gas drag acceleration following +the exposure and intense sublimation of previously buried ices caused by rotational breakup +at rH ∼ 0.8 au. +Very large particles and boulders would not be substantially accelerated by gas drag +and should leave the disintegrating nucleus at about the escape velocity of the primary. +In the ∼3 months elapsed between the first signs of breakup and the HST observations, +such slow-moving fragments would travel ∼2000 km, a distance subtending 1′′ to 2′′ in the +plane of the sky (c.f. Table 1). Large fragments should therefore be resolvable in the HST +data (the resolution is ∼0.08′′) but, nevertheless, remain unseen. This might reflect the +continued disintegration of the fragments, again aided by the new exposure to the heat of +the Sun of previously buried volatiles. The breakup process would then be catastrophic. +Smaller fragments produced by breakup of the primary nucleus would have progressively +shorter and shorter spin-up times, owing to their smaller size (c.f. Equation 7) and to the +sudden exposure of large areas of previously buried ice which could amplify the moment +arm, kT, by orders of magnitude. The expected result is a runaway fragmentation cascade. +4.6. +Gas Production Resulting from Nucleus Disintegration +Disintegration of the nucleus must suddenly expose previously buried ices to the heat +of the Sun, leading to a burst in the gas production rate caused by sublimation. Indeed, + +– 19 – +measurements of the gas production rate in the mid-December to January period are highly +variable, peaking near QH2O = 2.4 × 1029 s−1 in radio (Crovisier et al. 2021), Lyman-α (M. +Combi, (private communication)), and near-ultraviolet (Jehin et al. 2021, 2022a, 2022b) +observations. At break up, A1 was about rH = 0.8 AU from the Sun and ∆ = 0.2 AU from +the SWAN/SOHO observatory used to take the Lyman-α data. The latter has 1◦ wide +pixels, corresponding to about w ∼ 6 × 105 km per pixel at the comet and 1.2×106 km +for the nominal Nyquist (2 pixel) resolution of the data. With an isothermal blackbody +temperature at 0.8 AU ∼310 K, the thermal velocity of hydrogen atoms is Vth ∼ 2.5 km +s−1. This, however, is a strong lower limit to the outflow velocity because of photo-electric +heating (e.g. Combi and Delsemme 1980, Combi et al. 2000). Based on published models, +we adopt a hydrogen outflow speed Vth ∼ 10 km s−1 and estimate the residence time for +hydrogen atoms within a Nyquist sampled resolution element as tr ∼ 2w/Vth ∼ 1.2 × 105 +s (about 1.4 days). This means that the peak rate inferred from SWAN/SOHO Lyman-α +data should be understood as a measure of the production rate averaged over 1.4 days. +We are interested to see how QH2O compares with estimates of the gas production +expected from the break up of the nucleus. To this end, we consider an idealized model in +which the nucleus consists of particles which are either refractory or ice, and in which the +ratio of ice to refractory masses is fice. Both refractory and ice particles are assumed to +occupy a differential power size distribution (Equation 4). To render the problem tractable, +we make the simplifying assumption that the nucleus disintegrates instantaneously into +power law distributions of ice and refractory particles, each having radii in the range +a1 ≤ a ≤ a2. The icy component then sublimates at the rate fs [kg m−2 s−1], which we +calculate from energy balance including terms for radiation and sublimation. +In the residence time tr, an ice surface will sublimate over a layer thickness + +– 20 – +as = fstr +ρn +, +(8) +where ρn is the density of the particle, assumed equal to the bulk density of the nucleus. +All the ice particles with radii a ≤ as will sublimate away, releasing water molecules and, +eventually, producing by photodissociation the hydrogen atoms detected using the SWAN +instrument. Ice particles with a > as will also partially sublimate in time tr, but their +contribution to the gas flux should be small because, for plausible power law distributions +(in particular, for γ = 3.5 as determined in sections 4.3 and 4.4), large particles present a +small fraction of the total particle cross-section. +The fraction of the mass contained in ice particles having a ≤ as is given by +F = +� as +a1 a3−γda +� a2 +a1 a3−γda +(9) +which, for 3 < γ < 4 and as ≫ a1 and a2 ≫ a1, simplifies to +F = +�γ − 3 +4 − γ +� �as +a2 +�4−γ +. +(10) +The total ice mass in the undisrupted nucleus, assumed to be spherical, is Mi = +(4π/3)ρnr3 +nfice. The production rate averaged over time tr may be written QH2O = +FMi/(trµmH), where µ = 18 is the molecular weight of the water molecule and +mH = 1.67 × 10−27 kg is the mass of the hydrogen atom. Substitution of Equations 8 and +10 into this expression gives +QH2O = 4πρnr3 +nfice +3trµmH +�γ − 3 +4 − γ +� � fstr +ρna2 +�4−γ +. +(11) +The equilibrium sublimation mass flux calculated for a blackbody water ice sphere at 0.8 + +– 21 – +AU is fs = 1.7 × 10−4 kg m−2 s−1. The flux could be smaller if the grain albedo is high, or +larger if the grain is anisothermal (albeit then sublimating from a smaller fraction of the +grain surface). We set a2 = 60 m, the largest “particle” allowed by the Hubble imaging, +and a1 = 10−7 m (however, Equation 11 is insensitive to a1 and its value is unimportant +provided a1 ≪ as). The nominal nucleus radius is rn = 600 m, and the size distribution +index is γ = 3.5, as deduced above. Measured cometary ice/refractory ratios, fice, show a +wide range of values, from fice ∼ 1 in 67P/Churyumov-Gerasimenko (Marschall et al. 2020), +to fice < 0.2 in C/1995 O1 Hale-Bopp (Jewitt and Matthews 1999) and fice = 0.03 to +0.1 in 2P/Encke (Reach et al. 2000). We adopt fice = 1/4, recognizing that this value is +substantially uncertain. +Substitution into Equation 11 gives QH2O = 8.8+12.0 +−6.2 × 1029 s−1, where the error bars +reflect only the ±200 m uncertainty in the estimated radius of the nucleus. This is larger +than the measured peak water production rate (2×1029 s−1) but shows acceptable agreement +given the crude nature of the model calculation and the likelihood that the disintegration +was in reality spread over a finite period not impulsive, as modeled. We conclude that +complete disintegration of the nucleus into a power law particle size distribution is consistent +both with the optical brightness of the debris cloud and with the surge in the water +production rate measured using Lyman-α. +Future improvements to this model could include a treatment of the initial, optically- +thick phase of the expanding disintegration cloud, when self-shielding will suppress and +delay the sublimation surge relative to the estimate given here. Also needed is a treatment +of the gas drag interaction with cometary solids in a fully disintegrated body, responsible +for the size-dependent acceleration of refractory particles into the coma and surviving +debris field. Furthermore, several of the parameters needed to accurately model nucleus +disintegration remain unmeasured, and most other disintegrating comets are observationally + +– 22 – +even less-well characterized than A1. It is obvious, even from these simple considerations +that many more detailed observations, across a wide range of wavelengths and with +adequate temporal sampling, will be needed to better understand what is likely to be the +dominant destructive cometary process. + +– 23 – +5. +SUMMARY +We present both high resolution and wide field observations of disintegrating +long-period comet C/2021 A1 (Leonard) taken to study the nature of its demise. +• The pre-disintegration radius of the nucleus, estimated using two methods, was +rn = 0.6 ± 0.2 km. After breakup, which began in mid-December 2021 and may have +continued for weeks, no nucleus fragments larger than about rn = 0.06 km (i.e. < 10−3 +of the primary mass) survived. +• The observed debris cloud consists of sub-millimeter and larger particles, with a +differential power law size distribution having index γ = 3.4±0.1 and 3.5±0.1, as +estimated by two different methods. The observational constraints are consistent with +equality between the mass of the debris cloud and the mass of the primary nucleus, +indicating a total disintegration. +• Tidal disruption, sublimation, collisional disruption, and explosion following internal +pressure build-up in the nucleus all offer implausible explanations of the disintegration +of C/2021 A1. +• The spin-up timescale due to outgassing torques for a 600 m nucleus in the orbit of +C/2021 A1 is as short as ∼2 months, pointing to rotational instability as the likely +cause of the disintegration. +• A simple model of the exposure and rapid sublimation of previously buried ice +indicates a peak gas production rate (QH2O = 9+12 +−6 × 1029 s−1) of the same order as +the measured peak value (QH2O = 2.4 × 1029 s−1). +We thank Michael Combi for a preview of his SWAN data on C/2021 A1 and the +anonymous referee for prompt comments on the manuscript. Based on observations made + +– 24 – +with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the +Space Telescope Science Institute. STScI is operated by the Association of Universities for +Research in Astronomy, Inc. under NASA contract NAS 5-26555. Support for this work +was provided by NASA through grant number GO-16929 from the Space Telescope Science +Institute, which is operated by auRA, Inc., under NASA contract NAS 5-26555. +Facilities: HST. + +– 25 – +REFERENCES +Bessell, M. S. 1990, PASP, 102, 1181. doi:10.1086/132749 +Bohren, C. F. & Huffman, D. R. 1983, Absorption and scattering of light by small particles. +New York: Wiley, 1983 +Bottke, W. F., Durda, D. D., Nesvorn´y, D., et al. 2005, Icarus, 179, 63. +doi:10.1016/j.icarus.2005.05.017 +Blaauw, R. C., Campbell-Brown, M. D., & Weryk, R. J. 2011, MNRAS, 414, 3322. +doi:10.1111/j.1365-2966.2011.18633.x +Combi, M. R. & Delsemme, A. H. 1980, ApJ, 237, 633. doi:10.1086/157909 +Combi, M. R., Reinard, A. A., Bertaux, J.-L., et al. 2000, Icarus, 144, 191. +doi:10.1006/icar.1999.6335 +Crovisier, J., Biver, N., and Bockelee-Morvan, D. 2021, Central Bureau Electronic Telegram +5087 (2021 December 22) +Finson, M. J. & Probstein, R. F. 1968, ApJ, 154, 327. doi:10.1086/149761 +Garcia-Trinanes, P., Luding, S. and Shi, H. +2019. Advanced Powder Technology, 30, +2868-2880 +Groussin, O., Attree, N., Brouet, Y., et al. 2019, Space Sci. Rev., 215, 29. doi:10.1007/s11214- +019-0594-x +Henke, S., Gail, H.-P., Trieloff, M., et al. 2012, A&A, 537, A45. doi:10.1051/0004- +6361/201117177 +Holmberg, J., Flynn, C., & Portinari, L. 2006, MNRAS, 367, 449. doi:10.1111/j.1365- +2966.2005.09832.x + +– 26 – +Ishiguro, M., Sarugaku, Y., Ueno, M., et al. 2007, Icarus, 189, 169. +doi:10.1016/j.icarus.2007.01.003 +Jehin, E., Moulane, Y., & Manfroid, J. 2021, The Astronomer’s Telegram, 15128 +Jehin, E., Moulane, Y., Manfroid, J., et al. 2022a, The Astronomer’s Telegram, 15186 +Jehin, E., Moulane, Y., Manfroid, J., et al. 2022b, The Astronomer’s Telegram, 15189 +Jewitt, D. & Matthews, H. 1999, AJ, 117, 1056. doi:10.1086/300743 +Jewitt, D. & Luu, J. 2019, ApJ, 883, L28. doi:10.3847/2041-8213/ab4135 +Jewitt, D., Kim, Y., Mutchler, M., et al. 2020, ApJ, 896, L39. doi:10.3847/2041-8213/ab99cb +Jewitt, D. 2021, AJ, 161, 261. doi:10.3847/1538-3881/abf09c +Jewitt, D. 2022, AJ, 164, 158. doi:10.3847/1538-3881/ac886d +Kim, Y., Ishiguro, M., Michikami, T., et al. 2017, AJ, 153, 228. doi:10.3847/1538- +3881/aa69bb +Knight, M. M., A’Hearn, M. F., Biesecker, D. A., et al. 2010, AJ, 139, 926. doi:10.1088/0004- +6256/139/3/926 +Leonard, G. J., Aschi, S., Pettarin, E., et al. 2021, Minor Planet Electronic Circulars, +2021-A99 +Li, J. & Jewitt, D. 2015, AJ, 149, 133. doi:10.1088/0004-6256/149/4/133 +Marschall, R., Markkanen, J., Gerig, S.-B., et al. 2020, Frontiers in Physics, 8, 227. +doi:10.3389/fphy.2020.00227 +Pansecchi, L. & Fulle, M. 1990, A&A, 239, 369 + +– 27 – +Reach, W. T., Sykes, M. V., Lien, D., et al. 2000, Icarus, 148, 80. doi:10.1006/icar.2000.6478 +Samarasinha, N. H. 2001, Icarus, 154, 540. doi:10.1006/icar.2001.6685 +Wolf, C., Onken, C. A., Luvaul, L. C., et al. 2018, PASA, 35, e010. doi:10.1017/pasa.2018.5 +Zhang, Q., Ye, Q., Vissapragada, S., et al. 2021, AJ, 162, 194. doi:10.3847/1538-3881/ac19ba +Zubko, E., Videen, G. Shkuratov, Y., et al. 2017, JQSRT, 202, 104. +doi:10.1016/j.jqsrt.2017.07.026 +This manuscript was prepared with the AAS LATEX macros v5.2. + +– 28 – +Table 1. +Observing Geometry +UT Date & Time +νa +rH b +∆c +αd +θ−⊙e +θ−V f +δ⊕g +Telh +Scalei +Uncj +2022 Mar 31 18:14-18:26 +107.4 +1.756 +1.942 +30.8 +243.6 +90.2 +-20.4 +Swan Hill +1408 +±1.4 +2022 Apr 05 23:35-24:04 +109.2 +1.833 +1.910 +30.9 +246.4 +91.7 +-19.8 +HST +1385 +±1.6 +2022 Apr 06 23:32-23:51 +109.5 +1.848 +1.902 +30.9 +246.9 +92.0 +-19.7 +HST +1379 +±1.6 +2022 Apr 10 19:23-19:53 +110.7 +1.903 +1.875 +30.7 +249.0 +93.2 +-19.1 +HST +1359 +±1.7 +2022 Jun 7 16:36-17:12 +123.0 +2.698 +1.715 +6.8 +319.3 +137.0 ++0.2 +HST +1243 +±3.7 +aTrue anomaly, in degrees +bHeliocentric distance, in au +cGeocentric distance, in au +dPhase angle, in degrees +ePosition angle of projected anti-solar direction, in degrees +fPosition angle of negative heliocentric velocity vector, in degrees +gAngle from orbital plane, in degrees +hTelescope +iImage scale, km arcsecond−1 +j3σ ephemeris uncertainty, arcsecond (from JPL Horizons) + +– 29 – +Fig. 1.— A) Composite of four, 450 s HST images from UT 2022 April 5. Diffuse streaks +are imperfectly removed field stars and galaxies. +B) Same image, anotated to show the +approximate boundary of the debris (white dashed line) and the expected location of the +nucleus (yellow line segments). Two scale bars of 30′′ and 5×104 km in length are shown, as +well as the projected anti-solar (−S) and negative heliocentric velocity (−V ) vectors. North +is to the top, East to the Left. + +UT 2022 April 5 +30 +5x104 km +B– 30 – +Fig. 2.— Wide field image from Swan Hill Observatory showing C/2021 A1 on UT 2022 +March 31. 10′ and 106 km scale bars are shown, as well as the projected anti-solar (−S) and +negative heliocentric velocity (−V ) vectors. Yellow lines mark the ephemeris location of the +nucleus. The white square shows the size of the HST field of view. The image has North to +the top, East to the left. + +10 +.UT 2022 March 31 +106.km– 31 – +Fig. 3.— (Upper:) Same image as in Figure 2 but rotated to bring the axis of the dust tail +to the horizontal and shown at a larger scale. Yellow lines mark the ephemeris location of +the nucleus. (Lower:) Locations of the photometry regions A, B and C used to measure the +scattering cross-section of particles in the tail. + +R +380″ +1105"– 32 – +-500 +0 +500 +1000 +1500 +0 +400 +800 +1200 +1600 +Surface Brightness +Distance [arcsecond] +Fig. 4.— Surface brightness profile parallel to the long axis of Box A (Figure 3) plotted +against the distance from the nucleus ephemeris location (axis is reversed relative to Figure +3). 1000 units correspond to a surface brightness Σ = 24.4 magnitudes arcsec−2. The linear +distance scale is approximately 1500 km per arcsecond. + +– 33 – +Fig. 5.— (Left:) Same image as Figure 2 with synchrones overplotted, for ejection dates 80, +100, 120, 140 and 160 days prior to the date of the image. (Right:) Syndynes for particles +with β = 0.0003, 0.001, 0.003, 0.01 and 0.03, as marked. The axis of the debris cloud is best +matched by the 110±10 day synchrones, corresponding to ejection on UT 2021 December +11±10. + +UT 2022 March 31 +0.0003 +0.001 +120 +0.003 +100- +80 +10'0 +0.03– 34 – +1011 +1012 +1013 +1014 +1015 +2.5 +3.0 +3.5 +4.0 +Debris Mass [kg] +Differential Size index, γ +rn = 0.6+/-0.2 km +Blaauw et al. 2011 +Kreutz Sungrazers +C/2021 A1 +Fig. 6.— Total mass of the debris cloud (assuming density ρn = 500 kg m−3) plotted as a +function of the differential power law index, γ, is plotted as a solid black line. The equivalent +spherical mass of the original 0.6±0.2 km radius nucleus is shown (assuming the same ρn), +together with its uncertainty, as a yellow horizontal band. The debris and nucleus masses +are equal at γ = 3.5 ± 0.1, shown by the red filled circle. For comparison we show, as a blue +square, the size distribution of the Kreutz sungrazing comets (Knight et al. 2010) and, as +green triangles, several radar-measured meteoroid streams (Blaauw et al. 2011). The vertical +positions of the Kreutz and radar stream points have no meaning. + +– 35 – +-200 +0 +200 +400 +600 +800 +1000 +1200 +0 +400 +800 +1200 +1600 +Surface Brightness +Distance [arcsecond] +3.5 +3.4 +3.3 +3.5 +3.3 +3.4 +Fig. 7.— Axial surface brightness profile on UT 2022 March 31 (yellow diamonds) compared +with results from a Monte Carlo simulation. The models shown have size index γ = 3.3 (red +curve), 3.4 (black curve) and 3.5 (blue curve), all with 7 × 10−4 ≤ β ≤ 0.07, corresponding +to particle radii 14 µm to 1.4 mm. + diff --git a/JNFAT4oBgHgl3EQfvB44/content/tmp_files/load_file.txt b/JNFAT4oBgHgl3EQfvB44/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c7092edbc830644dad5c902ea23b09fe3ad11a8f --- /dev/null +++ b/JNFAT4oBgHgl3EQfvB44/content/tmp_files/load_file.txt @@ -0,0 +1,782 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf,len=781 +page_content='Disintegration of Long-Period Comet C/2021 A1 (Leonard) David Jewitt1, Yoonyoung Kim2, Michael Mattiazzo3, Max Mutchler4, Jing Li1 and Jessica Agarwal2 1Department of Earth, Planetary and Space Sciences, UCLA 2Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, D-38106 Braunschweig, Germany 3Swan Hill Observatory, Australia 4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 jewitt@ucla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='edu Received ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' accepted Revised 2022 January 16 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='08673v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='EP] 20 Jan 2023 – 2 – ABSTRACT We present imaging observations of the disintegrating long-period comet C/2021 A1 (Leonard).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' High resolution observations with Hubble Space Tele- scope show no evidence for surviving fragments, and place a 3σ upper limit to their possible radius ∼60 m (albedo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 assumed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In contrast, wide field ob- servations from the Swan Hill Observatory, Australia, show an extensive debris cloud, the cross-section and estimated mass of which are consistent with com- plete disintegration of the nucleus near mid- December 2021 (at about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 au).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Two methods give the pre-disruption nucleus radius, rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Tidal, collisional, sublimation and pressure-confined explosion models provide implau- sible explanations of the disintegration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' However, rotational instability driven by outgassing torques has a very short timescale (∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 year) given the orbit and size of the C/2021 A1 nucleus, and offers the most plausible mechanism for the disruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Initial rotational breakup is accelerated by the exposure and strong sublimation of previously buried volatiles, leading to catastrophic destruction of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Subject headings: comets: general—comets: individual C/2021 A1 – 3 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' INTRODUCTION Comet C/2021 A1 (Leonard), hereafter “A1”, was discovered on UT 2021 January 3 as a diffuse V ∼ 19 magnitude object inbound to the Sun at heliocentric distance rH = 5 au (Leonard 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A1 is a long-period comet, with heliocentric osculating semimajor axis a = -6124 au, eccentricity e = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0001 and inclination i = 132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6◦, reaching perihelion (at rH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='615 au) on UT 2022 January 03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3, about a year after discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Although presently following a weakly hyperbolic orbit, the pre-entry orbital elements (corrected for planetary perturbations to 1900 January 1, when the heliocentric distance was 137 au) are those of a bound object, a = 2020 au, e = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='999696 and i = 132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A1 is thus not a dynamically new comet, having passed through the planetary system ∼ 105 years ago.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Comet A1 attained naked eye visibility in late 2021 and then displayed spectacular gas and dust tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' However, images and commentary recorded in public on-line archives1 indicate that A1 became photometrically unstable in 2021 December and 2022 January.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Measurements of the OH production rate from the Nancay radio telescope were steady near QOH = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6×1028 s−1 between UT 2021 December 9 and 12, but jumped by a factor of ∼8 to QOH = 22×1028 s−1 on December 15, even as the heliocentric distance barely decreased from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='80 au to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='74 au (Crovisier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The morphology also changed, becoming more diffuse and with “the tail being more prominent than the head” on UT 2022 January 222 at rH ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='74 au outbound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Based on these early observational reports we requested Director’s Discretionary Time on the Hubble Space Telescope (HST), with the science objective being to study the presumed breakup of this long-period comet at the highest angular resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Independently, coauthor Mattiazzo also obtained wide-field imaging data using a private telescope at the Swan Hill Observatory in Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The wide-field and 1e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' https://britastro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='org/cometobs/2021a1/thumbnails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='html 2https://groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='io/g/comets-ml/message/30541 – 4 – HST data are highly complementary, with the former providing sensitivity to low surface brightness debris over a wide angle and the latter providing ultra-high resolution and very deep imaging of the near-nucleus region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' While the phenomenon of cometary breakup has been known for over a century, very few physical observations of disintegrating comets are to be found in the refereed literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In this paper, we present the observations and consider possible causes of the breakup of comet A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' OBSERVATIONS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Hubble Space Telescope The 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 m diameter Hubble Space Telescope was used to observe disintegrating A1 under program GO 16929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We used the WFC3 camera, which houses two 2015×4096 pixel charge coupled devices separated by a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2′′ wide gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='04′′ pixel−1 image scale gives a full-frame 162′′×162′′ field of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' HST images were taken using the F350 LP filter in order to maximize throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This filter has an effective central wavelength λc = 6230˚A when observing a Sun-like (G2V) source and a FWHM ∆λ = 4758˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We secured four images each of 450 s duration in each of the first three orbits and five frames of 285 s, with a sub-frame readout, in the fourth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The first three orbits were obtained in 2022 April with spacings of one and four days, with the intention being to measure the sky-plane motions of fragments produced by the break-up of A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The fourth orbit was scheduled on UT 2022 June 7 to coincide with the passage of the Earth through the projected orbit plane of the comet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Observations from this vantage point provide a model-free measure of the thickness of the dust distribution perpendicular to the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Unfortunately, the images from the fourth orbit suffered from extreme field star contamination, as a result of the low (-6◦) – 5 – galactic latitude of the comet, and were not useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Swan Hill Observatory Wide-field observations were taken by co-author Michael Mattiazzo using a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='28 m diameter, f/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 wide-field telescope at the Swan Hill Observatory (observatory code Q38), located in Victoria, Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A 4655×3522 pixel CMOS imaging device (Panasonic model QHY163M) provided an image scale of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='27′′ pixel−1, and a field of view approximately 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6◦×1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Each pixel of the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='28 m telescope subtends a solid angle equal to 103 HST pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Ten images each of 30 s duration were obtained, during which time the comet moved relative to field stars by about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7′′, which is small compared to the 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1′′ full width at half maximum of point source objects in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The wide field image shows evidence for loss of sensitivity due to vignetting, especially near the corners of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We removed this by fitting a cubic spline surface to the image, using the median signal within 50×50 pixel boxes (after checking that the procedure did not self-subtract the comet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' No filter was employed in order to maximize the throughput of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The quantum efficiency of the detector peaks near a central wavelength 5500˚A, and has a FWHM estimated at ∼4000˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The central wavelength is close to that of Johnson V (see the discussion in Bessel 1990), but the response is so broad that it captures the same light as the Johnson B, V and R filters (or, equivalently, the Sloan g and r filters) combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The large bandwidth and lack of a standard filter together limit the accuracy with which the measured magnitudes can be related to, for example, the V band magnitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We calibrated the data using measurements of field stars on the Sloan filter system, provided by the Skymapper southern survey (Wolf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For this purpose we extracted measurements using circular apertures of projected radius 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7′′, with sky subtraction from the median signal within a concentric annulus having inner and outer radii 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1′′ and 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1′′, – 6 – respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In order to minimize the color term in our photometry, we selected stars with optical color g-r ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5, so as to approximately match the color of the Sun (given as g-r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='45±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='02 by Holmberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We further selected these stars to lie within ∼1′ of the comet in order to minimize spatial variations in the photometry caused by imperfect flatness of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The geometrical circumstances of observation are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' High Resolution Data We combined the four images from each orbit in order to reject cosmic rays, suppress trailed field objects, and reach a fainter limiting magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The composite from UT 2022 April 5 is shown in Figure 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' composites from April 6 and 10 look the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The predicted location of the nucleus is indicated in the Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The JPL Horizons ephemeris for April 5 gives 3σ positional uncertainties of ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3′′ in right ascension and ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0′′ in declination, both of which are negligible compared to the 160′′ field of view of WFC3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We searched for the principal nucleus and discrete fragments in the data by comparing image subsets to identify correlated motion, but found none.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Instead, the images show evidence for diffuse light scattered from cometary dust, evident in Figure 1 as a region of slightly higher surface brightness in the south east quadrant of the image (marked by a dashed white line in the right-hand panel of the figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Although it at first resembles a flat-field defect or a smudge of internally scattered light, two lines of evidence show that this region of diffuse brightness is neither.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' First, the enhanced region is fixed with respect to the daily predicted ephemeris position of A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Second, the enhanced region moves on the detector as the telescope orientation angle changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The enhancement appears at the same position in – 7 – image composites from all three dates in April, whereas scattered light from bright stars outside the WFC3 field of view would vary as the background stars are completely different from day to day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A flat-field defect would not rotate as the telescope orientation changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We conclude that the diffuse light is sunlight scattered from cometary debris released from the now invisible nucleus of A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The on-line WFC3 Exposure Time Calculator3 gives a 3σ limit for detection of point source objects at V = 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7, in each of our orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This limiting magnitude is consistent with the measured sky noise in the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Corrected to absolute magnitude using phase coefficient β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='04 magnitude degree−1, we find H ≥ 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For a nominal albedo, pV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1, this corresponds to a 3σ limit to the fragment radius, r ≤ 60 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Wide Field Data The composite wide field image is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A low surface brightness dust structure extends over at least 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4◦ (2×106 km in the plane of the sky), with a position angle 120◦±2◦ and no indication of a brightness peak at the expected location of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The latter was determined from the JPL Horizons ephemeris for the mid-time of the image, and is marked in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Overall, the morphology is similar to that of C/2010 X1 (Elenin), a long period comet which disintegrated when inbound near rH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 AU (Li and Jewitt 2015), and C/2019 J2 (Palomar), which disintegrated pre-perihelion near rH = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9 au (Jewitt and Luu 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Comparison with Figure 1 shows that the HST, which was pointed at the expected location of the nucleus, indeed recorded diffuse light from the western tip of this dust structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We estimated the total light from the dust as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' First, we rotated the image to 3https://etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='stsci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='edu/etc/input/wfc3uvis/imaging/ – 8 – bring the long axis of the dust tail to the horizontal (upper panel in Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Next, we manually replaced field stars with the average of surrounding pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The median signal from the comet was then computed within a rectangular box, “A” in the lower panel of Figure 3) 1105′′ long by 380′′ tall, and the background sky estimated from equal-sized photometry boxes contiguous with the comet box but displaced above and below it (“B” and “C” in Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Figure 3 shows that the tail extends beyond the left edge of the photometry box “A” but the increased uncertainty imposed by the sky rendered measurements of this very faint material impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The light from the tail was calculated from fT = fA−(fB+fC)/2, where fx is the flux in box “x”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Then, applying the calibration obtained from field stars, we find VT = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5, where the quoted error is our best estimate of the uncertainty resulting from non-flatness of the data, the transformation from the wide response of the camera and the effective V magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' With assumed phase function 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='02±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='02 magnitude degree−1 and the geometry given in Table 1, the corresponding absolute magnitude is H = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6, where the larger uncertainty is introduced by the phase correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The scattering cross-section needed to give this absolute magnitude is C = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 × 1010 m2, assuming geometric albedo pV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 (appropriate for cometary dust;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Zubko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Figure 4 shows the averaged surface brightness profile from the March 31 image, measured parallel to the long axis of region A in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Most of the scatter in the surface brightness profile is statistical noise in the data, but larger oscillations (for example at ∼480′′ and 750′′) result from spatial background variations caused by the digital removal of field stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In this plot, the peak of 1000 units corresponds to a surface brightness Σ = 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 magnitudes arcsec−1, about 5% of the surface brightness of the night sky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The surface brightness shows a steep increase, reaching a maximum at about 100′′ from the ephemeris nucleus location, followed by a steady decline at larger projected angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This profile shape is indicative of a suddenly terminated dust mass release, with the peak of the profile giving the distance traveled by the largest, slowest particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 9 – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' DISCUSSION 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Radius and Mass of the Nucleus We use the effective spherical nucleus radius of A1 ¯r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km from Jewitt (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This estimate is based on independent measurements of QH2O(1), the gas production rate at 1 au, and of α1, the non-gravitational acceleration at 1 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Comet A1 has QH2O(1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9×1028 s−1 (only pre-perihelion observations are used because post-perihelion rates are clearly affected by the breakup) and α1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3×10−6 m s−2, provided by JPL Horizons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A substantially smaller nucleus would have a surface area insufficient to supply the QH2O(1), while a substantially larger nucleus would have too much mass to be accelerated at α1 given the known gas production rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Using ¯r and nominal nucleus density ρn = 500 kg m−3 (Groussin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2019), we estimate the nucleus mass Mn = (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2) × 1011 kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The largest surviving fragments, with radii <60 m, individually contain < 10−3 of the mass of the primary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Time of Disruption Syndynes (the loci of particles having one size, released with zero initial relative velocity over a range of times;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Finson & Probstein (1968)) are curved and do not match the linear shape of the debris cloud in A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Instead, the morphology more resembles a set of synchrones as shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Synchrones trace the loci of particles in the sky plane having a range of sizes (hence, radiation pressure accelerations) but released from the nucleus simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The position angle of the debris trail in A1 is most compatible with ejection 110±10 days before the image was taken, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' on UT 2021 December 11±10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This is about a month before reports of distinct morphological change appeared but coincides with a dramatic increase in the OH production rate from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4×1028 s−1 on UT 2021 December – 10 – 19 to 14×1028 s−1 on UT 2021 December 21, in unpublished SOHO/SWAN data (personal communication M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Combi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' It is also close to a reported OH outburst on UT 2021 December 15 (Crovisier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' While we lack continuous coverage of the gas production from A1, it is likely that the sublimation rate became highly unstable as a result of the breakup of the nucleus when close to perihelion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We assume that the disintegration began on UT 2021 December 11±10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' To reach the far end of the measured debris cloud (an angular distance ∼1500′′, corresponding to linear distance L = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 × 106 km) under the action of radiation pressure requires an average acceleration 2L/∆T 2, where ∆T = 111 days (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6×106 s) is the interval between the time of disintegration and the Swan Hill image from UT 2022 March 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In units of the solar gravitational acceleration at the average rH = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 au heliocentric distance in this period, β = 2Lr2 H g⊙(1)∆T 2 (1) where g⊙(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='006 m s−2 is the solar gravity at 1 au and rH is expressed in au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substituting, we obtain β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' With β ∼ 1/aµm, where aµm is the particle radius expressed in microns (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Bohren & Huffman (1983)), we infer that the particles at the far end of the tail in the March 31 image had aµm ∼ 75 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' All particles in the visible debris cloud on UT 2022 March 31 must be larger, while smaller particles were presumably ejected but have been swept by radiation pressure beyond the visible extent of the tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Particles near the peak of the surface brightness profile (angular distance ∼100′′, corresponding to L = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 × 105 km) have β ∼ 10−3 by Equation 1 and, therefore, radii ∼1 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 11 – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Mass of the Optical Debris How does the mass of the debris compare with the mass of the nucleus prior to its disappearance?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' To answer this question, we treat the debris as consisting of a distribution of spherical particles with radii between a and a+da written as n(a)da.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Then, the combined mass of the particles between minimum radius a1 and maximum radius a2 is Md = � a2 a1 4 3πρa3n(a)da (2) while their combined cross-section is C = � a2 a1 πa2n(a)da (3) It is useful to represent the size distribution as a power law n(a)da = Γa−γda (4) where γ is the differential size distribution index and Γ is a normalizing constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substituting equation 4 into equations 2 and 3 and eliminating Γ, we obtain Md = 4 3ρC � a2 a1 a3−γda � a2 a1 a2−γda (5) The minimum particle radius is selected as a1 = 75 µm, since all smaller particles would have been swept out of the image field in the time since ejection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The maximum radius, a2 = 60 m, is set by the non-detection of larger bodies in our deep HST imaging data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' With these values for a1 and a2, we plot Equation 5 as a function of γ in the range 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 ≤ γ ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 (Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The particle mass required to account for the measured cross-section, – 12 – C, is seen to vary by orders of magnitude for modest changes in the index, γ, with smaller values (flatter distributions) hiding a larger fraction of the total mass in big bodies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Also plotted in the figure is the nucleus mass, Mn = (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2) × 1011 kg, computed from the effective radius, rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km, (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1), and density, ρn = 500 kg m−3, with the mass uncertainty marked as a horizontal yellow band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The red point marks the intersection of the two curves where Md = Mn and shows that, for index γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1, the debris mass and nucleus mass are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The upper limit to the size distribution could be substantially smaller than the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 km limit set by the Hubble data, in which case a smaller value of the index would be needed for the mass of the debris to equal the mass of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A relevant comparison can be made with the size distribution of the Kreutz sungrazing comets, which are themselves produced by the fragmentation of a precursor body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The Kreutz objects have γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 in the 5 m to 35 m radius range (Knight et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2010), plotted as a blue square in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The uncertainty on γ for the Kreutz objects is not stated;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' we have plotted a nominal ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 error bar for reference and note reasonable agreement with the index deduced for A1 within the uncertainties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Perhaps less relevant are radar measurements of the debris size distributions in six meteoroid streams, most associated with decaying comets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' These are plotted for comparison using green triangular symbols (Blaauw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (2011)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The formal meteoroid stream index uncertainties are comparable to the size of the symbols in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The measured indices span the range γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7, encompassing the values found for A1 and the Kreutz comets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We conclude that the optical cross-section presented by the debris in 2022 March is consistent with the complete disintegration of the original ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 km scale nucleus into a power law distribution (index γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1) of particle sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We emphasize that we possess no independent evidence that the debris mass and original nucleus mass are equal, although a consideration of the particle properties using more detailed considerations (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4) – 13 – supports this result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' It should also be noted that 60 m is an upper limit to the size of the largest post-disruption “particles” and our result would be changed if a2 ≪ 60 m, as it would if the size distribution of particles is not well represented by a single power law across the full range of sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' It is also not obvious that the density of the particles should necessarily be the same as the bulk density of the nucleus, as we have assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' These and other physically plausible possibilities lie beyond the observational constraints obtained from the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Monte Carlo Simulation We next used a Monte Carlo simulation as developed by Ishiguro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (2007) (see also Kim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (2017)) to model the cometary debris in more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The model is under-constrained and cannot provide unique solutions for the particle properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' It is nevertheless valuable in allowing us to test the deductions made based on order of magnitude considerations, and also to more fully explore the range of plausible solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We particularly examined the effect of the particle size distribution index and the minimum and maximum particles sizes in the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Figure 7 shows the data with results of simulations for γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 and size parameter in the range 7 × 10−4 ≤ β ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='07, with ejection on 2021 December 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The upper limit to β (lower limit to particle radius) is set by the field of view, with smaller particles have already been pushed out of the field by radiation pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We obtain a ≥ 14 µm, different by a factor of five from the limit a ≥ 75 µm estimated by the order of magnitude procedure, above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The lower limit to β (upper limit to the particle size of ∼1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 mm) is determined from the location of the surface brightness peak in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This is very small compared to the 60 m upper limit to the radius of the largest possible fragment, set by non-detection in the HST images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' However, this difference is understandable since, for – 14 – commonly measured cometary size distributions, the scattering cross-section is dominated by the smallest particles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' large particles contribute little to the cross-section and thus are poorly constrained by scattered light observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In order to fit the data, we assumed that the particle ejection speed varies with size parameter as V = V0β1/2, with V0 = 550 m s−1 being the gas thermal speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Unlike the particle trails of weakly active comets and asteroids, a high ejection speed is required in order to fit the large width of the debris cloud in A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' As is evident in Figure 7, the plotted models do not perfectly reproduce the measured surface brightness profile, with larger γ models being 25% to 30% brighter than the data at large distances from the nucleus and smaller γ models being too sharply peaked compared to the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' If they are real, these differences could result from physical effects not included in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For example, we have ignored dust released before disintegration, reasoning that the dramatic outbursts and brightening starting in mid-December would swamp any signal from older material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' As another example, large aggregate grains in the tail might break up into smaller particles which would be quickly swept from the field of view by radiation pressure, perhaps explaining the lower brightness of the tail ≳1000′′ from the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' On the other hand, the differences between the models and the measured profile are certainly affected by systematic uncertainties intrinsic to the wide field data, particularly by imperfect flatness of the data and by the presence of scattered light from bright background sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Rather than over-interpret the data, we conclude from the Monte Carlo simulation only that γ ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 provides a broad match to the profile, while much steeper and much less steep distributions do not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The range of allowable indices deduced from Monte Carlo models is consistent with γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 as inferred from the debris mass in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Lastly, we used the Monte Carlo model to test the possibility that the debris observed – 15 – in 2022 March could be long-lived material released before perihelion, in the form of a so-called “neck-line” structure (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Pansecchi and Fulle 1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We find that material ejected in the period 2021 November 15 to December 15 would produce a tail structure in March having position angle (113◦) distinctly different from that measured (120◦) or calculated from the impulsive ejection model (119◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In addition, neck-line structures in other comets are most prominent when observed from near the projected orbital plane, whereas our observations were taken ∼20◦ from the orbital plane of C/2021 A1 (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The combination of the unfavorable observing geometry, the failure to reproduce the measured position angle of the dust in 2022 March, and the obvious importance of the outbursts reported in 2021 December together show that pre-perihelion dust is a negligible contributor to the post-perihelion appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Disintegration Mechanism The preceding discussion shows that a ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 km scale nucleus disintegrated into fragments, the largest of which were no more than about 10% of the radius of the original body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' What process could lead to such a dramatic outcome?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Tidal Breakup: The 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='615 au perihelion distance of A1 far exceeds the Roche radius of the Sun (∼10−2 au), negating the possibility of a tidal breakup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Comet A1 did pass within a distance rV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='029 au from Venus on UT 2021 December 18 (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021) but this is still ∼300 times the Roche radius (∼10−4 au) of the planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' To within a numerical multiplier, the differential of the gravitational force on opposite sides of the nucleus is ∆F ∼ (GMV ρnr3 n/r2 V )(rn/rV ) giving an order of magnitude tidal stress S ∼ ∆F/r2 n or S ∼ GMV ρnr2 n r3 V , (6) – 16 – where G = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='67 × 10−11 N kg−2 m2 is the gravitational constant, MV = 5 × 1024 kg is the mass of Venus and the other quantities are already defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substituting ρn = 500 kg m−3, rn = 600 m, and rV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='029 au, we estimate S ∼ 10−6 N m−2 at closest approach, which is orders of magnitude smaller even than the cohesive strengths of fine, unconfined powders (S ≳ 100 N m−2) measured in the laboratory (Garcia-Trinanes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The disintegration of A1 is very unlikely to be a consequence of tidally induced stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Equilibrium Sublimation: The rate of loss of surface material is drn/dt ∼ −fs/ρ, where fs ∼ 2 × 10−4 kg m−2 s−1, at 1 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substitution gives drn/dt ∼ -3 cm day−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' At this rate, the timescale for eroding the whole nucleus would be |rn/(drn/dt)| ∼ 40 years, which is very large compared to the ∼1 year spent by A1 in the vicinity of the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In any case, sublimation would produce steady erosion of the comet not a catastrophic disintegration like that observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Equilibrium sublimation cannot account for the sudden disintegration of A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Collisional Disruption: Collisional disruption timescales for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 km scale objects, even in the dense parts of the asteroid belt, are measured in hundreds of millions of years (Bottke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Comet A1 arrived from a high inclination orbit and disintegrated ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 au from the ecliptic plane where there are no known objects with which to collide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We confidently dismiss the possibility that A1 was collisionally disrupted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Internal Pressure: Could internal pressure build-up from sublimated gases cause the nucleus to explode (Samarasinha 2001)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The core temperature of the nucleus of A1 is comparable to the Oort cloud equilibrium temperature of just a few degrees above absolute zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Heat transport from the surface to the interior by conduction is controlled by the thermal diffusivity, which is proportional to the conductivity and which, in turn, is strongly affected by the particulate nature and porosity of the cometary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Laboratory measurements of porous, dielectric powders yield conductivities ∼ 102 to 103 – 17 – times smaller than the solid material (Henke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The expected high porosities and low thermal diffusivities of cometary material lead to small thermal skin depths that make deep conduction impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Heat applied for a time τ will conduct over a distance d ∼ (κτ)1/2, where κ is the diffusivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For example, with κ = 10−8 to 10−9 m2 s−1, even in the year between discovery at rH = 5 au and perihelion at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 au, conducted heat travelled into the nucleus by a characteristic distance only d ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 m to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This distance is so small compared to the nucleus radius that it is difficult to see how subsurface gas produced by surface heating could have any relevance to the complete disintegration of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Rotational Instability: The remaining possibility for nucleus break-up is also the most plausible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The timescale for changing the spin angular momentum of a spherical nucleus through outgassing torques is (Jewitt 2021) τs = �16π2 15 � � ρnr4 n kTVthP � � 1 ˙M � , (7) where P is the instantaneous spin-period and kT is the dimensionless moment arm, equal to the fraction of the outflow momentum that exerts a torque on the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The median values in a sample of short-period comet nuclei with perihelia in the range 1 ≤ q ≤ 2 au are kT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='007 and P = 15 hours (5×104 s) (Jewitt 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We substitute ˙M = 800 kg s−1, equal to the sublimation rate at 1 au as measured by Combi’s Lyman-α data, on the understanding that this sets a lower bound to the mass loss rate at smaller distances and therefore sets an upper limit to τs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' With ρn = 500 kg m−3, rn = 600 m, and Vth = 500 m s−1, substitution into Equation 7 gives τs < 5 × 106 s (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='16 year, or 2 months), which compares to the 6 weeks (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='12 year) spent by A1 with rH < 1 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' While this is not proof that A1 disintegrated through a rotational instability, given the nominal nucleus parameters and measured mass loss rate, rotational instability does offer a plausible mechanism for nucleus disintegration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 18 – Rotational breakup is expected to launch fragments with a velocity dispersion comparable to the tangential speed of the nucleus due to its rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For a strengthless nucleus, this equals the gravitational escape speed from the primary, in this case ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 m s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In contrast, the Monte Carlo models show that larger speeds are required to fit the head width of the debris trail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For example, with V = V0β1/2 and V0 = 550 m s−1, millimeter sized particles (β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='001) would have V ∼ 17 m s−1, about 60 times the escape speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We conjecture that these higher speeds result from gas drag acceleration following the exposure and intense sublimation of previously buried ices caused by rotational breakup at rH ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Very large particles and boulders would not be substantially accelerated by gas drag and should leave the disintegrating nucleus at about the escape velocity of the primary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In the ∼3 months elapsed between the first signs of breakup and the HST observations, such slow-moving fragments would travel ∼2000 km, a distance subtending 1′′ to 2′′ in the plane of the sky (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Large fragments should therefore be resolvable in the HST data (the resolution is ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='08′′) but, nevertheless, remain unseen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This might reflect the continued disintegration of the fragments, again aided by the new exposure to the heat of the Sun of previously buried volatiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The breakup process would then be catastrophic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Smaller fragments produced by breakup of the primary nucleus would have progressively shorter and shorter spin-up times, owing to their smaller size (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Equation 7) and to the sudden exposure of large areas of previously buried ice which could amplify the moment arm, kT, by orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The expected result is a runaway fragmentation cascade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Gas Production Resulting from Nucleus Disintegration Disintegration of the nucleus must suddenly expose previously buried ices to the heat of the Sun, leading to a burst in the gas production rate caused by sublimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Indeed, – 19 – measurements of the gas production rate in the mid-December to January period are highly variable, peaking near QH2O = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 × 1029 s−1 in radio (Crovisier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021), Lyman-α (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Combi, (private communication)), and near-ultraviolet (Jehin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, 2022a, 2022b) observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' At break up, A1 was about rH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 AU from the Sun and ∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 AU from the SWAN/SOHO observatory used to take the Lyman-α data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The latter has 1◦ wide pixels, corresponding to about w ∼ 6 × 105 km per pixel at the comet and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2×106 km for the nominal Nyquist (2 pixel) resolution of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' With an isothermal blackbody temperature at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 AU ∼310 K, the thermal velocity of hydrogen atoms is Vth ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This, however, is a strong lower limit to the outflow velocity because of photo-electric heating (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Combi and Delsemme 1980, Combi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Based on published models, we adopt a hydrogen outflow speed Vth ∼ 10 km s−1 and estimate the residence time for hydrogen atoms within a Nyquist sampled resolution element as tr ∼ 2w/Vth ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 × 105 s (about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 days).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This means that the peak rate inferred from SWAN/SOHO Lyman-α data should be understood as a measure of the production rate averaged over 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We are interested to see how QH2O compares with estimates of the gas production expected from the break up of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' To this end, we consider an idealized model in which the nucleus consists of particles which are either refractory or ice, and in which the ratio of ice to refractory masses is fice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Both refractory and ice particles are assumed to occupy a differential power size distribution (Equation 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' To render the problem tractable, we make the simplifying assumption that the nucleus disintegrates instantaneously into power law distributions of ice and refractory particles, each having radii in the range a1 ≤ a ≤ a2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The icy component then sublimates at the rate fs [kg m−2 s−1], which we calculate from energy balance including terms for radiation and sublimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' In the residence time tr, an ice surface will sublimate over a layer thickness – 20 – as = fstr ρn , (8) where ρn is the density of the particle, assumed equal to the bulk density of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' All the ice particles with radii a ≤ as will sublimate away, releasing water molecules and, eventually, producing by photodissociation the hydrogen atoms detected using the SWAN instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Ice particles with a > as will also partially sublimate in time tr, but their contribution to the gas flux should be small because, for plausible power law distributions (in particular, for γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 as determined in sections 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4), large particles present a small fraction of the total particle cross-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The fraction of the mass contained in ice particles having a ≤ as is given by F = � as a1 a3−γda � a2 a1 a3−γda (9) which, for 3 < γ < 4 and as ≫ a1 and a2 ≫ a1, simplifies to F = �γ − 3 4 − γ � �as a2 �4−γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (10) The total ice mass in the undisrupted nucleus, assumed to be spherical, is Mi = (4π/3)ρnr3 nfice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The production rate averaged over time tr may be written QH2O = FMi/(trµmH), where µ = 18 is the molecular weight of the water molecule and mH = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='67 × 10−27 kg is the mass of the hydrogen atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substitution of Equations 8 and 10 into this expression gives QH2O = 4πρnr3 nfice 3trµmH �γ − 3 4 − γ � � fstr ρna2 �4−γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (11) The equilibrium sublimation mass flux calculated for a blackbody water ice sphere at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 – 21 – AU is fs = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 × 10−4 kg m−2 s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The flux could be smaller if the grain albedo is high, or larger if the grain is anisothermal (albeit then sublimating from a smaller fraction of the grain surface).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We set a2 = 60 m, the largest “particle” allowed by the Hubble imaging, and a1 = 10−7 m (however, Equation 11 is insensitive to a1 and its value is unimportant provided a1 ≪ as).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The nominal nucleus radius is rn = 600 m, and the size distribution index is γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5, as deduced above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Measured cometary ice/refractory ratios, fice, show a wide range of values, from fice ∼ 1 in 67P/Churyumov-Gerasimenko (Marschall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2020), to fice < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 in C/1995 O1 Hale-Bopp (Jewitt and Matthews 1999) and fice = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='03 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 in 2P/Encke (Reach et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We adopt fice = 1/4, recognizing that this value is substantially uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Substitution into Equation 11 gives QH2O = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8+12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 −6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 × 1029 s−1, where the error bars reflect only the ±200 m uncertainty in the estimated radius of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' This is larger than the measured peak water production rate (2×1029 s−1) but shows acceptable agreement given the crude nature of the model calculation and the likelihood that the disintegration was in reality spread over a finite period not impulsive, as modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We conclude that complete disintegration of the nucleus into a power law particle size distribution is consistent both with the optical brightness of the debris cloud and with the surge in the water production rate measured using Lyman-α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Future improvements to this model could include a treatment of the initial, optically- thick phase of the expanding disintegration cloud, when self-shielding will suppress and delay the sublimation surge relative to the estimate given here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Also needed is a treatment of the gas drag interaction with cometary solids in a fully disintegrated body, responsible for the size-dependent acceleration of refractory particles into the coma and surviving debris field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Furthermore, several of the parameters needed to accurately model nucleus disintegration remain unmeasured, and most other disintegrating comets are observationally – 22 – even less-well characterized than A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' It is obvious, even from these simple considerations that many more detailed observations, across a wide range of wavelengths and with adequate temporal sampling, will be needed to better understand what is likely to be the dominant destructive cometary process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 23 – 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' SUMMARY We present both high resolution and wide field observations of disintegrating long-period comet C/2021 A1 (Leonard) taken to study the nature of its demise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The pre-disintegration radius of the nucleus, estimated using two methods, was rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' After breakup, which began in mid-December 2021 and may have continued for weeks, no nucleus fragments larger than about rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='06 km (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' < 10−3 of the primary mass) survived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The observed debris cloud consists of sub-millimeter and larger particles, with a differential power law size distribution having index γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1, as estimated by two different methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The observational constraints are consistent with equality between the mass of the debris cloud and the mass of the primary nucleus, indicating a total disintegration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Tidal disruption, sublimation, collisional disruption, and explosion following internal pressure build-up in the nucleus all offer implausible explanations of the disintegration of C/2021 A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The spin-up timescale due to outgassing torques for a 600 m nucleus in the orbit of C/2021 A1 is as short as ∼2 months, pointing to rotational instability as the likely cause of the disintegration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A simple model of the exposure and rapid sublimation of previously buried ice indicates a peak gas production rate (QH2O = 9+12 −6 × 1029 s−1) of the same order as the measured peak value (QH2O = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 × 1029 s−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' We thank Michael Combi for a preview of his SWAN data on C/2021 A1 and the anonymous referee for prompt comments on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Based on observations made – 24 – with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' STScI is operated by the Association of Universities for Research in Astronomy, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' under NASA contract NAS 5-26555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Support for this work was provided by NASA through grant number GO-16929 from the Space Telescope Science Institute, which is operated by auRA, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', under NASA contract NAS 5-26555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Facilities: HST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 25 – REFERENCES Bessell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1990, PASP, 102, 1181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1086/132749 Bohren, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Huffman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1983, Absorption and scattering of light by small particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' New York: Wiley, 1983 Bottke, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Durda, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Nesvorn´y, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2005, Icarus, 179, 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='icarus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='017 Blaauw, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Campbell-Brown, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', & Weryk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2011, MNRAS, 414, 3322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='18633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='x Combi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Delsemme, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1980, ApJ, 237, 633.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1086/157909 Combi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Reinard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Bertaux, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2000, Icarus, 144, 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1006/icar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6335 Crovisier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Biver, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', and Bockelee-Morvan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, Central Bureau Electronic Telegram 5087 (2021 December 22) Finson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Probstein, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1968, ApJ, 154, 327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1086/149761 Garcia-Trinanes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Luding, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' and Shi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Advanced Powder Technology, 30, 2868-2880 Groussin, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Attree, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Brouet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2019, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', 215, 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1007/s11214- 019-0594-x Henke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Gail, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Trieloff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2012, A&A, 537, A45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1051/0004- 6361/201117177 Holmberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Flynn, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', & Portinari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2006, MNRAS, 367, 449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1365- 2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='09832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='x – 26 – Ishiguro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Sarugaku, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Ueno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2007, Icarus, 189, 169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='icarus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='003 Jehin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Moulane, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', & Manfroid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, The Astronomer’s Telegram, 15128 Jehin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Moulane, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Manfroid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2022a, The Astronomer’s Telegram, 15186 Jehin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Moulane, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Manfroid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2022b, The Astronomer’s Telegram, 15189 Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Matthews, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1999, AJ, 117, 1056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1086/300743 Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Luu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2019, ApJ, 883, L28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/2041-8213/ab4135 Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Mutchler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2020, ApJ, 896, L39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/2041-8213/ab99cb Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, AJ, 161, 261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/1538-3881/abf09c Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2022, AJ, 164, 158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/1538-3881/ac886d Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Ishiguro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Michikami, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2017, AJ, 153, 228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/1538- 3881/aa69bb Knight, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', A’Hearn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Biesecker, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2010, AJ, 139, 926.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1088/0004- 6256/139/3/926 Leonard, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Aschi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Pettarin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, Minor Planet Electronic Circulars, 2021-A99 Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Jewitt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2015, AJ, 149, 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1088/0004-6256/149/4/133 Marschall, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Markkanen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Gerig, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2020, Frontiers in Physics, 8, 227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3389/fphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='00227 Pansecchi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' & Fulle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1990, A&A, 239, 369 – 27 – Reach, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Sykes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Lien, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2000, Icarus, 148, 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1006/icar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6478 Samarasinha, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2001, Icarus, 154, 540.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1006/icar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6685 Wolf, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Onken, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Luvaul, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2018, PASA, 35, e010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1017/pasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Ye, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Vissapragada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2021, AJ, 162, 194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3847/1538-3881/ac19ba Zubko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', Videen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Shkuratov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2017, JQSRT, 202, 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='jqsrt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='026 This manuscript was prepared with the AAS LATEX macros v5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 28 – Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Observing Geometry UT Date & Time νa rH b ∆c αd θ−⊙e θ−V f δ⊕g Telh Scalei Uncj 2022 Mar 31 18:14-18:26 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='756 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='942 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 Swan Hill 1408 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 2022 Apr 05 23:35-24:04 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='833 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='910 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9 246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 HST 1385 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 2022 Apr 06 23:32-23:51 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='848 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='902 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9 246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='9 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 HST 1379 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6 2022 Apr 10 19:23-19:53 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='903 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='875 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1 HST 1359 ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 2022 Jun 7 16:36-17:12 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='698 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='715 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='8 319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 HST 1243 ±3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='7 aTrue anomaly, in degrees bHeliocentric distance, in au cGeocentric distance, in au dPhase angle, in degrees ePosition angle of projected anti-solar direction, in degrees fPosition angle of negative heliocentric velocity vector, in degrees gAngle from orbital plane, in degrees hTelescope iImage scale, km arcsecond−1 j3σ ephemeris uncertainty, arcsecond (from JPL Horizons) – 29 – Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— A) Composite of four, 450 s HST images from UT 2022 April 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Diffuse streaks are imperfectly removed field stars and galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' B) Same image, anotated to show the approximate boundary of the debris (white dashed line) and the expected location of the nucleus (yellow line segments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Two scale bars of 30′′ and 5×104 km in length are shown, as well as the projected anti-solar (−S) and negative heliocentric velocity (−V ) vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' North is to the top, East to the Left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' UT 2022 April 5 30 5x104 km B– 30 – Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— Wide field image from Swan Hill Observatory showing C/2021 A1 on UT 2022 March 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 10′ and 106 km scale bars are shown, as well as the projected anti-solar (−S) and negative heliocentric velocity (−V ) vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Yellow lines mark the ephemeris location of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The white square shows the size of the HST field of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The image has North to the top, East to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='UT 2022 March 31 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='km– 31 – Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— (Upper:) Same image as in Figure 2 but rotated to bring the axis of the dust tail to the horizontal and shown at a larger scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' Yellow lines mark the ephemeris location of the nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (Lower:) Locations of the photometry regions A, B and C used to measure the scattering cross-section of particles in the tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' R 380″ 1105"– 32 – 500 0 500 1000 1500 0 400 800 1200 1600 Surface Brightness Distance [arcsecond] Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— Surface brightness profile parallel to the long axis of Box A (Figure 3) plotted against the distance from the nucleus ephemeris location (axis is reversed relative to Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 1000 units correspond to a surface brightness Σ = 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 magnitudes arcsec−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The linear distance scale is approximately 1500 km per arcsecond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 33 – Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— (Left:) Same image as Figure 2 with synchrones overplotted, for ejection dates 80, 100, 120, 140 and 160 days prior to the date of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' (Right:) Syndynes for particles with β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='003, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='01 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='03, as marked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The axis of the debris cloud is best matched by the 110±10 day synchrones, corresponding to ejection on UT 2021 December 11±10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' UT 2022 March 31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='001 120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content="003 100- 80 10'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='03– 34 – 1011 1012 1013 1014 1015 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='0 Debris Mass [kg] Differential Size index, γ rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6+/-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km Blaauw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2011 Kreutz Sungrazers C/2021 A1 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— Total mass of the debris cloud (assuming density ρn = 500 kg m−3) plotted as a function of the differential power law index, γ, is plotted as a solid black line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The equivalent spherical mass of the original 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='6±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='2 km radius nucleus is shown (assuming the same ρn), together with its uncertainty, as a yellow horizontal band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The debris and nucleus masses are equal at γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='1, shown by the red filled circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' For comparison we show, as a blue square, the size distribution of the Kreutz sungrazing comets (Knight et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2010) and, as green triangles, several radar-measured meteoroid streams (Blaauw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The vertical positions of the Kreutz and radar stream points have no meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' – 35 – 200 0 200 400 600 800 1000 1200 0 400 800 1200 1600 Surface Brightness Distance [arcsecond] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='— Axial surface brightness profile on UT 2022 March 31 (yellow diamonds) compared with results from a Monte Carlo simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content=' The models shown have size index γ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='3 (red curve), 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 (black curve) and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='5 (blue curve), all with 7 × 10−4 ≤ β ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='07, corresponding to particle radii 14 µm to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} +page_content='4 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNFAT4oBgHgl3EQfvB44/content/2301.08673v1.pdf'} diff --git a/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/2301.01296v1.pdf.txt b/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/2301.01296v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8d3bb84b0a842e20e59fa08a426e84f3dd738ae5 --- /dev/null +++ b/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/2301.01296v1.pdf.txt @@ -0,0 +1,1618 @@ +TinyMIM: An Empirical Study of Distilling MIM Pre-trained Models +Sucheng Ren +Fangyun Wei* +Zheng Zhang +Han Hu +Microsoft Research Asia +Abstract +Masked image modeling (MIM) performs strongly in pre- +training large vision Transformers (ViTs). However, small +models that are critical for real-world applications can- +not or only marginally benefit from this pre-training ap- +proach. In this paper, we explore distillation techniques to +transfer the success of large MIM-based pre-trained mod- +els to smaller ones. We systematically study different op- +tions in the distillation framework, including distilling tar- +gets, losses, input, network regularization, sequential dis- +tillation, etc, revealing that: 1) Distilling token relations +is more effective than CLS token- and feature-based distil- +lation; 2) An intermediate layer of the teacher network as +target perform better than that using the last layer when +the depth of the student mismatches that of the teacher; +3) Weak regularization is preferred; etc. With these find- +ings, we achieve significant fine-tuning accuracy improve- +ments over the scratch MIM pre-training on ImageNet-1K +classification, using all the ViT-Tiny, ViT-Small, and ViT- +base models, with +4.2%/+2.4%/+1.4% gains, respectively. +Our TinyMIM model of base size achieves 52.2 mIoU in +AE20K semantic segmentation, which is +4.1 higher than +the MAE baseline. Our TinyMIM model of tiny size achieves +79.6% top-1 accuracy on ImageNet-1K image classifica- +tion, which sets a new record for small vision models of +the same size and computation budget. This strong perfor- +mance suggests an alternative way for developing small +vision Transformer models, that is, by exploring better train- +ing methods rather than introducing inductive biases into +architectures as in most previous works. Code is available +at https://github.com/OliverRensu/TinyMIM. +1. Introduction +Masked image modeling (MIM), which masks a large +portion of the image area and trains a network to recover +the original signals for the masked area, has proven to be a +very effective self-supervised method for pre-training vision +Transformers [2,12,18,53]. Thanks to its strong fine-tuning +performance, MIM has now been a main-stream pre-training +*Corresponding author: fawe@microsoft.com. +ViT-T +ViT-S +ViT-B +70 +74 +78 +82 +86 +Scratch +MAE +TinyMIM +-0.6 ++3.6 ++0.7 ++3.1 ++2.4 ++3.8 +Acc. +72.2 +79.9 +81.2 +Figure 1. Comparison among TinyMIM (ours), MAE [18] and +training from scratch by using ViT-T, -S and -B on ImageNet-1K. +We report top-1 accuracy. We adopt DeiT [44] when training from +scratch. For the first time, we successfully perform masked image +modeling pre-training for smaller ViTs. +Model +Param. +Flops +Top-1 +mIoU +(M) +(G) +(%) +DeiT-T [44] +5.5 +1.3 +72.2 +38.0 +PVT-T [46] +13.0 +1.9 +75.1 +39.8 +CiT-T [39] +5.5 +1.3 +75.3 +38.5 +Swin [32] +8.8 +1.2 +76.9 +40.4 +EdgeViT-XS [35] +6.4 +1.1 +77.5 +42.1 +MobileViTv1-S [34] +4.9 +2.0 +78.4 +42.7 +MobileViTv3-S [45] +4.8 +1.8 +79.3 +43.1 +TinyMIM⋆-T (Ours) +5.8 +1.3 +79.6 +45.0 +Table 1. Comparison with state-of-the-art tiny Transformers with +architecture variants. The parameters indicate the backbone pa- +rameter excluding the parameters of the last classification layer +in classification or the decoder in segmentation. We report top-1 +accuracy on ImageNet-1K classification and mIoU on ADE20K +segmentation. +method for vision Transformers, and numerous follow-ups +have been carried out in this research line, such as study- +ing how to set decoding architectures [25], reconstruction +targets [11,36,48,60], etc., as well as revealing its proper- +ties [49,52,54]. +1 +arXiv:2301.01296v1 [cs.CV] 3 Jan 2023 + +Method +ViT-T +ViT-S +ViT-B +ViT-L +Scratch +72.2 +79.9 +81.2 +82.6 +MAE +71.6 +80.6 +83.6 +85.9 +Gap +-0.6 ++0.7 ++2.4 ++3.3 +Table 2. Comparison between MAE pre-trained ViTs and ViTs +trained from scratch by using ViT-T, -S, -B and -L on ImageNet- +1K. We adopt DeiT when training from scratch. We report top-1 +accuracy. As model size shrinks, the superiority of MAE gradually +vanishes. MAE even hurts the performance of ViT-T. +However, as shown in Table 2, MIM pre-training [18] +mainly effects for relatively large models. When the model +size is as small as ViT-Tiny (5 million parameters), which +is critical for real-world applications, MIM pre-training can +even hurt the fine-tuning accuracy on ImageNet-1K classifi- +cation. In fact, the accuracy drops by -0.6 compared to the +counterpart trained from scratch. This raises a question: can +small models also benefit from MIM pre-training, and how +can this be achieved? +In addition, the existing study on small vision Transform- +ers mainly focus on introducing certain inductive bias into +architecture design [6,26,34,35]. The additional architec- +tural inductive biases facilitate optimization yet limit the +expressive capacity. It’s natural to ask whether we can boost +plain small vision Transformers to perform just as well. +In this work, we present TinyMIM, which answers the +above questions. Instead of directly training small ViT mod- +els using a MIM pretext task, TinyMIM uses distillation +technology [24] to transfer the knowledge of larger MIM +pre-trained models to smaller ones. Distillation endows the +nice properties of larger MIM pre-trained models to smaller +ones while avoiding solving a “too” difficult MIM task. Not- +ing that knowledge distillation has been well developed, +especially for supervised models [16], our main work is to +systematically study for the first time the effects of different +design options in a distillation framework when using MIM +pre-trained models as teachers. Specifically, we consider dis- +tillation targets, data augmentation, network regularization, +auxiliary losses, macro distillation strategy, etc., and draw +several useful findings: +• Distillation targets. There are two main findings re- +lated to distillation targets: 1) Distilling token relations +is more effective than distilling the CLS token and fea- +ture maps. 2) Using intermediate layers as the target +may perform better than using the last layer, and the +optimal target layer for different down-stream tasks, +e.g., classification and segmentation, can be different. +• Data and network regularization. Weak augmentation +and regularization is preferred: 1) The performance of +using a masked image is worse than using the original +image; 2) Relatively small drop path rate (0 for teacher +and 0.1 for student) performs best. +• auxiliary losses. We find that an auxiliary MIM loss +does not improve fine-tuning accuracy. +• Macro distillation strategy. We find that using a se- +quential distillation strategy, i.e., “ViT-B → ViT-S → +ViT-T”, performs better than that distilling directly from +ViT-B to ViT-T. +By selecting the best framework options, we achieve sig- +nificant fine-tuning accuracy improvements over the direct +MIM pre-training on ImageNet-1K classification, using ViT +models of different sizes, as shown in Figure 1. Specifi- +cally, the gains of TinyMIM on the ViT-Tiny, ViT-Small, and +ViT-base models are +4.2%/+2.4%/+1.4%, respectively. +In particular, our TinyMIM⋆-T model with knowledge +distillation during finetune-tuning achieves a top-1 accuracy +of 79.6% on ImageNet-1K classification (see Table 1), which +performs better than all previous works that develop small +vision Transformer models by introducing architectural in- +ductive biases or smaller feature resolutions. It sets a new +accuracy record using similar model size and computation +budget. On ADE20K semantic segmentation, TinyMIM-T +achieves 45.0 mIoU, which is +1.9 higher than the second +best method, MobileViTv3-S [45]. The strong fine-tuning +accuracy by TinyMIM⋆-T suggests an alternative way for +developing small vision Transformer models, that is, by +exploring better training methods rather than introducing +inductive biases into architectures as most previous works +have done. +2. Related Works +2.1. Masked Image Modeling +Masked Language Modeling (MLM) [10] for self- +supervised Transformer pre-training has achieved incredible +success in natural language processing (NLP) field. Inspired +by the same idea of masking and reconstruction, BEiT [2] +is the pioneer to bring such success to computer vision filed +by encoding masked images and predicting masked tokens +generated by DALL-E [38]. SimMIM [53] and MAE [18] +find that reconstructing RGB pixels results in favorable rep- +resentations. MAE adopts an asymmetric encoder-decoder +architecture. The encoder only encodes the visible tokens +and drops a high portion of masked tokens to reduce the com- +putation burden. A lightweight decoder then produces recon- +structed patches. Different from tokens in natural language +processing that have rich semantics, pixels in computer vi- +sion are low-level information, therefore, a lot of recent +works aim at looking for better supervisions. MaskFeat [48] +takes local gradient features produced by the manually- +crafted HOG descriptor [9] as supervisions. PeCo [11] trains +2 + +Masked Image +Raw Image +Factors +Input +Target +Feature +Relation +𝑄·𝑄𝑇 +𝐾·𝐾𝑇 +𝑉·𝑉𝑇 +𝑄·𝐾𝑇 +Head Number +w/ or w/o Softmax +Output Feature +Block Feature +QKV Features +Attention Feature +FFN Feature +Res. Connection of FFN +Block +Last +Intermediate +… +… +Transformer Block-N +Output Feature +Multi-Head +Attention +Add & Norm +FFN +Add & Norm +Attention Feature +FFN Feature +Block Feature +Raw Image +Masked Image +Feature of Last Block +𝑄·𝑄𝑇 +𝐾·𝐾𝑇 +𝑉·𝑉𝑇 +𝑄·𝐾𝑇 +𝑄 +𝐾 +𝑉 +Softmax +Transformer Block-n +Transformer Block-1 +Teacher +(Highlight +by Blue) +Relations +Figure 2. We comprehensively study a variety of factors (highlighted by Royal Blue) that may affect TinyMIM pre-training including input, +distillation target (feature or relation) and target block. +a new tokenizer by enforcing perceptual similarity. iBot [60] +and data2vec [1] take exponential moving average (EMA) +updated models as tokenizers. MILAN [25] adopts a pre- +trained CLIP as the teacher. Similarly, BeiTv2 [36] also uses +CLIP [37] for tokenizer training. Different from these works +that use various tokenizers/teachers, we adopt a masked im- +age modeling pre-trained model as our teacher. +The MIM pre-training performs very well on relatively +large models from base size to giant size [31,53]. However, +it will hurt the fine-tuning when the model is as small as +tiny size, probably because the limited capthe MIM task is +“too” difficult for small model. This paper explores how to +make small vision Transformer models also benefit from +MIM training, through a systematic study of the distillation +technology. +2.2. Knowledge Distillation +Knowledge distillation is a classical method to transfer +the knowledge from cumbersome models to a small one, pi- +oneered by [24]. The original knowledge distillation frame- +work adopts the annealed classification logits of the teacher +as the distilling target for the student. Since then, extensive +variants have been carried out to improve the distilling ef- +fectiveness [16], including changing the distilling targets as +intermediate features [22,23,28,40] and relations [29,56], +data augmentations of teacher and students [39, 50], regu- +larization [50], distilling strategies [47, 55, 57, 58] and so +on. +While almost all studies are made for CNN architec- +tures under supervised settings, recently, there have been +a few works performing distilling technologies for vision +Transformers [44,50] and contrastive learning based meth- +ods [14, 50]. In DeiT [44], the teacher is set as a CNN +architecture so as to transfer the inductive bias involved in +CNNs to vision Transformers. It also propose to use hard +distillation which uses hard pseudo class labels of the teacher +network as the distilling targets, which performs better than +the naive knowledge distillation [24]. In [14], a distillation +method regarding the similarities between instances is ap- +plied to transfer the power of contrastive pre-trained large +CNN models to small CNNs. In [50], a method based on +feature map distillation is proposed to generally improve +vision transformers by different pre-training approaches in- +cluding image classification, instance contrastive based self- +sueprvised learning [3] and CLIP pre-training [37]. However, +it shows no gains for MIM pre-trained models. +This paper for the first time studies the distillation frame- +work for MIM pre-trained vision Transformers. Through +a systematic study, it draws several useful findings and the +best options, under which, significant gains are achieved for +vision Transformers of various sizes. +2.3. Small Vision Transformers +Designing efficient CNN models [27,42] has been widely +studied in recent years. +With the emergence of Vision +Transformer (ViT), there have been several works study- +ing how to develop efficient vision Transformer, with the +majority focus on introduing inductive biases into the archi- +tectures [17,26,30,34,35]. +Different from these works that develop small vision +Transformers by introducing sophisticated components into +architectures, we demonstrate that a plain vision Trans- +former [12] at a small scale can perform just as well, or +even better. Our main insight is that the MIM pre-training +can implicitly incorporate necessary inductive biases, and +thus avoids the need of explicit architecture bias. Our plain +3 + +vision Transformer of tiny size achieves the state-of-the-art +accuracy for both ImageNet-1K image classification and +ADE20K semantic segmentation using similar model size +and computation budget. +3. TinyMIM +We adopt a larger, MIM pre-trained model as the teacher, +and a smaller ViT as the student. The objective of TinyMIM +is to train the randomly initialized student by mimicking the +target produced by the teacher in a knowledge distillation +manner. After pre-training, the TinyMIM pre-trained model +can be transferred to various downstream tasks. In this work, +we adopt MAE [18] as the MIM model due to its popularity +and simplicity. +In this section, we first describe the factors that may affect +TinyMIM pre-training: distillation target in Section 3.1.1; +input in Section 3.1.2; target block in Section 3.1.3. Then we +present a series of distillation losses for different distillation +target in Section 3.1.3. At last, a sequential distillation strat- +egy is introduced to facilitate the performance in Section 3.3. +3.1. Factors +3.1.1 +Distillation Target +Block Feature and Output Feature. Given an input image +x, we first divide it into N non-overlapping patches and use +a linear projection layer to map N patches into patch em- +beddings F0 ∈ RN×D, where D is the dimension of hidden +features. Suppose we have a ViT containing L Transformer +blocks. Each Transformer block takes the output Fi−1 of the +last Transformer block as the input and generates the feature +Fi of the current block, which can be formulated as: +Fi = Transformer(Fi−1), i ∈ [1, L]. +(1) +We term Fi as the block feature of the i-th Transformer +block. In particular, we name the feature FL from the last +Transformer block as the output feature. +Attention Feature and FFN Feature. Each Transformer +block is composed of a self-attention layer and a feed for- +ward layer, which can be defined as: +Hi = Attention(LN(Fi−1)), +�Hi = Hi + Fi−1, +�Hi = FFN(LN( �Hi)), +F i = �Hi + �Hi, +(2) +where Attention(·), FFN(·) and LN(·) denotes self- +attention layer, feed forward layer and layer norm, respec- +tively. We term �Hi and �Hi as attention feature and FFN +feature of the i-th Transformer block. +Query/Key/Value Features. Each self-attention layer con- +sists of M head networks, each of which maps input feature +Fi−1 to query (Q), key (K) and value (V): +Qm +i = LN(Fi−1)W Q +i , +Km +i += LN(Fi−1)W K +i , +V m +i += LN(Fi−1)W V +i , +(3) +where Qi, Ki, Vi ∈ RN× D +M represent the query, key and +value of the m-th head network. The query/key/value fea- +tures (Qi, Ki, Vi ∈ RN×D) are the concatenation of M +Qm +i /Km +i /V m +i , respectively. +Relations. For the m-th head network from the i-th Trans- +former block, we could calculate its Q-Q, K-K, V-V and +Q-K relations (RQQ +i,m, RKK +i,m , RV V +i,m, RQK +i,m ∈ RN×N), which +are implemented as the scaled product relation: +RQQ +i,m = Softmax +� +Qm +i Qm +i +T +� +D/M +� +, +RKK +i,m = Softmax +� +Km +i Km +i +T +� +D/M +� +, +RV V +i,m = Softmax +� +V m +i V m +i +T +� +D/M +� +, +RQK +i,m = Softmax +� +Qm +i Km +i +T +� +D/M +� +. +(4) +The Q-Q/K-K/V-V/Q-K relations (RQQ +i +, RKK +i +, RV V +i +, +RQK +i +∈ RM×N×N) of the i-th Transformer block is the +stack of M RQQ +i,m/RKK +i,m /RV V +i,m/RQK +i,m , respectively. +3.1.2 +Input +MIM models randomly mask a high proportion of image +patches on an input image x, yielding a masked image �x +for pre-training. We also investigate the input of TinyMIM +when performing knowledge distillation— the input could +be either a raw image x or a masked image �x. +3.1.3 +Target Block +Consider a situation where we tend to use an MAE pre- +trained ViT-L (teacher) containing 24 blocks to distill a ViT- +B (student) containing 12 blocks. In this scenario, the block +number of the student does not match that of the teacher. We +investigate which block of the teacher can provide the most +appropriate target. The selected block is referred to as the +target block. +3.2. Knowledge Distillation as MIM Pre-training +In Section 3.1.1, we describe a variety of distillation target +candidates. In this section, we introduce different knowledge +distillation losses for various distillation targets. Let x de- +note an input image, ft and fs represent a teacher model and +4 + +… +Teacher +𝑉·𝑉𝑇 +𝑄·𝐾𝑇 +Raw Image +#Head +𝑄·𝐾𝑇 +… +… +𝑉·𝑉𝑇 +#Head +𝑉·𝑉𝑇 +𝑄·𝐾𝑇 +#Head +𝑄·𝐾𝑇 +… +… +𝑉·𝑉𝑇 +#Head +Block-1 +Block-n +Block-N +… +… +Student +Block-1 +Block-L (Adaptive Block) +Loss +… +: Forward +: Backward +Figure 3. The default knowledge distillation strategy of TinyMIM. The student (e.g. ViT-B) is optimized to mimic the relations generated by +the intermediate block of a MIM pre-trained teacher (e.g. ViT-L) with raw image as input. We replace the last block of the student with an +adaptive block to match teacher’s head number (no extra computational cost). After pre-training (knowledge distillation), the student model +can be transferred to various downstream tasks. +a student model, respectively. The objective of knowledge +distillation is to transfer the knowledge from ft to fs by +optimizing fs while freezing ft. In general, the training is +supervised by the KL divergence, which is defined as: +LKL(p, t) = tlog t +p, +(5) +where t denotes the target generated by ft(x), and p is the +prediction produced by fs(x). +Class Token Distillation. We use ct and cs to denote class +token feature of ft and fs, respectively. The loss of class +token distillation is formulated as: +L = LKL(cs, ct). +(6) +Feature Distillation. In general, the feature dimension of +the teacher network and the student network are mismatched. +To tackle this problem, we adopt an extra linear layer on the +output of the student network to match the feature dimension +of the teacher’s target. Let F t and F s denote the target +feature and the prediction yielded by the student followed by +a linear projection layer, respectively. We could formulate +the loss of feature distillation as follows: +L = L1(F s, Norm(F t)), +(7) +where Norm(·) is the whitening operation implemented by +layer norm without affiliation, and L1 is the smooth L1 loss +defined as: +L1(y, ˆy) = +� +1 +2(ˆy − y)2/β, +|ˆy − y| ≤ β +(|ˆy − y| − 1 +2β), +otherwise +, +(8) +where β is set to 2.0. +Relation Distillation. This is our default knowledge distilla- +tion strategy as illustrated in Figure 3. For the sake of clarity, +we use RQK +t→m to denote the m-th head generated Q-K rela- +tion target (see Eq 4) from the teacher network, and RQK +s→m to +represent the corresponding Q-K relation prediction from the +student network. We define RV V +t→m and RV V +s→m in a similar +way. The loss of relation distillation is formulated as: +LQK = 1 +M +M +� +m=1 +LKL(RQK +s→m, RQK +t→m), +LV V = 1 +M +M +� +m=1 +LKL(RV V +s→m, RV V,S +t→m ), +L = LQK + LV V . +(9) +Head Alignment for Relation Distillation. In general, the +head number of the student network is lower than that of the +teacher network. For instance, ViT-L (teacher) contains 16 +heads per block while ViT-B (student) only contains 12 heads +per block. Recall that the relation distillation loss (Eq. 9) +is calculated head by head, thus we have to solve the head +misalignment issue before performing relation distillation. +To this end, we replace the last block of the student with an +adaptive block, which keeps the original hidden dimension +but adjusts the head number to the teacher. Concretely, given +a teacher network with Mt heads per block, and a student +network with Ms heads per block, a hidden dimension of +Ds, and a head dimension of Ds/Ms, the adaptive block is +designed to be a Transformer block with Mt heads per block, +a hidden dimension of Ds and a head dimension of Ds/Mt. +3.3. Sequential Distillation +When training a small model like ViT-S, the teacher has +two options: a pre-trained ViT-B and a pre-trained ViT- +L. Intuitively, the pre-trained ViT-L is a good teacher due +to its higher representation capability. However, there is +5 + +a huge capacity gap between ViT-L and ViT-S, resulting +in poor distillation results. Following [8, 15], we adopt a +sequential distillation strategy to improve pre-training. For +instance, when pre-training a ViT-S, the teacher is selected +as a TinyMIM pre-trained ViT-B, which has been trained by +TinyMIM with ViT-L as the teacher. +4. Experiments +4.1. Implementation Details +Pre-training. +All models are pre-trained under a 100- +epoch schedule on ImageNet-1K [41] training set. +We +use a batch size of 4096 and a learning rate of lr=1.5e- +4×batchsize/256. We adopt a cosine decay schedule with +a warm-up for 5 epochs. We adopt AdamW [33] optimizer +with a weight decay of 0.05. We use random resized crop- +ping random horizontal flipping, color jitter for student only. +The input size is set to 224 × 224. +Fine-tuning. We transfer TinyMIM pre-trained models to +ImageNet [41] image classification and ADE20K [59] se- +mantic segmentation. For ImageNet, we use AdamW op- +timizer with weight decay of 0.05. For data augmentation, +we follow the settings in MAE [18]. We fine-tune ViT-B +for 100 epochs with a batch size of 1024, a learning rate of +2e-3, and a drop path rate of 0.1. We fine-tune ViT-S and +ViT-T for 200 epochs with a batch size of 2048, a learning +rate of 5e-3, and a drop path rate of 0.1. For ADE20K, we +follow the same setting in MAE and adopt UperNet [51] +as our framework with a TinyMIM pre-trained backbone. +The input image resolution is 512 × 512 for training and +evaluating. We use mIoU as the evaluation metric. +Besides, we evaluate the robustness of TinyMIM on var- +ious out-of-domain ImageNet datasets [19–21] which are +generated by applying different perturbations on ImageNet, +e.g. natural adversarial examples (ImageNet-A), semantic +shift (ImageNet-R), common image corruptions (ImageNet- +C). We report top-1 accuracy on ImageNet-A/R and mCE +error on ImageNet-C (lower is better). +Default Setting. By default, we adopt relation distillation +formulated in Eq. 9, head alignment, raw image as input, se- +quential distillation and the 18-th block of MAE pre-trained +ViT-L as the target block for TinyMIM-ViT-B pre-training. +4.2. Main Results +As shown in Table 3, we compare our TinyMIM with +previous methods on ImageNet image classification and +ADE20K semantic segmentation using different ViTs. In +particular, TinyMIM pre-trained ViT-T achieves 75.8% top- +1 accuracy, outperforming MAE baseline by +4.2. +An +enhanced model named TinyMIM⋆-T, which retains the +plain architecture and computation budget of ViT-T, fur- +ther achieves 79.6% top-1 accuracy. See appendix for the +details of TinyMIM⋆-T. Moreover, TinyMIM pre-trained +ViT-S achieves 83.0% top-1 accuracy, outperforming MAE +baseline and previous best method CIM [13] by +2.4, +1.4, +respectively. By transferring the knowledge of an MAE pre- +trained ViT-L, TinyMIM pre-trained ViT-B achieves 85.0% +top-1 accuracy on ImageNet-1K. +As for semantic segmentation, TinyMIM pre-trained ViT- +B surpasses MAE baseline and state-of-the-art CAE [4] by ++4.1 and +2.0, respectively. An intermediate fine-tuning on +ImageNet-1K classification before ADE20K segmentation +fine-tuning further boosts the performance. +We also evaluate our models on out-of-domain datasets +in Table 4. Our TinyMIM pretrained models are more robust +than MAE pre-trained ones. Specifically, TinyMIM-ViT-B +outperforms MAE-ViT-B by +6.4 and +4.6 on ImageNet-A +and ImageNet-R, respectively, and lower the mCE by -5.1. +4.3. Ablation Study +Unless otherwise specified, all ablation studies are con- +ducted on TinyMIM-ViT-B, with a teacher of being an MAE +pre-trained ViT-L, relation distillation strategy, raw image as +input, the 18-th block of ViT-L as the target block, under a +100-epoch pre-training schedule. We report top-1 accuracy +on ImageNet-1K. +Class Token Distillation. For this distillation strategy, we +study two variants: 1) class token distillation as formulated +in Eq.6; 2) class token distillation with an extra MAE re- +construction loss. The results are shown in Table 5. Both +variants perform worse than MAE baseline, indicting that +the class token is improper to be served as the distillation +target since there is no explicit supervision applied on class +token during teacher’s pre-training. +Feature Distillation. As described in Section 3.1.1, there +are four types of features can be served as the targets for +feature distillation formulated in Eq. 7: output feature, FFN +feature, attention feature and Q/K/V features. Table 6 com- +pares the results of using different features as distillation +targets. We also report the results of FFN feature and atten- +tion feature before the residual connection (see Eq. 2). An +interesting finding is that distilling FFN feature and attention +feature after the residual connection significantly degrades +the performance. +Relation Distillation. Eq. 9 formulates our default relation +distillation, which jointly distills Q-K relation and V-V re- +lation (see Eq. 4). Here we study a variant by changing the +target relations from Q-K/V-V to Q-K/K-K/V-V. We also +investigate that whether to apply a Softmax operator on each +relation. The results are shown in Table 7. +Comparison of Different Distillation Strategies. In this +study, all models are pre-trained under a 300-epoch schedule. +We compare three distillation strategies on ImageNet image +classification (Table 8) and ADE20K semantic segmentation +(Table 9). For each strategy, we use the target that yields +the best result. We also highlight the improvements over the +6 + +Method +Pretraining +Tokenizer/ +Tokenizer/Teacher +Classification +Segmentation +Epochs +Teacher +Data +Top-1 Acc (%) +mIoU +Tiny-size models (ViT-T/16) +Scratch [44] +300 +Label +IN1K +72.2 +38.0 +MAE† [18] +1600 +Pixel +IN1K +71.6 +37.6 +MoCo [5] +1600 +EMA +IN1K +73.3 +39.3 +TinyMIM (Ours) +300 +TinyMIM-ViT-S +IN1K +75.8 +44.0/44.6‡ +TinyMIM⋆ (Ours) +300 +TinyMIM-ViT-S +IN1K +79.6 +45.0‡ +Small-size models (ViT-S/16) +Scratch [44] +300 +Label +IN1K +79.9 +43.1 +MAE† [18] +1600 +Pixel +IN1K +80.6 +42.8 +MoCo [5] +1600 +EMA +IN1K +81.4 +43.9 +DINO [3] +1600 +EMA +IN1K +81.5 +45.3 +CIM [13] +1600 +Pixel +IN1K +81.6 +- +TinyMIM (Ours) +300 +TinyMIM-ViT-B +IN1K +83.0 +48.4/48.9‡ +Base-size models (ViT-B/16) +Scratch [44] +300 +Label +IN1K +81.2 +47.2 +BeiT [2] +800 +DALL-E +DALLE250M+IN22K+IN1K +83.2 +45.6 +MAE [18] +1600 +Pixel +IN1K +83.6 +48.1 +SIM [43] +1600 +EMA +IN1K +83.8 +- +CAE [4] +1600 +DALL-E +DALLE250M+IN22K+IN1K +83.9 +50.2 +MaskFeat [48] +1600 +HOG +IN1K +84.0 +- +SdAE [7] +300 +EMA +IN1K +84.1 +48.6 +data2vec [1] +800 +EMA +IN1K +84.2 +- +PeCo [11] +300 +VQGAN +IN1K +84.1 +46.7 +PeCo [11] +800 +VQGAN +IN1K +84.5 +48.5 +TinyMIM (Ours) +300 +MAE-ViT-L +IN1K +85.0 +52.2/52.6‡ +Table 3. Fine-tuning results on ImageNet-1K and ADE20K. All models are pre-trained on ImageNet-1K. “Tokenizer/Teacher Data”: training +data of teacher and tokenizer. †: reproduced result using official code. ⋆: the model is fine-tuned for 1000 epochs with DeiT-style [44] +knowledge distillation. ‡: the model adopts an intermediate fine-tuning on ImageNet-1K classification before ADE20K segmentation +fine-tuning. +Method +Model Size +ImageNet ↑ +IN-Adversarial↑ +IN-Rendition↑ +IN-Corruption ↓ +DeiT [44] +ViT-T +72.2 +8.0 +32.7 +54.0 +MAE [18] +71.8 +7.0 +36.5 +55.2 +TinyMIM +75.8 +11.0 +39.8 +50.1 +DeiT [44] +ViT-S +79.9 +18.3 +42.3 +41.4 +MAE [18] +80.6 +20.1 +45.6 +40.6 +TinyMIM +83.0 +27.5 +48.8 +35.8 +DeiT [44] +ViT-B +81.2 +25.8 +45.4 +36.8 +MAE [18] +83.6 +33.6 +50.0 +37.8 +TinyMIM +85.0 +43.0 +54.6 +32.7 +Table 4. Robustness evaluation on out-of-domain datasets. +MAE baseline. +Target Block. As described in Section 3.1.3, we consider +a situation where the block number of the student does not +match that of the teacher. Here we use an MAE pre-trained +ViT-L containing 24 blocks to distill a ViT-B containing +12 blocks. Here we examine the effects of using the 12th, +15th, 18th, 21th and 24th (last) blocks of the ViT-L as the +target blocks. The comparison is shown in Table 10. We +7 + +Method +Reconstruction Loss +Top-1 Acc. +MAE +✓ +83.6 +TinyMIM w/ Cls +80.6 +TinyMIM w/ Cls +✓ +82.1 +Table 5. Study of class token distillation formulated in Eq.6. +Feature +Res. Connection +Top-1 Acc. +MAE +83.6 +Output Feature +83.7 +FFN Feature +84.2 +FFN Feature +✓ +81.8 +Attention Feature +84.1 +Attention Feature +✓ +81.3 +Q/K/V Features +84.3 +Table 6. Study of feature distillation formulated in Eq.7. See +Section 3.1.1 and Eq. 2 for the definitions of different features. +Relation +Softmax +Top-1 Acc. +MAE +83.6 +Q-Q, K-K, V-V +84.4 +Q-Q, K-K, V-V +✓ +84.5 +Q-K, V-V +84.4 +Q-K, V-V +✓ +84.6 +Table 7. Study of relation distillation formulated in Eq. 9. See +Section 3.1.1 and Eq. 4 for the definitions of different relations. +experimentally find that using 18th block yields the best +result. +Sequential Distillation. In Section 3.3, we advocate to +adopt a sequential distillation strategy to enable distillation +from a larger model (e.g. ViT-L) to a smaller model (e.g. +ViT-S). Table 11 compares the result of adopting different +teachers with or without the sequential distillation. We have +two conclusions: 1) using a larger teacher (MAE-ViT-L) to +distill a smaller student (ViT-S) degrades the performance; 2) +sequential distillation significantly boosts the performance +of ViT-T (MAE-ViT-B→TinyMIM-ViT-S as the teacher and +ViT-T as the student). +Integrating MAE into TinyMIM. MAE is a simple but ef- +fective self-supervised pre-training paradigm that trains a +model by requiring it to predict masked inputs. In contrast, +TinyMIM pre-trains smaller ViTs in a knowledge distilla- +tion manner. Here we integrate MAE into our TinyMIM, +yielding an integrated model. This model is optimized under +two losses: knowledge distillation loss from TinyMIM, and +Method +Model Size +Top-1 Acc. +Supervised (DeiT) +ViT-T +72.2 +MAE +71.6 +Class Token Distillation +70.6 +Feature Distillation +73.4 +Relation Distillation +75.8 (+4.2) +Supervised (DeiT) +ViT-S +79.9 +MAE +80.6 +Class Token Distillation +79.6 +Feature Distillation +80.8 +Relation Distillation +83.0 (+3.1) +Supervised (DeiT) +ViT-B +81.2 +MAE +83.6 +Class Token Distillation +82.6 +Feature Distillation +83.8 +Relation Distillation +85.0 (+1.6) +Table 8. Comparison of three distillation strategies on ImageNet-1K +image classification. The models are pre-trained under a 300-epoch +schedule. +Method +Model Size +mIoU +Supervised (DeiT) +ViT-B +47.2 +MAE +48.1 +Class Token Distillation +46.2 +Feature Distillation +47.7 +Relation Distillation +52.2 (+4.1) +Table 9. Comparison of three distillation strategies on ADE20K +semantic segmentation. The models are pre-trained under a 300- +epoch schedule. +Task +12th +15th +18th +21th +24th +Classification +83.6 +84.1 +84.6 +84.8 +84.4 +Segmentation +48.7 +49.8 +52.2 +50.6 +50.0 +Table 10. Study of target block on ImageNet-1K and ADE20K. +Student +Teacher +Acc. +ViT-S +MAE-ViT-B +82.3 +MAE-ViT-L +82.1 +MAE-ViT-L → TinyMIM-ViT-B +82.6 +ViT-T +MAE-ViT-S +74.1 +MAE-ViT-B +74.4 +MAE-ViT-B → TinyMIM-ViT-S +75.0 +Table 11. Study of sequential distillation. +8 + +Masked Image +Reconstruction Loss +Top-1 Acc. +84.6 +✓ +83.9 +✓ +✓ +84.0 +Table 12. Comparison between the TinyMIM-ViT-B (the first row) +and the integrated model (the third row). We also study the input +of TinyMIM-ViT-B, which could be raw image (the first row) or +masked image (the second row). +DPR (Teacher) +DPR (Student) +Top-1 Acc. +0.0 +0.0 +84.3 +0.0 +0.1 +84.6 +0.0 +0.2 +84.3 +0.0 +0.3 +84.1 +0.1 +0.1 +83.9 +Table 13. Ablation study of drop path rate (DPR) used in teacher +and student. +reconstruction loss from MAE. To enable MAE pre-training, +we randomly mask 75% image patches, and feed the visi- +ble patches into the network to initiate the pre-training of +the integrated model. Table 12 shows the comparison be- +tween TinyMIM-ViT-B and the integrated model. From the +Table, we could draw a conclusion—integrating MAE into +our TinyMIM does not improve the performance. In addi- +tion, we also investigate the input of TinyMIM-ViT-B, which +could be either raw image or masked image, as shown in +Table 12—taking raw image as input yields better result. +Drop Path. Drop path is one of the most critical techniques +in training Transformers [44]. Using an appropriate drop +path rate could significantly alleviate the over-fitting issue. +However, MAE disables this technique in its implementation. +Here we verify the effects of applying drop path to our +TinyMIM. The results are shown in Table 13. For the student +model, the optimal drop path rate is 0.1. For the teacher +model, disabling drop path yields best result. +5. Conclusion +In this paper, we present TinyMIM, which is the first to +successfully perform masked image modeling (MIM) pre- +training for smaller ViT models. In stead of adopting a +mask-and-predict pretext task, we pre-train a small ViT by +mimicking the relations of a large ViT in a knowledge dis- +tillation manner. The success of TinyMIM can be attributed +to a comprehensive study of various factors that may affect +TinyMIM pretraining including distillation target, distillation +input and target block. With extensive experiments, we draw +a series of conclusions. For instance, relation distillation is +superior than feature distillation and class token distillation; +taking raw image as input is optimal; a sequential distillation +is necessary for training smaller ViTs; etc. With its simplic- +ity and strong performance, we hope our approach can serve +as a solid baseline for future research. +References +[1] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, +Jiatao Gu, and Michael Auli. Data2vec: A general framework +for self-supervised learning in speech, vision and language. +arXiv preprint arXiv:2202.03555, 2022. 3, 7 +[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: +BERT pre-training of image transformers. In International +Conference on Learning Representations, 2022. 1, 2, 7 +[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou, +Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg- +ing properties in self-supervised vision transformers. arXiv +preprint arXiv:2104.14294, 2021. 3, 7 +[4] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shen- +tong Mo, Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, +and Jingdong Wang. Context autoencoder for self-supervised +representation learning. arXiv preprint arXiv:2202.03026, +2022. 6, 7 +[5] Xinlei Chen, Saining Xie, and Kaiming He. An empirical +study of training self-supervised vision transformers. ArXiv, +abs/2104.02057, 2021. 7 +[6] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen +Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. +Mobile- +former: Bridging mobilenet and transformer. In Proceedings +of the IEEE/CVF Conference on Computer Vision and Pattern +Recognition, pages 5270–5279, 2022. 2 +[7] Yabo Chen, Yuchen Liu, Dongsheng Jiang, Xiaopeng Zhang, +Wenrui Dai, Hongkai Xiong, and Qi Tian. +Sdae: Self- +distillated masked autoencoder. ArXiv, abs/2208.00449, 2022. +7 +[8] Jang Hyun Cho and Bharath Hariharan. On the efficacy of +knowledge distillation. In Proceedings of the IEEE/CVF +international conference on computer vision, pages 4794– +4802, 2019. 6 +[9] Navneet Dalal and Bill Triggs. Histograms of oriented gra- +dients for human detection. In 2005 IEEE computer soci- +ety conference on computer vision and pattern recognition +(CVPR’05), volume 1, pages 886–893. Ieee, 2005. 2 +[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina +Toutanova. BERT: pre-training of deep bidirectional trans- +formers for language understanding. In Proceedings of the +2019 Conference of the North American Chapter of the As- +sociation for Computational Linguistics: Human Language +Technologies, pages 4171–4186. Association for Computa- +tional Linguistics, 2019. 2 +[11] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, +Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, and Neng- +hai Yu. Peco: Perceptual codebook for bert pre-training of +vision transformers. arXiv preprint arXiv:2111.12710, 2021. +1, 2, 7 +[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, +Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, +9 + +Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- +vain Gelly, et al. An image is worth 16x16 words: Transform- +ers for image recognition at scale. preprint arXiv:2010.11929, +2020. 1, 3 +[13] Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and +Furu Wei. Corrupted image modeling for self-supervised +visual pre-training. arXiv preprint arXiv:2202.03382, 2022. +6, 7 +[14] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, +Yezhou Yang, and Zicheng Liu. Seed: Self-supervised distil- +lation for visual representation. 2021. 3 +[15] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, +Laurent Itti, and Anima Anandkumar. Born again neural +networks. In International Conference on Machine Learning, +pages 1607–1616. PMLR, 2018. 6 +[16] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and +Dacheng Tao. Knowledge distillation: A survey. International +Journal of Computer Vision, 2021. 2, 3 +[17] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, +Pierre Stock, Armand Joulin, Herv´e J´egou, and Matthijs +Douze. Levit: a vision transformer in convnet’s clothing +for faster inference. In Proceedings of the IEEE/CVF inter- +national conference on computer vision, pages 12259–12269, +2021. 3 +[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr +Doll´ar, and Ross Girshick. Masked autoencoders are scalable +vision learners. In CVPR, 2022. 1, 2, 4, 6, 7 +[19] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada- +vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, +Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, +and Justin Gilmer. The many faces of robustness: A critical +analysis of out-of-distribution generalization. ICCV, 2021. 6 +[20] Dan Hendrycks and Thomas Dietterich. Benchmarking neural +network robustness to common corruptions and perturbations. +ICLR, 2019. 6 +[21] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, +and Dawn Song. Natural adversarial examples. CVPR, 2021. +6 +[22] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No- +jun Kwak, and Jin Young Choi. A comprehensive overhaul +of feature distillation. In Proceedings of the IEEE/CVF Inter- +national Conference on Computer Vision, pages 1921–1930, +2019. 3 +[23] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young +Choi. Knowledge transfer via distillation of activation bound- +aries formed by hidden neurons. In Proceedings of the AAAI +Conference on Artificial Intelligence, volume 33, pages 3779– +3787, 2019. 3 +[24] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill- +ing the knowledge in a neural network. +arXiv preprint +arXiv:1503.02531, 2(7), 2015. 2, 3 +[25] Zejiang Hou, Fei Sun, Yen-Kuang Chen, Yuan Xie, and S. Y. +Kung. Milan: Masked image pretraining on language assisted +representation. ArXiv, abs/2208.06049, 2022. 1, 3 +[26] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh +Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, +Ruoming Pang, Vijay Vasudevan, et al. Searching for mo- +bilenetv3. In Proceedings of the IEEE/CVF international +conference on computer vision, pages 1314–1324, 2019. 2, 3, +12 +[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry +Kalenichenko, Weijun Wang, Tobias Weyand, Marco An- +dreetto, and Hartwig Adam. Mobilenets: Efficient convolu- +tional neural networks for mobile vision applications. arXiv +preprint arXiv:1704.04861, 2017. 3 +[28] Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing +complex network: Network compression via factor transfer. +Advances in neural information processing systems, 31, 2018. +3 +[29] Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. Self- +supervised knowledge distillation using singular value de- +composition. In Proceedings of the European Conference on +Computer Vision (ECCV), pages 335–350, 2018. 3 +[30] Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evan- +gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. Effi- +cientformer: Vision transformers at mobilenet speed. arXiv +preprint arXiv:2206.01191, 2022. 3 +[31] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, +Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, +Furu Wei, and Baining Guo. Swin transformer v2: Scaling +up capacity and resolution. In International Conference on +Computer Vision and Pattern Recognition (CVPR), 2022. 3 +[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng +Zhang, Stephen Lin, and Baining Guo. Swin Transformer: +Hierarchical vision transformer using shifted windows. arXiv +preprint arXiv:2103.14030, 2021. 1 +[33] Ilya Loshchilov and Frank Hutter. Decoupled weight de- +cay regularization. In International Conference on Learning +Representations, 2019. 6 +[34] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light- +weight, general-purpose, and mobile-friendly vision trans- +former. In International Conference on Learning Representa- +tions, 2021. 1, 2, 3 +[35] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz +Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais +Martinez. Edgevits: Competing light-weight cnns on mobile +devices with vision transformers. In European Conference on +Computer Vision, pages 294–311. Springer, 2022. 1, 2, 3 +[36] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu +Wei. BEiT v2: Masked image modeling with vector-quantized +visual tokenizers. arXiv preprint arXiv:2208.06366, 2022. 1, +3 +[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya +Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, +Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning +transferable visual models from natural language supervision. +In ICML, pages 8748–8763. PMLR, 2021. 3 +[38] A. Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea +Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero- +shot text-to-image generation. ArXiv, abs/2102.12092, 2021. +2 +[39] Sucheng Ren, Zhengqi Gao, Tianyu Hua, Zihui Xue, Yong- +long Tian, Shengfeng He, and Hang Zhao. Co-advise: Cross +inductive bias distillation. In Proceedings of the IEEE/CVF +Conference on Computer Vision and Pattern Recognition +(CVPR), pages 16773–16782, June 2022. 1, 3 +10 + +[40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, +Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: +Hints for thin deep nets. arXiv preprint arXiv:1412.6550, +2014. 3 +[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San- +jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, +Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li +Fei-Fei. Imagenet large scale visual recognition challenge. +IJCV, 2015. 6 +[42] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model +scaling for convolutional neural networks. In International +conference on machine learning, pages 6105–6114. PMLR, +2019. 3 +[43] Chenxin Tao, Xizhou Zhu, Gao Huang, Yu Qiao, Xiaogang +Wang, and Jifeng Dai. Siamese image modeling for self- +supervised vision representation learning. arXiv preprint +arXiv:2206.01204, 2022. 7 +[44] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco +Massa, Alexandre Sablayrolles, and Herv´e J´egou. Training +data-efficient image transformers & distillation through atten- +tion. preprint arXiv:2012.12877, 2020. 1, 3, 7, 9, 12 +[45] Shakti N Wadekar and Abhishek Chaurasia. Mobilevitv3: +Mobile-friendly vision transformer with simple and effective +fusion of local, global and input features. arXiv preprint +arXiv:2209.15159, 2022. 1, 2 +[46] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao +Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra- +mid vision transformer: A versatile backbone for dense predic- +tion without convolutions. In Proceedings of the IEEE/CVF +International Conference on Computer Vision, pages 568– +578, 2021. 1 +[47] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. Kdgan: +Knowledge distillation with generative adversarial networks. +Advances in neural information processing systems, 31, 2018. +3 +[48] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan +Yuille, and Christoph Feichtenhofer. Masked feature predic- +tion for self-supervised visual pre-training. arXiv preprint +arXiv:2112.09133, 2021. 1, 2, 7 +[49] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, +Jianmin Bao, Dong Chen, and Baining Guo. Contrastive +learning rivals masked image modeling in fine-tuning via +feature distillation. arXiv preprint arXiv:2205.14141, 2022. +1 +[50] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, +Jianmin Bao, Dong Chen, and Baining Guo. Contrastive +learning rivals masked image modeling in fine-tuning via +feature distillation. arXiv preprint arXiv:2205.14141, 2022. +3 +[51] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and +Jian Sun. Unified perceptual parsing for scene understanding. +In ECCV, 2018. 6 +[52] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han +Hu, and Yue Cao. Revealing the dark secrets of masked image +modeling. arXiv preprint arXiv:2205.13543, 2022. 1 +[53] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin +Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple +framework for masked image modeling. In Proceedings of +the IEEE/CVF Conference on Computer Vision and Pattern +Recognition, pages 9653–9663, 2022. 1, 2, 3 +[54] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Yixuan +Wei, Qi Dai, and Han Hu. On data scaling in masked image +modeling. arXiv preprint arXiv:2206.04664, 2022. 1 +[55] Zihui Xue, Sucheng Ren, Zhengqi Gao, and Hang Zhao. +Multimodal knowledge expansion. In Proceedings of the +IEEE/CVF International Conference on Computer Vision, +pages 854–863, 2021. 3 +[56] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A +gift from knowledge distillation: Fast optimization, network +minimization and transfer learning. In Proceedings of the +IEEE conference on computer vision and pattern recognition, +pages 4133–4141, 2017. 3 +[57] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learn- +ing from multiple teacher networks. In Proceedings of the +23rd ACM SIGKDD International Conference on Knowledge +Discovery and Data Mining, pages 1285–1294, 2017. 3 +[58] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning +with single-teacher multi-student. In Proceedings of the AAAI +Conference on Artificial Intelligence, volume 32, 2018. 3 +[59] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, +Adela Barriuso, and Antonio Torralba. Semantic understand- +ing of scenes through the ADE20K dataset. Int. J. Comput. +Vis., 127(3):302–321, 2019. 6 +[60] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang +Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training +with online tokenizer. arXiv preprint arXiv:2111.07832, 2021. +1, 3 +11 + +A. Hyper-parameters +Hyper-parameters of ImageNet-1K Pre-training. See Ta- +ble 14. +Hyper-parameters of ImageNet-1K Image Classification +Fine-tuning. See Table 15. TinyMIM⋆-T retains the plain +architecture and computation budget of ViT-T. We fine-tune +TinyMIM⋆ for 1000 epochs with DeiT-style [44] knowledge +distillation on ImageNet-1K. Following MobileNetV3 [26], +an extra fully connected layer is placed before the classifi- +cation layer to increase the feature dimension from 192 to +1280. The head number is set to 12 instead of the default 3. +Hyper-parameters for ADE20K Semantic Segmentation +Fine-tuning. See Table 16. +Hyperparameter +ViT-T +ViT-S +ViT-B +Layers +12 +Hidden size +192 +384 +768 +FFN inner hidden size +768 +1536 +3072 +Attention heads +3 +6 +12 +Patch size +16 × 16 +Pre-training epochs +100/300 +Batch size +4096 +Adam ϵ +1e-8 +Adam β +(0.9, 0.999) +Peak learning rate +2.4e-3 +Minimal learning rate +1e-5 +Learning rate schedule +Cosine +Warmup epochs +5/15 +Stochastic depth +0.1 +Dropout +� +Weight decay +0.05 +Data augment +RandomResizeAndCrop +Input resolution +224 × 224 +Color jitter (student only) +0.4 +Table 14. Hyper-parameters of ImageNet-1K Pre-training. +Hyperparameter +ViT-T +ViT-S +ViT-B +Peak learning rate +5e-3 +5e-3 +2e-3 +Fine-tuning epochs +200 +200 +100 +Warmup epochs +5 +Layer-wise learning rate decay +0.65 +0.65 +0.65/0.6∗ +Batch size +2048 +2048 +1024 +Adam ϵ +1e-8 +Adam β +(0.9, 0.999) +Minimal learning rate +1e-6 +Learning rate schedule +Cosine +Stochastic depth +0.1 +Weight decay +0.05 +Label smoothing ε +0.1 +Dropout +� +Gradient clipping +� +Erasing +0.25 +Input resolution +224 × 224 +Rand augment +9/0.5 +Mixup +0.8 +Cutmix +1.0 +Table 15. Hyper-parameters of ImageNet-1K image classification +fine-tuning. ∗ indicates that we use 0.65 and 0.6 for 100-epoch and +300-epoch pre-trained models, respectively. +Hyperparameter +ViT-S +ViT-B +Input resolution +512 × 512 +Peak learning rate +1e-4 +Fine-tuning steps +160K +Batch size +16 +Adam ϵ +1e-8 +Adam β +(0.9, 0.999) +Layer-wise learning rate decay +{0.65, 0.75, 0.8} +Minimal learning rate +0 +Learning rate schedule +Linear +Warmup steps +1500 +Dropout +� +Stochastic depth +0.1 +Weight decay +0.05 +Table 16. Hyper-parameters of ADE20K semantic segmentation +fine-tuning. +12 + diff --git a/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/load_file.txt b/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e1d718015c6ec0640823866ce46db1e9e4e7204e --- /dev/null +++ b/M9AzT4oBgHgl3EQfWPwO/content/tmp_files/load_file.txt @@ -0,0 +1,874 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf,len=873 +page_content='TinyMIM: An Empirical Study of Distilling MIM Pre-trained Models Sucheng Ren Fangyun Wei* Zheng Zhang Han Hu Microsoft Research Asia Abstract Masked image modeling (MIM) performs strongly in pre- training large vision Transformers (ViTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, small models that are critical for real-world applications can- not or only marginally benefit from this pre-training ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained mod- els to smaller ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We systematically study different op- tions in the distillation framework, including distilling tar- gets, losses, input, network regularization, sequential dis- tillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distil- lation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3) Weak regularization is preferred;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' With these find- ings, we achieve significant fine-tuning accuracy improve- ments over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT- base models, with +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2%/+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4%/+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4% gains, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Our TinyMIM model of base size achieves 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 mIoU in AE20K semantic segmentation, which is +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 higher than the MAE baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Our TinyMIM model of tiny size achieves 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6% top-1 accuracy on ImageNet-1K image classifica- tion, which sets a new record for small vision models of the same size and computation budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This strong perfor- mance suggests an alternative way for developing small vision Transformer models, that is, by exploring better train- ing methods rather than introducing inductive biases into architectures as in most previous works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Code is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='com/OliverRensu/TinyMIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Introduction Masked image modeling (MIM), which masks a large portion of the image area and trains a network to recover the original signals for the masked area, has proven to be a very effective self-supervised method for pre-training vision Transformers [2,12,18,53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Thanks to its strong fine-tuning performance, MIM has now been a main-stream pre-training Corresponding author: fawe@microsoft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-T ViT-S ViT-B 70 74 78 82 86 Scratch MAE TinyMIM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison among TinyMIM (ours), MAE [18] and training from scratch by using ViT-T, -S and -B on ImageNet-1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We report top-1 accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We adopt DeiT [44] when training from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For the first time, we successfully perform masked image modeling pre-training for smaller ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Model Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Flops Top-1 mIoU (M) (G) (%) DeiT-T [44] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 PVT-T [46] 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 CiT-T [39] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 Swin [32] 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 EdgeViT-XS [35] 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 MobileViTv1-S [34] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 MobileViTv3-S [45] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 TinyMIM⋆-T (Ours) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison with state-of-the-art tiny Transformers with architecture variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The parameters indicate the backbone pa- rameter excluding the parameters of the last classification layer in classification or the decoder in segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We report top-1 accuracy on ImageNet-1K classification and mIoU on ADE20K segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' method for vision Transformers, and numerous follow-ups have been carried out in this research line, such as study- ing how to set decoding architectures [25], reconstruction targets [11,36,48,60], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=', as well as revealing its proper- ties [49,52,54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='01296v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='CV] 3 Jan 2023 Method ViT-T ViT-S ViT-B ViT-L Scratch 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 MAE 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 Gap 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison between MAE pre-trained ViTs and ViTs trained from scratch by using ViT-T, -S, -B and -L on ImageNet- 1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We adopt DeiT when training from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We report top-1 accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' As model size shrinks, the superiority of MAE gradually vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE even hurts the performance of ViT-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, as shown in Table 2, MIM pre-training [18] mainly effects for relatively large models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' When the model size is as small as ViT-Tiny (5 million parameters), which is critical for real-world applications, MIM pre-training can even hurt the fine-tuning accuracy on ImageNet-1K classifi- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In fact, the accuracy drops by -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 compared to the counterpart trained from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This raises a question: can small models also benefit from MIM pre-training, and how can this be achieved?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In addition, the existing study on small vision Transform- ers mainly focus on introducing certain inductive bias into architecture design [6,26,34,35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The additional architec- tural inductive biases facilitate optimization yet limit the expressive capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' It’s natural to ask whether we can boost plain small vision Transformers to perform just as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this work, we present TinyMIM, which answers the above questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Instead of directly training small ViT mod- els using a MIM pretext task, TinyMIM uses distillation technology [24] to transfer the knowledge of larger MIM pre-trained models to smaller ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Distillation endows the nice properties of larger MIM pre-trained models to smaller ones while avoiding solving a “too” difficult MIM task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Not- ing that knowledge distillation has been well developed, especially for supervised models [16], our main work is to systematically study for the first time the effects of different design options in a distillation framework when using MIM pre-trained models as teachers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Specifically, we consider dis- tillation targets, data augmentation, network regularization, auxiliary losses, macro distillation strategy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=', and draw several useful findings: Distillation targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' There are two main findings re- lated to distillation targets: 1) Distilling token relations is more effective than distilling the CLS token and fea- ture maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2) Using intermediate layers as the target may perform better than using the last layer, and the optimal target layer for different down-stream tasks, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=', classification and segmentation, can be different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Data and network regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Weak augmentation and regularization is preferred: 1) The performance of using a masked image is worse than using the original image;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2) Relatively small drop path rate (0 for teacher and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 for student) performs best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' auxiliary losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We find that an auxiliary MIM loss does not improve fine-tuning accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Macro distillation strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We find that using a se- quential distillation strategy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=', “ViT-B → ViT-S → ViT-T”, performs better than that distilling directly from ViT-B to ViT-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' By selecting the best framework options, we achieve sig- nificant fine-tuning accuracy improvements over the direct MIM pre-training on ImageNet-1K classification, using ViT models of different sizes, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Specifi- cally, the gains of TinyMIM on the ViT-Tiny, ViT-Small, and ViT-base models are +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2%/+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4%/+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4%, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In particular, our TinyMIM⋆-T model with knowledge distillation during finetune-tuning achieves a top-1 accuracy of 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6% on ImageNet-1K classification (see Table 1), which performs better than all previous works that develop small vision Transformer models by introducing architectural in- ductive biases or smaller feature resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' It sets a new accuracy record using similar model size and computation budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' On ADE20K semantic segmentation, TinyMIM-T achieves 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 mIoU, which is +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 higher than the second best method, MobileViTv3-S [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The strong fine-tuning accuracy by TinyMIM⋆-T suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as most previous works have done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Related Works 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Masked Image Modeling Masked Language Modeling (MLM) [10] for self- supervised Transformer pre-training has achieved incredible success in natural language processing (NLP) field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Inspired by the same idea of masking and reconstruction, BEiT [2] is the pioneer to bring such success to computer vision filed by encoding masked images and predicting masked tokens generated by DALL-E [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' SimMIM [53] and MAE [18] find that reconstructing RGB pixels results in favorable rep- resentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE adopts an asymmetric encoder-decoder architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The encoder only encodes the visible tokens and drops a high portion of masked tokens to reduce the com- putation burden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' A lightweight decoder then produces recon- structed patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Different from tokens in natural language processing that have rich semantics, pixels in computer vi- sion are low-level information, therefore, a lot of recent works aim at looking for better supervisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MaskFeat [48] takes local gradient features produced by the manually- crafted HOG descriptor [9] as supervisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' PeCo [11] trains 2 Masked Image Raw Image Factors Input Target Feature Relation 𝑄·𝑄𝑇 𝐾·𝐾𝑇 𝑉·𝑉𝑇 𝑄·𝐾𝑇 Head Number w/ or w/o Softmax Output Feature Block Feature QKV Features Attention Feature FFN Feature Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Connection of FFN Block Last Intermediate … … Transformer Block-N Output Feature Multi-Head Attention Add & Norm FFN Add & Norm Attention Feature FFN Feature Block Feature Raw Image Masked Image Feature of Last Block 𝑄·𝑄𝑇 𝐾·𝐾𝑇 𝑉·𝑉𝑇 𝑄·𝐾𝑇 𝑄 𝐾 𝑉 Softmax Transformer Block-n Transformer Block-1 Teacher (Highlight by Blue) Relations Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We comprehensively study a variety of factors (highlighted by Royal Blue) that may affect TinyMIM pre-training including input, distillation target (feature or relation) and target block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' a new tokenizer by enforcing perceptual similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' iBot [60] and data2vec [1] take exponential moving average (EMA) updated models as tokenizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MILAN [25] adopts a pre- trained CLIP as the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Similarly, BeiTv2 [36] also uses CLIP [37] for tokenizer training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Different from these works that use various tokenizers/teachers, we adopt a masked im- age modeling pre-trained model as our teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The MIM pre-training performs very well on relatively large models from base size to giant size [31,53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, it will hurt the fine-tuning when the model is as small as tiny size, probably because the limited capthe MIM task is “too” difficult for small model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This paper explores how to make small vision Transformer models also benefit from MIM training, through a systematic study of the distillation technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Knowledge Distillation Knowledge distillation is a classical method to transfer the knowledge from cumbersome models to a small one, pi- oneered by [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The original knowledge distillation frame- work adopts the annealed classification logits of the teacher as the distilling target for the student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Since then, extensive variants have been carried out to improve the distilling ef- fectiveness [16], including changing the distilling targets as intermediate features [22,23,28,40] and relations [29,56], data augmentations of teacher and students [39, 50], regu- larization [50], distilling strategies [47, 55, 57, 58] and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' While almost all studies are made for CNN architec- tures under supervised settings, recently, there have been a few works performing distilling technologies for vision Transformers [44,50] and contrastive learning based meth- ods [14, 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In DeiT [44], the teacher is set as a CNN architecture so as to transfer the inductive bias involved in CNNs to vision Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' It also propose to use hard distillation which uses hard pseudo class labels of the teacher network as the distilling targets, which performs better than the naive knowledge distillation [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In [14], a distillation method regarding the similarities between instances is ap- plied to transfer the power of contrastive pre-trained large CNN models to small CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In [50], a method based on feature map distillation is proposed to generally improve vision transformers by different pre-training approaches in- cluding image classification, instance contrastive based self- sueprvised learning [3] and CLIP pre-training [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, it shows no gains for MIM pre-trained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This paper for the first time studies the distillation frame- work for MIM pre-trained vision Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Through a systematic study, it draws several useful findings and the best options, under which, significant gains are achieved for vision Transformers of various sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Small Vision Transformers Designing efficient CNN models [27,42] has been widely studied in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' With the emergence of Vision Transformer (ViT), there have been several works study- ing how to develop efficient vision Transformer, with the majority focus on introduing inductive biases into the archi- tectures [17,26,30,34,35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Different from these works that develop small vision Transformers by introducing sophisticated components into architectures, we demonstrate that a plain vision Trans- former [12] at a small scale can perform just as well, or even better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Our main insight is that the MIM pre-training can implicitly incorporate necessary inductive biases, and thus avoids the need of explicit architecture bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Our plain 3 vision Transformer of tiny size achieves the state-of-the-art accuracy for both ImageNet-1K image classification and ADE20K semantic segmentation using similar model size and computation budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' TinyMIM We adopt a larger, MIM pre-trained model as the teacher, and a smaller ViT as the student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The objective of TinyMIM is to train the randomly initialized student by mimicking the target produced by the teacher in a knowledge distillation manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' After pre-training, the TinyMIM pre-trained model can be transferred to various downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this work, we adopt MAE [18] as the MIM model due to its popularity and simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this section, we first describe the factors that may affect TinyMIM pre-training: distillation target in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' input in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' target block in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Then we present a series of distillation losses for different distillation target in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' At last, a sequential distillation strat- egy is introduced to facilitate the performance in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Factors 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Distillation Target Block Feature and Output Feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Given an input image x, we first divide it into N non-overlapping patches and use a linear projection layer to map N patches into patch em- beddings F0 ∈ RN×D, where D is the dimension of hidden features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Suppose we have a ViT containing L Transformer blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Each Transformer block takes the output Fi−1 of the last Transformer block as the input and generates the feature Fi of the current block, which can be formulated as: Fi = Transformer(Fi−1), i ∈ [1, L].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' (1) We term Fi as the block feature of the i-th Transformer block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In particular, we name the feature FL from the last Transformer block as the output feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Attention Feature and FFN Feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Each Transformer block is composed of a self-attention layer and a feed for- ward layer, which can be defined as: Hi = Attention(LN(Fi−1)), �Hi = Hi + Fi−1, �Hi = FFN(LN( �Hi)), F i = �Hi + �Hi, (2) where Attention(·), FFN(·) and LN(·) denotes self- attention layer, feed forward layer and layer norm, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We term �Hi and �Hi as attention feature and FFN feature of the i-th Transformer block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Query/Key/Value Features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Each self-attention layer con- sists of M head networks, each of which maps input feature Fi−1 to query (Q), key (K) and value (V): Qm i = LN(Fi−1)W Q i , Km i = LN(Fi−1)W K i , V m i = LN(Fi−1)W V i , (3) where Qi, Ki, Vi ∈ RN× D M represent the query, key and value of the m-th head network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The query/key/value fea- tures (Qi, Ki, Vi ∈ RN×D) are the concatenation of M Qm i /Km i /V m i , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For the m-th head network from the i-th Trans- former block, we could calculate its Q-Q, K-K, V-V and Q-K relations (RQQ i,m, RKK i,m , RV V i,m, RQK i,m ∈ RN×N), which are implemented as the scaled product relation: RQQ i,m = Softmax � Qm i Qm i T � D/M � , RKK i,m = Softmax � Km i Km i T � D/M � , RV V i,m = Softmax � V m i V m i T � D/M � , RQK i,m = Softmax � Qm i Km i T � D/M � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' (4) The Q-Q/K-K/V-V/Q-K relations (RQQ i , RKK i , RV V i , RQK i ∈ RM×N×N) of the i-th Transformer block is the stack of M RQQ i,m/RKK i,m /RV V i,m/RQK i,m , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 Input MIM models randomly mask a high proportion of image patches on an input image x, yielding a masked image �x for pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also investigate the input of TinyMIM when performing knowledge distillation— the input could be either a raw image x or a masked image �x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 Target Block Consider a situation where we tend to use an MAE pre- trained ViT-L (teacher) containing 24 blocks to distill a ViT- B (student) containing 12 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this scenario, the block number of the student does not match that of the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We investigate which block of the teacher can provide the most appropriate target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The selected block is referred to as the target block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Knowledge Distillation as MIM Pre-training In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1, we describe a variety of distillation target candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this section, we introduce different knowledge distillation losses for various distillation targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Let x de- note an input image, ft and fs represent a teacher model and 4 … Teacher 𝑉·𝑉𝑇 𝑄·𝐾𝑇 Raw Image #Head 𝑄·𝐾𝑇 … … 𝑉·𝑉𝑇 #Head 𝑉·𝑉𝑇 𝑄·𝐾𝑇 #Head 𝑄·𝐾𝑇 … … 𝑉·𝑉𝑇 #Head Block-1 Block-n Block-N … … Student Block-1 Block-L (Adaptive Block) Loss … : Forward : Backward Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The default knowledge distillation strategy of TinyMIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The student (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-B) is optimized to mimic the relations generated by the intermediate block of a MIM pre-trained teacher (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-L) with raw image as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We replace the last block of the student with an adaptive block to match teacher’s head number (no extra computational cost).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' After pre-training (knowledge distillation), the student model can be transferred to various downstream tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' a student model, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The objective of knowledge distillation is to transfer the knowledge from ft to fs by optimizing fs while freezing ft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In general, the training is supervised by the KL divergence, which is defined as: LKL(p, t) = tlog t p, (5) where t denotes the target generated by ft(x), and p is the prediction produced by fs(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Class Token Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We use ct and cs to denote class token feature of ft and fs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The loss of class token distillation is formulated as: L = LKL(cs, ct).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' (6) Feature Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In general, the feature dimension of the teacher network and the student network are mismatched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' To tackle this problem, we adopt an extra linear layer on the output of the student network to match the feature dimension of the teacher’s target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Let F t and F s denote the target feature and the prediction yielded by the student followed by a linear projection layer, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We could formulate the loss of feature distillation as follows: L = L1(F s, Norm(F t)), (7) where Norm(·) is the whitening operation implemented by layer norm without affiliation, and L1 is the smooth L1 loss defined as: L1(y, ˆy) = � 1 2(ˆy − y)2/β, |ˆy − y| ≤ β (|ˆy − y| − 1 2β), otherwise , (8) where β is set to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Relation Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This is our default knowledge distilla- tion strategy as illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For the sake of clarity, we use RQK t→m to denote the m-th head generated Q-K rela- tion target (see Eq 4) from the teacher network, and RQK s→m to represent the corresponding Q-K relation prediction from the student network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We define RV V t→m and RV V s→m in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The loss of relation distillation is formulated as: LQK = 1 M M � m=1 LKL(RQK s→m, RQK t→m), LV V = 1 M M � m=1 LKL(RV V s→m, RV V,S t→m ), L = LQK + LV V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' (9) Head Alignment for Relation Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In general, the head number of the student network is lower than that of the teacher network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For instance, ViT-L (teacher) contains 16 heads per block while ViT-B (student) only contains 12 heads per block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Recall that the relation distillation loss (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 9) is calculated head by head, thus we have to solve the head misalignment issue before performing relation distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' To this end, we replace the last block of the student with an adaptive block, which keeps the original hidden dimension but adjusts the head number to the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Concretely, given a teacher network with Mt heads per block, and a student network with Ms heads per block, a hidden dimension of Ds, and a head dimension of Ds/Ms, the adaptive block is designed to be a Transformer block with Mt heads per block, a hidden dimension of Ds and a head dimension of Ds/Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Sequential Distillation When training a small model like ViT-S, the teacher has two options: a pre-trained ViT-B and a pre-trained ViT- L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Intuitively, the pre-trained ViT-L is a good teacher due to its higher representation capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, there is 5 a huge capacity gap between ViT-L and ViT-S, resulting in poor distillation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Following [8, 15], we adopt a sequential distillation strategy to improve pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For instance, when pre-training a ViT-S, the teacher is selected as a TinyMIM pre-trained ViT-B, which has been trained by TinyMIM with ViT-L as the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Experiments 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Implementation Details Pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' All models are pre-trained under a 100- epoch schedule on ImageNet-1K [41] training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We use a batch size of 4096 and a learning rate of lr=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5e- 4×batchsize/256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We adopt a cosine decay schedule with a warm-up for 5 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We adopt AdamW [33] optimizer with a weight decay of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We use random resized crop- ping random horizontal flipping, color jitter for student only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The input size is set to 224 × 224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We transfer TinyMIM pre-trained models to ImageNet [41] image classification and ADE20K [59] se- mantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For ImageNet, we use AdamW op- timizer with weight decay of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For data augmentation, we follow the settings in MAE [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We fine-tune ViT-B for 100 epochs with a batch size of 1024, a learning rate of 2e-3, and a drop path rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We fine-tune ViT-S and ViT-T for 200 epochs with a batch size of 2048, a learning rate of 5e-3, and a drop path rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For ADE20K, we follow the same setting in MAE and adopt UperNet [51] as our framework with a TinyMIM pre-trained backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The input image resolution is 512 × 512 for training and evaluating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We use mIoU as the evaluation metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Besides, we evaluate the robustness of TinyMIM on var- ious out-of-domain ImageNet datasets [19–21] which are generated by applying different perturbations on ImageNet, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' natural adversarial examples (ImageNet-A), semantic shift (ImageNet-R), common image corruptions (ImageNet- C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We report top-1 accuracy on ImageNet-A/R and mCE error on ImageNet-C (lower is better).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Default Setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' By default, we adopt relation distillation formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 9, head alignment, raw image as input, se- quential distillation and the 18-th block of MAE pre-trained ViT-L as the target block for TinyMIM-ViT-B pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Main Results As shown in Table 3, we compare our TinyMIM with previous methods on ImageNet image classification and ADE20K semantic segmentation using different ViTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In particular, TinyMIM pre-trained ViT-T achieves 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8% top- 1 accuracy, outperforming MAE baseline by +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' An enhanced model named TinyMIM⋆-T, which retains the plain architecture and computation budget of ViT-T, fur- ther achieves 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6% top-1 accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See appendix for the details of TinyMIM⋆-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Moreover, TinyMIM pre-trained ViT-S achieves 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0% top-1 accuracy, outperforming MAE baseline and previous best method CIM [13] by +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4, +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' By transferring the knowledge of an MAE pre- trained ViT-L, TinyMIM pre-trained ViT-B achieves 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0% top-1 accuracy on ImageNet-1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' As for semantic segmentation, TinyMIM pre-trained ViT- B surpasses MAE baseline and state-of-the-art CAE [4] by +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 and +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' An intermediate fine-tuning on ImageNet-1K classification before ADE20K segmentation fine-tuning further boosts the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also evaluate our models on out-of-domain datasets in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Our TinyMIM pretrained models are more robust than MAE pre-trained ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Specifically, TinyMIM-ViT-B outperforms MAE-ViT-B by +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 and +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 on ImageNet-A and ImageNet-R, respectively, and lower the mCE by -5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Ablation Study Unless otherwise specified, all ablation studies are con- ducted on TinyMIM-ViT-B, with a teacher of being an MAE pre-trained ViT-L, relation distillation strategy, raw image as input, the 18-th block of ViT-L as the target block, under a 100-epoch pre-training schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We report top-1 accuracy on ImageNet-1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Class Token Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For this distillation strategy, we study two variants: 1) class token distillation as formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2) class token distillation with an extra MAE re- construction loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The results are shown in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Both variants perform worse than MAE baseline, indicting that the class token is improper to be served as the distillation target since there is no explicit supervision applied on class token during teacher’s pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Feature Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' As described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1, there are four types of features can be served as the targets for feature distillation formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 7: output feature, FFN feature, attention feature and Q/K/V features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Table 6 com- pares the results of using different features as distillation targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also report the results of FFN feature and atten- tion feature before the residual connection (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' An interesting finding is that distilling FFN feature and attention feature after the residual connection significantly degrades the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Relation Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 9 formulates our default relation distillation, which jointly distills Q-K relation and V-V re- lation (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Here we study a variant by changing the target relations from Q-K/V-V to Q-K/K-K/V-V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also investigate that whether to apply a Softmax operator on each relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The results are shown in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison of Different Distillation Strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In this study, all models are pre-trained under a 300-epoch schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We compare three distillation strategies on ImageNet image classification (Table 8) and ADE20K semantic segmentation (Table 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For each strategy, we use the target that yields the best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also highlight the improvements over the 6 Method Pretraining Tokenizer/ Tokenizer/Teacher Classification Segmentation Epochs Teacher Data Top-1 Acc (%) mIoU Tiny-size models (ViT-T/16) Scratch [44] 300 Label IN1K 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 MAE† [18] 1600 Pixel IN1K 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 MoCo [5] 1600 EMA IN1K 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 TinyMIM (Ours) 300 TinyMIM-ViT-S IN1K 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0/44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6‡ TinyMIM⋆ (Ours) 300 TinyMIM-ViT-S IN1K 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0‡ Small-size models (ViT-S/16) Scratch [44] 300 Label IN1K 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 MAE† [18] 1600 Pixel IN1K 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 MoCo [5] 1600 EMA IN1K 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 DINO [3] 1600 EMA IN1K 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 CIM [13] 1600 Pixel IN1K 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 TinyMIM (Ours) 300 TinyMIM-ViT-B IN1K 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4/48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9‡ Base-size models (ViT-B/16) Scratch [44] 300 Label IN1K 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 BeiT [2] 800 DALL-E DALLE250M+IN22K+IN1K 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 MAE [18] 1600 Pixel IN1K 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 SIM [43] 1600 EMA IN1K 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 CAE [4] 1600 DALL-E DALLE250M+IN22K+IN1K 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 MaskFeat [48] 1600 HOG IN1K 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 SdAE [7] 300 EMA IN1K 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 data2vec [1] 800 EMA IN1K 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 PeCo [11] 300 VQGAN IN1K 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 PeCo [11] 800 VQGAN IN1K 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 TinyMIM (Ours) 300 MAE-ViT-L IN1K 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2/52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6‡ Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Fine-tuning results on ImageNet-1K and ADE20K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' All models are pre-trained on ImageNet-1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' “Tokenizer/Teacher Data”: training data of teacher and tokenizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' †: reproduced result using official code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ⋆: the model is fine-tuned for 1000 epochs with DeiT-style [44] knowledge distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ‡: the model adopts an intermediate fine-tuning on ImageNet-1K classification before ADE20K segmentation fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Method Model Size ImageNet ↑ IN-Adversarial↑ IN-Rendition↑ IN-Corruption ↓ DeiT [44] ViT-T 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 MAE [18] 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 TinyMIM 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 DeiT [44] ViT-S 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 MAE [18] 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 TinyMIM 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 DeiT [44] ViT-B 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 MAE [18] 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 TinyMIM 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Robustness evaluation on out-of-domain datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Target Block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' As described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3, we consider a situation where the block number of the student does not match that of the teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Here we use an MAE pre-trained ViT-L containing 24 blocks to distill a ViT-B containing 12 blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Here we examine the effects of using the 12th, 15th, 18th, 21th and 24th (last) blocks of the ViT-L as the target blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The comparison is shown in Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We 7 Method Reconstruction Loss Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE ✓ 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 TinyMIM w/ Cls 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 TinyMIM w/ Cls ✓ 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Study of class token distillation formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Feature Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Connection Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Output Feature 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 FFN Feature 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 FFN Feature ✓ 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 Attention Feature 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Attention Feature ✓ 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 Q/K/V Features 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Study of feature distillation formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2 for the definitions of different features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Relation Softmax Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Q-Q, K-K, V-V 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 Q-Q, K-K, V-V ✓ 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 Q-K, V-V 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 Q-K, V-V ✓ 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Study of relation distillation formulated in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 4 for the definitions of different relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' experimentally find that using 18th block yields the best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Sequential Distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3, we advocate to adopt a sequential distillation strategy to enable distillation from a larger model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-L) to a smaller model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Table 11 compares the result of adopting different teachers with or without the sequential distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We have two conclusions: 1) using a larger teacher (MAE-ViT-L) to distill a smaller student (ViT-S) degrades the performance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2) sequential distillation significantly boosts the performance of ViT-T (MAE-ViT-B→TinyMIM-ViT-S as the teacher and ViT-T as the student).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Integrating MAE into TinyMIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' MAE is a simple but ef- fective self-supervised pre-training paradigm that trains a model by requiring it to predict masked inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In contrast, TinyMIM pre-trains smaller ViTs in a knowledge distilla- tion manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Here we integrate MAE into our TinyMIM, yielding an integrated model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' This model is optimized under two losses: knowledge distillation loss from TinyMIM, and Method Model Size Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Supervised (DeiT) ViT-T 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 MAE 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Class Token Distillation 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Feature Distillation 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 Relation Distillation 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 (+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2) Supervised (DeiT) ViT-S 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 MAE 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Class Token Distillation 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Feature Distillation 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 Relation Distillation 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 (+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1) Supervised (DeiT) ViT-B 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 MAE 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Class Token Distillation 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 Feature Distillation 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 Relation Distillation 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6) Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison of three distillation strategies on ImageNet-1K image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The models are pre-trained under a 300-epoch schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Method Model Size mIoU Supervised (DeiT) ViT-B 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 MAE 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Class Token Distillation 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 Feature Distillation 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 Relation Distillation 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 (+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1) Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison of three distillation strategies on ADE20K semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The models are pre-trained under a 300- epoch schedule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Task 12th 15th 18th 21th 24th Classification 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 Segmentation 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Study of target block on ImageNet-1K and ADE20K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Student Teacher Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ViT-S MAE-ViT-B 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 MAE-ViT-L 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 MAE-ViT-L → TinyMIM-ViT-B 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 ViT-T MAE-ViT-S 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 MAE-ViT-B 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 MAE-ViT-B → TinyMIM-ViT-S 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 Table 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Study of sequential distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 8 Masked Image Reconstruction Loss Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 ✓ 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 ✓ ✓ 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 Table 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comparison between the TinyMIM-ViT-B (the first row) and the integrated model (the third row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We also study the input of TinyMIM-ViT-B, which could be raw image (the first row) or masked image (the second row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' DPR (Teacher) DPR (Student) Top-1 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='2 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='3 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9 Table 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Ablation study of drop path rate (DPR) used in teacher and student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' reconstruction loss from MAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' To enable MAE pre-training, we randomly mask 75% image patches, and feed the visi- ble patches into the network to initiate the pre-training of the integrated model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Table 12 shows the comparison be- tween TinyMIM-ViT-B and the integrated model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' From the Table, we could draw a conclusion—integrating MAE into our TinyMIM does not improve the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In addi- tion, we also investigate the input of TinyMIM-ViT-B, which could be either raw image or masked image, as shown in Table 12—taking raw image as input yields better result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Drop Path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Drop path is one of the most critical techniques in training Transformers [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Using an appropriate drop path rate could significantly alleviate the over-fitting issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' However, MAE disables this technique in its implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Here we verify the effects of applying drop path to our TinyMIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The results are shown in Table 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For the student model, the optimal drop path rate is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For the teacher model, disabling drop path yields best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Conclusion In this paper, we present TinyMIM, which is the first to successfully perform masked image modeling (MIM) pre- training for smaller ViT models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In stead of adopting a mask-and-predict pretext task, we pre-train a small ViT by mimicking the relations of a large ViT in a knowledge dis- tillation manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The success of TinyMIM can be attributed to a comprehensive study of various factors that may affect TinyMIM pretraining including distillation target, distillation input and target block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' With extensive experiments, we draw a series of conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' For instance, relation distillation is superior than feature distillation and class token distillation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' taking raw image as input is optimal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' a sequential distillation is necessary for training smaller ViTs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' With its simplic- ity and strong performance, we hope our approach can serve as a solid baseline for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' References [1] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Data2vec: A general framework for self-supervised learning in speech, vision and language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='03555, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3, 7 [2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' BEiT: BERT pre-training of image transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International Conference on Learning Representations, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 7 [3] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Emerg- ing properties in self-supervised vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='14294, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3, 7 [4] Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shen- tong Mo, Yunhao Wang, Shumin Han, Ping Luo, Gang Zeng, and Jingdong Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Context autoencoder for self-supervised representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='03026, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6, 7 [5] Xinlei Chen, Saining Xie, and Kaiming He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' An empirical study of training self-supervised vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ArXiv, abs/2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='02057, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 7 [6] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Mobile- former: Bridging mobilenet and transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5270–5279, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2 [7] Yabo Chen, Yuchen Liu, Dongsheng Jiang, Xiaopeng Zhang, Wenrui Dai, Hongkai Xiong, and Qi Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Sdae: Self- distillated masked autoencoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ArXiv, abs/2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='00449, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 7 [8] Jang Hyun Cho and Bharath Hariharan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' On the efficacy of knowledge distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF international conference on computer vision, pages 4794– 4802, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [9] Navneet Dalal and Bill Triggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Histograms of oriented gra- dients for human detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In 2005 IEEE computer soci- ety conference on computer vision and pattern recognition (CVPR’05), volume 1, pages 886–893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Ieee, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2 [10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' BERT: pre-training of deep bidirectional trans- formers for language understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the 2019 Conference of the North American Chapter of the As- sociation for Computational Linguistics: Human Language Technologies, pages 4171–4186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Association for Computa- tional Linguistics, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2 [11] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, and Neng- hai Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Peco: Perceptual codebook for bert pre-training of vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='12710, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 7 [12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, 9 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- vain Gelly, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' An image is worth 16x16 words: Transform- ers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='11929, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3 [13] Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Corrupted image modeling for self-supervised visual pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='03382, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6, 7 [14] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang, Yezhou Yang, and Zicheng Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Seed: Self-supervised distil- lation for visual representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [15] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Born again neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 1607–1616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [16] Jianping Gou, Baosheng Yu, Stephen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Maybank, and Dacheng Tao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Knowledge distillation: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' International Journal of Computer Vision, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2, 3 [17] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herv´e J´egou, and Matthijs Douze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Levit: a vision transformer in convnet’s clothing for faster inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF inter- national conference on computer vision, pages 12259–12269, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Masked autoencoders are scalable vision learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In CVPR, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 4, 6, 7 [19] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada- vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The many faces of robustness: A critical analysis of out-of-distribution generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ICCV, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [20] Dan Hendrycks and Thomas Dietterich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Benchmarking neural network robustness to common corruptions and perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ICLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [21] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Natural adversarial examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' CVPR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [22] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No- jun Kwak, and Jin Young Choi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' A comprehensive overhaul of feature distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Inter- national Conference on Computer Vision, pages 1921–1930, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [23] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Knowledge transfer via distillation of activation bound- aries formed by hidden neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3779– 3787, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [24] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Distill- ing the knowledge in a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='02531, 2(7), 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2, 3 [25] Zejiang Hou, Fei Sun, Yen-Kuang Chen, Yuan Xie, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Kung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Milan: Masked image pretraining on language assisted representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ArXiv, abs/2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='06049, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3 [26] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Searching for mo- bilenetv3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2, 3, 12 [27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco An- dreetto, and Hartwig Adam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Mobilenets: Efficient convolu- tional neural networks for mobile vision applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='04861, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [28] Jangho Kim, SeongUk Park, and Nojun Kwak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Paraphrasing complex network: Network compression via factor transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Advances in neural information processing systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [29] Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Self- supervised knowledge distillation using singular value de- composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the European Conference on Computer Vision (ECCV), pages 335–350, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [30] Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evan- gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Effi- cientformer: Vision transformers at mobilenet speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='01191, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [31] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Swin transformer v2: Scaling up capacity and resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International Conference on Computer Vision and Pattern Recognition (CVPR), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Swin Transformer: Hierarchical vision transformer using shifted windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='14030, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 [33] Ilya Loshchilov and Frank Hutter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Decoupled weight de- cay regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [34] Sachin Mehta and Mohammad Rastegari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Mobilevit: Light- weight, general-purpose, and mobile-friendly vision trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International Conference on Learning Representa- tions, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 3 [35] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais Martinez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Edgevits: Competing light-weight cnns on mobile devices with vision transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In European Conference on Computer Vision, pages 294–311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Springer, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 3 [36] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' BEiT v2: Masked image modeling with vector-quantized visual tokenizers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='06366, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3 [37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Learning transferable visual models from natural language supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In ICML, pages 8748–8763.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' PMLR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Zero- shot text-to-image generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ArXiv, abs/2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='12092, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 2 [39] Sucheng Ren, Zhengqi Gao, Tianyu Hua, Zihui Xue, Yong- long Tian, Shengfeng He, and Hang Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Co-advise: Cross inductive bias distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16773–16782, June 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3 10 [40] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Fitnets: Hints for thin deep nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6550, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San- jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Imagenet large scale visual recognition challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' IJCV, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [42] Mingxing Tan and Quoc Le.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Efficientnet: Rethinking model scaling for convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In International conference on machine learning, pages 6105–6114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [43] Chenxin Tao, Xizhou Zhu, Gao Huang, Yu Qiao, Xiaogang Wang, and Jifeng Dai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Siamese image modeling for self- supervised vision representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='01204, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 7 [44] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herv´e J´egou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Training data-efficient image transformers & distillation through atten- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' preprint arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='12877, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3, 7, 9, 12 [45] Shakti N Wadekar and Abhishek Chaurasia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Mobilevitv3: Mobile-friendly vision transformer with simple and effective fusion of local, global and input features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='15159, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2 [46] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Pyra- mid vision transformer: A versatile backbone for dense predic- tion without convolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 568– 578, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 [47] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Kdgan: Knowledge distillation with generative adversarial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Advances in neural information processing systems, 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [48] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Masked feature predic- tion for self-supervised visual pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='09133, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 7 [49] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Contrastive learning rivals masked image modeling in fine-tuning via feature distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='14141, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 [50] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, and Baining Guo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Contrastive learning rivals masked image modeling in fine-tuning via feature distillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='14141, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [51] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Unified perceptual parsing for scene understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In ECCV, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [52] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and Yue Cao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Revealing the dark secrets of masked image modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='13543, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 [53] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Simmim: A simple framework for masked image modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9653–9663, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 2, 3 [54] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Yixuan Wei, Qi Dai, and Han Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' On data scaling in masked image modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='04664, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1 [55] Zihui Xue, Sucheng Ren, Zhengqi Gao, and Hang Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Multimodal knowledge expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 854–863, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [56] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' A gift from knowledge distillation: Fast optimization, network minimization and transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4133–4141, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [57] Shan You, Chang Xu, Chao Xu, and Dacheng Tao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Learn- ing from multiple teacher networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1285–1294, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [58] Shan You, Chang Xu, Chao Xu, and Dacheng Tao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Learning with single-teacher multi-student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 3 [59] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Semantic understand- ing of scenes through the ADE20K dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=', 127(3):302–321, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 6 [60] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ibot: Image bert pre-training with online tokenizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' arXiv preprint arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='07832, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 1, 3 11 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters Hyper-parameters of ImageNet-1K Pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See Ta- ble 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters of ImageNet-1K Image Classification Fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See Table 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' TinyMIM⋆-T retains the plain architecture and computation budget of ViT-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' We fine-tune TinyMIM⋆ for 1000 epochs with DeiT-style [44] knowledge distillation on ImageNet-1K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Following MobileNetV3 [26], an extra fully connected layer is placed before the classifi- cation layer to increase the feature dimension from 192 to 1280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' The head number is set to 12 instead of the default 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters for ADE20K Semantic Segmentation Fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' See Table 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyperparameter ViT-T ViT-S ViT-B Layers 12 Hidden size 192 384 768 FFN inner hidden size 768 1536 3072 Attention heads 3 6 12 Patch size 16 × 16 Pre-training epochs 100/300 Batch size 4096 Adam ϵ 1e-8 Adam β (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='999) Peak learning rate 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4e-3 Minimal learning rate 1e-5 Learning rate schedule Cosine Warmup epochs 5/15 Stochastic depth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Dropout � Weight decay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='05 Data augment RandomResizeAndCrop Input resolution 224 × 224 Color jitter (student only) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='4 Table 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters of ImageNet-1K Pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyperparameter ViT-T ViT-S ViT-B Peak learning rate 5e-3 5e-3 2e-3 Fine-tuning epochs 200 200 100 Warmup epochs 5 Layer-wise learning rate decay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='65/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6∗ Batch size 2048 2048 1024 Adam ϵ 1e-8 Adam β (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='999) Minimal learning rate 1e-6 Learning rate schedule Cosine Stochastic depth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Weight decay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='05 Label smoothing ε 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Dropout � Gradient clipping � Erasing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='25 Input resolution 224 × 224 Rand augment 9/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='5 Mixup 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8 Cutmix 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='0 Table 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters of ImageNet-1K image classification fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' ∗ indicates that we use 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='65 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='6 for 100-epoch and 300-epoch pre-trained models, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyperparameter ViT-S ViT-B Input resolution 512 × 512 Peak learning rate 1e-4 Fine-tuning steps 160K Batch size 16 Adam ϵ 1e-8 Adam β (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='999) Layer-wise learning rate decay {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='65, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='75, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='8} Minimal learning rate 0 Learning rate schedule Linear Warmup steps 1500 Dropout � Stochastic depth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='1 Weight decay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content='05 Table 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' Hyper-parameters of ADE20K semantic segmentation fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} +page_content=' 12' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9AzT4oBgHgl3EQfWPwO/content/2301.01296v1.pdf'} diff --git a/P9AzT4oBgHgl3EQflf2o/content/2301.01549v1.pdf b/P9AzT4oBgHgl3EQflf2o/content/2301.01549v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e2c854d4dd44b335b72fe2d96ba2cfa27944b270 --- /dev/null +++ b/P9AzT4oBgHgl3EQflf2o/content/2301.01549v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f94b675290eaef83b2aad13ece7102b15cad6e7103e985a27eb0c6d56d0accb7 +size 460824 diff --git a/P9AzT4oBgHgl3EQflf2o/vector_store/index.faiss b/P9AzT4oBgHgl3EQflf2o/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9a242229e48a64bccd16668f019f00e0c2d09e92 --- /dev/null +++ b/P9AzT4oBgHgl3EQflf2o/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:91f49247111d7022b444ad119f7a6a177112730db3e0bca779af67632820f437 +size 2752557 diff --git a/P9AzT4oBgHgl3EQflf2o/vector_store/index.pkl b/P9AzT4oBgHgl3EQflf2o/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a45018cfa7377556562e6dd5e74149f043177c74 --- /dev/null +++ b/P9AzT4oBgHgl3EQflf2o/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8f8db263618790a7b87e5999c9933aea974e9a1181159f0509cf6c67e853f685 +size 104679 diff --git a/PdAzT4oBgHgl3EQfzv5V/content/2301.01773v1.pdf b/PdAzT4oBgHgl3EQfzv5V/content/2301.01773v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..36d09fab17225602cef0445a635d821e7356ef76 --- /dev/null +++ b/PdAzT4oBgHgl3EQfzv5V/content/2301.01773v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a90b4a6a3f27f53c665dc01f1b841d579eafe1c4b9aebdcb7d4d330d09e39d36 +size 4273302 diff --git a/PdAzT4oBgHgl3EQfzv5V/vector_store/index.pkl b/PdAzT4oBgHgl3EQfzv5V/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..31d1eae0aa3cce16bd2a37fa11e94eb3a3126bd5 --- /dev/null +++ b/PdAzT4oBgHgl3EQfzv5V/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:caa56f6f412d320160b46f3aa6fa6411b5c84736daccaff77f8bbd69f2ba5c89 +size 134591 diff --git a/RtFRT4oBgHgl3EQfLTfA/content/2301.13502v1.pdf b/RtFRT4oBgHgl3EQfLTfA/content/2301.13502v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7e5664f64781de891ed6c1965a17654eea53bbe5 --- /dev/null +++ b/RtFRT4oBgHgl3EQfLTfA/content/2301.13502v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e76629e763f22232c06897497c86cde8ee6836a835c60064ed5c35d539b938b6 +size 1053203 diff --git a/RtFRT4oBgHgl3EQfLTfA/vector_store/index.faiss b/RtFRT4oBgHgl3EQfLTfA/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fce0daeccec99fb76df22f24350cb0489c53abaf --- /dev/null +++ b/RtFRT4oBgHgl3EQfLTfA/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e5ef402e67fdafecf7175e73f6be062468f81a9eedb6ef7613a2b266aa6c4c3 +size 5767213 diff --git a/RtFRT4oBgHgl3EQfLTfA/vector_store/index.pkl b/RtFRT4oBgHgl3EQfLTfA/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..81d17a8692dc0cda41d1c68e06c9f853fa05d878 --- /dev/null +++ b/RtFRT4oBgHgl3EQfLTfA/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac2c631717917815893c8043b8c4a79d2c0dc675275f1e1a6a39bc349b6b671f +size 187977 diff --git a/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/2301.00144v1.pdf.txt b/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/2301.00144v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..73467f06ac7a515b9131238e7c734d3c63ea2a28 --- /dev/null +++ b/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/2301.00144v1.pdf.txt @@ -0,0 +1,1114 @@ +Draft version January 3, 2023 +Typeset using LATEX twocolumn style in AASTeX631 +MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field +Xinyi Wang,1, 2 Chaowei Jiang,3 and Xueshang Feng1, 3 +1SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences,Beijing +100190, PR China +2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China +3Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, PR China, chaowei@hit.edu.cn +ABSTRACT +Data-driven simulation is becoming an important approach for realistically characterizing the con- +figuration and evolution of solar active regions, revealing the onset mechanism of solar eruption events +and hopefully achieving the goal of accurate space weather forecast, which is beyond the scope of any +existing theoretical modelling. Here we performed a full 3D MHD simulation using the data-driven +approach and followed the whole evolution process from quasi-static phase to eruption successfully for +solar active region NOAA 11429. The MHD system was driven at the bottom boundary by photospheric +velocity field, which is derived by the DAVE4VM method from the observed vector magnetograms. +The simulation shows that a magnetic flux rope was generated by persistent photospheric flow be- +fore the flare onset and then triggered to erupt by torus instability. Our simulation demonstrates a +high degree of consistency with observations in the pre-eruption magnetic structure, the time scale +of quasi-static stage, the pattern of flare ribbons as well as the time evolution of magnetic energy +injection and total unsigned magnetic flux. We further found that an eruption can also be initiated +in the simulation as driven by only the horizontal components of photospheric flow, but a comparison +of the different simulations indicates that the vertical flow at the bottom boundary is necessary in +reproducing more realistically these observed features, emphasizing the importance of flux emergence +during the development of this AR. +Keywords: Magnetohydrodynamic (MHD) — Sun: corona — Methods: numerical — Sun: magnetic +fields +1. INTRODUCTION +As driven by solar eruptions, the solar-terrestrial envi- +ronment often experiences variations, which are known +as space weather, and forecasting the space weather pre- +cisely is not only an important scientific topic but can +also avoid damage of the sensitive on-ground and space- +based critical infrastructures. Though many theoretical +models have been proposed and significant process has +been made in understanding the triggering mechanism +of solar eruptions (Forbes 2000; Chen 2011; Schmieder +et al. 2013; Priest 2014), reproducing the whole life-span +from quasi-static stage to eruption using numerical mod- +els constrained and driven by observed vector magne- +togram possess unprecedented capabilities in revealing +the onset mechanism of the real eruption events, and can +potentially be used for accurate space weather forecast +(Jiang et al. 2022; Jiang 2022). +Previous study reproduced the whole process of en- +ergy accumulation and release successfully (Jiang et al. +2016), showing an MHD system can be driven to erupt +by inputting time series of vector magnetograms at the +bottom boundary (B-driven). There are also other data- +driven models, in which the evolution of MHD system +is driven by the electric field (E-driven, e.g., Cheung & +DeRosa 2012; Hayashi et al. 2018; Pomoell et al. 2019; +Price et al. 2019) or the velocity field (V-driven, e.g., +Hayashi et al. 2019; Guo et al. 2019; Liu et al. 2019; +He et al. 2020; Zhong et al. 2021) on the photosphere +(bottom boundary). Though the B-driven method can +fully match the magnetogram, it will introduce consid- +erable errors of magnetic divergence from the bottom +boundary. This shortage will vanish in E-driven model, +however, deriving both the induction and potential com- +ponents of the electric field on the photosphere is not an +easy task (Fisher et al. 2010, 2012, 2015, 2020), and the +photospheric flow also needs to be properly set to fol- +low the Ohm’s law. In most of the theoretical models of +solar eruption, the key structure in favor of eruption is +arXiv:2301.00144v1 [astro-ph.SR] 31 Dec 2022 + +2 +assumed to be formed through the movement of the foot- +points of magnetic field lines (Moore & Labonte 1980; +Moore & Roumeliotis 1992; Antiochos et al. 1999; Lin +& Forbes 2000; Jiang et al. 2021b), which is driven by +the horizontal flow, and the vertical component of the +photospheric flow will be responsible for the flux emer- +gence process. Therefore, with the photospheric velocity +field determined, the photospheric magnetic field can +be generated self-consistently. Furthermore, in the V- +driven approach, there is no need to solve the complex +momentum equation at the bottom boundary (which is +the most time-consuming part in solving MHD equa- +tions). Due to these advantages, the V-driven method +has attracted many previous studies to focus on this +topic. For example, with the velocity field derived by +DAVE4VM method (Schuck 2008), Hayashi et al. (2019) +used the projected normal characteristics method to up- +date the physical variables other than velocity at the +bottom boundary. However, the total magnetic energy +kept almost the same level of that of the initial state +without obvious magnetic energy injection. Jiang et al. +(2021a) updated the magnetic field by solving directly +the magnetic induction equation at the bottom bound- +ary and their model can inject the magnetic energy from +bottom boundary successfully. He et al. (2020) drove the +magnetic evolution by inputting the DAVE4VM velocity +field and vector magnetogram simultaneously. The for- +mation process of an magnetic flux rope (MFR) was ob- +tained in their model. Unfortunately, these simulations +didn’t drive the system to erupt. The only work we know +that obtained an eruption by the velocity field derived +from observation was shown in Kaneko et al. (2021). +The velocity field was derived from the electric field on +the photosphere using Ohm’s law and then was input at +the bottom boundary in their zero-beta model to drive +the system to erupt. Two eruptions they produced were +identified from the evolution curves of the magnetic and +kinetic energies, however, the kinetic energy showed an +overall increase without obvious quasi-static evolution +during the pre-eruption stage. Before the first eruption, +the kinetic energy was comparable with its peak dur- +ing the first eruption and the amount of the release of +the magnetic energy was also too small, which didn’t +show the feature of a typical eruption event, i.e., a large +amount of magnetic energy was converted into kinetic +energy impulsively. As described above, the whole en- +ergy accumulation process from quasi-static evolution +(of typically tens of hours) to impulsive eruption has +not been realized in a self-consistent way using the V- +driven MHD model, and this is one of the motivations +of this work. +In this Letter, we applied a V-driven model to inves- +tigate the evolution and eruption of a well-studied ac- +tive region (AR) NOAA 11429. Previous studies found +persistent shearing flow and flux cancellation near the +main polarity inversion line (PIL) of this AR (Shimizu +et al. 2014; Zheng et al. 2017), which were suggested +to be responsible for the eruptions on 2012 March 7, +9 and 10 (Dhakal et al. 2018, 2020). +An analysis of +the MFR reconstructed from vector magnetograms us- +ing the nonlinear force-free field (NLFFF) model sug- +gests that the homologous eruptions are triggered by +torus instability (TI) of the MFR (Chintzoglou et al. +2015). Zhang et al. (2021) suggested the helical kink +instability may also take effect. Nevertheless, whether +these mechanisms were at work requires to be further +studied using dynamic modeling of this AR evolution +and eruption, which is absent in all the previous stud- +ies and is the other motivation of this work. +In our +simulation, the dynamic process from the beginning of +2012 March 4 to the eruption on March 5 in this AR +was reproduced self-consistently as driven by the pho- +tospheric velocity derived from vector magnetogram us- +ing DAVE4VM method. Our simulation shows that an +MFR was generated near the main PIL before the flare +onset and the initiation of this eruption event depended +mainly on TI of the preformed MFR. +2. DATA AND MODEL +AR 11429 showed a complex βγδ configuration and +is very flare-productive, which has produced 3 X-class +flares from 2012 March 5 to 7. It first appeared on the +eastern solar limb on March 4 and was located on the +eastern part of the solar disk before March 8. During +this period, the AR kept developing as characterized by +the increasing total unsigned magnetic flux, indicating +the obvious flux emergence by vertical flow on the pho- +tosphere. Since it was the first X-class flare of this AR, +here we focus on the initiation process of the X1.1 flare +(which is accompanied with a halo CME moving at a +speed of 1531 km s−1) around 04:00 UT on March 5 as +shown in the white box in Figure 1A. Before the flare on- +set, there was persistent shearing flow near the main PIL +(Figure 1B) and as a result, the horizontal magnetic field +there was highly sheared (Figure 1C), which indicates +that a large amount of free magnetic energy is stored +ready for an eruption. An hot loop first erupted away +as shown in AIA 94 ˚A (Lemen et al. 2012) at around +03:31 UT (Figure 1D and E) and after that a pair of +hook shape flare ribbons appeared near the main PIL +in AIA 1600 ˚A at 03:36 UT (Figure 1F), i.e., the flare +event started. + +Simulation of AR 11429 eruption +3 +To understand the formation of the pre-eruptive coro- +nal magnetic field and the triggering mechanism of this +eruption, we used the DARE-MHD model (Jiang et al. +2016) to study the dynamic evolution of this AR. For +saving the computational time, the strength of magnetic +field from the magnetograms were reduced by a factor of +25 before being input into our code. The initial plasma +density was set as a hydrostatic isothermal model with a +fixed temperature as T = 1×106 K and a modified solar +gravity (Jiang et al. 2021b) to get a plasma background +that mimics the real environment in the solar corona +basing on two key parameters, the plasma β and the +Alfv´en speed (in particular, the minimum β is 6.3×10−4 +and maximum Alfv´en speed VA ∼ 4800 km s−1 in the +final equilibrium we obtained below). We chose to use +the magnetograms of HMI SHARP data set (Schou et al. +2012; Bobra et al. 2014) at 00:00UT on March 4 to +reconstruct the initial magnetic field since there were +no obvious MFR at that time. This magnetogram was +smoothed first using Gaussian smoothing with FWHM +of 6 pixels and a NLFFF model from this smoothed +magnetogram was extrapolated by our CESE-NLFFF- +MHD code (Jiang & Feng 2012, 2013). Since the code +(like many other NLFFF codes) does not give a per- +fect force-free solution but with residual Lorentz forces, +we input the extrapolated field into the DARE-MHD +model, along with the initial background plasma, to let +the MHD system relax until the kinetic and magnetic +energies were almost unchanged, i.e., an MHD equilib- +rium was obtained, and the initial state was ready. +At the bottom boundary, we solve the magnetic induc- +tion equation to update the magnetic field with the ve- +locity field derived by DAVE4VM method to update the +magnetic field on the photosphere. The DAVE4VM ve- +locity was strengthened by a factor of 13.7 (determined +by the ratio of the time series magnetograms’ original +time cadence as 720 seconds to the time cadence in our +simulation as 0.5 × 105 seconds, i.e., +720 +0.5×105) to speed +up our simulation and thus the time scale of quasi-static +evolution prior to the eruption onset is shorten by the +same times. +At the side and top boundaries, all the +variables are extrapolated from the neighboring inner +points with zero gradient along the normal direction +of the boundary surface and the normal component of +magnetic field is further modified by the divergence-free +condition. The Powell-source terms and diffusion con- +trol terms was used to deal with the divergence error of +the magnetic field as described in Jiang et al. (2010). +We set the computational domain sufficiently large as +[−368, 368] Mm in both x and y direction and [0, 736] +Mm in z direction with grid resolution varies from 1′′ to +8′′ using adaptive mesh refinement. The highest resolu- +tion is used mainly for the regions with strong magnetic +gradients and current density, in particular, the current +sheets (CSs). Explicit value of magnetic resistivity was +not used in our simulation and the magnetic reconnec- +tion was controlled by the resistivity of the numerical +method only, which mimicked the low-resistivity plasma +better. As the total unsigned flux of this AR kept in- +creasing before the flare onset, we energized the MHD +system by full 3D DAVE4VM velocity field (vD +x , vD +y , vD +z ) +(will be referred to as V3D simulation) and horizontal +component (vD +x , vD +y , 0) (V2D) respectively, and a com- +parison of the results for these two simulations will show +the importance of flux emergence through the vertical +flow on the photosphere. +3. RESULTS +3.1. Overall Process +The evolution curves of the total magnetic and kinetic +energies in the computational domain as well as the to- +tal unsigned magnetic flux at the bottom boundary are +shown in Figure 2. For the ‘V3D’ simulation, as driven +by the time-series velocity field (V3D) for a time dura- +tion of 150 minutes, the total magnetic energy in our +simulation model experienced an overall increase firstly +and then a rapid decrease, which is associated with an +eruption event. The eruption can be identified from the +energy evolution with onset time tE,V3D = 120 minutes. +At the very beginning from t = 0 to t = 22 minutes, +the magnetic energy injection curve (black dashed line, +which is computed by the time integration of the to- +tal Poynting flux of the ‘V3D’ simulation at the bottom +surface) matches well with the solid ‘V3D’ curve (the +magnetic energy increase of the ‘V3D’ simulation) and +‘OB’ curve (the magnetic energy injection computed by +DAVE4VM velocity and magnetograms) in Figure 2A. +However, in the time duration of t ∈ [97, 122] minutes, +the total magnetic energy (blue solid line) is higher than +the magnetic energy injection. Such an unphysical mis- +match of the inputted energy from the boundary and the +cumulative energy in the volume is likely owing to the in- +sufficient resolution for the bottom boundary, since the +magnetic field at the bottom boundary has accumulated +a very large gradient in this phase (see Discussions). The +kinetic energy keeps a very low value of around 10−3Ep0 +(which is the potential field energy corresponding to the +magnetic field at t=0) before the major eruption be- +gins at tE,V3D = 120 minutes when the magnetic energy +reaches about 1.85 Ep0. The magnetic energy decreases +to about 1.7 Ep0 at the peak of the total kinetic energy +(i.e., Ek = 5.6 × 10−2Ep0), and keeps decreasing to 1.45 +Ep0 in total through this eruption (0.4 Ep0 free energy +loss). That is, about one third of the magnetic energy + +4 +loss has been converted to kinetic energy in 10 minutes. +If multiplied by a factor of 13.7 determined by the rate of +speeding up in our velocity-driven simulation, the quasi- +static evolution time of ‘V3D’ run is 27.4 hours. This +time scale is very close to the observation one which is +27.6 hours. +We have also driven the simulation by the horizontal +velocity (V2D) and found that it can also produce an +eruption with rather similar onset time. However, com- +paring the different curves of magnetic energy evolution +in Figure 2A and the curves of total unsigned magnetic +flux in Figure 2B respectively, the blue solid lines labeled +by ‘V2D’ are obvious lower than those from the ’V3D’ +simulation. This clearly shows that though horizontal +velocity can also drive the field to erupt (with a delayed +onset time for about 6 minutes compared with ‘V3D’), +the vertical velocity vD +z is necessary in accounting for the +larger increase of the total magnetic energy and total un- +signed flux as shown in observations, therefore leading +to a stronger eruption. The evolution of the simulated +magnetic energy, total unsigned flux and the time scale +of the ‘V3D’ run before the major eruption are more +consistent with observations, showing the importance of +the vertical photospheric plasma flow in the numerical +modeling of solar eruptions. +Our simulated magnetic +structure (the first panel in Figure 3E) has reasonable +consistency with observations in the pre-eruption image +of AIA 171 ˚A (the second panel in Figure 3E), and the +synthetic image of coronal emission from current den- +sity of our simulation (the last panel in Figure 3E) is +reasonable consistent with the image of AIA 131 ˚A (the +third panel in Figure 3E). Also the quasi separatrix lay- +ers (QSLs), where the magnetic reconnection is most +likely to take place and thus represent the position of +the flare ribbons (Titov et al. 2002; Liu et al. 2016), +at the bottom boundary (Figure 4F) has approximately +the same patterns as the flare ribbons in AIA 1600 ˚A +(Figure 4E). These results confirm the validity of our +V-driven DARE-MHD model as well as the DAVE4VM +method. +3.2. Eruption Initiation Mechanism +Since the actual velocity field must contain vz, here we +analyzed the ‘V3D’ run to study the onset mechanism +of this eruption. As we can see, a group of twisted field +lines (represented by the blue solid lines in Figure 3A +and B) formed and was embedded in the surrounding +shear arcades, which is similar to an MFR in morphol- +ogy. In addition, the ejection of the hot loop (also called +hot channel) as observed in AIA 94 ˚A (shown by the +white arrows in Figure 1D and E) also suggested the ex- +istence of an MFR (Cheng et al. 2017) before the flare +onset. +To identify the formation of MFR before the eruption, +we calculated the QSLs and the twist number (Berger +& Prior 2006) of our simulated magnetic fields, which +are given in Figure 3D, Figure 5A and B, respectively. +As shown in the third panel of Figure 3D, a strong QSL +appeared near the core field and grew up to be a QSL +ring in the last panel, which separated the MFR and the +background magnetic field, thus representing the exis- +tence of an MFR in topology. The QSL ring intersects +itself below the MFR, forming a typical hyperbolic flux +tube (HFT), where the CS developed and magnetic re- +connection took place subsequently to further drive the +eruption (Jiang et al. 2018). The isosurface of Tw = −1, +which represents the position and shape of the MFR, are +shown in Figure 5A and B respectively. It became larger +and higher, illustrating more magnetic flux were twisted +as driven by persistent photospheric flow. However, the +isosurface of Tw = −2, which is the lower threshold of +kink instability (KI) according to the statistics of Duan +et al. (2019), is barely visible and KI may take little +effect. +Among different triggering mechanisms, TI is consid- +ered as an efficient way of MFR eruption. In Figure 5D, +we plot the key controlling parameter that determines +the onset of TI, i.e., the decay index of the strapping +field. The variation of the decay index n was calculated +along the z direction of the overlying field at t = 119 +minutes before the eruption onset. Since the potential +field is not always the good approximation of the strap- +ping field (especially when the strapping field is highly +sheared), we calculated the decay index of our simu- +lated field instead and plotted the decay index of the +corresponding potential field at the same time for com- +parison. The critical height (above which n > 1.5) of +the simulated field is located at 60 Mm as labeled by +the vertical black dashed line in Figure 5D. When the +MFR was just formed, it is small and it’s apex was at a +low height (about 40 Mm in Figure 5A). About 14 min- +utes later, it had grown up to be a huge twist structure +and entered the unstable zone (above 60 Mm as shown +in Figure 5B), after which it erupted violently. +The formation and the evolution of the MFR, i.e., +there was an preformed MFR and the MFR erupted af- +ter it entered the unstable zone, strongly suggest that TI +is the triggering mechanism of this eruption. To further +test this assumption, we used the V3D-driven data at +t = 100 minutes as the initial condition and ran our code +without bottom velocity driven (by setting all the three +velocity components as zero at the bottom boundary, +thus referred to as ‘V0D’) to see whether the magnetic + +Simulation of AR 11429 eruption +5 +field will erupt. The evolution of energies of this ‘V0D’ +run are shown as the red solid lines in Figure 2A. During +the time duration of t ∈ [100, 124] minutes, the magnetic +energy kept almost unchanged, while the toroidal flux of +the MFR (defined as +� +s Bzds, where s denotes the region +of Tw < −1 and Bz < 0 at the bottom boundary) kept +increasing as shown in Figure 5C. In ‘V3D’ simulation, +the MFR (the isosurface of Tw = −1) became larger +and higher than the critical height before the eruption +onset (Figure 5A and B) as the toroidal flux increas- +ing (Figure 5C), after which TI took effect and finally +led to a strong eruption. Similarly, the toroidal flux of +‘V0D’ simulation increased before and decreased after +the eruption (Figure 5C), showing the slow reconnec- +tion can took place spontaneously without velocity driv- +ing and made the MFR larger until the eruption started +at tE,V0D = 124 minutes as identified from the energy +evolution curve. Since the current density was weaker +and the current layer was thicker (as shown in the third +panel in Figure 3C) than a true CS (the first panel in +Figure 4C), the magnetic gradient was lower in the cur- +rent layer than in the CS, and thus the diffusivity was +relatively uniform, which only allowed slow reconnection +(i.e., a slow dissipation of the current) to take place with- +out impulsive energy release (i.e., not a Pescheck-type +reconnection, Yokoyama & Shibata 1994). The eruption +of this ‘V0D’ run has the similar onset time and strength +with the ‘V3D’ run, which further indicates that after +t = 100 minutes in ‘V3D’ run, the velocity field on the +bottom boundary is not necessary and the instability is +sufficient to trigger the eruption. +It follows the basic +developing stage of TI, i.e., the rising MFR stretched +the overlying field and consequently the flare CS formed +below the MFR. Since we didn’t use any explicit value +of magnetic resistivity, and since the CS formed in a +dynamic way, the width of CS could become very thin +to trigger the fast reconnection easily as pointed out by +Jiang et al. (2021b), which further drives the eruption. +Based on the analysis of our simulation and the sup- +plementary numerical experiment (‘V0D’ simulation), +along with the consistency between our simulation re- +sults and observations that have been shown above, we +conclude that TI is the initiation mechanism of the X1.1 +flare in AR 11429 on 2012 March 5. +4. CONCLUSIONS AND DISCUSSIONS +We have carried out a full 3D MHD simulation of +an X-class flare eruption event on 2012 March 5 in AR +11429 using the V-driven DARE-MHD model. An MHD +equilibrium was obtained by relaxing the NLFFF recon- +structed by the CESE-MHD-NLFFF code and was set as +the initial condition. Then the initial state was driven +to evolve by the DAVE4VM velocity field on the bot- +tom boundary of our simulation box. The analysis of +the quasi-static evolution stage before the eruption on- +set shows the gradual formation of an MFR above the +main PIL. When the MFR first appeared, it was rela- +tively low and then it grew up into the torus unstable +region, after which TI was triggered. Then the energy +conversion process was accomplished by reconnection in +the CS that is formed due to the stretching effect of +the erupting MFR. The images of SDO observation and +the important physical quantities computed from the +magnetograms are reasonably consistent with our result +in the pre-flare magnetic structure, the morphology of +flare ribbons, evolution curves of the magnetic and ki- +netic energies as well as the total unsigned magnetic flux. +The time duration of the quasi-static evolution process +before the simulated eruption is also very close to the +actual time scale before the flare onset. +Nevertheless, our simulation does not reproduce accu- +rately the evolution of magnetic field as shown in the ob- +served magnetograms. As can be seen in the last panel of +Figure 3A, part of the magnetic flux was transported to +and concentrated at the edge of the AR, while this pileup +was not observed in HMI magnetograms. One likely rea- +son for this flux pileup is that, the DAVE4VM method +only solves the normal component of the magnetic in- +duction equation in the least-square sense (Lumme et al. +2019), which may not reproduce the velocity precisely +at every point and can only be used to approximate the +overall distribution and evolution of magnetic flux in +the AR. In addition, the magnetic flux on the photo- +sphere should be dispersed and dissipated by granular +and supergranular convection (Wang et al. 1989) as well +as small scale turbulent diffusion in practical situation. +Therefore, without dealing properly with these effects, +the flux pileup will be more obvious than observations +and as a result the magnetic energy injection rate of +‘V3D’ run will be overall higher than the ‘OB’ one as +shown in Figure 2A (comparing the black dashed line +and the black solid line). This unrealistic flux pileup +may also contribute to the overshoot of the magnetic +energy increase (Figure 2A, the mismatch of the black +dashed line and the green line before the eruption), be- +cause it results in a very large magnetic gradient at the +bottom boundary, thus even the finest spatial resolution +in our simulation was inadequate to capture the too high +gradient during the time duration close to the eruption +onset (i.e., t ∈ [97, 122] minutes). The insufficient grid +resolution led to the considerable numerical error there, +which thus makes the magnetic energy increase higher +than the magnetic energy injection in ‘V3D’ simulation. +The proper settings of numerical diffusion and grid res- + +6 +olution, along with the improved methods for deriving +the photospheric flow will need to be considered in fu- +ture works for a more accurate data-driven simulation +of solar eruptions. +To summarize, our simulation shows that, besides +inputting the time series of vector magnetogram, the +numerical model of solar corona can be driven to erupt +by inputting the time series velocity field at the bot- +tom boundary, in which the driver, i.e., the bottom +velocity field is derived from time series of vector mag- +netograms. +The numerical model we established here +shows the possibility of driving the evolution of solar +corona using different physical variables, which offers +a straightforward way for revealing the eruption mech- +anisms in real events. +Thus, such model has a great +potentiality in forecasting the onset time as well as the +strength of solar eruptions and evaluating the quantita- +tive impact on space weather. +This +work +is +jointly +supported +by +the +Na- +tional Natural Science Foundation of China (NSFC +41731067, 42030204, 42174200), the Fundamental Re- +search Funds for the Central Universities (grant No. +HIT.OCEF.2021033), and Shenzhen Science and Tech- +nology Program (grant Nos. RCJC20210609104422048 +and JCYJ20190806142609035). +The computational +work was carried out on TianHe-1(A), National Super- +computer Center in Tianjin, China, and we thank Jun +Chen for his informative and helpful discussions. +REFERENCES +Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, +ApJ, 510, 485, doi: 10.1086/306563 +Berger, M. A., & Prior, C. 2006, Journal of Physics A +Mathematical General, 39, 8321, +doi: 10.1088/0305-4470/39/26/005 +Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, SoPh, +289, 3549, doi: 10.1007/s11207-014-0529-3 +Chen, P. F. 2011, Living Reviews in Solar Physics, 8, 1, +doi: 10.12942/lrsp-2011-1 +Cheng, X., Guo, Y., & Ding, M. 2017, Science China Earth +Sciences, 60, 1383, doi: 10.1007/s11430-017-9074-6 +Cheung, M. C. M., & DeRosa, M. L. 2012, ApJ, 757, 147, +doi: 10.1088/0004-637X/757/2/147 +Chintzoglou, G., Patsourakos, S., & Vourlidas, A. 2015, +ApJ, 809, 34, doi: 10.1088/0004-637X/809/1/34 +Dhakal, S. K., Chintzoglou, G., & Zhang, J. 2018, ApJ, +860, 35, doi: 10.3847/1538-4357/aac028 +Dhakal, S. K., Zhang, J., Vemareddy, P., & Karna, N. 2020, +ApJ, 901, 40, doi: 10.3847/1538-4357/abacbc +Duan, A., Jiang, C., He, W., et al. 2019, ApJ, 884, 73, +doi: 10.3847/1538-4357/ab3e33 +Fisher, G. H., Kazachenko, M. D., Welsch, B. T., et al. +2020, ApJS, 248, 2, doi: 10.3847/1538-4365/ab8303 +Fisher, G. H., Welsch, B. T., & Abbett, W. P. 2012, SoPh, +277, 153, doi: 10.1007/s11207-011-9816-4 +Fisher, G. H., Welsch, B. T., Abbett, W. P., & Bercik, D. J. +2010, ApJ, 715, 242, doi: 10.1088/0004-637X/715/1/242 +Fisher, G. H., Abbett, W. P., Bercik, D. J., et al. 2015, +Space Weather, 13, 369, doi: 10.1002/2015SW001191 +Forbes, T. G. 2000, J. Geophys. Res., 105, 23153, +doi: 10.1029/2000JA000005 +Guo, Y., Xia, C., Keppens, R., Ding, M. D., & Chen, P. F. +2019, ApJL, 870, L21, doi: 10.3847/2041-8213/aafabf +Hayashi, K., Feng, X., Xiong, M., & Jiang, C. 2018, The +Astrophysical Journal, 855, 11, +doi: 10.3847/1538-4357/aaacd8 +Hayashi, K., Feng, X., Xiong, M., & Jiang, C. 2019, ApJL, +871, L28, doi: 10.3847/2041-8213/aaffcf +He, W., Jiang, C., Zou, P., et al. 2020, ApJ, 892, 9, +doi: 10.3847/1538-4357/ab75ab +Jiang, C. 2022, Reviews of Geophysics and Planetary +Physics, 53, 497, doi: 10.19975/j.dqyxx.2022-022 +Jiang, C., Bian, X., Sun, T., & Feng, X. 2021a, Frontiers in +Physics, 9, 224, doi: 10.3389/fphy.2021.646750 +Jiang, C., & Feng, X. 2012, ApJ, 749, 135, +doi: 10.1088/0004-637X/749/2/135 +—. 2013, ApJ, 769, 144, doi: 10.1088/0004-637X/769/2/144 +Jiang, C., Feng, X., Guo, Y., & Hu, Q. 2022, The +Innovation, 3, 100236, +doi: https://doi.org/10.1016/j.xinn.2022.100236 +Jiang, C., Feng, X., Zhang, J., & Zhong, D. 2010, SoPh, +267, 463, doi: 10.1007/s11207-010-9649-6 +Jiang, C., Wu, S. T., Feng, X., & Hu, Q. 2016, Nature +Communications, 7, 11522, doi: 10.1038/ncomms11522 +Jiang, C., Zou, P., Feng, X., et al. 2018, The Astrophysical +Journal, 869, 13, doi: 10.3847/1538-4357/aaeacc +Jiang, C., Feng, X., Liu, R., et al. 2021b, Nature +Astronomy, 5, 1126, doi: 10.1038/s41550-021-01414-z +Kaneko, T., Park, S.-H., & Kusano, K. 2021, ApJ, 909, 155, +doi: 10.3847/1538-4357/abe414 +Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, +275, 17, doi: 10.1007/s11207-011-9776-8 +Lin, J., & Forbes, T. G. 2000, J. Geophys. Res., 105, 2375, +doi: 10.1029/1999JA900477 +Liu, C., Chen, T., & Zhao, X. 2019, A&A, 626, A91, +doi: 10.1051/0004-6361/201935225 + +Simulation of AR 11429 eruption +7 +Liu, R., Kliem, B., Titov, V. S., et al. 2016, ApJ, 818, 148, +doi: 10.3847/0004-637X/818/2/148 +Lumme, E., Kazachenko, M. D., Fisher, G. H., et al. 2019, +SoPh, 294, 84, doi: 10.1007/s11207-019-1475-x +Moore, R. L., & Labonte, B. J. 1980, in Solar and +Interplanetary Dynamics, ed. M. Dryer & +E. Tandberg-Hanssen, Vol. 91, 207–210 +Moore, R. L., & Roumeliotis, G. 1992, Triggering of +Eruptive Flares - Destabilization of the Preflare Magnetic +Field Configuration, ed. Z. Svestka, B. V. Jackson, & +M. E. Machado, Vol. 399, 69, +doi: 10.1007/3-540-55246-4 79 +Pomoell, J., Lumme, E., & Kilpua, E. 2019, SoPh, 294, 41, +doi: 10.1007/s11207-019-1430-x +Price, D. J., Pomoell, J., Lumme, E., & Kilpua, E. K. J. +2019, A&A, 628, A114, +doi: 10.1051/0004-6361/201935535 +Priest, E. 2014, Magnetohydrodynamics of the Sun, +doi: 10.1017/CBO9781139020732 +Schmieder, B., D´emoulin, P., & Aulanier, G. 2013, +Advances in Space Research, 51, 1967, +doi: 10.1016/j.asr.2012.12.026 +Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, SoPh, +275, 229, doi: 10.1007/s11207-011-9842-2 +Schuck, P. W. 2008, ApJ, 683, 1134, doi: 10.1086/589434 +Shimizu, T., Lites, B. W., & Bamba, Y. 2014, Publications +of the Astronomical Society of Japan, 66, S14, +doi: 10.1093/pasj/psu089 +Titov, V. S., Hornig, G., & D´emoulin, P. 2002, Journal of +Geophysical Research (Space Physics), 107, 1164, +doi: 10.1029/2001JA000278 +Wang, Y. M., Nash, A. G., & Sheeley, N. R., J. 1989, +Science, 245, 712, doi: 10.1126/science.245.4919.712 +Yokoyama, T., & Shibata, K. 1994, ApJL, 436, L197, +doi: 10.1086/187666 +Zhang, Y., Bastian, T. S., Liu, J. H., et al. 2021, ApJ, 910, +40, doi: 10.3847/1538-4357/abded6 +Zheng, J.-C., Yang, Z.-L., Guo, J.-P., et al. 2017, Research +in Astronomy and Astrophysics, 17, 081, +doi: 10.1088/1674-4527/17/8/81 +Zhong, Z., Guo, Y., & Ding, M. D. 2021, Nature +Communications, 12, 2734, +doi: 10.1038/s41467-021-23037-8 + +8 +2012-03-05T03:58:14 +AR11429 +A +D +E +F +AIA-094 +2012-03-05T03:25:38 +AIA-094 +2012-03-05T03:31:50 +AIA-1600 +2012-03-05T03:36:18 +N +P +2000 G +2012-03-05T03:36:00 +C +500 m/s +2012-03-05T03:36:00 +B +Figure 1. +(A): A full-disk composite image of SDO AIA 171 ˚A and HMI magnetogram. +The white box shows the AR +11429. (B): The vectors denote the time average horizontal velocity from 2012 March 4 00:00 UT to March 5 03:36 UT on +the photosphere. The background shows the magnetic flux distribution, in which black and white represents the negative and +positive polarity respectively. (C): The vectors denote the transverse magnetic field on the photosphere. (D): Pre-flare image +of AIA 94˚A. The white arrow shows the erupting structure. (E): Same as D, but at a time closer to eruption before the +flare onset. (F): The first image of flare ribbons observed in AIA 1600˚A. Letter P labels the positive ribbon and N labels the +negative ribbon. + +Simulation of AR 11429 eruption +9 +0 +50 +100 +150 +Time (min) +0.9 +1.0 +1.1 +1.2 +Relative flux +0.9 +1.0 +1.1 +1.2 +V3D +OB +V2D +0 +50 +100 +150 +1.0 +1.2 +1.4 +1.6 +1.8 +2.0 +EM (Ep0) +tE,V2D = 126 min +tE,V3D = 120 min +tE,V0D = 124 min +tE,OB = 121 min +Magnetic energy injection +V2D +V3D +OB +V0D +Kinetic energy +(V0D/V2D/V3D ) +A +B +0 +2 +4 +6 +EK × 10-2 (Ep0) +Figure 2. (A): Magnetic and kinetic energy evolution during the whole process. The unit of x-axis is in minutes. The solid +curves in different colors denote the corresponding evolution of different energies and the vertical dashed lines in different colors +denote the eruption onset time of different runs. The vertical black solid line shows the flare onset time in observations. The +black curve ‘OB’ denotes the magnetic energy injection computed by DAVE4VM velocity and magnetograms, thus representing +the actual magnetic energy evolution. In our simulation, magnetic energy of the potential field of the initial magnetogram is +Ep0 = 2.52 × 1030 erg (which is a fixed value and is used for normalization here). This value should be multiplied by a factor +of 625=252 if scaling to the realistic value, thus being 1.57 × 1033 erg. (B): Time evolution of the total unsigned magnetic +flux in our simulations. The ‘OB’ curve is computed by the magnetograms and the other labels ‘V3D’, ‘V2D’ and the vertical +black solid line have the same meanings as in A. All curves are normalized by their initial value at t = 0. The corresponding +animation is attached for the V3D run, and it starts at t = 0 and ends at t = 147 minutes in simulation time, which corresponds +to 33.6 hours in real-time duration. Panel a in the animation corresponds to rows A in Figure 3 and 4. Panel b corresponds +to the rows C in Figure 3 and 4 in time series. Panel c shows the corresponding evolution as in the row D in Figure 4, and +panel d represents the evolution of QSLs as in Figure 4F. We only plotted the kinetic energy in panel e, with the vertical solid +line showing the current simulation time; the magnetic flux evolution is not included in the animation. The cadence between +each snapshot used in the animation is 210 s in the quasi-static period (t ∈ [0, 119] minutes) and 21 s in the eruption period +(t ∈ (119, 147] minutes) in simulation time, respectively. + +10 +-120 +-60 +0 +x (Mm) +-50 +0 +50 +y (Mm) +A +t = 000 min 00 s +B +-50 +0 +50 +y (Mm) +0 +50 +100 +150 + z (Mm) +-50 +0 +50 +0 +50 +100 +150 +C +0 +25 +50 +75 +100 +z (Mm) +D +t=119 min +E +-120 +-60 +0 +x (Mm) +t = 070 min 00 s +-50 +0 +50 +y (Mm) +-50 +0 +50 +2012-03-05T02:31:24 +-120 +-60 +0 +x (Mm) +t = 105 min 00 s +-50 +0 +50 +y (Mm) +-50 +0 +50 +2012-03-05T03:14:33 +-120 +-60 +0 +x (Mm) +-36 +-18 +0 +18 +36 +Bz (G) +t = 119 min 00 s +-1.00 +-0.75 +-0.50 +-0.25 +0.00 +Tw +-50 +0 +50 +y (Mm) +-50 +0 +50 +0.00 +0.05 +0.10 +J/B (Mm-1) +1 +7 +log10 Q +t=119 min +0 +1 +2 +3 +4 +5 +log10 Em +AIA-171 +AIA-131 +Figure 3. The magnetic evolution during the pre-eruption stage. (A): Top view of 3 bunches of field lines with the footpoints +approximately following the movement of the magnetic flux. The white solid line denotes the position of the slices in C and in +Figure 4C and D. The red solid line segment shows the position of the slices in D, which is almost perpendicular to the PIL and +at the middle of MFR. (B): Side view of the same 3D magnetic field lines as in A. (C): Vertical cross section of the current +layer near the main PIL. The position of these slices are labeled by the white solid line in A. (D): Magnetic squashing factor +Q on the same cross section of C and the region with high Q denotes the QSLs. The position of these slices are labeled by the +red solid line segment in A. (E): The first 2 panels show the comparison between our simulation and observations in AIA 171 +˚A. The last 2 panels show comparison between the synthetic image of coronal emission from current density of our simulation +and observations in AIA 131 ˚A. Row A is shown at panel a, and rows C is shown at panel c in the animation of Figure 2, +respectively. + +X +5X +人X +人XX +人XX +人XHEIX +人Simulation of AR 11429 eruption +11 +-240 +-120 +0 +x (Mm) +-100 +-50 +0 +50 +100 +150 +y (Mm) +A +t = 120 min 45 s +B +-50 +0 +50 +y (Mm) +0 +50 +100 +150 + z (Mm) +-50 +0 +50 +0 +50 +100 +150 +C +-50 +0 +50 +y (Mm) +0 +50 +100 +150 +z (Mm) +-50 +0 +50 +0 +50 +100 +150 +D +Vmax = 401.7 km s-1 +MA, max = 0.2 +Vmax = 401.7 km s-1 +MA, max = 0.2 +E +F +-240 +-120 +0 +x (Mm) +t = 122 min 30 s +-50 +0 +50 +y (Mm) +-50 +0 +50 +-50 +0 +50 +y (Mm) +-50 +0 +50 +Vmax = 848.0 km s-1 +MA, max = 0.6 +Vmax = 848.0 km s-1 +MA, max = 0.6 +-240 +-120 +0 +x (Mm) +t = 124 min 15 s +-50 +0 +50 +y (Mm) +-50 +0 +50 +-50 +0 +50 +y (Mm) +-50 +0 +50 +Vmax = 1216.7 km s-1 +MA, max = 1.2 +Vmax = 1216.7 km s-1 +MA, max = 1.2 +-240 +-120 +0 +x (Mm) +-36 +-18 +0 +18 +36 +Bz (G) +t = 127 min 45 s +-2.0 +-1.5 +-1.0 +-0.5 +0.0 +Tw +-50 +0 +50 +y (Mm) +-50 +0 +50 +0.00 +0.05 +0.10 +J/B (Mm-1) +-50 +0 +50 +y (Mm) +-50 +0 +50 +0 +250 +500 +750 +1000 +v (km s-1) +Vmax = 1141.1 km s-1 +MA, max = 1.7 +Vmax = 1141.1 km s-1 +MA, max = 1.7 +-5 +0 +5 +sgn(Bz) × log10 Q +2012-03-05T03:54:42 +2012-03-05T04:07:06 +2012-03-05T04:19:30 +2012-03-05T05:09:30 +N +P +AIA-1600 +N +P +AIA-1600 +N +P +AIA-1600 +N +P +AIA-1600 +t=119 min +t=122 min 30 s +t=126 min 00 s +t=129 min 30 s +N +P +N +P +N +P +N +P +Figure 4. The magnetic evolution of the eruption stage. (A), (B) and (C): All settings are the same as in Figure 3A, B +and C, except the footpoints of the magnetic field lines are fixed and the current layer in Figure 3C turns into a current sheet +here. (D): Outflows at the position of current sheet. (E): Projection corrected images of the flare ribbons observed in AIA +1600 ˚A. The letter P denotes the positive ribbon and N denotes the negative ribbon. (F): Evolution of the bottom QSL of our +simulation, where sgn(Bz) denotes the sign of Bz. The letter P denotes the positive QSL and N denotes the negative QSL. The +slices in C and D are located at the position labeled by the white solid line in the first panel of Figure 3A. Row A is shown at +panel a, and rows C and D are shown at panel c and panel d in the animation of Figure 2, respectively. The QSL evolution in +row F is shown at panel b. + +XX +人XX +人X +人XX +人12 +t = 105 min 00 s +t = 119 min 00 s +A +B +0 +15 +30 +45 +60 +Z (Mm) +100 +110 +120 +130 +t (min) +0 +5 +10 +15 +Relative toroidal flux +V3D +V0D +C +0 +50 +100 +150 +200 +z (Mm) +0 +1 +2 +3 +n +D +potential(V3D) +simulation(V3D) +Figure 5. (A): The isosurface of Tw = −1 and Tw is the twist number of the magnetic field in ‘V3D’ simulation. The red ‘X’ +labels the position where we calculate the decay index. (B): Same as A but at a different time. (C): The green solid curve +denotes the relative toroidal flux of the MFR in ‘V3D’ simulation and the red solid curve in ‘V0D’ simulation with both curves +normalized by their initial values respectively. Two vertical dashed lines in different colors denotes the onset time of ‘V0D’ +and ‘V3D’ simulations, respectively. The toroidal flux is defined as +� +s Bzds, where ‘s’ is the region of Tw < −1 and Bz < 0 at +the bottom boundary. (D): The decay index n of the magnetic field in ‘V3D’ simulation (solid curve) and the corresponding +potential field (dashed curve) at the same time of t = 119 minutes. The horizontal dashed line denotes the critical value of +n = 1.5 and the vertical dashed line denotes the critical height, above which n > 1.5. + +XX \ No newline at end of file diff --git a/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/load_file.txt b/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..338aebd2003709399aa36803bcb76a357da9b163 --- /dev/null +++ b/S9AyT4oBgHgl3EQfVfdE/content/tmp_files/load_file.txt @@ -0,0 +1,656 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf,len=655 +page_content='Draft version January 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2023 Typeset using LATEX twocolumn style in AASTeX631 MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field Xinyi Wang,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2 Chaowei Jiang,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3 and Xueshang Feng1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 3 1SIGMA Weather Group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' State Key Laboratory for Space Weather,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' National Space Science Center,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='Beijing 100190,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' PR China 2College of Earth and Planetary Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' University of Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Beijing 100049,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' PR China 3Institute of Space Science and Applied Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Harbin Institute of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Shenzhen 518055,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' PR China,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' chaowei@hit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='cn ABSTRACT Data-driven simulation is becoming an important approach for realistically characterizing the con- figuration and evolution of solar active regions, revealing the onset mechanism of solar eruption events and hopefully achieving the goal of accurate space weather forecast, which is beyond the scope of any existing theoretical modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Here we performed a full 3D MHD simulation using the data-driven approach and followed the whole evolution process from quasi-static phase to eruption successfully for solar active region NOAA 11429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The MHD system was driven at the bottom boundary by photospheric velocity field, which is derived by the DAVE4VM method from the observed vector magnetograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The simulation shows that a magnetic flux rope was generated by persistent photospheric flow be- fore the flare onset and then triggered to erupt by torus instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Our simulation demonstrates a high degree of consistency with observations in the pre-eruption magnetic structure, the time scale of quasi-static stage, the pattern of flare ribbons as well as the time evolution of magnetic energy injection and total unsigned magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' We further found that an eruption can also be initiated in the simulation as driven by only the horizontal components of photospheric flow, but a comparison of the different simulations indicates that the vertical flow at the bottom boundary is necessary in reproducing more realistically these observed features, emphasizing the importance of flux emergence during the development of this AR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Keywords: Magnetohydrodynamic (MHD) — Sun: corona — Methods: numerical — Sun: magnetic fields 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' INTRODUCTION As driven by solar eruptions, the solar-terrestrial envi- ronment often experiences variations, which are known as space weather, and forecasting the space weather pre- cisely is not only an important scientific topic but can also avoid damage of the sensitive on-ground and space- based critical infrastructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Though many theoretical models have been proposed and significant process has been made in understanding the triggering mechanism of solar eruptions (Forbes 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Chen 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Schmieder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Priest 2014), reproducing the whole life-span from quasi-static stage to eruption using numerical mod- els constrained and driven by observed vector magne- togram possess unprecedented capabilities in revealing the onset mechanism of the real eruption events, and can potentially be used for accurate space weather forecast (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Jiang 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Previous study reproduced the whole process of en- ergy accumulation and release successfully (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2016), showing an MHD system can be driven to erupt by inputting time series of vector magnetograms at the bottom boundary (B-driven).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' There are also other data- driven models, in which the evolution of MHD system is driven by the electric field (E-driven, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Cheung & DeRosa 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Hayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Pomoell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Price et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019) or the velocity field (V-driven, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Hayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Zhong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021) on the photosphere (bottom boundary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Though the B-driven method can fully match the magnetogram, it will introduce consid- erable errors of magnetic divergence from the bottom boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This shortage will vanish in E-driven model, however, deriving both the induction and potential com- ponents of the electric field on the photosphere is not an easy task (Fisher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2010, 2012, 2015, 2020), and the photospheric flow also needs to be properly set to fol- low the Ohm’s law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In most of the theoretical models of solar eruption, the key structure in favor of eruption is arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='00144v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='SR] 31 Dec 2022 2 assumed to be formed through the movement of the foot- points of magnetic field lines (Moore & Labonte 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Moore & Roumeliotis 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Antiochos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Lin & Forbes 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021b), which is driven by the horizontal flow, and the vertical component of the photospheric flow will be responsible for the flux emer- gence process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Therefore, with the photospheric velocity field determined, the photospheric magnetic field can be generated self-consistently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Furthermore, in the V- driven approach, there is no need to solve the complex momentum equation at the bottom boundary (which is the most time-consuming part in solving MHD equa- tions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Due to these advantages, the V-driven method has attracted many previous studies to focus on this topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' For example, with the velocity field derived by DAVE4VM method (Schuck 2008), Hayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2019) used the projected normal characteristics method to up- date the physical variables other than velocity at the bottom boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' However, the total magnetic energy kept almost the same level of that of the initial state without obvious magnetic energy injection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2021a) updated the magnetic field by solving directly the magnetic induction equation at the bottom bound- ary and their model can inject the magnetic energy from bottom boundary successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' He et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2020) drove the magnetic evolution by inputting the DAVE4VM velocity field and vector magnetogram simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The for- mation process of an magnetic flux rope (MFR) was ob- tained in their model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Unfortunately, these simulations didn’t drive the system to erupt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The only work we know that obtained an eruption by the velocity field derived from observation was shown in Kaneko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The velocity field was derived from the electric field on the photosphere using Ohm’s law and then was input at the bottom boundary in their zero-beta model to drive the system to erupt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Two eruptions they produced were identified from the evolution curves of the magnetic and kinetic energies, however, the kinetic energy showed an overall increase without obvious quasi-static evolution during the pre-eruption stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Before the first eruption, the kinetic energy was comparable with its peak dur- ing the first eruption and the amount of the release of the magnetic energy was also too small, which didn’t show the feature of a typical eruption event, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', a large amount of magnetic energy was converted into kinetic energy impulsively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' As described above, the whole en- ergy accumulation process from quasi-static evolution (of typically tens of hours) to impulsive eruption has not been realized in a self-consistent way using the V- driven MHD model, and this is one of the motivations of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In this Letter, we applied a V-driven model to inves- tigate the evolution and eruption of a well-studied ac- tive region (AR) NOAA 11429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Previous studies found persistent shearing flow and flux cancellation near the main polarity inversion line (PIL) of this AR (Shimizu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2017), which were suggested to be responsible for the eruptions on 2012 March 7, 9 and 10 (Dhakal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' An analysis of the MFR reconstructed from vector magnetograms us- ing the nonlinear force-free field (NLFFF) model sug- gests that the homologous eruptions are triggered by torus instability (TI) of the MFR (Chintzoglou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2021) suggested the helical kink instability may also take effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Nevertheless, whether these mechanisms were at work requires to be further studied using dynamic modeling of this AR evolution and eruption, which is absent in all the previous stud- ies and is the other motivation of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In our simulation, the dynamic process from the beginning of 2012 March 4 to the eruption on March 5 in this AR was reproduced self-consistently as driven by the pho- tospheric velocity derived from vector magnetogram us- ing DAVE4VM method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Our simulation shows that an MFR was generated near the main PIL before the flare onset and the initiation of this eruption event depended mainly on TI of the preformed MFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' DATA AND MODEL AR 11429 showed a complex βγδ configuration and is very flare-productive, which has produced 3 X-class flares from 2012 March 5 to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' It first appeared on the eastern solar limb on March 4 and was located on the eastern part of the solar disk before March 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' During this period, the AR kept developing as characterized by the increasing total unsigned magnetic flux, indicating the obvious flux emergence by vertical flow on the pho- tosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Since it was the first X-class flare of this AR, here we focus on the initiation process of the X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 flare (which is accompanied with a halo CME moving at a speed of 1531 km s−1) around 04:00 UT on March 5 as shown in the white box in Figure 1A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Before the flare on- set, there was persistent shearing flow near the main PIL (Figure 1B) and as a result, the horizontal magnetic field there was highly sheared (Figure 1C), which indicates that a large amount of free magnetic energy is stored ready for an eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' An hot loop first erupted away as shown in AIA 94 ˚A (Lemen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012) at around 03:31 UT (Figure 1D and E) and after that a pair of hook shape flare ribbons appeared near the main PIL in AIA 1600 ˚A at 03:36 UT (Figure 1F), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', the flare event started.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Simulation of AR 11429 eruption 3 To understand the formation of the pre-eruptive coro- nal magnetic field and the triggering mechanism of this eruption, we used the DARE-MHD model (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2016) to study the dynamic evolution of this AR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' For saving the computational time, the strength of magnetic field from the magnetograms were reduced by a factor of 25 before being input into our code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The initial plasma density was set as a hydrostatic isothermal model with a fixed temperature as T = 1×106 K and a modified solar gravity (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021b) to get a plasma background that mimics the real environment in the solar corona basing on two key parameters, the plasma β and the Alfv´en speed (in particular, the minimum β is 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3×10−4 and maximum Alfv´en speed VA ∼ 4800 km s−1 in the final equilibrium we obtained below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' We chose to use the magnetograms of HMI SHARP data set (Schou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Bobra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2014) at 00:00UT on March 4 to reconstruct the initial magnetic field since there were no obvious MFR at that time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This magnetogram was smoothed first using Gaussian smoothing with FWHM of 6 pixels and a NLFFF model from this smoothed magnetogram was extrapolated by our CESE-NLFFF- MHD code (Jiang & Feng 2012, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Since the code (like many other NLFFF codes) does not give a per- fect force-free solution but with residual Lorentz forces, we input the extrapolated field into the DARE-MHD model, along with the initial background plasma, to let the MHD system relax until the kinetic and magnetic energies were almost unchanged, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', an MHD equilib- rium was obtained, and the initial state was ready.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' At the bottom boundary, we solve the magnetic induc- tion equation to update the magnetic field with the ve- locity field derived by DAVE4VM method to update the magnetic field on the photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The DAVE4VM ve- locity was strengthened by a factor of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 (determined by the ratio of the time series magnetograms’ original time cadence as 720 seconds to the time cadence in our simulation as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5 × 105 seconds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', 720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5×105) to speed up our simulation and thus the time scale of quasi-static evolution prior to the eruption onset is shorten by the same times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' At the side and top boundaries, all the variables are extrapolated from the neighboring inner points with zero gradient along the normal direction of the boundary surface and the normal component of magnetic field is further modified by the divergence-free condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The Powell-source terms and diffusion con- trol terms was used to deal with the divergence error of the magnetic field as described in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' We set the computational domain sufficiently large as [−368, 368] Mm in both x and y direction and [0, 736] Mm in z direction with grid resolution varies from 1′′ to 8′′ using adaptive mesh refinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The highest resolu- tion is used mainly for the regions with strong magnetic gradients and current density, in particular, the current sheets (CSs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Explicit value of magnetic resistivity was not used in our simulation and the magnetic reconnec- tion was controlled by the resistivity of the numerical method only, which mimicked the low-resistivity plasma better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' As the total unsigned flux of this AR kept in- creasing before the flare onset, we energized the MHD system by full 3D DAVE4VM velocity field (vD x , vD y , vD z ) (will be referred to as V3D simulation) and horizontal component (vD x , vD y , 0) (V2D) respectively, and a com- parison of the results for these two simulations will show the importance of flux emergence through the vertical flow on the photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Overall Process The evolution curves of the total magnetic and kinetic energies in the computational domain as well as the to- tal unsigned magnetic flux at the bottom boundary are shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' For the ‘V3D’ simulation, as driven by the time-series velocity field (V3D) for a time dura- tion of 150 minutes, the total magnetic energy in our simulation model experienced an overall increase firstly and then a rapid decrease, which is associated with an eruption event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The eruption can be identified from the energy evolution with onset time tE,V3D = 120 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' At the very beginning from t = 0 to t = 22 minutes, the magnetic energy injection curve (black dashed line, which is computed by the time integration of the to- tal Poynting flux of the ‘V3D’ simulation at the bottom surface) matches well with the solid ‘V3D’ curve (the magnetic energy increase of the ‘V3D’ simulation) and ‘OB’ curve (the magnetic energy injection computed by DAVE4VM velocity and magnetograms) in Figure 2A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' However, in the time duration of t ∈ [97, 122] minutes, the total magnetic energy (blue solid line) is higher than the magnetic energy injection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Such an unphysical mis- match of the inputted energy from the boundary and the cumulative energy in the volume is likely owing to the in- sufficient resolution for the bottom boundary, since the magnetic field at the bottom boundary has accumulated a very large gradient in this phase (see Discussions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The kinetic energy keeps a very low value of around 10−3Ep0 (which is the potential field energy corresponding to the magnetic field at t=0) before the major eruption be- gins at tE,V3D = 120 minutes when the magnetic energy reaches about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='85 Ep0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The magnetic energy decreases to about 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 Ep0 at the peak of the total kinetic energy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Ek = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 × 10−2Ep0), and keeps decreasing to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='45 Ep0 in total through this eruption (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='4 Ep0 free energy loss).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' That is, about one third of the magnetic energy 4 loss has been converted to kinetic energy in 10 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' If multiplied by a factor of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 determined by the rate of speeding up in our velocity-driven simulation, the quasi- static evolution time of ‘V3D’ run is 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='4 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This time scale is very close to the observation one which is 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' We have also driven the simulation by the horizontal velocity (V2D) and found that it can also produce an eruption with rather similar onset time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' However, com- paring the different curves of magnetic energy evolution in Figure 2A and the curves of total unsigned magnetic flux in Figure 2B respectively, the blue solid lines labeled by ‘V2D’ are obvious lower than those from the ’V3D’ simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This clearly shows that though horizontal velocity can also drive the field to erupt (with a delayed onset time for about 6 minutes compared with ‘V3D’), the vertical velocity vD z is necessary in accounting for the larger increase of the total magnetic energy and total un- signed flux as shown in observations, therefore leading to a stronger eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The evolution of the simulated magnetic energy, total unsigned flux and the time scale of the ‘V3D’ run before the major eruption are more consistent with observations, showing the importance of the vertical photospheric plasma flow in the numerical modeling of solar eruptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Our simulated magnetic structure (the first panel in Figure 3E) has reasonable consistency with observations in the pre-eruption image of AIA 171 ˚A (the second panel in Figure 3E), and the synthetic image of coronal emission from current den- sity of our simulation (the last panel in Figure 3E) is reasonable consistent with the image of AIA 131 ˚A (the third panel in Figure 3E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Also the quasi separatrix lay- ers (QSLs), where the magnetic reconnection is most likely to take place and thus represent the position of the flare ribbons (Titov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2016), at the bottom boundary (Figure 4F) has approximately the same patterns as the flare ribbons in AIA 1600 ˚A (Figure 4E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' These results confirm the validity of our V-driven DARE-MHD model as well as the DAVE4VM method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Eruption Initiation Mechanism Since the actual velocity field must contain vz, here we analyzed the ‘V3D’ run to study the onset mechanism of this eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' As we can see, a group of twisted field lines (represented by the blue solid lines in Figure 3A and B) formed and was embedded in the surrounding shear arcades, which is similar to an MFR in morphol- ogy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In addition, the ejection of the hot loop (also called hot channel) as observed in AIA 94 ˚A (shown by the white arrows in Figure 1D and E) also suggested the ex- istence of an MFR (Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2017) before the flare onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' To identify the formation of MFR before the eruption, we calculated the QSLs and the twist number (Berger & Prior 2006) of our simulated magnetic fields, which are given in Figure 3D, Figure 5A and B, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' As shown in the third panel of Figure 3D, a strong QSL appeared near the core field and grew up to be a QSL ring in the last panel, which separated the MFR and the background magnetic field, thus representing the exis- tence of an MFR in topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The QSL ring intersects itself below the MFR, forming a typical hyperbolic flux tube (HFT), where the CS developed and magnetic re- connection took place subsequently to further drive the eruption (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The isosurface of Tw = −1, which represents the position and shape of the MFR, are shown in Figure 5A and B respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' It became larger and higher, illustrating more magnetic flux were twisted as driven by persistent photospheric flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' However, the isosurface of Tw = −2, which is the lower threshold of kink instability (KI) according to the statistics of Duan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2019), is barely visible and KI may take little effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Among different triggering mechanisms, TI is consid- ered as an efficient way of MFR eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In Figure 5D, we plot the key controlling parameter that determines the onset of TI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', the decay index of the strapping field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The variation of the decay index n was calculated along the z direction of the overlying field at t = 119 minutes before the eruption onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Since the potential field is not always the good approximation of the strap- ping field (especially when the strapping field is highly sheared), we calculated the decay index of our simu- lated field instead and plotted the decay index of the corresponding potential field at the same time for com- parison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The critical height (above which n > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5) of the simulated field is located at 60 Mm as labeled by the vertical black dashed line in Figure 5D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' When the MFR was just formed, it is small and it’s apex was at a low height (about 40 Mm in Figure 5A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' About 14 min- utes later, it had grown up to be a huge twist structure and entered the unstable zone (above 60 Mm as shown in Figure 5B), after which it erupted violently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The formation and the evolution of the MFR, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', there was an preformed MFR and the MFR erupted af- ter it entered the unstable zone, strongly suggest that TI is the triggering mechanism of this eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' To further test this assumption, we used the V3D-driven data at t = 100 minutes as the initial condition and ran our code without bottom velocity driven (by setting all the three velocity components as zero at the bottom boundary, thus referred to as ‘V0D’) to see whether the magnetic Simulation of AR 11429 eruption 5 field will erupt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The evolution of energies of this ‘V0D’ run are shown as the red solid lines in Figure 2A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' During the time duration of t ∈ [100, 124] minutes, the magnetic energy kept almost unchanged, while the toroidal flux of the MFR (defined as � s Bzds, where s denotes the region of Tw < −1 and Bz < 0 at the bottom boundary) kept increasing as shown in Figure 5C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In ‘V3D’ simulation, the MFR (the isosurface of Tw = −1) became larger and higher than the critical height before the eruption onset (Figure 5A and B) as the toroidal flux increas- ing (Figure 5C), after which TI took effect and finally led to a strong eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Similarly, the toroidal flux of ‘V0D’ simulation increased before and decreased after the eruption (Figure 5C), showing the slow reconnec- tion can took place spontaneously without velocity driv- ing and made the MFR larger until the eruption started at tE,V0D = 124 minutes as identified from the energy evolution curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Since the current density was weaker and the current layer was thicker (as shown in the third panel in Figure 3C) than a true CS (the first panel in Figure 4C), the magnetic gradient was lower in the cur- rent layer than in the CS, and thus the diffusivity was relatively uniform, which only allowed slow reconnection (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', a slow dissipation of the current) to take place with- out impulsive energy release (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', not a Pescheck-type reconnection, Yokoyama & Shibata 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The eruption of this ‘V0D’ run has the similar onset time and strength with the ‘V3D’ run, which further indicates that after t = 100 minutes in ‘V3D’ run, the velocity field on the bottom boundary is not necessary and the instability is sufficient to trigger the eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' It follows the basic developing stage of TI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', the rising MFR stretched the overlying field and consequently the flare CS formed below the MFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Since we didn’t use any explicit value of magnetic resistivity, and since the CS formed in a dynamic way, the width of CS could become very thin to trigger the fast reconnection easily as pointed out by Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (2021b), which further drives the eruption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Based on the analysis of our simulation and the sup- plementary numerical experiment (‘V0D’ simulation), along with the consistency between our simulation re- sults and observations that have been shown above, we conclude that TI is the initiation mechanism of the X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 flare in AR 11429 on 2012 March 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' CONCLUSIONS AND DISCUSSIONS We have carried out a full 3D MHD simulation of an X-class flare eruption event on 2012 March 5 in AR 11429 using the V-driven DARE-MHD model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' An MHD equilibrium was obtained by relaxing the NLFFF recon- structed by the CESE-MHD-NLFFF code and was set as the initial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Then the initial state was driven to evolve by the DAVE4VM velocity field on the bot- tom boundary of our simulation box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The analysis of the quasi-static evolution stage before the eruption on- set shows the gradual formation of an MFR above the main PIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' When the MFR first appeared, it was rela- tively low and then it grew up into the torus unstable region, after which TI was triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Then the energy conversion process was accomplished by reconnection in the CS that is formed due to the stretching effect of the erupting MFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The images of SDO observation and the important physical quantities computed from the magnetograms are reasonably consistent with our result in the pre-flare magnetic structure, the morphology of flare ribbons, evolution curves of the magnetic and ki- netic energies as well as the total unsigned magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The time duration of the quasi-static evolution process before the simulated eruption is also very close to the actual time scale before the flare onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Nevertheless, our simulation does not reproduce accu- rately the evolution of magnetic field as shown in the ob- served magnetograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' As can be seen in the last panel of Figure 3A, part of the magnetic flux was transported to and concentrated at the edge of the AR, while this pileup was not observed in HMI magnetograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' One likely rea- son for this flux pileup is that, the DAVE4VM method only solves the normal component of the magnetic in- duction equation in the least-square sense (Lumme et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019), which may not reproduce the velocity precisely at every point and can only be used to approximate the overall distribution and evolution of magnetic flux in the AR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In addition, the magnetic flux on the photo- sphere should be dispersed and dissipated by granular and supergranular convection (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1989) as well as small scale turbulent diffusion in practical situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Therefore, without dealing properly with these effects, the flux pileup will be more obvious than observations and as a result the magnetic energy injection rate of ‘V3D’ run will be overall higher than the ‘OB’ one as shown in Figure 2A (comparing the black dashed line and the black solid line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This unrealistic flux pileup may also contribute to the overshoot of the magnetic energy increase (Figure 2A, the mismatch of the black dashed line and the green line before the eruption), be- cause it results in a very large magnetic gradient at the bottom boundary, thus even the finest spatial resolution in our simulation was inadequate to capture the too high gradient during the time duration close to the eruption onset (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', t ∈ [97, 122] minutes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The insufficient grid resolution led to the considerable numerical error there, which thus makes the magnetic energy increase higher than the magnetic energy injection in ‘V3D’ simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The proper settings of numerical diffusion and grid res- 6 olution, along with the improved methods for deriving the photospheric flow will need to be considered in fu- ture works for a more accurate data-driven simulation of solar eruptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' To summarize, our simulation shows that, besides inputting the time series of vector magnetogram, the numerical model of solar corona can be driven to erupt by inputting the time series velocity field at the bot- tom boundary, in which the driver, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', the bottom velocity field is derived from time series of vector mag- netograms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The numerical model we established here shows the possibility of driving the evolution of solar corona using different physical variables, which offers a straightforward way for revealing the eruption mech- anisms in real events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Thus, such model has a great potentiality in forecasting the onset time as well as the strength of solar eruptions and evaluating the quantita- tive impact on space weather.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This work is jointly supported by the Na- tional Natural Science Foundation of China (NSFC 41731067, 42030204, 42174200), the Fundamental Re- search Funds for the Central Universities (grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' HIT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='OCEF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2021033), and Shenzhen Science and Tech- nology Program (grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' RCJC20210609104422048 and JCYJ20190806142609035).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The computational work was carried out on TianHe-1(A), National Super- computer Center in Tianjin, China, and we thank Jun Chen for his informative and helpful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' REFERENCES Antiochos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', DeVore, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Klimchuk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1999, ApJ, 510, 485, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1086/306563 Berger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Prior, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2006, Journal of Physics A Mathematical General, 39, 8321, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0305-4470/39/26/005 Bobra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Hoeksema, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2014, SoPh, 289, 3549, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-014-0529-3 Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2011, Living Reviews in Solar Physics, 8, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='12942/lrsp-2011-1 Cheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Ding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2017, Science China Earth Sciences, 60, 1383, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11430-017-9074-6 Cheung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & DeRosa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012, ApJ, 757, 147, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0004-637X/757/2/147 Chintzoglou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Patsourakos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Vourlidas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2015, ApJ, 809, 34, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0004-637X/809/1/34 Dhakal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Chintzoglou, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018, ApJ, 860, 35, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/aac028 Dhakal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Vemareddy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Karna, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2020, ApJ, 901, 40, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/abacbc Duan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', He, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, ApJ, 884, 73, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/ab3e33 Fisher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Kazachenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Welsch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2020, ApJS, 248, 2, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4365/ab8303 Fisher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Welsch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Abbett, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012, SoPh, 277, 153, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-011-9816-4 Fisher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Welsch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Abbett, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Bercik, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2010, ApJ, 715, 242, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0004-637X/715/1/242 Fisher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Abbett, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Bercik, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2015, Space Weather, 13, 369, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1002/2015SW001191 Forbes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2000, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', 105, 23153, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1029/2000JA000005 Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Xia, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Keppens, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Ding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Chen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, ApJL, 870, L21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/2041-8213/aafabf Hayashi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Xiong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018, The Astrophysical Journal, 855, 11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/aaacd8 Hayashi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Xiong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, ApJL, 871, L28, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/2041-8213/aaffcf He, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Zou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2020, ApJ, 892, 9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/ab75ab Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2022, Reviews of Geophysics and Planetary Physics, 53, 497, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='19975/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='dqyxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2022-022 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Bian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Sun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021a, Frontiers in Physics, 9, 224, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3389/fphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='646750 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012, ApJ, 749, 135, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0004-637X/749/2/135 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2013, ApJ, 769, 144, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/0004-637X/769/2/144 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Hu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2022, The Innovation, 3, 100236, doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='xinn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='100236 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Zhong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2010, SoPh, 267, 463, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-010-9649-6 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Hu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2016, Nature Communications, 7, 11522, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1038/ncomms11522 Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Zou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2018, The Astrophysical Journal, 869, 13, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/aaeacc Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Feng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021b, Nature Astronomy, 5, 1126, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1038/s41550-021-01414-z Kaneko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Kusano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021, ApJ, 909, 155, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/abe414 Lemen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Title, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Akin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012, SoPh, 275, 17, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-011-9776-8 Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Forbes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2000, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', 105, 2375, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1029/1999JA900477 Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Zhao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, A&A, 626, A91, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1051/0004-6361/201935225 Simulation of AR 11429 eruption 7 Liu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Kliem, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Titov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2016, ApJ, 818, 148, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/0004-637X/818/2/148 Lumme, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Kazachenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Fisher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, SoPh, 294, 84, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-019-1475-x Moore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Labonte, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1980, in Solar and Interplanetary Dynamics, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Dryer & E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Tandberg-Hanssen, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 91, 207–210 Moore, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Roumeliotis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1992, Triggering of Eruptive Flares - Destabilization of the Preflare Magnetic Field Configuration, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Svestka, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Jackson, & M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Machado, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 399, 69, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/3-540-55246-4 79 Pomoell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Lumme, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Kilpua, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, SoPh, 294, 41, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-019-1430-x Price, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Pomoell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Lumme, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Kilpua, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2019, A&A, 628, A114, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1051/0004-6361/201935535 Priest, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2014, Magnetohydrodynamics of the Sun, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1017/CBO9781139020732 Schmieder, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', D´emoulin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Aulanier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2013, Advances in Space Research, 51, 1967, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='asr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='026 Schou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Scherrer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Bush, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2012, SoPh, 275, 229, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1007/s11207-011-9842-2 Schuck, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2008, ApJ, 683, 1134, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1086/589434 Shimizu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Lites, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Bamba, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2014, Publications of the Astronomical Society of Japan, 66, S14, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1093/pasj/psu089 Titov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Hornig, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & D´emoulin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2002, Journal of Geophysical Research (Space Physics), 107, 1164, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1029/2001JA000278 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Nash, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Sheeley, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1989, Science, 245, 712, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='245.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='4919.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='712 Yokoyama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Shibata, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 1994, ApJL, 436, L197, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1086/187666 Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Bastian, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021, ApJ, 910, 40, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='3847/1538-4357/abded6 Zheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Yang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2017, Research in Astronomy and Astrophysics, 17, 081, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1088/1674-4527/17/8/81 Zhong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', Guo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=', & Ding, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 2021, Nature Communications, 12, 2734, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1038/s41467-021-23037-8 8 2012-03-05T03:58:14 AR11429 A D E F AIA-094 2012-03-05T03:25:38 AIA-094 2012-03-05T03:31:50 AIA-1600 2012-03-05T03:36:18 N P 2000 G 2012-03-05T03:36:00 C 500 m/s 2012-03-05T03:36:00 B Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (A): A full-disk composite image of SDO AIA 171 ˚A and HMI magnetogram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The white box shows the AR 11429.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (B): The vectors denote the time average horizontal velocity from 2012 March 4 00:00 UT to March 5 03:36 UT on the photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The background shows the magnetic flux distribution, in which black and white represents the negative and positive polarity respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (C): The vectors denote the transverse magnetic field on the photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (D): Pre-flare image of AIA 94˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The white arrow shows the erupting structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (E): Same as D, but at a time closer to eruption before the flare onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (F): The first image of flare ribbons observed in AIA 1600˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Letter P labels the positive ribbon and N labels the negative ribbon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Simulation of AR 11429 eruption 9 0 50 100 150 Time (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 Relative flux 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 V3D OB V2D 0 50 100 150 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 EM (Ep0) tE,V2D = 126 min tE,V3D = 120 min tE,V0D = 124 min tE,OB = 121 min Magnetic energy injection V2D V3D OB V0D Kinetic energy (V0D/V2D/V3D ) A B 0 2 4 6 EK × 10-2 (Ep0) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (A): Magnetic and kinetic energy evolution during the whole process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The unit of x-axis is in minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The solid curves in different colors denote the corresponding evolution of different energies and the vertical dashed lines in different colors denote the eruption onset time of different runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The vertical black solid line shows the flare onset time in observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The black curve ‘OB’ denotes the magnetic energy injection computed by DAVE4VM velocity and magnetograms, thus representing the actual magnetic energy evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' In our simulation, magnetic energy of the potential field of the initial magnetogram is Ep0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='52 × 1030 erg (which is a fixed value and is used for normalization here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' This value should be multiplied by a factor of 625=252 if scaling to the realistic value, thus being 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='57 × 1033 erg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (B): Time evolution of the total unsigned magnetic flux in our simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The ‘OB’ curve is computed by the magnetograms and the other labels ‘V3D’, ‘V2D’ and the vertical black solid line have the same meanings as in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' All curves are normalized by their initial value at t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The corresponding animation is attached for the V3D run, and it starts at t = 0 and ends at t = 147 minutes in simulation time, which corresponds to 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 hours in real-time duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Panel a in the animation corresponds to rows A in Figure 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Panel b corresponds to the rows C in Figure 3 and 4 in time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Panel c shows the corresponding evolution as in the row D in Figure 4, and panel d represents the evolution of QSLs as in Figure 4F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' We only plotted the kinetic energy in panel e, with the vertical solid line showing the current simulation time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' the magnetic flux evolution is not included in the animation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The cadence between each snapshot used in the animation is 210 s in the quasi-static period (t ∈ [0, 119] minutes) and 21 s in the eruption period (t ∈ (119, 147] minutes) in simulation time, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' 10 120 60 0 x (Mm) 50 0 50 y (Mm) A t = 000 min 00 s B 50 0 50 y (Mm) 0 50 100 150 z (Mm) 50 0 50 0 50 100 150 C 0 25 50 75 100 z (Mm) D t=119 min E 120 60 0 x (Mm) t = 070 min 00 s 50 0 50 y (Mm) 50 0 50 2012-03-05T02:31:24 120 60 0 x (Mm) t = 105 min 00 s 50 0 50 y (Mm) 50 0 50 2012-03-05T03:14:33 120 60 0 x (Mm) 36 18 0 18 36 Bz (G) t = 119 min 00 s 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='00 Tw 50 0 50 y (Mm) 50 0 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='10 J/B (Mm-1) 1 7 log10 Q t=119 min 0 1 2 3 4 5 log10 Em AIA-171 AIA-131 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The magnetic evolution during the pre-eruption stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (A): Top view of 3 bunches of field lines with the footpoints approximately following the movement of the magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The white solid line denotes the position of the slices in C and in Figure 4C and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The red solid line segment shows the position of the slices in D, which is almost perpendicular to the PIL and at the middle of MFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (B): Side view of the same 3D magnetic field lines as in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (C): Vertical cross section of the current layer near the main PIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The position of these slices are labeled by the white solid line in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (D): Magnetic squashing factor Q on the same cross section of C and the region with high Q denotes the QSLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The position of these slices are labeled by the red solid line segment in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (E): The first 2 panels show the comparison between our simulation and observations in AIA 171 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The last 2 panels show comparison between the synthetic image of coronal emission from current density of our simulation and observations in AIA 131 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Row A is shown at panel a, and rows C is shown at panel c in the animation of Figure 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' X 5X 人X 人XX 人XX 人XHEIX 人Simulation of AR 11429 eruption 11 240 120 0 x (Mm) 100 50 0 50 100 150 y (Mm) A t = 120 min 45 s B 50 0 50 y (Mm) 0 50 100 150 z (Mm) 50 0 50 0 50 100 150 C 50 0 50 y (Mm) 0 50 100 150 z (Mm) 50 0 50 0 50 100 150 D Vmax = 401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 km s-1 MA, max = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 Vmax = 401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 km s-1 MA, max = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 E F 240 120 0 x (Mm) t = 122 min 30 s 50 0 50 y (Mm) 50 0 50 50 0 50 y (Mm) 50 0 50 Vmax = 848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 km s-1 MA, max = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 Vmax = 848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 km s-1 MA, max = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='6 240 120 0 x (Mm) t = 124 min 15 s 50 0 50 y (Mm) 50 0 50 50 0 50 y (Mm) 50 0 50 Vmax = 1216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 km s-1 MA, max = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 Vmax = 1216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 km s-1 MA, max = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='2 240 120 0 x (Mm) 36 18 0 18 36 Bz (G) t = 127 min 45 s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='0 Tw 50 0 50 y (Mm) 50 0 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='10 J/B (Mm-1) 50 0 50 y (Mm) 50 0 50 0 250 500 750 1000 v (km s-1) Vmax = 1141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 km s-1 MA, max = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 Vmax = 1141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='1 km s-1 MA, max = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='7 5 0 5 sgn(Bz) × log10 Q 2012-03-05T03:54:42 2012-03-05T04:07:06 2012-03-05T04:19:30 2012-03-05T05:09:30 N P AIA-1600 N P AIA-1600 N P AIA-1600 N P AIA-1600 t=119 min t=122 min 30 s t=126 min 00 s t=129 min 30 s N P N P N P N P Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The magnetic evolution of the eruption stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (A), (B) and (C): All settings are the same as in Figure 3A, B and C, except the footpoints of the magnetic field lines are fixed and the current layer in Figure 3C turns into a current sheet here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (D): Outflows at the position of current sheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (E): Projection corrected images of the flare ribbons observed in AIA 1600 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The letter P denotes the positive ribbon and N denotes the negative ribbon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (F): Evolution of the bottom QSL of our simulation, where sgn(Bz) denotes the sign of Bz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The letter P denotes the positive QSL and N denotes the negative QSL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The slices in C and D are located at the position labeled by the white solid line in the first panel of Figure 3A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Row A is shown at panel a, and rows C and D are shown at panel c and panel d in the animation of Figure 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The QSL evolution in row F is shown at panel b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' XX 人XX 人X 人XX 人12 t = 105 min 00 s t = 119 min 00 s A B 0 15 30 45 60 Z (Mm) 100 110 120 130 t (min) 0 5 10 15 Relative toroidal flux V3D V0D C 0 50 100 150 200 z (Mm) 0 1 2 3 n D potential(V3D) simulation(V3D) Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (A): The isosurface of Tw = −1 and Tw is the twist number of the magnetic field in ‘V3D’ simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The red ‘X’ labels the position where we calculate the decay index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (B): Same as A but at a different time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (C): The green solid curve denotes the relative toroidal flux of the MFR in ‘V3D’ simulation and the red solid curve in ‘V0D’ simulation with both curves normalized by their initial values respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' Two vertical dashed lines in different colors denotes the onset time of ‘V0D’ and ‘V3D’ simulations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The toroidal flux is defined as � s Bzds, where ‘s’ is the region of Tw < −1 and Bz < 0 at the bottom boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' (D): The decay index n of the magnetic field in ‘V3D’ simulation (solid curve) and the corresponding potential field (dashed curve) at the same time of t = 119 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' The horizontal dashed line denotes the critical value of n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5 and the vertical dashed line denotes the critical height, above which n > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} +page_content=' XX' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/S9AyT4oBgHgl3EQfVfdE/content/2301.00144v1.pdf'} diff --git a/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/2301.08710v1.pdf.txt b/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/2301.08710v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..35794ea3fbd60bfc3e07b52ba57c8fe694a9f0c9 --- /dev/null +++ b/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/2301.08710v1.pdf.txt @@ -0,0 +1,1080 @@ +Turbulence Driving by Interstellar Pickup Ions in the Outer Solar Wind +Philip A. Isenberg, Bernard J. Vasquez, and Charles W. Smith +Space Science Center and Department of Physics and Astronomy +University of New Hampshire, Durham, NH 03824, USA + + + + +Abstract. We revisit the question of how the unstable scattering of interstellar pickup ions +(PUIs) may drive turbulence in the outer solar wind, and why the energy released into +fluctuations by this scattering appears to be significantly less than the standard bispherical +prediction. We suggest that energization of the newly picked-up ions by the ambient turbulence +during the scattering process can result in a more spherical distribution of PUIs, and reduce the +generated fluctuation energy to a level consistent with the observations of turbulent intensities +and core solar wind heating. This scenario implies the operation of a self-regulation mechanism +that maintains the observed conditions of turbulence and heating in the PUI-dominated solar +wind. + + + + +1. Introduction + +The neutral component of the partially ionized local interstellar medium (LISM) +penetrates the boundaries of the heliopause and termination shock and flows slowly through the +supersonic solar wind (Axford 1972; Holzer 1972; Isenberg 1986). These neutral particles, +primarily hydrogen atoms, fill most of the heliosphere, being excluded only from a region near +the Sun due to increased ionization from solar photons and charge-exchange interactions with the +solar wind protons. As the solar wind expands away from the Sun, the interactions between the +streaming plasma and the relatively stationary LISM atoms become energetically important, +resulting in a deceleration and heating of the solar wind, as well as significant modifications of +the termination shock. + +The detailed interaction begins when an LISM atom is ionized, creating a new ion that is +temporarily nearly at rest with respect to the supersonic solar wind. In the reference frame of the +solar wind plasma, this new ion is streaming toward the Sun at the solar wind speed, Vsw. +Suddenly subject to the electromagnetic fields of the flowing plasma, the new ion is “picked up” +as its motion across the local magnetic field, B, is forced into a gyration with a speed +perpendicular to the field equal to Vsw sin Y, where Y is the angle between B and Vsw. The +distribution of these ring-beam particles is highly unstable, and will generate parallel- +propagating ion-cyclotron waves (ICWs), while scattering to a nearly isotropic distribution of hot +pickup ions (PUIs) around a cooler proton core of solar origin. + +Early consideration of this scattering process predicted a substantial ICW enhancement at +frequencies above the spacecraft frame proton gyrofrequency due to the PUI isotropization (Wu +& Davidson 1972; Lee & Ip 1987). However, these waves were only observed sporadically +(Murphy et al. 1995), despite the expected continual production of new PUIs. Eventually, it +became clear that the predicted waves were being dispersed and masked by the background +turbulence in the outer solar wind (Cannon et al. 2014a; Cannon et al. 2014b; Joyce et al. 2010; + +Aggarwal et al. 2016; Argall et al. 2015; Argall et al. 2017; Fisher et al. 2016; Marchuk et al. +2021). The distinctive wave enhancements would appear during quiet periods in the solar wind +when the level of ambient turbulence was low, but were not detectable during times of stronger +turbulence (Hollick et al. 2018a, b; Pine et al. 2020a). + +These ICWs are also presumed to drive the turbulent motions in the expanding solar +wind, supplementing and eventually replacing the standard energy inputs from shocks and shears +that diminish far from the Sun. This turbulent driving by PUIs was first proposed by Zank, +Matthaeus, and co-workers (Matthaeus et al. 1999; Williams et al. 1995; Zank et al. 1996). They +presented a model for turbulent evolution from the Sun to the termination shock, based on the +“engineering model” concepts of von Kármán & Howarth (von Kármán & Howarth 1938; +Kolmogorov 1941a, b). Within several AU of the Sun, this model turbulence was driven by a +phenomenological shear source, and further away incorporated the energy released by PUI +isotropization. The dissipation of this turbulence was taken to heat the core solar wind protons, +which measurements from Voyager 2 showed were not cooling adiabatically (Gazis & Lazarus +1982; Gazis 1984). + +The early models predicted that the core solar wind temperatures would increase +dramatically beyond ~ 40 AU where the PUI driving finally dominated the adiabatic cooling. +This prediction arose from the assumption that new PUIs would scatter into a “bispherical” +distribution as a result of their instability (Galeev & Sagdeev 1988; Johnstone et al. 1991; +Williams & Zank 1994). This distribution (described in the next section) corresponds to a +reduction of the particle energy per mass by a factor ~ VA/Vsw from the initial Vsw2/2 of the newly +ionized ring-beam in the solar wind frame, where VA is the local Alfvén speed. In these models, +the energy lost by each newly ionized pickup proton was added to the turbulent fluctuations as +the solar wind continued outward, and the dissipation of this turbulence produced a temperature +increase with increasing radial distance from the Sun. + +However, as Voyager 2 traveled further outward, the measured proton temperature +showed only a modest increase, at a fraction of the predicted magnitude (Smith et al. 2001). We +proposed an explanation for this discrepancy, suggesting that half of the unstable ICWs could be +transformed by the ambient turbulence into parallel-propagating fast-mode waves as they were +being generated by the instability (Isenberg et al. 2003; Isenberg 2005). Cyclotron-resonant +scattering by the combined ICWs and fast-mode waves led to a distribution of new PUIs which +was much more isotropic than the bispherical distribution, so less energy was supplied to the +turbulence. Models of the distant solar wind under this hypothesis could reproduce the Voyager 2 +observations reasonably well, even under time-dependent solar wind conditions (Isenberg et al. +2010; Smith et al. 2006). + +Since that work, many further models of increasing rigor and complexity have been +constructed (Adhikari et al. 2014; Adhikari et al. 2017; Adhikari et al. 2020; Zank et al. 2018; +Oughton et al. 2011; Usmanov & Goldstein 2006; Usmanov et al. 2011; Usmanov et al. 2012, +2014, 2016; Pine et al. 2020d, c, b; Pine et al. 2020a; Ng et al. 2010; Wiengarten et al. 2016), +exploring the evolution and behavior of various turbulent quantities as the solar wind advects +into the outer heliosphere. Of course, the more elaborate models contain more free parameters, +so a decent agreement with the Voyager 2 observations has been maintained. The newer +measurements from the Solar Wind around Pluto (SWAP) instrument on New Horizons, +(McComas et al. 2008) which includes information on the PUI component, are also generally +consistent with the behavior of these models (McComas et al. 2021; Elliott et al. 2019; +McComas et al. 2017; Zank et al. 2018). + + +In all this more recent work, the specific character of the PUI driving has not been +addressed. In fact, most of the models have retreated from the detailed kinetic model of Isenberg +(2005), and simply taken the fractional decrease of the driving from the bispherical value to be a +constant, usually designated fD. In this context, values of fD between 0.15 - 0.25 have led to +plausible agreement with the observations. + +In this paper, we revisit the question of PUI driven turbulence and take a new look at how +the isotropization process could release less energy than the bispherical expectation. We note +that, in the years since our suggestion of fast-mode PUI scattering, there has been no evidence +that fast-mode waves play a major role in the establishment of strong plasma turbulence (Yang et +al. 2018; Brodiano et al. 2021). That original hypothesis may have seemed plausible in the rigid +context of resonant scattering of unstable PUIs by strictly parallel-propagating waves, but newer +conceptions of solar wind turbulence have prompted another look at this question. + +Here, we will explore the possibility that the ambient turbulence in the outer solar wind +reduces the energy lost from isotropizing interstellar PUIs, and self-consistently modulates the +subsequent driving of the cascade, dissipation and heating. The simultaneous and comparable +kinetic influence of quasilinear pitch-angle scattering and turbulent dissipation is not a familiar +concept in the magnetosphere or inner heliosphere, where the plasmas are more active and the +unstable ion gradients are often well established. In the outer solar wind, however, the +production of newly ionized PUIs is very slow and their unstable pitch-angle gradient is only +weakly maintained. Thus, the operation of the ring-beam instability, which would scatter the new +PUIs to a bispherical shell, can be modified by other kinetic processes in the plasma. In +particular, the ambient turbulent fluctuations themselves could influence the PUI isotropization +process as they dissipate and heat the rest of the plasma. + +This point is consistent with the prevailing explanation for the sporadic nature of the +observed PUI excited waves in the outer solar wind (Cannon et al. 2014b; Hollick et al. 2018b; +Pine et al. 2020a). Those observations have shown that the turbulent cascade rate is roughly +comparable to the PUI production rate, and that PUI excited wave enhancements are only +evident when the cascade rate is too small to disperse them. Here, we extend this picture to +suggest that the turbulence heats the PUIs as they scatter, interfering with the formation of the +bispherical shell. + +In the next section, we describe the wave-particle interactions and the solar wind +conditions that are relevant to the isotropization of PUIs. In Section 3, we present an idealized +demonstration of how combined PUI scattering and turbulent diffusion can modify the energy +available for turbulence driving in the outer solar wind. In Section 4, we outline how these +combined processes can balance each other, creating a self-regulating system to maintain the +levels of turbulence and heating consistent with observations. Section 5 contains a summary and +our conclusions. + +2. PUI Isotropization in the Outer Solar Wind + +The ring-beam instability of newly picked up ions has been extensively studied in many +different contexts (Lee & Ip 1987; Galeev & Sagdeev 1988; Min et al. 2017; Min & Liu 2018; +Cowee et al. 2008; Huddleston et al. 1992; Huddleston et al. 1998; Szegö et al. 2000). The +resulting waves have been observed at comets, in planetary magnetospheres, and in the solar +wind. Further studies in the context of the IBEX ribbon in the outer heliosheath have been +focused on the possibility that this wave generation might be somehow prevented in that very +quiet medium, in order to allow the accumulation of ribbon ions (Florinski et al. 2010; Florinski + +et al. 2016; Liu et al. 2012; Summerlin et al. 2014). At this time, an inhibition sufficient to justify +that hypothesis has yet to be demonstrated. + +We do not have direct observations of this instability in the distant supersonic solar wind, +in that we cannot detect PUI gradients and resonant ICWs simultaneously. However, the +persistent operation of this instability to isotropize interstellar PUIs has been indirectly verified +by the observation of wave enhancements in the measured spectra (Cannon et al. 2014a; Cannon +et al. 2014b; Hollick et al. 2018a, b; Pine et al. 2020d, c), by the analysis of isotropic PUI +distributions at New Horizons (Elliott et al. 2019; McComas et al. 2017; McComas et al. 2021), +and by the increasing temperature of core solar wind protons plausibly heated by the turbulence +as it is continuously driven by the instability (Adhikari et al. 2017; Isenberg et al. 2010; Smith et +al. 2006; Usmanov et al. 2014). + +The ring-beam instability is a form of the well-known quasilinear (QL) anisotropy +instability (Gary 1993) which occurs when ions exhibit a pitch-angle gradient perpendicular to +the large-scale magnetic field. The gradient represents a form of free energy, which generates +ICWs propagating primarily along the field. In the generation process, these waves self- +consistently scatter the cyclotron resonant ions to reduce the pitch-angle gradient. The final +bispherical shell configuration results from the details of the QL resonant cyclotron interaction +with these waves. + +The cyclotron resonance condition for an ion in a transverse wave is written + + + + + + , + + + + +(1) + +which arises from equating the ion cyclotron frequency, Wi, with the Doppler-shifted wave +frequency encountered by the ion streaming at v||. With the appropriate polarization, the wave +fields rotate about the large-scale magnetic field in phase with the ion gyration, and energy +exchange between the wave and the ion is efficient. A resonant ion viewed in the reference frame +propagating with the parallel phase speed of the wave, w/k||, will see a zero wave electric field, +since dB/dt = 0 in that frame. Thus, the ion will interact with the wave so as to conserve its +energy in that wave frame. Back in the plasma frame, this means that resonant ions will scatter +through their phase space along a particular curved path, determined by the initial ring-beam and +the wave dispersion relation, w (k). In the distant solar wind, the Parker spiral field, on average, +is azimuthally-directed (Y = p/2) so the initial PUIs will appear in the ring at v^= Vsw and v|| = +0. + +If the resonant waves can be taken dispersionless, w /k|| = ±VA, this energy-conserving +path follows symmetric spherical sections in (v||, v^) space with centers at (±VA, 0), and the final +closed ion shell has the standard bispherical shape, as shown by the blue curve in Figure 1. +Including the effects of ICW dispersion will modify this shape, typically making it somewhat +more energetic since the resonant waves will propagate slower and less energy is taken from the +scattering ions. (As a limiting case, consider the diagram in Figure 1 for a wave phase speed +equal to zero. In this case, the center of curvature of each path would be at the origin, and the +scattered shell shape in the plasma frame would be a sphere. In this limit, the PUIs would retain +all their initial energy and yield none to the waves.) + ω − k!v! = Ωi + + +An analytical solution including dispersion can be obtained by taking the dispersion +relation for parallel ICWs in a cold proton-electron plasma, +, resulting in a +scattered shell shape given by the parametric expressions + + + + + + + +(2) + + + + + +where y = k|| VA/Wp. This more realistic shape, termed a “dispersive bispherical” by Isenberg & +Lee (1996), corresponds to less generated wave energy than the standard bispherical, but the +reduction is not large enough to resolve the outer solar wind heating problem on its own. + +As stated above, turbulent heating from waves generated by PUI isotropization is +plausibly responsible for the observed core solar wind temperatures in the outer solar wind, but +only if this wave generation is somehow reduced by a factor of 5 or more from the expected QL +values. These QL calculations are made in isolation, assuming an otherwise undisturbed, +homogeneous background plasma. In the outer solar wind, though, this isotropization must +proceed in the presence of a well-developed turbulence, which can act simultaneously to +energize the scattering PUIs. We suggest here that this energization is responsible for the +reduced wave generation required by the models. This effect is shown schematically by the red +dashed curve in Figure 1. + +In the outer solar wind, the PUI anisotropy as such is maintained only by the production +of new PUIs appearing in the ring position at v^= Vsw. The proton production rate is given by the +local density of interstellar neutral hydrogen multiplied by their ionization rate + + + + +cm–3 s–1, + + +(3) +where No = 0.1 cm–3 is the inflowing hydrogen density at the solar wind termination shock, L = +5.6 AU is the size of the hydrogen ionization cavity in the upwind direction, and no = 7.5 ´ 10–7 +s–1 is the hydrogen ionization rate at ro = 1 AU taken to fall off as r–2. At r = 40 AU, we +estimate this rate to be ~ 4 ´ 10–11 particles cm–3 s–1, so about one new proton/m3 every 7 hours. +In contrast, the proton gyroperiod at this distance will be about 1 minute or less. + +The associated rate per mass of energy input to the fluctuations is then + + + + + +, + + + + +(4) + + +where we follow Smith et al. (2001) in parameterizing the effective fraction of bispherical wave +generation by the factor fD. Taking Vsw = 400 km/s and VA = 50 km/s at r = 40 AU, the energy +input rate is dEw/dt = 4 ´ 10–7 fD (km/s)2 cm–3 s–1. + +This energy input rate should be compared with the rate of energy cascade through the +inertial range of the turbulent spectrum. This rate is estimated by Vasquez et al. (2007) from the +Kolmogorov theory to be + +ω = k||VA 1−ω / Ω p + +v⊥ +2 = Vsw +2 −VA +2 +1 +y2 + ln y − sinh−1 y +2 +⎡ +⎣ +⎢ +⎤ +⎦ +⎥ + +v! = VA +1 +y + +y2 + 4 − y +2 +⎡ +⎣ +⎢ +⎢ +⎤ +⎦ +⎥ +⎥ +dN +dt = No exp −L / r +( +) νo +ro +r +⎛ +⎝⎜ +⎞ +⎠⎟ +2 +dEw +dt += 1 +2 fDVAVsw +dN +dt + + + + + +, + + +(5) + +where E(fsc) is the magnetic field power spectral density in units of nT2/Hz, which is assumed to +vary with the measured spacecraft-frame frequency, fsc, as fsc–5/3, np is the solar wind density in +units of cm–3, and the factors of np and 21.8 convert the magnetic field to Alfvén units. At 40 +AU, we estimate E at fsc = 3 mHz from Figure 4 of Pine et al. (2020a) to be 10–2 nT/Hz. We +multiply the expression in (5) by the solar wind density np = 3.125 ´ 10–3 cm–3 (corresponding +to 5 cm–3 at 1 AU) to obtain a cascade rate per volume of 2.28 ´ 10–7 (km/s)2 cm–3 s–1. In +steady state, the turbulent dissipation rate is equal to the cascade rate, so the solar wind protons +including the PUIs will be heated by this rate - comparable to the turbulent driving rate (4) due to +PUIs. + +The order-of-magnitude equality of these two rates is one of the foundational factors of +the prevailing scenario for turbulence driving and solar wind heating in the outer heliosphere. +Observational studies (e.g. Cannon et al. 2014b; Hollick et al. 2018b; Pine et al. 2020d; Pine et +al. 2020a) have found that the PUI-generated waves due to isotropization, as predicted by Lee & +Ip (1987), are observable when the level of background turbulence is low, and are not detected +during times of higher turbulence. Since interstellar PUIs are ionized and picked up +continuously, independent of the solar wind turbulence level, it is understood that the +isotropization continues to take place, and that the turbulence continues to be driven by this +process. + +Previous models have all assumed that the isotropization process is rapid and not affected +by the turbulence. However, the proton gradient assumed to generate the anisotropy instability +will not be firmly established when new ring distribution ions only appear every few hours. +Although these new ions apparently do scatter toward isotropy, since they do still drive the +turbulence, this scattering cannot be rapid and is not likely to be independent of other ongoing +processes. + +The interplay between anisotropy instabilities and background turbulence has been +investigated in various simulation studies in the magnetosphere and inner heliosphere (Hellinger +et al. 2015; Hellinger & Trávnícek 2015; Markovskii et al. 2019, 2020; Markovskii & Vasquez +2022). The typical conclusion is that, while the growth rates and saturation levels of the +instability may be affected, the unstable wave-particle evolution is not strongly suppressed by the +turbulence. + +Additionally, several hybrid simulations (Hellinger & Trávnícek 2016; Liu et al. 2012) +have demonstrated the continued operation of this instability under conditions of slow PUI +production rate. Unfortunately, neither study was concerned with the shape of the closed shells +that resulted from the scattering or with the energy lost by the scattered particles. Furthermore, +both these studies were spatially one-dimensional, so all fluctuations were forced to propagate +along the magnetic field, and true turbulence could not develop. + +Previous models of turbulence in the outer solar wind have also assumed that PUIs would +not be heated by the turbulent dissipation. It is generally argued (e.g. Zank et al. 2018) that a +resonant heating of suprathermal ions requires large-wavelength fluctuations, while dissipation- +range turbulence is characterized by very short wavelengths. However, to the extent that the +dominant turbulent fluctuations can be represented as highly oblique kinetic Alfvén waves in +εK = fsc +5/2 E( fsc) +[ +]3/2 (21.8)3 +Vswnp +3/2 +km2s−3 + +critical balance, the short perpendicular scales in the dissipation range can easily coexist with +larger parallel scales (Goldreich & Sridhar 1995, 1997; Isenberg & Vasquez 2019; TenBarge & +Howes 2012; Oughton et al. 2015). In any case, we also point out that the PUIs observed at New +Horizons in the outer solar wind appear to be heated in situ (Elliott et al. 2019; McComas et al. +2021; Zank et al. 2018) in a manner that has not been fully explained. + +In the next section, we present an idealized demonstration that is meant to illustrate the +effects of slow QL scattering by the instability combined with ambient heating by dissipation of +the background turbulence. + +3. An Idealized Demonstration + +A rigorous demonstration of these combined processes would require a full kinetic +simulation of very slow PUI production in an otherwise turbulent plasma, which is beyond the +scope of this paper. We present here an idealized demonstration of how this interaction might +work, using particle diffusion operators to represent the processes of scattering and heating. + +This idealization has a number of limitations. Since diffusion only produces a directed +result - such as scattering toward isotropy or net ion heating - in response to a directed density +gradient, we need to impose a specific background particle distribution. Additionally, we will +specify diffusion coefficients for the two processes, but these effects will then be independent +and will not be able to affect each other. + +We will represent the QL scattering using the “dispersive bispherical” description of Eq. +(2), and model this process on the very slow time scale by taking the magnitude of this diffusion +coefficient to be very small. In the absence of a clearly accepted form for the dissipative +turbulent heating, we will choose the diffusion coefficient for heating to be a simple isotropic +function of particle speed. Then, to assess the evolution of newly ionized PUIs, we will insert a +“slug” of additional protons in a ring at the solar wind speed and compare the energization of the +total distribution to that without the slug. + +With this procedure, the pickup of newly ionized protons is not continuous, but rather the +new particles are dumped into the system at once. We do not compute the QL anisotropy +instability or the self-consistent particle response. Rather, we define the QL diffusion to follow +the dispersive bispherical path through phase space, taking this diffusion to be slow. + +Our demonstration will also neglect the effects of adiabatic deceleration in the expanding +solar wind, which proceeds on an even longer time scale than the particle effects of interest. This +neglect means that the distinctive solar wind speed cutoff in the PUI distributions, to be imposed +on the initial distribution, will not be maintained in this model. Consequently, the kinetic +behavior of the model PUI distribution is not expected to be physically realistic after the initial +pitch-angle scattering time period. + +Taking a grid in spherical coordinates (µ, v), where µ is the cosine of the particle pitch +angle, we solve the two-dimensional time-dependent diffusion equation + + + + +(6) + +in a system symmetric about µ = 0. + +The QL diffusion coefficients for the cyclotron resonant scattering due to parallel- +propagating ICWs are (Isenberg 2005; Lee 1971; Schlickeiser 1989) + + +∂ f +∂t = ∂ +∂µ Dµµ +∂ f +∂µ + Dµv +∂ f +∂v +⎛ +⎝⎜ +⎞ +⎠⎟ + 1 +v2 +∂ +∂v v2 Dµv +∂ f +∂µ + Dvv +∂ f +∂v +⎛ +⎝⎜ +⎞ +⎠⎟ +⎡ +⎣⎢ +⎤ +⎦⎥ + + + + + + +(7) +where the spectral intensity of the ICWs at the resonant wavenumber is AIC I(kres), and their +phase and group speeds are Vph and Vgr, respectively. For diffusion coefficients specific to PUI +scattering in an azimuthal magnetic field, we take the shape of the ICW spectrum from the +dispersive bispherical formalism (Isenberg & Lee 1996) for perpendicular pickup. The wave- +particle interaction is assumed symmetric about µ = 0, so the spectrum is taken symmetric about +k = 0. + +The turbulent heating here is modeled by an isotropic power-law diffusion in v, with a +Gaussian decrease to zero in the diffusion coefficient for small v, + + + + + +(8) +The total diffusion coefficients in (6) will be the sums of the expressions in (7) and (8), where +AIC I(ko = W/VA) and Aturb are constants to be set for various runs. + +We perform these computations on a grid with 2000 x 4000 points between 0 ≤ µ ≤ 1 and +0 ≤ v/VA ≤ 10. As appropriate for the outer solar wind, where the magnetic field is essentially +azimuthal, we assume that new PUIs appear near µ = 0, v = Vsw, and that the particle distribution +is symmetric about µ = 0. We take Vsw/VA = 6 rather than a more typical value ~ 10, in order to +reduce the necessary computational volume in phase space. + +The background proton distribution is composed of a thermal core with the ratio of +kinetic to magnetic pressure b = 0.2, a halo of previously picked up PUIs in a Vasyliunas & +Siscoe (1976) configuration, and a sharp cutoff above v = Vsw: + + +(9) +where b is chosen to give a PUI halo density that is 10% of the total. This distribution is shown +in Figure 2. + +With the initial condition given by (9), we solve (6) on the grid using the biconjugate +gradient stabilized method. We take reflecting boundary conditions at µ = 0 and 1, and place an +absorbing boundary at v = 10 VA. Given the presence of this outer boundary in phase space, + +Dµµ +Dµv +Dvv +⎧ +⎨ +⎪⎪ +⎩ +⎪ +⎪ +⎫ +⎬ +⎪⎪ +⎭ +⎪ +⎪ += AIC +1– µ2 +( +)I(kres) +µv −Vgr +1– µVph +v +⎛ +⎝⎜ +⎞ +⎠⎟ +2 +Vph 1– µVph +v +⎛ +⎝⎜ +⎞ +⎠⎟ +Vph +2 +⎧ +⎨ +⎪ +⎪ +⎪ +⎪ +⎩ +⎪ +⎪ +⎪ +⎪ +⎫ +⎬ +⎪ +⎪ +⎪ +⎪ +⎭ +⎪ +⎪ +⎪ +⎪ + +Dvv = Aturb +(v /VA)−5/3 +v /VA ≥1 +exp − (v −VA)2 +(VA / 5)2 +⎡ +⎣ +⎢ +⎢ +⎤ +⎦ +⎥ +⎥ +v /VA ≤1 +⎧ +⎨ +⎪⎪ +⎩ +⎪ +⎪ + +f (v) = +exp − 5v2 +VA +2 +⎡ +⎣ +⎢ +⎢ +⎤ +⎦ +⎥ +⎥ ++ b +v +Vsw +⎛ +⎝⎜ +⎞ +⎠⎟ +−3/2 +exp −0.1 +v +Vsw +⎛ +⎝⎜ +⎞ +⎠⎟ +−3/2 +⎡ +⎣ +⎢ +⎢ +⎤ +⎦ +⎥ +⎥ +v ≤ Vsw +b +v +Vsw +⎛ +⎝⎜ +⎞ +⎠⎟ +−30 +exp (−0.1) +v ≥ Vsw +⎧ +⎨ +⎪ +⎪⎪ +⎩ +⎪ +⎪ +⎪ + +along with the neglect of adiabatic deceleration, we expect this idealized model to only yield +physically reasonable distributions for a period near the beginning of the computation. The +results for an initial time period, which are shorter for larger values of Aturb, will be qualitatively +illustrative of the combined scattering and diffusive heating of newly ionized PUIs in the outer +solar wind. + +We first consider the case of Aturb = 0, which should reproduce the conditions treated in +the original dispersive bispherical calculation (Isenberg & Lee 1996). In keeping with the slow +time scale for pickup in the outer solar wind, we take AIC I(ko) = 10–5 in computational units.1 +Starting with the background distribution (9), we follow the total kinetic energy of the protons as +a function of time, Eb (t), which is shown by the blue curve in Figure 3. + +We then repeat this computation starting with an additional slug of particles, representing +newly ionized PUIs. These additional PUIs are confined to the pitch angle range 0 ≤ µ ≤ 0.03 and +the speed range 5.85 ≤ v/VA ≤ 6.05, which straddles the model solar wind speed at Vsw = 6 VA. In +this region, the we take the value of f to be a constant equal to the value from (9) at v = 5.85 VA. +With this shelf of extra particles in the distribution, the total proton density is increased by a +factor of 10–4. The total proton energy in this case, Es (t), is shown by the red curve in Figure 3. + +To quantify the energetics of QL scattering of the newly ionized PUIs, we compare the +evolution of the total energy of the proton distributions in these two computations. Ideally, one +might prefer to track the actual scattered particles, but in this diffusive system the discernable +density enhancement in the slug quickly disappears and we are unable to follow the behavior of +that small portion of the distribution. + +Figure 4 shows the quantity Q º DE(t)/DE(0), where DE = Es – Eb for this case. In this +context, (1 – Q) represents the normalized net energy lost by the new PUIs as they scatter toward +isotropy in the undisturbed QL interaction. The normalized energy change levels off at Q = +0.893, which is the same value predicted by the dispersive bispherical calculation of Isenberg & +Lee (1996) for Vsw/VA = 6. In the turbulent driving scenario for the outer solar wind (Isenberg et +al. 2003; Isenberg 2005; Smith et al. 2001; Smith et al. 2006; Zank et al. 1996; Pine et al. 2020a), +this proton energy loss appears in ICWs that proceed to drive the turbulence, but the observations +at Pioneer 11 and Voyager 2 show that this amount of driving is too large. + +When turbulent heating is added to the system, the combined 2-D diffusion proceeds +somewhat faster than the effectively 1-D pitch-angle scattering that occurs when Aturb = 0. The +total proton energy rises approximately linearly with time for all cases. Keeping AIC I(ko) = 10–5, +we choose five values of Aturb = 0.0001, 0.0005, 0.001, 0.002, and 0.003. In Figure 5, we show +the results of the normalized energy difference, Q (t), between the computations made with and +without the slug of new PUIs for these cases. The computed energy difference reaches a +minimum depending on the value of Aturb, before increasing due to further diffusive heating. We +interpret these minimum values to indicate the normalized energy of the slug once it has +completely scattered to a closed shell in phase space, corresponding to the end state of the QL +anisotropy instability. The curves in Figure 5 show that the cases with larger values of Aturb lose +less energy in the process of scattering. The minimum values for each case are given in Table 1. + +1 This illustrative computation only addresses the relative effects of isotropization and turbulent heating. As such, it +is sufficient to work in dimensionless computational, or grid, units. All velocities are normalized to VA, and total +proton kinetic energies per proton mass are then defined as ½ f ´ (v/VA)4, summed over all grid points. The time +parameter then scales as VA (W AIC I (ko))–1. + + +These computations suggest that the resolution to the discrepancy between the predicted +energy loss of new PUIs and the observed turbulent heating of the core solar wind can be found +in the influence of the background turbulence on the weak QL scattering of these PUIs. In this +example, the new PUIs can be scattered to a stable closed shell while giving up a fraction of their +energy, which can range from 11% down to 1%, depending on the strength of the background +turbulence. Defining fD = (1 – Qmin)(Vsw/VA), this range corresponds to effective fD reductions for +these cases from the dispersive bispherical value of fD = 0.642 to fD = 0.060. Table 1 lists these +effective values of fD for each case. The values used to reproduce the observed properties of the +outer solar wind lie within this range (Smith et al. 2006). + +Our suggestion here that interstellar PUIs are continually heated by the ambient +turbulence in the outer solar wind is relatively new, in that previous models of solar wind heating +and the large-scale turbulent evolution have not included such an effect (Adhikari et al. 2014; +Adhikari et al. 2017; Adhikari et al. 2020; Zank et al. 2018; Oughton et al. 2011; Usmanov & +Goldstein 2006; Usmanov et al. 2011; Usmanov et al. 2012, 2014, 2016; Pine et al. 2020d, c, b; +Pine et al. 2020a; Ng et al. 2010; Wiengarten et al. 2016; Isenberg 2005; Isenberg et al. 2003, +2010; Smith et al. 2006). However, the observations of PUI out to ~52 AU from the New +Horizons mission (Elliot et al. 2019; McComas et al. 2021, 2022) have found that PUIs are not +cooled as much as would be predicted by the Vasyliunas & Siscoe (1976) model, which +incorporates the effects of adiabatic deceleration under conditions of the radial expansion of a +constant-speed solar wind. The New Horizons data show that the PUI distribution still generally +exhibits a cutoff in speed at the solar wind value in the solar wind frame (apart from indications +of local shock heating downstream of observed shocks (Zirnstein et al. 2018)), but that the +“cooling index” (Chen et al. 2013; Swaczyna et al. 2020; McComas et al. 2021) indicates that the +observed PUIs have been heated since their pickup and isotropization. This heating appears to be +in addition to, and independent of, the localized energization seen at these interplanetary shocks +(McComas et al. 2021, 2022). + +4. A Self-Regulating System + +Given the substantial variability of the solar wind, the scenario presented here allows for +an intriguing possibility of self-regulation. The ambient turbulence in the expanding wind will +decay with increasing heliocentric distance if it is not actively driven by the fluctuations from the +PUI instability. If the turbulence in some region is temporarily weak, due perhaps to a faster +expansion, the QL scattering can proceed to a bispherical-like shape as originally envisioned by +Zank, Matthaeus, and Smith. This interaction will generate fluctuations at the level ~ VA/Vsw +times the initial PUI energy, leading to a stronger turbulent driving than that indicated over the +large scale by the observations. + +In some other region where the turbulence is strong, the turbulent energization will +modify the scattering to reduce the QL energy loss from the PUI instability, leading to a +corresponding reduction in the turbulent driving. More generally, a parcel of solar wind, +advecting outward, could cycle between these two circumstances, actively maintaining a level of +turbulent driving which, on average, would be some fraction of the bispherical prediction. A +schematic diagram of this regulation is shown in Figure 6. + +We do not know the details of the specific mechanism by which the parallel ICWs +generated by the PUI instability are transformed into turbulent fluctuations in the distant solar +wind. Thus, it is difficult to theoretically establish the fraction of QL intensity that would result +from this self-regulation. We show here that a fraction consistent with the observed solar wind + +heating can be attained within an order-of-magnitude intensity variation of the background +turbulence. Future theoretical research and simulation modeling would be extremely valuable in +understanding this complicated interaction. + +5. Summary and Conclusions + +Interstellar PUIs, formed from the ionization of inflowing interstellar neutral atoms, +dominate the plasma behavior of the supersonic solar wind beyond ~ 40 AU from the Sun. They +accumulate with increasing radial position to make up a large fraction of the thermal energy of +the outer solar wind, and their properties strongly influence the details of the solar wind +termination shock. The energy released when newly ionized PUIs are scattered toward isotropy +is thought to drive the observed turbulent heating of the core solar wind protons. However, the +interaction predicted from standard QL scattering due to the conventional operation of the +anisotropy instability provides far too much energy to the turbulence in the outflowing plasma. + +We have suggested that the energizing effects of the ambient background turbulence on +the weakly scattering PUIs should be taken into account in the determination of the generated +unstable fluctuations. We have illustrated the possible form of this turbulent modification with an +idealized computation, using a combined QL diffusive description. We identify a potential self- +regulation mechanism in these combined effects, which may explain the observed level of +turbulence and solar wind heating in the distant solar wind. Further theoretical work and +simulation studies specifically addressing the details of PUI scattering and turbulent driving +under realistic conditions are needed to accurately model these interactions in the outer solar +wind. + + +We are grateful for valuable conversations with E. Möbius, P. Swaczyna, and D. +Verscharen. PAI, BJV and CWS are supported by NASA grant 80NSSC18K1215. PAI and BJV +are also supported by NSF grant AGS2005982. PAI is further supported by NASA grant +80NSSC18K0655. + + +References + +Adhikari, L., Zank, G. P., Hu, Q., & Dosch, A. 2014, Astrophys. J., 793, 52 +Adhikari, L., Zank, G. P., Zhao, L.-L., & Webb, G. M. 2020, Astrophys. J., 891, 34 +Adhikari, L., Zank, G. P., Hunana, P., et al. 2017, Astrophys. J., 841, 85 +Aggarwal, P., Taylor, D. K., Smith, C. W., et al. 2016, Astrophys. J., 822, 94 +Argall, M. R., Fisher, M. K., Joyce, C. J., et al. 2015, Geophys. Res. Lett., 42, 9617 +Argall, M. R., Hollick, S. J., Pine, Z. B., et al. 2017, Astrophys. J., 849, 61 +Axford, W. I. 1972, in Solar Wind, ed. C. P. Sonett, P. J. Coleman, & J. M. Wilcox (Washington, +D.C.: NASA Spec. Pub. SP-308), 609 +Brodiano, M., Andrés, N., & Dmitruk, P. 2021, Astrophys. J., 922, 240 +Cannon, B. E., Smith, C. W., Isenberg, P. A., et al. 2014a, Astrophys. J., 784, 150 +Cannon, B. E., Smith, C. W., Isenberg, P. A., et al. 2014b, Astrophys. J., 787, 133 +Chen, J. H., Möbius, E., Gloeckler, G., et al. 2013, J. Geophys. Res., 118, 3946 +Cowee, M. M., Russell, C. T., & Strangeway, R. J. 2008, J. Geophys. Res., 113, A08220 +Elliott, H. A., McComas, D. J., Zirnstein, E. J., et al. 2019, Astrophys. J., 885, 156 +Fisher, M. K., Argall, M. R., Joyce, C. J., et al. 2016, Astrophys. J., 830, 47 + +Florinski, V., Heerikhuisen, J., Niemiec, J., & Ernst, A. 2016, Astrophys. J., 826, 197 +Florinski, V., Zank, G. P., Heerikhuisen, J., Hu, Q., & Khazanov, I. 2010, Astrophys. J., 719, +1097 +Galeev, A. A., & Sagdeev, R. Z. 1988, Astrophys. Space Sci., 144, 427 +Gary, S. P. 1993, Theory of Space Plasma Microinstabilities (Cambridge, England: +Gazis, P. R. 1984, J. Geophys. Res., 89, 775 +Gazis, P. R., & Lazarus, A. J. 1982, Geophys. Res. Lett., 9, 431 +Goldreich, P., & Sridhar, S. 1995, Astrophys. J., 438, 763 +–––––. 1997, Astrophys. J., 485, 680 +Hellinger, P., & Trávnícek, P. 2015, J. Plasma Phys., 81, 305810103 +–––––. 2016, Astrophys. J., 832, 32 +Hellinger, P., Matteini, L., Landi, S., et al. 2015, Astrophys. J., 811, L32 +Hollick, S. J., Smith, C. W., Pine, Z. B., et al. 2018a, Astrophys. J., 863, 75 +–––––. 2018b, Astrophys. J., 863, 76 +Holzer, T. E. 1972, J. Geophys. Res., 77, 5407 +Huddleston, D. E., Coates, A. J., & Johnstone, A. D. 1992, J. Geophys. Res., 97, 19,163 +Huddleston, D. E., Strangeway, R. J., Warnecke, J., Russell, C. T., & Kivelson, M. G. 1998, J. +Geophys. Res., 103, 19887 +Isenberg, P. A. 1986, J. Geophys. Res., 91, 9965 +Isenberg, P. A. 2005, Astrophys. J., 623, 502 +Isenberg, P. A., & Lee, M. A. 1996, J. Geophys. Res., 101, 11,055 +Isenberg, P. A., & Vasquez, B. J. 2019, Astrophys. J., in press, arXiv: 1910.11366 +Isenberg, P. A., Smith, C. W., & Matthaeus, W. H. 2003, Astrophys. J., 592, 564 +Isenberg, P. A., Smith, C. W., Matthaeus, W. H., & Richardson, J. D. 2010, Astrophys. J., 719, +716 +Johnstone, A. D., Huddleston, D. E., & Coates, A. J. 1991, in Cometary Plasma Processes, ed. A. +D. Johnstone (Washington, DC: AGU), 259 +Joyce, C. J., Smith, C. W., Isenberg, P. A., Murphy, N., & Schwadron, N. A. 2010, Astrophys. J., +724, 1256 +Kolmogorov, A. N. 1941a, C. R. Acad. Sci. URSS, 32, 16 +–––––. 1941b, C. R. Acad. Sci. URSS, 30, 301 +Lee, M. A. 1971, Plasma Phys., 13, 1079 +Lee, M. A., & Ip, W.-H. 1987, J. Geophys. Res., 92, 11,041 +Liu, K., Möbius, E., Gary, S. P., & Winske, D. 2012, J. Geophys. Res., 117, A10102 +Marchuk, A. V., Smith, C. W., Watson, A. S., et al. 2021, Astrophys. J., 923, 185 +Markovskii, S. A., & Vasquez, B. J. 2022, Astrophys. J., 924, 111 +Markovskii, S. A., Vasquez, B. J., & Chandran, B. D. G. 2019, Astrophys. J., 875, 125 +–––––. 2020, Astrophys. J., 889, 7 +Matthaeus, W. H., Zank, G. P., Smith, C. W., & Oughton, S. 1999, Phys. Rev. Lett., 82, 3444 +McComas, D.J., Shrestha, B. L., Swaczyna, P., et al. 2022, Astrophys. J., 934, 147 +McComas, D. J., Swaczyna, P., Szalay, J. R., et al. 2021, Astrophys. J. Suppl., 254, 19 +McComas, D. J., Zirnstein, E. J., Bzowski, M., et al. 2017, Astrophys. J. Suppl., 233, 8 +McComas, D. J., Allegrini, F., Bagenal, F., et al. 2008, Space Sci. Rev., 140, 261 +Min, K., & Liu, K. 2018, Astrophys. J., 852, 39 +Min, K., Liu, K., & Gary, S. P. 2017, J. Geophys. Res., 122, 7891 + +Murphy, N., Smith, E. J., Tsurutani, B. T., Balogh, A., & Southwood, D. J. 1995, Space Sci. +Rev., 72, 447 +Ng, C. S., Bhattacharjee, A., Munsi, D., Isenberg, P. A., & Smith, C. W. 2010, J. Geophys. Res., +115, A02101 +Oughton, S., Matthaeus, W. H., Wan, M., & Osman, K. T. 2015, Phil. Trans. R. Soc. A, 373, +201401152 +Oughton, S., Matthaeus, W. H., Smith, C. W., Breech, B., & Isenberg, P. A. 2011, J. Geophys. +Res., 116, A08105 +Pine, Z. B., Smith, C. W., Hollick, S. J., et al. 2020a, Astrophys. J., 900, 94 +Pine, Z. B., Smith, C. W., Hollick, S. J., et al. 2020b, Astrophys. J., 900, 93 +–––––. 2020c, Astrophys. J., 900, 92 +–––––. 2020d, Astrophys. J., 900, 91 +Schlickeiser, R. 1989, Astrophys. J., 336, 243 +Smith, C. W., Isenberg, P. A., Matthaeus, W. H., & Richardson, J. D. 2006, Astrophys. J., 638, +508 +Smith, C. W., Matthaeus, W. H., Zank, G. P., et al. 2001, J. Geophys. Res., 106, 8253 +Swaczyna, P., McComas, D. J., Zirnstein, E. J. et al. 2020, Astrophys. J., 903, 48 +Summerlin, E. J., Viñas, A. F., Moore, T. E., Christian, E. R., & Cooper, J. F. 2014, Astrophys. +J., 793, 93 +Szegö, K., Glassmeier, K.-H., Bingham, R., et al. 2000, Space Sci. Rev., 94, 429 +TenBarge, J. M., & Howes, G. G. 2012, Phys. Plasmas, 19, 055901 +Usmanov, A. V., & Goldstein, M. L. 2006, J. Geophys. Res., 111, A07101 +Usmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. 2012, Astrophys. J., 754, 40 +–––––. 2014, Astrophys. J., 788, 43 +–––––. 2016, Astrophys. J., 820, 17 +Usmanov, A. V., Matthaeus, W. H., Breech, B., & Goldstein, M. L. 2011, Astrophys. J., 727, 84 +Vasquez, B. J., Smith, C. W., Hamilton, K., MacBride, B. T., & Leamon, R. J. 2007, J. Geophys. +Res., 112, A07101 +Vasyliunas, V. M., & Siscoe, G. L. 1976, J. Geophys. Res., 81, 1247 +von Kármán, T., & Howarth, L. 1938, Proc. R. Soc. London, Ser. A, 164, 192 +Wiengarten, T., Oughton, S., Engelbrecht, N. E., et al. 2016, Astrophys. J., 833, 17 +Williams, L. L., & Zank, G. P. 1994, J. Geophys. Res., 99, 19,229 +Williams, L. L., Zank, G. P., & Matthaeus, W. H. 1995, J. Geophys. Res., 100, 17,059 +Wu, C. S., & Davidson, R. C. 1972, J. Geophys. Res., 77, 5399 +Yang, L., Zhang, L., He, J., et al. 2018, Astrophys. J., 866, 41 +Zank, G. P., Matthaeus, W. H., & Smith, C. W. 1996, J. Geophys. Res., 101, 17,093 +Zank, G. P., Adhikari, L., Zhao, L.-L., et al. 2018, Astrophys. J., 869, 23 +Zirnstein, E. J., McComas, D. J., Kumar, R., et al. 2018, PhRvL, 121, 075102 + + + +Table 1. Minimum Values of the Normalized Energy Loss, Q, and the Corresponding Effective +Values of fD for the Cases of Section 3. + +Aturb +Qmin +eff fD +0.0 +0.893 +0.642 +0.0001 +0.910 +0.540 +0.0005 +0.945 +0.330 +0.001 +0.962 +0.228 +0.002 +0.984 +0.096 +0.003 +0.990 +0.060 + + + + + + + + + + + + + +Figure 1. Sketch of the plasma response of newly ionized PUIs in the azimuthal magnetic field +of the outer solar wind. The ions initially form an unstable ring distribution, depicted by the red +dot, which scatters to a closed shell in phase space. The conventional QL theory predicts a +bispherical shell, given by the blue curve as reflected into the other quadrants of the figure. The +red dashed curve indicates a possible modification of the shell due to interaction with the +ambient turbulence. + + +VA +v +v|| +Vsw +bispherical +turbulent +dissipation + + + + +Figure 2. Normalized initial proton distribution function (8). + + + + +0.0001 +0.001 +0.01 +0.1 +1 +0 +2 +4 +6 +8 +10 +f (v) +v/V +A + + + +Figure 3. Evolution of the total proton energy in grid units, when Aturb = 0. The blue curve uses +the initial distribution (8), and the red curve has the additional slug of new PUIs. + + + + +388 +390 +392 +394 +0 +10000 +20000 +30000 +40000 +50000 +E +tot +t + + + + +Figure 4. Evolution of the normalized energy difference, Q, between the computations with and +without the slug of new PUIs, for Aturb = 0. + + + + + +Figure 5. Evolution of the normalized energy difference, Q, for increasing values of Aturb, while +AIC I(ko) is fixed at 10–5. The values are Aturb = 0.0001 (green), 0.0005 (light blue), 0.001 (red), +0.002 (dark blue), and 0.003 (black). The respective minima are given in Table 1. +0.88 +0.9 +0.92 0.94 0.96 0.98 +1 +0 +10000 +20000 +30000 +40000 +50000 +Q +t +0.9 +0.92 +0.94 +0.96 +0.98 +1 +0 +5000 +10000 +15000 +20000 +25000 +30000 +Q +t + + r = Ro + + + + + + + + + + + + +r = Ro + dr + + + + +High <δB2> +Low <δB2> +More +Spherical +More Bi- +spherical +Less E-loss + +Less Driving +More E-loss + +More Driving +Reduced +<δB2> +Increased +<δB2> +Local +SW +with +with +Turbulent +Self-Regulation +with a +with a +New +PUIs +Figure 6. Schematic diagram of +the self-regulation mechanism. + diff --git a/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/load_file.txt b/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c79220b2aaca18a0b79d4d57908ab617415cb35 --- /dev/null +++ b/SdFAT4oBgHgl3EQf1h7S/content/tmp_files/load_file.txt @@ -0,0 +1,1102 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf,len=1101 +page_content='Turbulence Driving by Interstellar Pickup Ions in the Outer Solar Wind Philip A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg, Bernard J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Vasquez, and Charles W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith Space Science Center and Department of Physics and Astronomy University of New Hampshire, Durham, NH 03824, USA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We revisit the question of how the unstable scattering of interstellar pickup ions (PUIs) may drive turbulence in the outer solar wind, and why the energy released into fluctuations by this scattering appears to be significantly less than the standard bispherical prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We suggest that energization of the newly picked-up ions by the ambient turbulence during the scattering process can result in a more spherical distribution of PUIs, and reduce the generated fluctuation energy to a level consistent with the observations of turbulent intensities and core solar wind heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This scenario implies the operation of a self-regulation mechanism that maintains the observed conditions of turbulence and heating in the PUI-dominated solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Introduction The neutral component of the partially ionized local interstellar medium (LISM) penetrates the boundaries of the heliopause and termination shock and flows slowly through the supersonic solar wind (Axford 1972;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Holzer 1972;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg 1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' These neutral particles, primarily hydrogen atoms, fill most of the heliosphere, being excluded only from a region near the Sun due to increased ionization from solar photons and charge-exchange interactions with the solar wind protons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' As the solar wind expands away from the Sun, the interactions between the streaming plasma and the relatively stationary LISM atoms become energetically important, resulting in a deceleration and heating of the solar wind, as well as significant modifications of the termination shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The detailed interaction begins when an LISM atom is ionized, creating a new ion that is temporarily nearly at rest with respect to the supersonic solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the reference frame of the solar wind plasma, this new ion is streaming toward the Sun at the solar wind speed, Vsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Suddenly subject to the electromagnetic fields of the flowing plasma, the new ion is “picked up” as its motion across the local magnetic field, B, is forced into a gyration with a speed perpendicular to the field equal to Vsw sin Y, where Y is the angle between B and Vsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The distribution of these ring-beam particles is highly unstable, and will generate parallel- propagating ion-cyclotron waves (ICWs), while scattering to a nearly isotropic distribution of hot pickup ions (PUIs) around a cooler proton core of solar origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Early consideration of this scattering process predicted a substantial ICW enhancement at frequencies above the spacecraft frame proton gyrofrequency due to the PUI isotropization (Wu & Davidson 1972;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Lee & Ip 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, these waves were only observed sporadically (Murphy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1995), despite the expected continual production of new PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Eventually, it became clear that the predicted waves were being dispersed and masked by the background turbulence in the outer solar wind (Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Joyce et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Aggarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Argall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Argall et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Fisher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Marchuk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The distinctive wave enhancements would appear during quiet periods in the solar wind when the level of ambient turbulence was low, but were not detectable during times of stronger turbulence (Hollick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018a, b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' These ICWs are also presumed to drive the turbulent motions in the expanding solar wind, supplementing and eventually replacing the standard energy inputs from shocks and shears that diminish far from the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This turbulent driving by PUIs was first proposed by Zank, Matthaeus, and co-workers (Matthaeus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' They presented a model for turbulent evolution from the Sun to the termination shock, based on the “engineering model” concepts of von Kármán & Howarth (von Kármán & Howarth 1938;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Kolmogorov 1941a, b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Within several AU of the Sun, this model turbulence was driven by a phenomenological shear source, and further away incorporated the energy released by PUI isotropization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The dissipation of this turbulence was taken to heat the core solar wind protons, which measurements from Voyager 2 showed were not cooling adiabatically (Gazis & Lazarus 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Gazis 1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The early models predicted that the core solar wind temperatures would increase dramatically beyond ~ 40 AU where the PUI driving finally dominated the adiabatic cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This prediction arose from the assumption that new PUIs would scatter into a “bispherical” distribution as a result of their instability (Galeev & Sagdeev 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Johnstone et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Williams & Zank 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This distribution (described in the next section) corresponds to a reduction of the particle energy per mass by a factor ~ VA/Vsw from the initial Vsw2/2 of the newly ionized ring-beam in the solar wind frame, where VA is the local Alfvén speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In these models, the energy lost by each newly ionized pickup proton was added to the turbulent fluctuations as the solar wind continued outward, and the dissipation of this turbulence produced a temperature increase with increasing radial distance from the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, as Voyager 2 traveled further outward, the measured proton temperature showed only a modest increase, at a fraction of the predicted magnitude (Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We proposed an explanation for this discrepancy, suggesting that half of the unstable ICWs could be transformed by the ambient turbulence into parallel-propagating fast-mode waves as they were being generated by the instability (Isenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Cyclotron-resonant scattering by the combined ICWs and fast-mode waves led to a distribution of new PUIs which was much more isotropic than the bispherical distribution, so less energy was supplied to the turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Models of the distant solar wind under this hypothesis could reproduce the Voyager 2 observations reasonably well, even under time-dependent solar wind conditions (Isenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Since that work, many further models of increasing rigor and complexity have been constructed (Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Oughton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov & Goldstein 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012, 2014, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020d, c, b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Ng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Wiengarten et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016), exploring the evolution and behavior of various turbulent quantities as the solar wind advects into the outer heliosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Of course, the more elaborate models contain more free parameters, so a decent agreement with the Voyager 2 observations has been maintained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The newer measurements from the Solar Wind around Pluto (SWAP) instrument on New Horizons, (McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2008) which includes information on the PUI component, are also generally consistent with the behavior of these models (McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Elliott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In all this more recent work, the specific character of the PUI driving has not been addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In fact, most of the models have retreated from the detailed kinetic model of Isenberg (2005), and simply taken the fractional decrease of the driving from the bispherical value to be a constant, usually designated fD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this context, values of fD between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='15 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='25 have led to plausible agreement with the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this paper, we revisit the question of PUI driven turbulence and take a new look at how the isotropization process could release less energy than the bispherical expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We note that, in the years since our suggestion of fast-mode PUI scattering, there has been no evidence that fast-mode waves play a major role in the establishment of strong plasma turbulence (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Brodiano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' That original hypothesis may have seemed plausible in the rigid context of resonant scattering of unstable PUIs by strictly parallel-propagating waves, but newer conceptions of solar wind turbulence have prompted another look at this question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Here, we will explore the possibility that the ambient turbulence in the outer solar wind reduces the energy lost from isotropizing interstellar PUIs, and self-consistently modulates the subsequent driving of the cascade, dissipation and heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The simultaneous and comparable kinetic influence of quasilinear pitch-angle scattering and turbulent dissipation is not a familiar concept in the magnetosphere or inner heliosphere, where the plasmas are more active and the unstable ion gradients are often well established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the outer solar wind, however, the production of newly ionized PUIs is very slow and their unstable pitch-angle gradient is only weakly maintained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Thus, the operation of the ring-beam instability, which would scatter the new PUIs to a bispherical shell, can be modified by other kinetic processes in the plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In particular, the ambient turbulent fluctuations themselves could influence the PUI isotropization process as they dissipate and heat the rest of the plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This point is consistent with the prevailing explanation for the sporadic nature of the observed PUI excited waves in the outer solar wind (Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Hollick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Those observations have shown that the turbulent cascade rate is roughly comparable to the PUI production rate, and that PUI excited wave enhancements are only evident when the cascade rate is too small to disperse them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Here, we extend this picture to suggest that the turbulence heats the PUIs as they scatter, interfering with the formation of the bispherical shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the next section, we describe the wave-particle interactions and the solar wind conditions that are relevant to the isotropization of PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In Section 3, we present an idealized demonstration of how combined PUI scattering and turbulent diffusion can modify the energy available for turbulence driving in the outer solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In Section 4, we outline how these combined processes can balance each other, creating a self-regulating system to maintain the levels of turbulence and heating consistent with observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Section 5 contains a summary and our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' PUI Isotropization in the Outer Solar Wind The ring-beam instability of newly picked up ions has been extensively studied in many different contexts (Lee & Ip 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Galeev & Sagdeev 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Min et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Min & Liu 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Cowee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Huddleston et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Huddleston et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Szegö et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The resulting waves have been observed at comets, in planetary magnetospheres, and in the solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Further studies in the context of the IBEX ribbon in the outer heliosheath have been focused on the possibility that this wave generation might be somehow prevented in that very quiet medium, in order to allow the accumulation of ribbon ions (Florinski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Florinski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Summerlin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' At this time, an inhibition sufficient to justify that hypothesis has yet to be demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We do not have direct observations of this instability in the distant supersonic solar wind, in that we cannot detect PUI gradients and resonant ICWs simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, the persistent operation of this instability to isotropize interstellar PUIs has been indirectly verified by the observation of wave enhancements in the measured spectra (Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Hollick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018a, b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020d, c), by the analysis of isotropic PUI distributions at New Horizons (Elliott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021), and by the increasing temperature of core solar wind protons plausibly heated by the turbulence as it is continuously driven by the instability (Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The ring-beam instability is a form of the well-known quasilinear (QL) anisotropy instability (Gary 1993) which occurs when ions exhibit a pitch-angle gradient perpendicular to the large-scale magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The gradient represents a form of free energy, which generates ICWs propagating primarily along the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the generation process, these waves self- consistently scatter the cyclotron resonant ions to reduce the pitch-angle gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The final bispherical shell configuration results from the details of the QL resonant cyclotron interaction with these waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The cyclotron resonance condition for an ion in a transverse wave is written , (1) which arises from equating the ion cyclotron frequency, Wi, with the Doppler-shifted wave frequency encountered by the ion streaming at v||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' With the appropriate polarization, the wave fields rotate about the large-scale magnetic field in phase with the ion gyration, and energy exchange between the wave and the ion is efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A resonant ion viewed in the reference frame propagating with the parallel phase speed of the wave, w/k||, will see a zero wave electric field, since dB/dt = 0 in that frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Thus, the ion will interact with the wave so as to conserve its energy in that wave frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Back in the plasma frame, this means that resonant ions will scatter through their phase space along a particular curved path, determined by the initial ring-beam and the wave dispersion relation, w (k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the distant solar wind, the Parker spiral field, on average, is azimuthally-directed (Y = p/2) so the initial PUIs will appear in the ring at v^= Vsw and v|| = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' If the resonant waves can be taken dispersionless, w /k|| = ±VA, this energy-conserving path follows symmetric spherical sections in (v||, v^) space with centers at (±VA, 0), and the final closed ion shell has the standard bispherical shape, as shown by the blue curve in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Including the effects of ICW dispersion will modify this shape, typically making it somewhat more energetic since the resonant waves will propagate slower and less energy is taken from the scattering ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' (As a limiting case, consider the diagram in Figure 1 for a wave phase speed equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this case, the center of curvature of each path would be at the origin, and the scattered shell shape in the plasma frame would be a sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this limit, the PUIs would retain all their initial energy and yield none to the waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=') ω − k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' = Ωi An analytical solution including dispersion can be obtained by taking the dispersion relation for parallel ICWs in a cold proton-electron plasma, , resulting in a scattered shell shape given by the parametric expressions (2) where y = k|| VA/Wp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This more realistic shape, termed a “dispersive bispherical” by Isenberg & Lee (1996), corresponds to less generated wave energy than the standard bispherical, but the reduction is not large enough to resolve the outer solar wind heating problem on its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' As stated above, turbulent heating from waves generated by PUI isotropization is plausibly responsible for the observed core solar wind temperatures in the outer solar wind, but only if this wave generation is somehow reduced by a factor of 5 or more from the expected QL values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' These QL calculations are made in isolation, assuming an otherwise undisturbed, homogeneous background plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the outer solar wind, though, this isotropization must proceed in the presence of a well-developed turbulence, which can act simultaneously to energize the scattering PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We suggest here that this energization is responsible for the reduced wave generation required by the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This effect is shown schematically by the red dashed curve in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the outer solar wind, the PUI anisotropy as such is maintained only by the production of new PUIs appearing in the ring position at v^= Vsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The proton production rate is given by the local density of interstellar neutral hydrogen multiplied by their ionization rate cm–3 s–1, (3) where No = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='1 cm–3 is the inflowing hydrogen density at the solar wind termination shock, L = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='6 AU is the size of the hydrogen ionization cavity in the upwind direction, and no = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='5 ´ 10–7 s–1 is the hydrogen ionization rate at ro = 1 AU taken to fall off as r–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' At r = 40 AU, we estimate this rate to be ~ 4 ´ 10–11 particles cm–3 s–1, so about one new proton/m3 every 7 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In contrast, the proton gyroperiod at this distance will be about 1 minute or less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The associated rate per mass of energy input to the fluctuations is then , (4) where we follow Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' (2001) in parameterizing the effective fraction of bispherical wave generation by the factor fD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Taking Vsw = 400 km/s and VA = 50 km/s at r = 40 AU, the energy input rate is dEw/dt = 4 ´ 10–7 fD (km/s)2 cm–3 s–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This energy input rate should be compared with the rate of energy cascade through the inertial range of the turbulent spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This rate is estimated by Vasquez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' (2007) from the Kolmogorov theory to be ω = k||VA 1−ω / Ω p v⊥ 2 = Vsw 2 −VA 2 1 y2 + ln y − sinh−1 y 2 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' = VA 1 y + y2 + 4 − y 2 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ dN dt = No exp −L / r ( ) νo ro r ⎛ ⎝⎜ ⎞ ⎠⎟ 2 dEw dt = 1 2 fDVAVsw dN dt , (5) where E(fsc) is the magnetic field power spectral density in units of nT2/Hz, which is assumed to vary with the measured spacecraft-frame frequency, fsc, as fsc–5/3, np is the solar wind density in units of cm–3, and the factors of np and 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='8 convert the magnetic field to Alfvén units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' At 40 AU, we estimate E at fsc = 3 mHz from Figure 4 of Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' (2020a) to be 10–2 nT/Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We multiply the expression in (5) by the solar wind density np = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='125 ´ 10–3 cm–3 (corresponding to 5 cm–3 at 1 AU) to obtain a cascade rate per volume of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='28 ´ 10–7 (km/s)2 cm–3 s–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In steady state, the turbulent dissipation rate is equal to the cascade rate, so the solar wind protons including the PUIs will be heated by this rate - comparable to the turbulent driving rate (4) due to PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The order-of-magnitude equality of these two rates is one of the foundational factors of the prevailing scenario for turbulence driving and solar wind heating in the outer heliosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Observational studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Cannon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Hollick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020d;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a) have found that the PUI-generated waves due to isotropization, as predicted by Lee & Ip (1987), are observable when the level of background turbulence is low, and are not detected during times of higher turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Since interstellar PUIs are ionized and picked up continuously, independent of the solar wind turbulence level, it is understood that the isotropization continues to take place, and that the turbulence continues to be driven by this process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Previous models have all assumed that the isotropization process is rapid and not affected by the turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, the proton gradient assumed to generate the anisotropy instability will not be firmly established when new ring distribution ions only appear every few hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Although these new ions apparently do scatter toward isotropy, since they do still drive the turbulence, this scattering cannot be rapid and is not likely to be independent of other ongoing processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The interplay between anisotropy instabilities and background turbulence has been investigated in various simulation studies in the magnetosphere and inner heliosphere (Hellinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Hellinger & Trávnícek 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Markovskii et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Markovskii & Vasquez 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The typical conclusion is that, while the growth rates and saturation levels of the instability may be affected, the unstable wave-particle evolution is not strongly suppressed by the turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Additionally, several hybrid simulations (Hellinger & Trávnícek 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012) have demonstrated the continued operation of this instability under conditions of slow PUI production rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Unfortunately, neither study was concerned with the shape of the closed shells that resulted from the scattering or with the energy lost by the scattered particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Furthermore, both these studies were spatially one-dimensional, so all fluctuations were forced to propagate along the magnetic field, and true turbulence could not develop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Previous models of turbulence in the outer solar wind have also assumed that PUIs would not be heated by the turbulent dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' It is generally argued (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018) that a resonant heating of suprathermal ions requires large-wavelength fluctuations, while dissipation- range turbulence is characterized by very short wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, to the extent that the dominant turbulent fluctuations can be represented as highly oblique kinetic Alfvén waves in εK = fsc 5/2 E( fsc) [ ]3/2 (21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='8)3 Vswnp 3/2 km2s−3 critical balance, the short perpendicular scales in the dissipation range can easily coexist with larger parallel scales (Goldreich & Sridhar 1995, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg & Vasquez 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' TenBarge & Howes 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Oughton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In any case, we also point out that the PUIs observed at New Horizons in the outer solar wind appear to be heated in situ (Elliott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018) in a manner that has not been fully explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the next section, we present an idealized demonstration that is meant to illustrate the effects of slow QL scattering by the instability combined with ambient heating by dissipation of the background turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' An Idealized Demonstration A rigorous demonstration of these combined processes would require a full kinetic simulation of very slow PUI production in an otherwise turbulent plasma, which is beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We present here an idealized demonstration of how this interaction might work, using particle diffusion operators to represent the processes of scattering and heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This idealization has a number of limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Since diffusion only produces a directed result - such as scattering toward isotropy or net ion heating - in response to a directed density gradient, we need to impose a specific background particle distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Additionally, we will specify diffusion coefficients for the two processes, but these effects will then be independent and will not be able to affect each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We will represent the QL scattering using the “dispersive bispherical” description of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' (2), and model this process on the very slow time scale by taking the magnitude of this diffusion coefficient to be very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the absence of a clearly accepted form for the dissipative turbulent heating, we will choose the diffusion coefficient for heating to be a simple isotropic function of particle speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Then, to assess the evolution of newly ionized PUIs, we will insert a “slug” of additional protons in a ring at the solar wind speed and compare the energization of the total distribution to that without the slug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' With this procedure, the pickup of newly ionized protons is not continuous, but rather the new particles are dumped into the system at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We do not compute the QL anisotropy instability or the self-consistent particle response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Rather, we define the QL diffusion to follow the dispersive bispherical path through phase space, taking this diffusion to be slow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Our demonstration will also neglect the effects of adiabatic deceleration in the expanding solar wind, which proceeds on an even longer time scale than the particle effects of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This neglect means that the distinctive solar wind speed cutoff in the PUI distributions, to be imposed on the initial distribution, will not be maintained in this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Consequently, the kinetic behavior of the model PUI distribution is not expected to be physically realistic after the initial pitch-angle scattering time period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Taking a grid in spherical coordinates (µ, v), where µ is the cosine of the particle pitch angle, we solve the two-dimensional time-dependent diffusion equation (6) in a system symmetric about µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The QL diffusion coefficients for the cyclotron resonant scattering due to parallel- propagating ICWs are (Isenberg 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Lee 1971;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Schlickeiser 1989) ∂ f ∂t = ∂ ∂µ Dµµ ∂ f ∂µ + Dµv ∂ f ∂v ⎛ ⎝⎜ ⎞ ⎠⎟ + 1 v2 ∂ ∂v v2 Dµv ∂ f ∂µ + Dvv ∂ f ∂v ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣⎢ ⎤ ⎦⎥ (7) where the spectral intensity of the ICWs at the resonant wavenumber is AIC I(kres), and their phase and group speeds are Vph and Vgr, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' For diffusion coefficients specific to PUI scattering in an azimuthal magnetic field, we take the shape of the ICW spectrum from the dispersive bispherical formalism (Isenberg & Lee 1996) for perpendicular pickup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The wave- particle interaction is assumed symmetric about µ = 0, so the spectrum is taken symmetric about k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The turbulent heating here is modeled by an isotropic power-law diffusion in v, with a Gaussian decrease to zero in the diffusion coefficient for small v, (8) The total diffusion coefficients in (6) will be the sums of the expressions in (7) and (8), where AIC I(ko = W/VA) and Aturb are constants to be set for various runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We perform these computations on a grid with 2000 x 4000 points between 0 ≤ µ ≤ 1 and 0 ≤ v/VA ≤ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' As appropriate for the outer solar wind, where the magnetic field is essentially azimuthal, we assume that new PUIs appear near µ = 0, v = Vsw, and that the particle distribution is symmetric about µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We take Vsw/VA = 6 rather than a more typical value ~ 10, in order to reduce the necessary computational volume in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The background proton distribution is composed of a thermal core with the ratio of kinetic to magnetic pressure b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='2, a halo of previously picked up PUIs in a Vasyliunas & Siscoe (1976) configuration, and a sharp cutoff above v = Vsw: (9) where b is chosen to give a PUI halo density that is 10% of the total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This distribution is shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' With the initial condition given by (9), we solve (6) on the grid using the biconjugate gradient stabilized method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We take reflecting boundary conditions at µ = 0 and 1, and place an absorbing boundary at v = 10 VA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Given the presence of this outer boundary in phase space, Dµµ Dµv Dvv ⎧ ⎨ ⎪⎪ ⎩ ⎪ ⎪ ⎫ ⎬ ⎪⎪ ⎭ ⎪ ⎪ = AIC 1– µ2 ( )I(kres) µv −Vgr 1– µVph v ⎛ ⎝⎜ ⎞ ⎠⎟ 2 Vph 1– µVph v ⎛ ⎝⎜ ⎞ ⎠⎟ Vph 2 ⎧ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎫ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎪ Dvv = Aturb (v /VA)−5/3 v /VA ≥1 exp − (v −VA)2 (VA / 5)2 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ v /VA ≤1 ⎧ ⎨ ⎪⎪ ⎩ ⎪ ⎪ f (v) = exp − 5v2 VA 2 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ + b v Vsw ⎛ ⎝⎜ ⎞ ⎠⎟ −3/2 exp −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='1 v Vsw ⎛ ⎝⎜ ⎞ ⎠⎟ −3/2 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ v ≤ Vsw b v Vsw ⎛ ⎝⎜ ⎞ ⎠⎟ −30 exp (−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='1) v ≥ Vsw ⎧ ⎨ ⎪ ⎪⎪ ⎩ ⎪ ⎪ ⎪ along with the neglect of adiabatic deceleration, we expect this idealized model to only yield physically reasonable distributions for a period near the beginning of the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The results for an initial time period, which are shorter for larger values of Aturb, will be qualitatively illustrative of the combined scattering and diffusive heating of newly ionized PUIs in the outer solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We first consider the case of Aturb = 0, which should reproduce the conditions treated in the original dispersive bispherical calculation (Isenberg & Lee 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In keeping with the slow time scale for pickup in the outer solar wind, we take AIC I(ko) = 10–5 in computational units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='1 Starting with the background distribution (9), we follow the total kinetic energy of the protons as a function of time, Eb (t), which is shown by the blue curve in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We then repeat this computation starting with an additional slug of particles, representing newly ionized PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' These additional PUIs are confined to the pitch angle range 0 ≤ µ ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='03 and the speed range 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='85 ≤ v/VA ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='05, which straddles the model solar wind speed at Vsw = 6 VA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this region, the we take the value of f to be a constant equal to the value from (9) at v = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='85 VA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' With this shelf of extra particles in the distribution, the total proton density is increased by a factor of 10–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The total proton energy in this case, Es (t), is shown by the red curve in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' To quantify the energetics of QL scattering of the newly ionized PUIs, we compare the evolution of the total energy of the proton distributions in these two computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Ideally, one might prefer to track the actual scattered particles, but in this diffusive system the discernable density enhancement in the slug quickly disappears and we are unable to follow the behavior of that small portion of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Figure 4 shows the quantity Q º DE(t)/DE(0), where DE = Es – Eb for this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this context, (1 – Q) represents the normalized net energy lost by the new PUIs as they scatter toward isotropy in the undisturbed QL interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The normalized energy change levels off at Q = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='893, which is the same value predicted by the dispersive bispherical calculation of Isenberg & Lee (1996) for Vsw/VA = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In the turbulent driving scenario for the outer solar wind (Isenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a), this proton energy loss appears in ICWs that proceed to drive the turbulence, but the observations at Pioneer 11 and Voyager 2 show that this amount of driving is too large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' When turbulent heating is added to the system, the combined 2-D diffusion proceeds somewhat faster than the effectively 1-D pitch-angle scattering that occurs when Aturb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The total proton energy rises approximately linearly with time for all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Keeping AIC I(ko) = 10–5, we choose five values of Aturb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0005, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='001, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='002, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In Figure 5, we show the results of the normalized energy difference, Q (t), between the computations made with and without the slug of new PUIs for these cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The computed energy difference reaches a minimum depending on the value of Aturb, before increasing due to further diffusive heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We interpret these minimum values to indicate the normalized energy of the slug once it has completely scattered to a closed shell in phase space, corresponding to the end state of the QL anisotropy instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The curves in Figure 5 show that the cases with larger values of Aturb lose less energy in the process of scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The minimum values for each case are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1 This illustrative computation only addresses the relative effects of isotropization and turbulent heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' As such, it is sufficient to work in dimensionless computational, or grid, units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' All velocities are normalized to VA, and total proton kinetic energies per proton mass are then defined as ½ f ´ (v/VA)4, summed over all grid points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The time parameter then scales as VA (W AIC I (ko))–1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' These computations suggest that the resolution to the discrepancy between the predicted energy loss of new PUIs and the observed turbulent heating of the core solar wind can be found in the influence of the background turbulence on the weak QL scattering of these PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In this example, the new PUIs can be scattered to a stable closed shell while giving up a fraction of their energy, which can range from 11% down to 1%, depending on the strength of the background turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Defining fD = (1 – Qmin)(Vsw/VA), this range corresponds to effective fD reductions for these cases from the dispersive bispherical value of fD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='642 to fD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Table 1 lists these effective values of fD for each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The values used to reproduce the observed properties of the outer solar wind lie within this range (Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Our suggestion here that interstellar PUIs are continually heated by the ambient turbulence in the outer solar wind is relatively new, in that previous models of solar wind heating and the large-scale turbulent evolution have not included such an effect (Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Adhikari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Zank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Oughton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov & Goldstein 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Usmanov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012, 2014, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020d, c, b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Ng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Wiengarten et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Isenberg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2003, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, the observations of PUI out to ~52 AU from the New Horizons mission (Elliot et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021, 2022) have found that PUIs are not cooled as much as would be predicted by the Vasyliunas & Siscoe (1976) model, which incorporates the effects of adiabatic deceleration under conditions of the radial expansion of a constant-speed solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The New Horizons data show that the PUI distribution still generally exhibits a cutoff in speed at the solar wind value in the solar wind frame (apart from indications of local shock heating downstream of observed shocks (Zirnstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018)), but that the “cooling index” (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Swaczyna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021) indicates that the observed PUIs have been heated since their pickup and isotropization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This heating appears to be in addition to, and independent of, the localized energization seen at these interplanetary shocks (McComas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A Self Regulating System Given the substantial variability of the solar wind, the scenario presented here allows for an intriguing possibility of self-regulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The ambient turbulence in the expanding wind will decay with increasing heliocentric distance if it is not actively driven by the fluctuations from the PUI instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' If the turbulence in some region is temporarily weak, due perhaps to a faster expansion, the QL scattering can proceed to a bispherical-like shape as originally envisioned by Zank, Matthaeus, and Smith.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' This interaction will generate fluctuations at the level ~ VA/Vsw times the initial PUI energy, leading to a stronger turbulent driving than that indicated over the large scale by the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' In some other region where the turbulence is strong, the turbulent energization will modify the scattering to reduce the QL energy loss from the PUI instability, leading to a corresponding reduction in the turbulent driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' More generally, a parcel of solar wind, advecting outward, could cycle between these two circumstances, actively maintaining a level of turbulent driving which, on average, would be some fraction of the bispherical prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A schematic diagram of this regulation is shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We do not know the details of the specific mechanism by which the parallel ICWs generated by the PUI instability are transformed into turbulent fluctuations in the distant solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Thus, it is difficult to theoretically establish the fraction of QL intensity that would result from this self-regulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We show here that a fraction consistent with the observed solar wind heating can be attained within an order-of-magnitude intensity variation of the background turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Future theoretical research and simulation modeling would be extremely valuable in understanding this complicated interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Summary and Conclusions Interstellar PUIs, formed from the ionization of inflowing interstellar neutral atoms, dominate the plasma behavior of the supersonic solar wind beyond ~ 40 AU from the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' They accumulate with increasing radial position to make up a large fraction of the thermal energy of the outer solar wind, and their properties strongly influence the details of the solar wind termination shock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The energy released when newly ionized PUIs are scattered toward isotropy is thought to drive the observed turbulent heating of the core solar wind protons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' However, the interaction predicted from standard QL scattering due to the conventional operation of the anisotropy instability provides far too much energy to the turbulence in the outflowing plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We have suggested that the energizing effects of the ambient background turbulence on the weakly scattering PUIs should be taken into account in the determination of the generated unstable fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We have illustrated the possible form of this turbulent modification with an idealized computation, using a combined QL diffusive description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We identify a potential self- regulation mechanism in these combined effects, which may explain the observed level of turbulence and solar wind heating in the distant solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Further theoretical work and simulation studies specifically addressing the details of PUI scattering and turbulent driving under realistic conditions are needed to accurately model these interactions in the outer solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' We are grateful for valuable conversations with E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Möbius, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Swaczyna, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Verscharen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' PAI, BJV and CWS are supported by NASA grant 80NSSC18K1215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' PAI and BJV are also supported by NSF grant AGS2005982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' PAI is further supported by NASA grant 80NSSC18K0655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' References Adhikari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Dosch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 793, 52 Adhikari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Webb, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 891, 34 Adhikari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hunana, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 841, 85 Aggarwal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Taylor, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 822, 94 Argall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Fisher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Joyce, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015, Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 42, 9617 Argall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hollick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Pine, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 849, 61 Axford, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1972, in Solar Wind, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Sonett, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Coleman, & J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Wilcox (Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=': NASA Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Pub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' SP-308), 609 Brodiano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Andrés, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Dmitruk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 922, 240 Cannon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014a, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 784, 150 Cannon, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014b, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 787, 133 Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Möbius, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Gloeckler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2013, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 118, 3946 Cowee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Russell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Strangeway, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2008, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 113, A08220 Elliott, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zirnstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 885, 156 Fisher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Argall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Joyce, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 830, 47 Florinski, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Heerikhuisen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Niemiec, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Ernst, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 826, 197 Florinski, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Heerikhuisen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Khazanov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 719, 1097 Galeev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Sagdeev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1988, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 144, 427 Gary, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1993, Theory of Space Plasma Microinstabilities (Cambridge, England: Gazis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1984, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 89, 775 Gazis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Lazarus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1982, Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 9, 431 Goldreich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Sridhar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1995, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 438, 763 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1997, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 485, 680 Hellinger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Trávnícek, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Plasma Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 81, 305810103 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 832, 32 Hellinger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matteini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Landi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 811, L32 Hollick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Pine, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018a, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 863, 75 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018b, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 863, 76 Holzer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1972, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 77, 5407 Huddleston, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Coates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Johnstone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1992, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 97, 19,163 Huddleston, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Strangeway, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Warnecke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Russell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Kivelson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1998, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 103, 19887 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1986, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 91, 9965 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2005, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 623, 502 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1996, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 101, 11,055 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Vasquez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', in press, arXiv: 1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='11366 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2003, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 592, 564 Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Richardson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 719, 716 Johnstone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Huddleston, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Coates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1991, in Cometary Plasma Processes, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Johnstone (Washington, DC: AGU), 259 Joyce, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Murphy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Schwadron, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 724, 1256 Kolmogorov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1941a, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' URSS, 32, 16 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1941b, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' URSS, 30, 301 Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1971, Plasma Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 13, 1079 Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Ip, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1987, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 92, 11,041 Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Möbius, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Gary, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Winske, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 117, A10102 Marchuk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Watson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 923, 185 Markovskii, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Vasquez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2022, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 924, 111 Markovskii, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Vasquez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Chandran, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2019, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 875, 125 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 889, 7 Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Oughton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1999, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 82, 3444 McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Shrestha, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Swaczyna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2022, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 934, 147 McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Swaczyna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Szalay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2021, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 254, 19 McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zirnstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Bzowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 233, 8 McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Allegrini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Bagenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2008, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 140, 261 Min, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 852, 39 Min, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Gary, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2017, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 122, 7891 Murphy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Tsurutani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Balogh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Southwood, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1995, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 72, 447 Ng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Bhattacharjee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Munsi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2010, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 115, A02101 Oughton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Wan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Osman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2015, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A, 373, 201401152 Oughton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Breech, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 116, A08105 Pine, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hollick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020a, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 900, 94 Pine, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hollick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020b, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 900, 93 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020c, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 900, 92 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020d, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 900, 91 Schlickeiser, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1989, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 336, 243 Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Isenberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Richardson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 638, 508 Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2001, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 106, 8253 Swaczyna, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zirnstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2020, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 903, 48 Summerlin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Viñas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Moore, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Christian, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Cooper, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 793, 93 Szegö, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Glassmeier, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Bingham, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2000, Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 94, 429 TenBarge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Howes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Plasmas, 19, 055901 Usmanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Goldstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2006, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 111, A07101 Usmanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Goldstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2012, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 754, 40 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2014, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 788, 43 –––––.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 820, 17 Usmanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Breech, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Goldstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2011, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 727, 84 Vasquez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Hamilton, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', MacBride, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Leamon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2007, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 112, A07101 Vasyliunas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Siscoe, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1976, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 81, 1247 von Kármán, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Howarth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1938, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' London, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' A, 164, 192 Wiengarten, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Oughton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Engelbrecht, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2016, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 833, 17 Williams, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1994, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 99, 19,229 Williams, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1995, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 100, 17,059 Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Davidson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1972, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 77, 5399 Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', He, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 866, 41 Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Matthaeus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', & Smith, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 1996, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 101, 17,093 Zank, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Adhikari, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', 869, 23 Zirnstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', McComas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', Kumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 2018, PhRvL, 121, 075102 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Minimum Values of the Normalized Energy Loss, Q, and the Corresponding Effective Values of fD for the Cases of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Aturb Qmin eff fD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='642 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='945 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='962 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='228 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='984 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='096 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='990 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='060 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Sketch of the plasma response of newly ionized PUIs in the azimuthal magnetic field of the outer solar wind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The ions initially form an unstable ring distribution, depicted by the red dot, which scatters to a closed shell in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The conventional QL theory predicts a bispherical shell, given by the blue curve as reflected into the other quadrants of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The red dashed curve indicates a possible modification of the shell due to interaction with the ambient turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' VA v v|| Vsw bispherical turbulent dissipation Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Normalized initial proton distribution function (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='1 1 0 2 4 6 8 10 f (v) v/V A Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Evolution of the total proton energy in grid units, when Aturb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The blue curve uses the initial distribution (8), and the red curve has the additional slug of new PUIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 388 390 392 394 0 10000 20000 30000 40000 50000 E tot t Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Evolution of the normalized energy difference, Q, between the computations with and without the slug of new PUIs, for Aturb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Evolution of the normalized energy difference, Q, for increasing values of Aturb, while AIC I(ko) is fixed at 10–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The values are Aturb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0001 (green), 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='0005 (light blue), 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='001 (red), 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='002 (dark blue), and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='003 (black).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' The respective minima are given in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='98 1 0 10000 20000 30000 40000 50000 Q t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content='98 1 0 5000 10000 15000 20000 25000 30000 Q t r = Ro r = Ro + dr High <δB2> Low <δB2> More Spherical More Bi spherical Less E loss Less Driving More E loss More Driving Reduced <δB2> Increased <δB2> Local SW with with Turbulent Self-Regulation with a with a New PUIs Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} +page_content=' Schematic diagram of the self-regulation mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf'} diff --git a/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/2301.05593v1.pdf.txt b/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/2301.05593v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7001772c5304ad8ce2757063c6e5f2e6b9dc00bb --- /dev/null +++ b/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/2301.05593v1.pdf.txt @@ -0,0 +1,2521 @@ +Scalable Estimation for Structured Additive +Distributional Regression +Nikolaus Umlauf +Universität Innsbruck +Johannes Seiler +Universität Innsbruck +Mattias Wetscher +Universität Innsbruck +Thorsten Simon +Universität Innsbruck +Stefan Lang +Universität Innsbruck +Nadja Klein +Technische Universität Dortmund +Abstract +Recently, fitting probabilistic models have gained importance in many areas but es- +timation of such distributional models with very large data sets is a difficult task. In +particular, the use of rather complex models can easily lead to memory-related efficiency +problems that can make estimation infeasible even on high-performance computers. We +therefore propose a novel backfitting algorithm, which is based on the ideas of stochastic +gradient descent and can deal virtually with any amount of data on a conventional laptop. +The algorithm performs automatic selection of variables and smoothing parameters, and +its performance is in most cases superior or at least equivalent to other implementations +for structured additive distributional regression, e.g., gradient boosting, while maintain- +ing low computation time. Performance is evaluated using an extensive simulation study +and an exceptionally challenging and unique example of lightning count prediction over +Austria. A very large dataset with over 9 million observations and 80 covariates is used, +so that a prediction model cannot be estimated with standard distributional regression +methods but with our new approach. +Keywords: Generalized additive models for location, scale and shape; gradient descent; itera- +tively weighted least squares; stochastic optimization. +1. Introduction +Fitting distributional regression models of high complexity to large data is challenging with +respect to storage and computational feasibility due to data volume or very high-dimensional +vectors of model parameters required to define sufficiently flexible models. Moreover, in many +applications, solving the problem also requires automatic selection of variables since manual +or stepwise searches in such model spaces are impossible to be conducted. In recent years, +techniques have already been developed to efficiently estimate generalized additive models +(GAM; Hastie and Tibshirani 1990; Fahrmeir, Kneib, and Lang 2004) and generalized additive +models for location scale and shape (GAMLSS; Rigby and Stasinopoulos 2005; Klein, Kneib, +and Lang 2015b). For example, Wood, Li, Shaddick, and Augustin (2017); Li and Wood (2020) +show how to decompose the iterative estimation algorithm for GAMs to be able to compute +models for large data and gigadata with coefficients up to 104 and up to 108 observations. +arXiv:2301.05593v1 [stat.CO] 13 Jan 2023 + +2 +Scalable Estimation for Structured Additive Distributional Regression +Lang, Umlauf, Wechselberger, Harttgen, and Kneib (2014) present efficient algorithms for +Bayesian multilevel models for example by, discretization and indexing to significantly reduce +the number of floating point operations. These ideas are carried over to estimate fully Bayesian +structured additive distributional regression models (Klein, Kneib, Lang, and Sohn 2015c), +the Bayesian version of GAMLSS, such that e.g. modelling the precipitation climatology +across Austria with over 1.2 million daily observations is possible (Umlauf, Klein, and Zeileis +2018). While in principle being easily trainable in terms of data size with the approach of Li +and Wood (2020), GAMs are not suited here given the censored nature of the response daily +precipitation with a spike at zero. Nevertheless, for more complicated probabilistic models +or larger n, techniques such as Umlauf et al. (2018) also reach their limits. On the one hand, +such models can no longer be computed on conventional computers since there is simply a +lack of random-access memory (RAM); on the other hand, the computing time increases so +much that modeling with many variables is not possible in a foreseeable time. +To break down these barriers in structured additive distributional regression models, we +propose a novel estimation algorithm, which we call batchwise backfitting and which combines +the ideas of the classic backfitting optimization with stochastic gradient descent (SGD), an +efficient algorithm based on a stochastic approximation to gradient descent for finding local +maxima of an objective function J(θ) of a parameter vector θ ∈ Rp (Robbins and Monro +1951). +Compared to costly gradient descent methods, which involve updates of the form +θ = θ − η∇θJ(θ) based on the whole data set, SGD replaces the gradient ∇θJ(θ) by a noisy +(yet unbiased) estimate thereof, thus being much faster to compute. However, convergence +to a local optimum, which is theoretically guaranteed as long as the learning rate vector η +fulfils the Robbins-Monroe conditions (Robbins and Monro 1951) can be extremely slow. +We show that our batchwise backfitting algorithm induces a learning rate that can be de- +composed into the product of a scalar step length ν and an adaptive learning rate vector δ +based on second order information of the objective function through an unbiased estimate +of the Hessian, similar to the concept of natural gradients motivated from information the- +ory (Amari 1998; Duan, Anand, Ding, Thai, Basu, Ng, and Schuler 2020). The result is +an algorithm that requires little manual tuning and ensures fast convergence. Depending on +the choice of ν we show that our algorithm closely mimics special cases such as resampling +or gradient boosting (Efron and Tibshirani 1993; Mayr, Fenske, Hofner, Kneib, and Schmid +2012). In addition, we demonstrate that our new algorithm does not only significantly reduce +computation time and requires extremely little memory, it also has excellent properties in +terms of variable selection; thus markedly contributing to a wider applicability of structured +additive distributional regression to big data and highly parameterized models. +The remainder of the paper is structured as follows. In Section 2, structured additive distri- +butional regression models are briefly reviewed. In Section 3, the new batchwise backfitting +algorithm and its implementation for distributional regression models is presented. In an +extensive simulation study in Section 4, the performance of the algorithm is investigated, +whereas in Section 5 we further highlight the usefulness of the algorithm developing a distri- +butional model for lightning count forecasting using a very large data set with ≈ 9.1 million +observations and 80 covariates. The final Section 6 concludes. Additional details on how to +use our software implementation and further simulation results are contained in the Appendix. + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +3 +2. Structured Additive Distributional Regression Models +2.1. Model Specification +The idea in structured additive distributional regression (or GAMLSS; Rigby and Stasinopou- +los 2005; Klein, Kneib, Klasen, and Lang 2015a) is to model all distributional parameters +of an arbitrary parametric response distribution (rather than just the mean) through co- +variates. +Based on data (Yi, xi) of responses Yi (possibly non-continuous or multivariate, +i.e. Yi = Y i ∈ RD, D > 1) and available covariate information xi, for i = 1, . . . , n ob- +servations, we assume conditional independence of individual response observations given +covariates. Specifically +Y |x ∼ DY +� +θ1(x)) = h−1 +1 (η1(x)), θ2(x)) = h−1 +2 (η2(x)), . . . θK(x)) = h−1 +K (ηK(x)) +� +where DY denotes a parametric distribution with K parameters θk ≡ θk(x), k = 1, . . . , K, +and parametric density dY (·; θ1, . . . , θK). Each parameter θk is linked to an additive predictor +ηk ≡ ηk(x) using known monotonic and twice differentiable functions hk(·) (with inverses h−1 +k +also known as link- and response functions) to ensure potential parameter space restrictions +on θk. The additive predictor for the k-th parameter is modeled as +ηk = ηk(x; βk) = f1k(x; β1k) + . . . + fJkk(x; βJkk), +(1) +based on j = 1, . . . , Jk unspecified (possibly non-linear) functions fjk(·), applied to a subset +of x. For a data set of i = 1, . . . , n observations, let X be the covariate matrix with rows xi, +and ηk = (η1,k, . . . , ηn,k)⊤ be the corresponding n dimensional vector of predictors each entry +containing the sum of evaluations of fjk(·) at xi. The parameters βk = (β1k, . . . , βJkk)⊤ are +the regression coefficients and we denote furthermore Xk = (X1k, . . . , XJkk) the predictor +specific design matrices, whose structure only depend on the type of covariate(s) and as- +sumptions about fjk(·). For the models discussed here, matrices Xjk are typically based on a +basis function approach, e.g., using B-spline basis functions (Eilers and Marx 1996) or thin- +plate splines (Wood 2003) for modeling smooth effects. Therefore, each function fjk(·) may +be represented by the linear combination fjk(Xjk, βjk) = Xjkβjk which leads to so-called +GAM-type or structured additive predictors ηk (STAR, Fahrmeir et al. 2004). +2.2. Penalized Likelihood Estimation +Likelihood-based estimation in this flexible model class is typically based on the penalized +log-likelihood function +ℓpen(β, τ; y, X) = ℓ(β; y, X) + +K +� +k=1 +Jk +� +j=1 +Pjk(βjk, τ jk), +(2) +where ℓ(β; y, X) is log-likelihood function +ℓ(β; y, X) = +n +� +i=1 +log dY (yi; θi,1 = h−1 +1 (η1(xi; β1)), . . . , θi,K = h−1 +K (ηK(xi; βK))), +θk = (θ1,k, . . . , θn,k)⊤ are the parameter vectors and β = (β⊤ +1 , . . . , β⊤ +K)⊤ the stacked vector +of regression coefficients to be estimated. The overall design matrix is X = (X1, . . . , XK), + +4 +Scalable Estimation for Structured Additive Distributional Regression +where each Xk consists of rows xi,k. To avoid the problem of overfitting, each function fjk(·) +is regularized through the penalty terms Pjk(βjk, τ jk), where τ jk controls the amount of +smoothness and Pjk(·) is specific to fjk(·). In general, the penalty terms are assumed to be +of the following quadratic form +Pjk(βjk, τ jk) = β⊤ +jkKjk(τ jk)βjk. +(3) +For instance, when using P-splines, Pjk(·) is computed by a penalty matrix τ jkKjk formed +by the cross-product of difference matrices. This then penalizes too abrupt jumps of neigh- +boring coefficients to achieve a smooth functional form (a similar penalty structure results +from, e.g., thin-plate splines or tensor splines; Fahrmeir, Kneib, Lang, and Marx 2013; Wood +2017). Groll, Hambuckers, Kneib, and Umlauf (2019) extend the classical smoothing penalty +for GAMLSS to (fused) LASSO-type penalties Pjk(βjk, τ jk) = β⊤ +jkKjk(τ jk)βjk, where the +penalty Kjk(·) is also a function of the regression coefficients accounting for (approximate) L1- +regularization (Tibshirani, Saunders, Rosset, Zhu, and Knight 2005; Oelker and Tutz 2017). +In the following, we will describe the algorithms with the “classic” penalization (3) for the +sake of simplicity, but more complex penalties can be implemented just as straightforwardly. +2.3. Backfitting +To maximize (2), Rigby and Stasinopoulos (2005) proposed a modified backfitting algorithm +based on iteratively reweighted (penalized) least squares (IRPLS; Marx 1996), which similar +to the backfitting algorithm of Umlauf et al. (2018) employs updates based on iteratively +weighted least squares (IWLS; Gamerman 1997). The updating equation for the jk-th model +term of (1) is given by +β[t+1] +jk += (X⊤ +jkWkkXjk + Kjk(τ jk))−1X⊤ +jkWkk(zk − η[t+1] +k,−j ), +(4) +with vector of working observations zk = η[t] +k + W−1 +kk uk, score vectors uk = ∂ℓ(β; y, X)/∂ηk +and working weights Wkk = −diag(∂2ℓ(β; y, X)∂ηk∂η⊤ +k ). Here, ηk,−j represents the pre- +dictor without the j-th model term. The backfitting iterations at (4) are computed until a +certain termination criterion is met, e.g., when the relative change of the coefficients becomes +very small. The optimal smoothing parameters can be estimated using e.g. stepwise selection +(Belitz and Lang 2008), where in each updating step at (4) each τ jk = (τ1jk, . . . , τLjkjk)⊤ is +optimized one after the other using adaptive search intervals, e.g., using the Akaike (AIC) +or Bayesian information criterion (BIC), noting that in many cases, τ jk is just a scalar. For +a detailed description of the algorithm see Umlauf et al. (2018). Moreover, for numerical +reasons it is oftentimes better to replace the Hessian by the expected Fisher information with +weights Wkk = −diag(E(∂2ℓ(β; y, X)/∂ηk∂η⊤ +k )) (Klein et al. 2015b). To reduce computation +times, the design matrix Xjk can be modified by using only the unique values of the covariate +data, which in many cases have much less observations than the number of observations in +the whole data set. This leads to an updating step with reduced working observations and +weights, which can be calculated quickly via a simple sum with indices of the unique values +(Lang et al. 2014). Although this method can save quite a bit of computing time, memory +issues can still occur very quickly in the GAMLSS model class. + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +5 +3. Scalable Estimation +As a solution to large-scale data, we present our batchwise backfitting algorithm as part of +this section first. Then we discuss some interesting properties of our algorithm depending on +the step length choice but also further computational details. +3.1. Batchwise Backfitting +Instead of using all observations of the data, we replace score vector and Hessian in (4) +through unbiased estimates thereof, which are readily available based on a random batch of +the data. That is, we use a randomly chosen subset denoted by the subindex [i] ⊆ {1, . . . , n} +to arrive at a stochastic updating step of the form +β[t+1] +jk += +(1 − ν) · β[t] +jk + +(5) +ν · (X⊤ +[i],jkW[i],kkX[i],jk + Kjk(τ jk))−1X⊤ +[i],jkW[i],kk(z[i],k − η[t+1] +[i],k,−j) += +(1 − ν) · β[t] +jk + ν · β[i],jk +and introduce a step length control parameter ν (or learning rate) specifying the amount of +which β[t] +jk is updated to β[t+1] +jk +in the direction of the new estimate β[i],jk on batch [i]. In +each iteration, (5) is evaluated on exactly one batch [i], such that computational burden can +be reduced considerably . As mentioned in the introduction, this mimics a second order SGD +algorithm (Bottou 2012) since +β[t+1] +jk += β[t] +jk + ν · (β[i],jk − β[t] +jk) = β[t] +jk + ν · δ[t] +jk, +(6) +where the difference δ[t] +jk between parameter updates from iteration t and batch [i] is a de- +composition of first and second order derivative information with +δ[t] +jk += +β[i],jk − β[t] +jk += +� +β[t] +jk − H[i],kk +� +β[t] +jk +�−1 s[i] +� +β[t] +jk +�� +− β[t] +jk += +−H[i],kk +� +β[t] +jk +�−1 s[i] +� +β[t] +jk +� +, +where s[i](·) and H[i],kk(·) are unbiased estimates of the score and Hessian (see also Umlauf +et al. 2018) evaluated on batch [i] +s[i](βjk) += +∂ℓpen(β, τ; y[i], X[i]) +∂βjk += ∂ℓ(β; y[i], X[i]) +∂βjk ++ +K +� +k=1 +Jk +� +j=1 +� +∂P(βjk, τ jk) +∂βjk +� +, +H[i],kk(βjk) += +∂s[i](βjk) +∂β⊤ +jk += ∂2ℓpen(β, τ; y[i], X[i]) +∂βjk∂β⊤ +jk += +∂2ℓ(β, τ; y[i], X[i]) +∂βjk∂β⊤ +jk ++ +K +� +k=1 +Jk +� +j=1 +� +∂P(βjk, τ jk) +∂βjk∂β⊤ +jk +� +. +Using second order information can speed up convergence considerably and our updating +rule resembles that of natural gradients (Amari 1998). In each iteration of the batchwise + +6 +Scalable Estimation for Structured Additive Distributional Regression +backfitting algorithm the update step length is adaptive, because of the curvature information +provided in δ[t] +jk. +The working weights W[i],kk, the working responses z[i],k and the predictors η[i],k are computed +based on the current states β[t] +k . For each batch [i], the algorithm subsequently cycles over +all parameters of the response distribution, the outer loop, and all model terms, the inner +loop, in the typical backfitting manner, i.e., the predictors η[i],k and model terms fjk(·) +are updated instantly within the inner loop. By iteration through the batches the batchwise +backfitting algorithm updates in a memory efficient manner from batch to batch either until all +observations are included once, or the algorithm runs through the data a prespecified number +of epochs. This design principle makes the batchwise backfitting optimizer computationally +simple and thus scaleable. +3.2. Choosing the Batch Size +The size of the batches is application specific. In general, a good strategy is to first estimate +intercept only models, with ηk = β0k, using batchwise backfitting and small batches, e.g., +about 1000 observations, and then inspect the coefficient paths. If these are stationary after +a certain runtime, the batch size is sufficient and if not it should be increased successively. For +examples of coefficient paths that are stationary after a certain “burn-in” phase, see Figure 1. +This approach has proven successful, e.g., in the application Section 5. +3.3. Choosing the Step Length +Our default batchwise backfitting works with a fixed step length ν = 0.1, which is a good +compromise between fast updates and numerical stability and has also been shown to be +very robust in simulations. In addition, we consider the following two variants of the basic +algorithm. +Resampling Variant +If ν = 1, the algorithm can be interpreted as a resampling method +and each update β[t+1] +jk +resembles a “sample” of the “distribution” of βjk, and convergence is +achieved in distribution, i.e., once the estimates are fluctuating around a certain level. The +final estimate ˆβ is then computed by taking the means or medians of the resulting coefficient +paths after convergence. +Boosting Variant +In addition, (6) can also be utilized to enforce complete variable selection +in a boosting type algorithm when only the model term with the best improvement in the out- +of-sample log-likelihood is updated. An important innovation of this variant over classical +gradient boosting for GAMLSS is that the smoothing parameters τ jk are also updated in +each iteration (see Section 3.4), i.e., the last iteration already leads to the final model. In +contrast, in classical boosting for GAMLSS the optimal stopping iteration is crucial and +has to be determined separately (commonly based on costly cross validation (CV); see, e.g., +Mayr et al. 2012; Thomas, Mayr, Bischl, Schmid, Smith, and Hofner 2018). +The costly +CV makes boosting GAMLSS infeasible for big data. A further considerable advantage of +our algorithm is that it makes the selection of the best model term relatively fair, unlike +boosting variants with fixed prechosen degrees of freedom for fjk(·). For example, with more +complicated distributions, it can easily happen that certain parameters are never selected + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +7 +Figure 1: +Examples of coefficient paths for βjk of a spline model term fjk(·) using the three +different variants of the batchwise backfitting algorithm. +because of too large differences in the gradients. Zhang, Hepp, Greven, and Bergherr (2022) +try to circumvent this problem by adaptive step length selection for ν in the linear normal +location-scale model, however, for the general class of GAMLSS this procedure seems to be +difficult or even impossible to implement. +Graphical Illustration +The three different variants of the algorithm are illustrated in +Figure 1. Here, the coefficient paths are shown for a model term estimated with a thin-plate +spline. The left plot shows coefficient paths of the batchwise backfitting with ν = 0.1, it +takes approximately 50 iterations for the coefficients to reach a steady state. The middle plot +illustrates coefficients paths for the boosting version with ν = 0.1 of the algorithm and possible +updating only if the relative improvement of the log-likelihood on the next batch [˜i] is larger +than a prespecified constant c. In the first few iterations, the model term is not selected, all +coefficients are zero. Around iteration 10, coefficients start to deviate from zero and converge +to a steady state shortly after iteration 150. After that, the coefficients are no longer updated, +as indicated by the strict horizontal movements. The right plot shows coefficient paths if the +step length is set to ν = 1 and updates are always allowed in combination with slice sampling +of the smoothing parameters τ jk under the AIC using the next batch [˜i]. Similar to the basic +batchwise backfitting algorithm, the coefficients require about 50 iterations to reach a steady +state. randomly from a proposal density and an acceptance step is not required. +3.4. Estimation of Hyperparameters +As described in Section 2.2, the smoothness of fjk(·) is controlled by parameters τ jk. In the +proposed implementation these parameters are either estimated according to an information +criterion like the AIC or BIC, which is computed on an out-of-sample batch [˜i], or by slice + +Classic SGD +Boosting +Resampling +1.5 +5. +1.0 +Coefficients +Coefficients +Coefficients +0.5 +0.5 +0.5 +0.0 +0.0 +-0.5 +5 +5 +1 +50 +100 +150 +200 +1 +50 +100 +150 +200 +50 +100 +150 +200 +Iteration +Iteration +Iteration8 +Scalable Estimation for Structured Additive Distributional Regression +sampling under the information criterion (Neal 2003). +Using the out-of-sample batch for +selection is a novelty, aiming to improve the predictive performance of the model. Moreover, +in addition to commonly used penalties in Pjk(·), complete model term selection can also be +incorporated by an additional LASSO-type penalty for coefficients βjk (Groll et al. 2019). +3.5. Computational Details and Implementation +The complete algorithm is described in pseudo code in Algorithm 1 and is implemented in +the R package bamlss (Umlauf, Klein, Zeileis, and Köhler 2022) within the optimizer function +opt_bbfit(). It supports all commonly used model terms for GAMs, as implemented in +the mgcv package (Wood 2022). In addition, to overcome memory issues with very large +data, the bamlss package now supports the binary flat file format for data frames, which is +implemented in the ff package (Adler, Gläser, Nenadic, Oehlschlägel, Schuemie, and Zucchini +2022). +By processing data and design matrices with ff, the usual memory limitations of +the R ecosystem are circumvented. This is achieved by loading the data sequentially, using +chunks that fit in memory, so that the complete data is never in the RAM. This means +that the batchwise backfitting optimizer opt_bbfit() can work directly with ff objects, i.e., +the batches are loaded directly by the ff infrastructure, which usually means only very little +additional processing time. This makes it possible to use almost arbitrarily large data sets +for the estimation of structured additive distributional regression models. In Appendix A, we +give detailed examples on how to fit models with the new optimizer function and its handling +within the bamlss framework using simulated data with 107 observations. +4. Simulation Study +To investigate the performance of the proposed batchwise backfitting algorithm in terms +of variable selection, mean squared error (MSE), prediction and runtimes, we conduct a +benchmark study against classical Markov chain Monte Carlo (MCMC) and gradient boosting +algorithms for GAMLSS for which we give details next before describing the simulation design +and results. +4.1. Estimation Approaches +In the following, we refer to our proposed approach of batchwise backfitting throughout as +opt_bbfit (as the model fitting function is called in the bamlss package). Our batchwise +backfitting combines the boosting and the resampling variant as described in Section 3.1. +The boosting step is run for 400 iterations including all possible covariates. This first step is +used to preselect the covariates, and only covariates that are updated at least once are included +in the subsequent resampling variant of the algorithm, which is run for 1500 iterations. The +batch indices are drawn randomly, for the very small datasets of 500 observations we use a +batchsize of 400, for larger datasets up to 10000 observations the batchsize is 63% of the data, +for settings with ≥ 10000 observations, the batchsize is fixed constant at 10000. +We investigate the performance of our batchwise backfitting opt_bbfit approach compared +to the following very popular methods in distributional regression. +1. MCMC (sam_mcmc). The default MCMC implementation of the bamlss package (Um- +lauf et al. 2022) in R based on IWLS proposals is used. Note that the sam_mcmc method + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +9 +Algorithm 1 Batchwise backfitting. +Input: y, X, α. +Set: Step length ν ∈ [0, 1], batch index B = (b1, . . . , bT )⊤, goodness-of-fit criterion C, +scaling constant c ∈ R, e.g., c = 1. +Initialize: β, τ, e.g., β = 0, τ = 0.001 · 1. +for t in 1 to number of batches T − 1. do +Set current batch index i = bt. +Set next batch index, e.g., with ˜i = bt+1. +for k = 1 to K do +Initialize η[i],k = 0. +for j = 1 to Jk do +Compute state η[i],k = η[i],k + X[i],jkβ[t] +jk on current batch. +end for +end for +Likewise compute η[˜i],k on next batch. +for k = 1 to K do +for j = 1 to Jk do +Compute old log-likelihood on next batch ℓ(β[t]; y[˜i], X[˜i]). +Set the working response z[i],k = η[i],k + W−1 +[i],kku[i],k. +IWLS step +β[i],jk = (X⊤ +[i],jkW[i],kkX[i],jk + Kjk))−1X⊤ +[i],jkW[i],kk(z[i],k − η[i],−j,k). +Therefore find new τ [t+1] +jk +on next batch. +for l = 1 to Ljk do +Set search interval for τ [t+1] +ljk +, e.g., Iljk = [τ [t] +ljk · 10−1, τ [t] +ljk · 10]. +Find τ [t+1] +ljk +← arg min +τ ⋆ +ljk∈Iljk +C(β[i],jk, τ ⋆ +ljk; y[˜i], X[˜i]), or slice sample under C(·). +end for +Now set ˚βjk = β[t] +jk + ν · (β[i],jk − β[t] +jk). +if Updated log-likelihood ℓ(˚β; y[˜i], X[˜i]) > c · ℓ(β[t]; y[˜i], X[˜i]). then +Update β[t+1] +jk += ˚βjk. +Update η[i],k = η[i],k + X[i],jkβ[t+1] +jk +and likewise η[˜i],k. +else +Set β[t+1] +jk += β[t] +jk. +end if +end for +end for +Alternatively, only update coefficients βjk which lead to the greatest contribution in the next +batch log-likelihood. +end for +Output: Estimates ˆβ = β[T −1]; or “samples” β[t], t = 1, . . . , T − 1; or boosting like coefficient paths +β[t], t = 1, . . . , T − 1 if only the best working model term is updated in each batch. + +10 +Scalable Estimation for Structured Additive Distributional Regression +does not perform variable selection and therefore serves as an unconstrained benchmark. +2. Non-Cyclical Gradient Boosting (gamboostLSS). Gradient boosting for GAMLSS com- +bines an ensemble of weak base learners. Instead of updating every distributional param- +eter with a base learner in each iteration (cyclical), in the non-cyclical gradient boosting +version (Thomas et al. 2018) the algorithm updates only the base learner (model term) +which leads to the highest loss reduction over all distributional parameters in every it- +eration. The intercepts are always updated. The optimal stopping iteration (mstop) is +selected by five-fold CV. The non-cyclical gradient boosting algorithm is implemented +in the R package gamboostLSS (Hofner, Mayr, Fenske, and Schmid 2022). +3. Optimized Non-Cyclical Gradient Boosting (opt_boost). The optimized version of the +non-cyclic gradient boosting algorithm is implemented in the R package bamlss and +utilizes methods for large data sets, originally designed to achieve speed improvements in +MCMC algorithms (Lang et al. 2014). Unlike the classical non-cyclic gradient boosting +algorithm, the model intercepts count as single model terms and are not automatically +updated. Five-fold CV is applied to find the optimal stopping iteration. +4.2. Simulation Design +Response Distributions +We simulate data from the normal distribution (NO), the gamma +distribution (GA), and the zero-adjusted Poisson distribution (ZAP). All three distributions +are implemented in the R package gamlss.dist (Stasinopoulos and Rigby 2022). The package +uses a specific naming convention for the parameters of the distributions, supporting up to +four-parameter distributions. The parameters are µ, σ, ν and τ. In the simulation study, we +let parameters µ and σ depend on covariates. Since all distributions studied in this setting +have two parameters, no specifications for ν and τ are needed. +Predictor Specifications +We use the following predictors ηµ and ησ for each distribution +ηµ = β0µ + f1(x1) + f3(x3) + f2d(lon, lat), +ησ = β0σ + f2(x2) + f3(x3) + f4(x4), +with model intercepts β0µ = 0, β0σ = 0 for NO, β0µ = 1, β0σ = −1 for GA and β0µ = 1, +β0σ = −1.5 for ZAP; and +f1(x) += +x +f2(x) += +x + ((2 · x − 2)2)/5.5 +f3(x) += +−x + π · sin(π · x) +f4(x) += +0.5 · x + 15 · exp +�−2 · (x − 0.2)2� +√ +2π +− +exp +� +−(x+0.4)2 +2 +� +√ +2π +f2d(z1, z2) += +sin(z1) · cos(0.5 · z2). +The simulated functions are shown in Figure 2, these are centered around zero and scaled +so that each effect has a similar range. The link functions for the respective parameters are +as follows: µ = ηµ, log(σ2) = ησ for NO, log(µ) = ηµ, log(σ2) = ησ for GA and log(µ2) = +ηµ, log +� +σ +1−σ +� += ησ for ZAP. Finally, all covariates are drawn independently from uniform +distributions x1, . . . , x4, lon, lat ∼ U(−2, 2). + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +11 +Figure 2: +Functions used in the simulation study. +Further settings +• To investigate performance for small and large data settings alike, we simulate n =500, +1000, 10000 and 50000 number of observations. +• To challenge variable selection, an additional number of noise variables (denoted with +nnoise = 0, 10, 20 in the following) is considered. Each predictor is modeled including +all available covariates. Accordingly, for each predictor three true covariates and nnoise +non-relevant covariates are included. Note that variables lon, lat are counted as one +covariate. +• In the first case the covariates are uncorrelated (ρ = 0), and in the second case correla- +tion is introduced by the Cholesky factorization LL⊤ = Σ of the covariance matrix +Σ = +� +� +� +� +� +� +1 +ρ +ρ2 +· · · +ρl−1 +ρ +1 +ρ +· · · +ρl−2 +... +... +... +... +... +ρl−1 +ρl−2 +ρl−3 +· · · +1 +� +� +� +� +� +� +, +where l is the number of covariates, and correlated covariates are thus generated with +Xcorr = XL⊤ with ρ = 0.7. +• Each scenario is replicated 100 times. +Measures of Performance +To evaluate the performance of the four algorithms, the MSE +of the predictors, the MSE of the effects, the continuous ranked probability score (CRPS; +Gneiting and Raftery 2007) and the number of falsely selected variables in each predictor +(false positives) are calculated based on an out-of-sample validation data-set with 10000 + +Effect of X1 on nμ +Effect of X3 on nμ +Spatial effect on Nμ +2 +2 +2 +8x +X +0 +f3 +0 +F +2 +2 +2 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +X1 +X3 +lon +Effect of X2 on No +Effect of X3 on no +Effect of X4 on no +2 +2 +2 +X4 +t2 +0 +t3 +0 +0 +乙 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +X2 +X3 +X412 +Scalable Estimation for Structured Additive Distributional Regression +observations. +The validation data-set is fixed throughout each response distribution and +each ρ ∈ {0, 0.7}. +We define the MSE of the predictor as the mean of the squared dif- +ferences of the estimated additive predictors and the true additive predictors (MSEk = +1 +n +� +i(ˆηi,k − ηi,k)2, for k = µ, σ). +For the MSE of the effects we use a similar notation, +namely the mean of the squared differences of the true effects and the estimated effects +(MSEfk,j = 1 +n +� +i( ˆfi,k,j − fi,k,j)2, for k = µ, σ and j = 1, 2, 3, 4, 2d). The false positive rate is +defined as the number of non-informative covariates which have a sufficiently large estimated +effect f, i.e. max(f) − min(f) > threshold, with threshold = 0.1. +Computational Details +The simulation was run on the HPC infrastructure LEO4 of the +University of Innsbruck. This HPC infrastructure runs on a Linux system (CentOS 7), and 50 +computing nodes with Intel Xeon (Broadwell/Skylake) processors with up to 3000 gigabyte +(GB) available memory. Depending on the setting, the memory requirements are between 5 +and 50 GB per replication. +4.3. Results +Stopping and Computing Times +Due to high computing times, we set the number of +maximum iterations to identify the optimal stopping iteration mstop for the two boosting +algorithms to 12000. Figure 3 shows the average mstop of all settings. For both boosting +methods the average mstop increases with the sample size and with larger correlations be- +tween covariates. In all but the non-correlated GA settings, opt_boost has a lower average +of mstop than gamboostLSS. With increasing n and ρ = 0.7, the average mstop is 12000 for +gamboostLSS, indicating that more iterations are needed. Figure 4 shows the elapsed time in +minutes for each setting and method. +The gamboostLSS boosting method needs around 600 +to 1100 minutes to compute a single simulation run when n = 50000 (similar to opt_boost +which also needs several hours). Thus we deem increasing the maximum of available iterations +as infeasible. In contrast, the batchwise backfitting method needs only 30 to 60 minutes for +these settings. +MSE +A comparison of the four methods in terms of MSE is made in Figure 5 for all NO- +settings. The MSE decreases sharply with increasing n, except for gamboostLSS in ηµ with +ρ = 0.7, this method has a much higher MSE here. This is due to the limited number of +stopping iterations available for gamboostLSS (note again, that the stopping iteration is set +very large to 12000). The bamlss methods perform better in the small n settings than the +gamboostLSS method. Remarkably, the method opt_bbfit has the smallest MSE for ηµ when +it includes noise variables, and has basically the same performance as sam_mcmc without noise +variables. Only in ησ and n = 500 is opt_bbfit second or third best in each case, though +it always performs better than gamboostLSS. For larger n, the methods are very similar in +terms of MSE. The results for the GA and ZAP distribution are qualitatively very similar and +they can be found in the Appendix (Figures 17 and 18). For the individual effects biases, i.e. +the MSE of the effects, we refer to the Figures 6 and 7 and the Appendix (Figures 19, 20, 21 +and 22). The overall result is that the opt_bbfit is very competitive in terms of MSE of the +effects, in a lot of settings it performs better than the boosting methods, although the MSE + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +13 +Figure 3: +Simulation study. Average mstop of both boosting variants. Correlation ρ = 0.7 +leads to higher mstop. For higher n and correlation the gamboostLSS variant hits the upper +limit (horizontal dashed line at 12000) of possible stopping iterations. +of the effects converges for all methods and effects close to zero with high enough numbers of +observations. + +gamboostLSs +Method: +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +12500 +10000 +7500 +NO +5000 +2500 +0 +12500 +10000 +7500 +NO +5000 +0 +2500 +0 +12500 +iteration +10000 +7500 +GA +5000 +0 +6uidd +2500 +0 +12500 +sto +10000 +7500 +II +GA +5000 +0 +2500 +0 +12500 +10000 +7500 +ZAI +5000 +0 +2500 +0 +12500 +10000 +7500 +ZAI += +0.7 +5000 +P +2500 +0 +Number of observations14 +Scalable Estimation for Structured Additive Distributional Regression +Figure 4: +Simulation study. Computation times for all distributions, noise variables and +correlation settings. +The most computational intensive settings—the two boosting vari- +ants—depending on the number of observations require up to approximately 18 hours to +compute. In the same settings opt_bbfit needs around 1 hour, while the MCMC method +runs 3 hours. + +opt_bbfit +sam mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +1000 +750 +NO +500 +0 +250 +0- +1000 +750 +NO +500- +250 +0- +1000 + minutes +750 +GA +500 +II +0 +u! +250 +I time +0 +Computation +1000 +750 += +G +500 +0.7 +A +250 +0 - +1000 +750 +ZAP +500 += +0 +250 +0- +1000 +750 +ZAP +500- +250- +<0 +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +15 +Figure 5: +Simulation study. Average MSE with the NO distribution for predictor ηµ and ησ +for different number of observations, correlation and noise variable settings. +Predictive Accuracy +Figure 8 shows the CRPS of the three different distributions with +smaller values indicating higher predictive accuracy. +The results are very similar to the +results of the MSE. It is again noteworthy that opt_bbfit has the best performance when +noise variables are included in the NO settings for all n, and in the other settings, when +n ≥ 1000, the performance is almost identical to sam_mcmc and typically better than the +boosting methods. For larger data settings the methods are very similar in terms of CRPS. +Variable Selection +The average false positive rates with the NO distriubtion are displayed +in Figure 9. The false positive rate is defined as the number of non-informative covariates +which have a sufficiently large estimated effect f, i.e. max(f) − min(f) > threshold = 0.1. +The proposed batchwise backfitting method opt_bbfit outperforms every other method in +terms of false positive rates. In all, except two GA distribution settings, n ≥ 5000 observations +are always sufficient to exclude all non-informative covariates with the novel approach. In all + +opt_bbfit +sam mcmc +Method: +gamboostLss +opt boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.3 +0.2 +2 +0.1 +0.0- +0.6- +0.4 - += +0.7 +0.2 +E +0.0- +MSI +0.10 +0.05 +0 +0.00- +0.20 +0.15 +0.10 +0.7 +0.05 +0.00 +Number of observations16 +Scalable Estimation for Structured Additive Distributional Regression +Figure 6: +Simulation study. Average MSE of spatial effect of ηµ for all distributions, different +number of observations, correlation and noise variables. +settings, the true positive rates are 1 for all methods (not shown). We also evaluate the false +positive rate with a whole range of thresholds starting very restrictive from 0.0001 up to 0.3 +for a NO-setting with different numbers of observations (n = 250, 500, 5000, 10000) and find +that except in the n = 250 case the opt_bbfit is performing best (see Appendix Figure 25). +The results for the GA and ZAP distribution are qualitatively the same and can be found in + +opt_bbfit +sam_mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.08 +0.06 +=d +0.04- +NO +0 +0.02 +0.00. +0.075 +L'O=d +0.050 +NO +0.025 +0.000 +0.02 +E Spatial effect nμ +0 +GA +0.01 - +0 +0.00 +0.025 +0.020 +E +=d +0.015 +MSE +GA +0.7 +0.010 +0.005 +0.000. +0.10 +Q +ZAP +0.05 +0 +0.00 +0.15 +0.10 +p= 0.7 +ZAP +0.05 +0.00- +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +17 +Figure 7: +Simulation study. Average MSE of f3 effect of ηµ for all distributions, different +number of observations, correlation and noise variables. +the Appendix (Figures 23 and 24). +Summary +Our batchwise backfitting algorithm has basically the same perfomance on small +datasets (n ≤ 1000) in terms of MSE and CRPS compared to the other three methods used +in this study, and on medium and large datasets (n ≥ 5000) it is almost consistently the best + +opt_bbfit +sam_mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.15 +0.10 +0 +NO +" +0 +0.05 +0.00 +0.15 + = 0.7 +NO +0.10 +0.05 +0.04 +- effect +0.02 +0 +ru +0.00 +0.06 +MSE +0.05 += +0.04 +0.7 +0.03 +0.02 +0.10 +ZAP +0.05 +0 +0.00 +0.09 += 0.7 +ZAP +0.06 +0.03 +Number of observations18 +Scalable Estimation for Structured Additive Distributional Regression +Figure 8: +Simulation study. Average CRPS for all distributions, different number of obser- +vations, correlation and noise variables. +method. Compared to boosting, where computationally intensive CV (or similar) is needed +to determine mstop batchwise backfitting does not require such additional time-consuming +tuning. This makes our algorithm particularly convenient when applied on very large data +sets. Our novel method is also considerably faster than both boosting variants (even with a +determined mstop. The speed advantage ranges from around five times faster for n = 500 up + +opt_bbfit +sam_mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +1.625 +1.600 +=d +NO +1.575 +0 +1.550 +1.525 +1.45 +1.40- +p = 0.7 +NO +1.35 +1.30 +6.0 +5.8 +=d +5.6 +0 +CRPS +5.4 - +4.8- +4.6 +=d +0.7 +4.4 +4.2 +0.85 +=d +ZAP +0 +0.80- +0.84- +p= 0.7 +ZAP +0.81 +0.78 +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +19 +Figure 9: +Simulation study. Average false positive rate with the NO distribution for predictor +ηµ and ησ for different number of observations, correlation and noise variable settings. +to 15 to 20 times faster in the large data setting with n = 50000 observations. Compared with +the bamlss MCMC implementation, the speed advantage is evident from n = 50000 settings, +and we expect it to increase dramatically in even larger data settings. The false positive rates +of our batchwise backfitting method are excellent in all settings which makes this method +also an ideal option for variable selection. Please note once more, that due to computational +costs of benchmark methods the maximum number of observations was 50000 only. However, +in the next Section 5 we show a model estimated with ≈ 9.1 million observations and in the +Appendix A we exemplify that our batchwise backfitting method can easily handle up to 107 +and more observations. +5. Application: Lightning Count Model +Lightning is a major source of atmospheric nitrogen oxides (Schumann and Huntrieser 2007) +which is an important greenhouse gas (Figure SPM.2 in Masson-Delmotte, Zhai, Pirani, +Connors, Péan, Berger, Caud, Chen, Goldfarb, Gomis et al. 2021). Thus, lightning affects +the climate. At the same time lightning is affected by climate change. This effect is subject +to scientific debate (Murray 2018). As lightning processes cannot be resolved by numeric +models of the atmosphere, this debate is mainly based on proxies of lightning that have +a simple formulation and often consider only a particular aspect of the physical processes + +Method: +opt_bbfit +sam mcmc +gamboostLSS +opt_boost +nμ +nμ +na +na +o=d +p = 0.7 +p=0 +p = 0.7 +2.0 +1.5 +nnoise +1.0 +0.5 +0.0 +12.5 +10.0 +nnoise +7.5 +5.0 +0 +2.5 +0.0 +20 +nnoise = 2 +15 +10 +20 +5. +O +Number of observations20 +Scalable Estimation for Structured Additive Distributional Regression +involved in lightning. Such simple formulations might be the cloud top height (Price and +Rind 1992), iceflux in the mid atmosphere (Finney, Doherty, Wild, Huntrieser, Pumphrey, +and Blyth 2014) or wind shear (Taszarek, Allen, Brooks, Pilguj, and Czernecki 2021), among +others. +As a reaction, scholars proposed to analyse lightning using machine learning (ML) approaches +that incorporates numerous physical processes (e.g., Ukkonen and Mäkelä 2019; Simon, Mayr, +Morgenstern, Umlauf, and Zeileis 2022). +These are capable to process large amounts of +data and identify most relevant variables from a pool of inputs, but focus on describing the +occurrence of lightning via binary classification and not on the number of lightning counts +which would be crucial to investigate the important quantity of flash rates (Cecil, Buechler, +and Blakeslee 2014). +The batchwise backfitting method proposed in this manuscript allows, for the first time, the +estimation of a high-dimensional, fully probabilistic count data model, including variable +selection, using a very large data set. +Data +We use high-resolution data from the Austrian Lightning Detection and Information +System (ALDIS, Schulz, Cummins, Diendorfer, and Dorninger 2005) and explain the lightning +counts with reanalysis data from ERA5, the fifth generation of ECMWF (European Centre +for Medium-Range Weather Forecasts) atmospheric reanalyses of global climate (Copernicus +Climate Change Service 2017; Hersbach and et al. 2020). ERA5 provides globally complete +and consistent pseudo-observations of the atmosphere using the laws of physics. The horizon- +tal resolution is approx. 32 km, while the temporal resolution is hourly and covers the years +from 1950 to present. The model is not only interesting for a more comprehensive description +of lightning, but also for a full reanalysis to study climate trends in lightning (Simon et al. +2022), because homogeneous lightning observations from ALDIS are only available for the +period in the order of a decade, here 2010–2019. +We develop a model for the complete lightning count distribution using our proposed batch- +wise backfitting algorithm from Section 3.1. Therefore, we aggregate the hourly lightning +counts to the ERA5 grid cells, resulting in a final data set of ≈ 9.1 million observations. To +estimate a well-calibrated model, we preselect 76 ERA5 covariates that are potentially good +candidates for lightning and convective processes, such as convective available potential en- +ergy (cape), convective precipitation (cp), cloud top height (cth), specific cloud snow water +content between −20◦C and −40◦C (cswc2040), among others (for a detailed description of +variables see Morgenstern, Stucke, Simon, Mayr, and Zeileis 2022). Since the distributional +model is quite complex and very many covariates also have strong skewness, these are stan- +dardized before estimation using the empirical cumulative distribution function estimated +with the training data, so that all covariates are in the value range [0, 1] and thus numerical +problems can be avoided To examine the final model performance, we split the data into a +training and a test data set with ≈ 8.2 million (2010–2018) and ≈ 0.9 million (2019) obser- +vations, respectively. The distribution of hourly lightning counts is shown in Figure 10 and +indicates that the data contain a very large number of zero counts. +Model Specification +For this reason, in a distributional model for the number of light- +nings, the extreme frequency of zeros must be considered. We found that the discretized +version of the generalized Pareto distribution, DGP(ξ, σ), provides promising results (see the + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +21 +Figure 10: +Distribution of hourly lightning counts, gray bars, along with estimated frequen- +cies using a discretized generalized Pareto distribution, DGP(ξ, σ), blue dots and lines. Note +the y-axis is broken because of the large number of zeros in the data, 97.4%. +first row of Figure 13 and the next paragraph). For details on construction of the DGP, and +discrete distributions in general we refer to Subrata (2015); Krishna and Singh Pundir (2009). +As a first overall check, we fitted an intercept only model using the batchwise backfitting +algorithm to assess the goodness of fit of the unconditional distributional model with DGP. +The model estimates the two parameters with a batchsize of 50000 and 1000 batches within +about 5 minutes on a conventional laptop with Intel(R) Core(TM) i7-8550U CPU 1.80GHz +processor. This fitted DGP density is shown in Figure 10 by the blue dots and lines and indicates +that the model follows the observed relative frequencies well. However, some probabilities are +overestimated, e.g., for one and two lightnings, which is due to the fact that the model does +not yet include covariates. +Thus, we consider the following prediction model counts ∼ DGP(log(ξ) = ηξ, log(σ) = ησ) and +additive predictors +ηk = f1k(doy) + f2k(hour) + f3k(lon, lat) + f4k(cape) + . . . + f80k(mcc), +where covariate doy is the day of the year, hour the hour of the day and model term +f3k(lon, lat) specifies a spatial effect of longitude and latitude coordiantes. Model terms +f4k(·), . . . , f80k(·) represent the effects of further ERA5 covariates, such as convective avail- +able potential energy (cape) or the medium cloud cover (mcc). For the scope of simplicity, +we do not elaborate on these covariates in this manuscript; we refer the reader to Copernicus +Climate Change Service (2017); Hersbach and et al. (2020) for details. +Model Fitting +For fitting this model we proceed as follows. We use the boosting variant +of the batchwise backfitting algorithm to select the most suitable of the 80 model terms. We +use the AIC for selecting suitable covariates with 200 batches of size 50000. The estimation +time is about 12 hours, which is not very long considering the huge data set and the very + +2.0 +% +5. +Observed frequencies +Fitted DGP(≤, o) distribution +0.5 +0.4% +0.0 +0 +2 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +>19 +Lightning counts22 +Scalable Estimation for Structured Additive Distributional Regression +Figure 11: +Batchwise backfitting log-likelihood contributions for parameters ξ and σ of +selected covariates. +Figure 12: +DGP lightning model. Selection of estimated smooth effects of the final model +for parameter ξ, top row, and parameter σ, bottom row. The gray shaded areas show the +variation of estimates in the resampling variant of the batchwise backfitting algorithm. +large number of covariates. +In Figure 11 the log-likelihood contributions for the selected +covariates are shown indicating that the algorithm converged running 200 iterations/batches. +Note that using the AIC in the batchwise backfitting algorithm results in a rather sparse + +S3 +mstop = 200 +mstop = 200 +s(cape) +s(cp) +400 +300 +LogLik contribution +LogLik contribution +100 +s(cswc2040) +200 +s(cth) +s(cape) +s(cswc2040) +100 +s(hh) +s(cth) +s(cp) +s(mcc) +s(hh),s(viwvd),s(mcc) +0 +0 +1 +50 +100 +150 +200 +1 +50 +100 +150 +200 +Iteration +Iteration0.4 +0.4 +0.4 +0.4 +0.2 +s(cswc2040).xi +0.2 +0.2 +s(cape).xi +0.0 +2 +? +O- +S +4. +4 +4 +0.2 +0.4 +0.6 +0.8 +1.0 +0.00.2 +0.40.6 +0.8 +1.0 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +5 +10 +15 +3 +3 +3 +3 +s(cswc2040).sigma +2 +2 +2 +2 + s(cape).sigma +s(cth).sigma +(hh).sigm +0 +L- +-1 +2 +2 +2 +2 +3 +? +一 +一 +0.2 +0.4 +0.6 +0.8 +1.0 +0.0 0.2 0.4 0.6 +60.81.0 +0.20.4 +0.6 +0.81.0 +0 +5 +101520 +cape +cswc2040 +cth +hhUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +23 +model that selects only the most relevant variables, and that the final selected covariates are +consistent with the study of Simon et al. (2022) which use binary classification only. This +fact is noteworthy because variable selection is done for the entire data set and in one run +of the batchwise backfitting algorithm, as opposed, e.g., to the costly CV commonly used +in boosting such models. In a second step, the model is refitted with the selected variables +using the resampling variant of the batchwise backfitting algorithm to improve the predictive +performance. We again use 200 batches of size 50000, not using the first 100 iterations as +burn-in. The estimation time is approximately 35 minutes using the training data with ≈ 8.2 +million observations. The reason why the resampling variant is so much faster is mainly due +the very sparse model and the use of slice sampling of the smoothing variances under the +“out-of-sample” AIC (see Section 3.4). +Results +The estimated smooth effects of the final model are shown in Figure 12. The effects +show that some of the covariates could be modeled by linear functions, such as the effects for +the variables cape and cswc2040 for the parameter ξ. Instead, others, such as the effect for +hh for both ξ and σ, are nonlinear. The estimated effects appear plausible, e.g., an increase +in cape for the location parameter ξ increases the number of lightning counts, shifting the +probability mass of the DGP distribution to larger counts. Similarly, for the scale parameter σ, +increasing cape also results in a shift in the probability mass towards larger lightning counts. +The effects for hh also show that higher counts can be expected in the afternoon, when the +ground air temperature reaches its maximum. +In the first row of Figure 13, a worm plot is shown along with a probability integral transform +(PIT) histogram of the quantile residuals calculated using the test data (year 2019). Both +plots show that the model is quite well calibrated, only for the very large count observations +(about 2% in the worm plot) the model does not seem to be optimally balanced. The reason +for this is certainly the extremely low number of cases for large lightning counts, these are +simply extremely difficult to model as a result. In the second row of Figure 13 we show the +prediction from the DGP model together with the observed lightning counts for two days and +locations in the test data set. The predictions show well that the model is indeed able to +reflect the observed lightning activity. In addition, we also show in the plot for comparison +the prediction from a logistic model for lightning yes/no (using the same selected covariates), +marked by the black dashed line. It can be seen that the DGP model and the binomial model +give basically the same point predictions, however the DGP model is much more informative +as it allows to to derive prediction probabilities at different thresholds rather just a binary +decision rule yes/no. +These promising results show that the proposed method is capable to process large amounts +of data, select the most relevant covariates and explain full probability distributions. This +scalable method promises that distributional regression can be applied to large data sets +such as satellite observations (for new developments see, e.g., Holmlund, Grandell, Schmetz, +Stuhlmann, Bojkov, Munro, Lekouara, Coppens, Viticchie, August, Theodore, Watts, Dob- +ber, Fowler, Bojinski, Schmid, Salonen, Tjemkes, Aminou, and Blythe 2021), which will +enable better descriptions of flash rates across Europe and Africa (for a recent climatology +see, e.g., Chakraborty, Menghal, Harshitha, and Sodunke 2022). + +24 +Scalable Estimation for Structured Additive Distributional Regression +Figure 13: +DGP lightning model. The top left panel shows a worm plot of the out-of-sample +randomized quantile residuals. The top right panel the corresponding probability integral +transform (PIT) histogram. Out-of-sample predictions from the DGP lightning model for two +locations and dates are shown in the second row. Observed lightning counts are represented +by the black dot line, predicted probabilities are shown in the background in heat colors. +Predictions for lighting yes/no from a logistic model are shown by the black dashed lines. +Prediction location is shown by the red cross in the map of Austria. +6. Summary +This paper presents a novel algorithm for batchwise backfitting with structured additive distri- +butional regression models, which is applicable to a much broader class of models as compared +to the approach of Li and Wood (2020). The algorithm combines traditional backfitting with +the ideas of SGD algorithms developed for very large data sets. It converges extremely fast +due to an adaptive learning rate vector employing readily available unbiased estimates of the +Hessian, similar to natural gradients. In combination with the flat file data format, it is thus + +Worm plot +PIT histogram +0.6 +1.0 +0.4 +0.8 +0.2 +Deviation +Density +0.6 +0.0 +-0.2 +-0.4 +-0.6 +0.0 +1 +-4 +-2 +0 +2 +4 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Unit normal quantile +Probability integral transform +2019-07-26 +2019-08-05 +5 +0. +5 +P(counts > 0) +Logistic +P(counts > 0) +Logistic +P(counts >= 10) +P(counts > 0) +P(counts >= 10) +P(counts > 0) +P(counts >= 20) +0.8 +4 +P(counts >= 20) +0.8 +Lightning counts +Lightning counts +0.6 +Probability +Probability +0.4 +0 +0 +Q000000001 +0 +0 +0 +00:00 +05:00 +10:00 +15:00 +20:00 +00:00 +05:00 +10:00 +15:00 +20:00 +Hour +HourUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +25 +possible to estimate virtually arbitrarily large models on a conventional laptop, e.g., with 107 +observations and more. +Moreover, depending on the hyperparameter settings, smoothing parameter and variable se- +lection is performed on-the-fly without requiring further computations on additional valida- +tion data. This is, to the best of our knowledge, novel and has never been presented before +in structured additive distributional regression. Besides an extensive simulation study, the +advantages of the new algorithm are demonstrated using complex distributional regression +models on a huge data set for lightning count prediction. +In terms of extensions to the presented framework, the confidence intervals that are not yet +available should be mentioned. Therefore, for the future we plan to extend the algorithm +towards Bayesian estimation. +Acknowledgments +This project was partially funded by the Austrian Science Fund (FWF) grant num- +ber 33941, and FWF grant number 31836 (Thorsten Simon). We are grateful for data sup- +port by Gerhard Diendorfer and Wolfgang Schulz from OVE-ALDIS. The computational +results presented here have been achieved (in part) using the LEO HPC infrastructure of +the University of Innsbruck. Nadja Klein was supported by the Deutsche Forschungsge- +meinschaft (DFG, German Research Foundation) through the Emmy Noether grant KL +3037/1-1. +References +Adler D, Gläser C, Nenadic O, Oehlschlägel J, Schuemie M, Zucchini W (2022). ff: Memory- +Efficient Storage of Large Data on Disk and Fast Access Functions. R package version 4.0.7, +URL https://CRAN.R-project.org/package=ff. +Amari S (1998). “Natural Gradient Works Efficiently in Learning.” Neural Computation, +10(2), 251–276. doi:10.1162/089976698300017746. +Belitz C, Lang S (2008). “Simultaneous Selection of Variables and Smoothing Parameters in +Structured Additive Regression Models.” Computational Statistics & Data Analysis, 53, +61–81. doi:10.1016/j.csda.2008.05.032. +Bottou L (2012). “Stochastic Gradient Descent Tricks.” In G Montavon, GB Orr, KR Müller +(eds.), Neural Networks: Tricks of the Trade, 2nd edition, pp. 421–436. Springer, Berlin, +Heidelberg. ISBN 978-3-642-35289-8. doi:10.1007/978-3-642-35289-8_25. +Cecil DJ, Buechler DE, Blakeslee RJ (2014). “Gridded Lightning Climatology from TRMM- +LIS and OTD: Dataset Description.” Atmospheric Research, 135, 404–414. doi:10.1016/ +j.atmosres.2012.06.028. + +26 +Scalable Estimation for Structured Additive Distributional Regression +Chakraborty R, Menghal PS, Harshitha M, Sodunke MA (2022). “Climatology of Lightning +Activities Across the Equatorial African Region.” In 2022 3rd URSI Atlantic and Asia Pa- +cific Radio Science Meeting (AT-AP-RASC), pp. 1–4. doi:10.23919/AT-AP-RASC54737. +2022.9814276. +Copernicus Climate Change Service (2017). “ERA5: Fifth Generation of ECMWF Atmo- +spheric Reanalyses of the Global Climate.” Copernicus Climate Change Service Climate +Date Store (CDS). Date of access: June 2019, https://cds.climate.copernicus.eu/ +cdsapp#!/home. +Duan T, Anand A, Ding DY, Thai KK, Basu S, Ng A, Schuler A (2020). “NGBoost: Natural +Gradient Boosting for Probabilistic Prediction.” In HD III, A Singh (eds.), Proceedings +of the 37th International Conference on Machine Learning, volume 119 of Proceedings of +Machine Learning Research, pp. 2690–2700. PMLR. +URL https://proceedings.mlr. +press/v119/duan20a.html. +Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. Number 57 in Monographs +on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton, Florida, USA. +Eilers PHC, Marx BD (1996). “Flexible Smoothing Using B-Splines and Penalized Likelihood.” +Statistical Science, 11, 89–121. doi:10.1214/ss/1038425655. +Fahrmeir L, Kneib T, Lang S (2004). +“Penalized Structured Additive Regression for +Space Time Data: +A Bayesian Perspective.” +Statistica Sinica, 14, 731–761. +doi: +10.1007/978-3-642-34333-9_9. +Fahrmeir L, Kneib T, Lang S, Marx B (2013). Regression – Models, Methods and Applications. +Springer-Verlag, Berlin. +Finney DL, Doherty RM, Wild O, Huntrieser H, Pumphrey HC, Blyth AM (2014). “Using +Cloud Ice Flux to Parametrise Large-Scale Lightning.” Atmospheric Chemistry and Physics, +14(23), 12665–12682. doi:10.5194/acp-14-12665-2014. +Gamerman D (1997). “Sampling from the Posterior Distribution in Generalized Linear Mixed +Models.” Statistics and Computing, 7(1), 57–68. doi:10.1023/a:1018509429360. +Gneiting T, Raftery AE (2007). +“Strictly Proper Scoring Rules, Prediction, and Esti- +mation.” +Journal of the American Statistical Association, 102(477), 359–378. +doi: +10.1198/016214506000001437. +Groll A, Hambuckers J, Kneib T, Umlauf N (2019). “LASSO-Type Penalization in the Frame- +work of Generalized Additive Models for Location, Scale and Shape.” Computational Statis- +tics & Data Analysis, 140, 59–74. doi:10.1016/j.csda.2019.06.005. +Hastie T, Tibshirani R (1990). Generalized Additive Models. Chapman & Hall/CRC, New +York. +Hersbach H, et al (2020). “The ERA5 Global Reanalysis.” Quarterly Journal of the Royal +Meteorological Society, 146(730), 1999–2049. doi:10.1002/qj.3803. + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +27 +Hofner B, Mayr A, Fenske N, Schmid M (2022). +gamboostLSS: Boosting Methods for +GAMLSS Models. R package version 2.0-6, URL https://CRAN.R-project.org/package= +gamboostLSS. +Holmlund K, Grandell J, Schmetz J, Stuhlmann R, Bojkov B, Munro R, Lekouara M, Coppens +D, Viticchie B, August T, Theodore B, Watts P, Dobber M, Fowler G, Bojinski S, Schmid A, +Salonen K, Tjemkes S, Aminou D, Blythe P (2021). “Meteosat Third Generation (MTG): +Continuation and Innovation of Observations from Geostationary Orbit.” Bulletin of the +American Meteorological Society, 102(5), 990–1015. doi:10.1175/BAMS-D-19-0304.1. +Klein N, Kneib T, Klasen S, Lang S (2015a). “Bayesian Structured Additive Distributional +Regression for Multivariate Responses.” +Journal of the Royal Statistical Society C, 64, +569–591. doi:10.1111/rssc.12090. +Klein N, Kneib T, Lang S (2015b). “Bayesian Generalized Additive Models for Location, +Scale and Shape for Zero-Inflated and Overdispersed Count Data.” Journal of the American +Statistical Association, 110(509), 405–419. doi:10.1080/01621459.2014.912955. +Klein N, Kneib T, Lang S, Sohn A (2015c). “Bayesian Structured Additive Distributional +Regression with an Application to Regional Income Inequality in Germany.” Annals of +Applied Statistics, 9, 1024–1052. doi:10.1214/15-aoas823. +Krishna H, Singh Pundir P (2009). “Discrete Burr and discrete Pareto Distributions.” Sta- +tistical Methodology, 6(2), 177–188. doi:10.1016/j.stamet.2008.07.001. +Lang S, Umlauf N, Wechselberger P, Harttgen K, Kneib T (2014). +“Multilevel Struc- +tured Additive Regression.” +Statistics and Computing, 24(2), 223–238. +doi:10.1007/ +s11222-012-9366-0. +Li Z, Wood SN (2020). “Faster Model Matrix Crossproducts for Large Generalized Linear +Models With Discretized Covariates.” Statistics and Computing, 30(1), 19–25. doi:10. +1007/s11222-019-09864-2. +Marx BD (1996). “Iteratively Reweighted Partial Least Squares Estimation for Generalized +Linear Regression.” Technometrics, 38(4), 374–381. URL http://www.jstor.org/stable/ +1271308. +Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, +Goldfarb L, Gomis M, et al. (2021). “Climate Change 2021: The Physical Science Basis.” +Contribution of working group I to the sixth assessment report of the intergovernmental +panel on climate change, pp. 3–32. +Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012). “Generalized Additive Models +for Location, Scale and Shape for High Dimensional Data: A Flexible Approach Based on +Boosting.” Journal of the Royal Statistical Society C, 61(3), 403–427. doi:10.1111/j. +1467-9876.2011.01033.x. +Morgenstern D, Stucke I, Simon T, Mayr GJ, Zeileis A (2022). “Differentiating Lightning in +Winter and Summer With Characteristics of the Wind Field and Mass Field: Supplemen- +tary Material.” doi:10.5281/zenodo.5851700. Funding: Austrian Research Promotion +Agency (FFG), project no. 872656. + +28 +Scalable Estimation for Structured Additive Distributional Regression +Murray LT (2018). +“An Uncertain Future for Lightning.” +Nature Climate Change, 8(3), +191–192. doi:10.1038/s41558-018-0094-0. +Neal RM (2003). “Slice Sampling.” The Annals of Statistics, 31(3), 705–767. doi:10.1214/ +aos/1056562461. +Oelker MR, Tutz G (2017). +“A Uniform Framework for the Combination of Penalties in +Generalized Structured Models.” Advances in Data Analysis and Classification, 11(1), 97– +120. doi:10.1007/s11634-015-0205-y. +Price C, Rind D (1992). “A Simple Lightning Parameterization for Calculating Global Light- +ning Distributions.” Journal of Geophysical Research: Atmospheres, 97(D9), 9919–9933. +doi:10.1029/92JD00719. +Rigby RA, Stasinopoulos DM (2005). +“Generalized Additive Models for Location, Scale +and Shape.” Journal of the Royal Statistical Society C, 54(3), 507–554. doi:10.1111/j. +1467-9876.2005.00510.x. +Robbins H, Monro S (1951). “A Stochastic Approximation Method.” The Annals of Mathe- +matical Statistics, 22(3), 400–407. doi:10.1214/aoms/1177729586. +Schulz W, Cummins K, Diendorfer G, Dorninger M (2005). +“Cloud-to-Ground Lightning +in Austria: A 10-Year Study Using Data from a Lightning Location System.” Journal of +Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005332. +Schumann U, Huntrieser H (2007). “The Global Lightning-Induced Nitrogen Oxides Source.” +Atmospheric Chemistry and Physics, 7(14), 3823–3907. doi:10.5194/acp-7-3823-2007. +URL https://acp.copernicus.org/articles/7/3823/2007/. +Simon T, Mayr GJ, Morgenstern D, Umlauf N, Zeileis A (2022). “Amplification of Annual +and Diurnal Cycles of Alpine Lightning.” Preprint, Research Square. doi:10.21203/rs. +3.rs-965951/v3. +Stasinopoulos DM, Rigby RA (2022). +gamlss.dist: Distributions for Generalized Additive +Models for Location, Scale and Shape. +R package version 6.0-5, URL https://CRAN. +R-project.org/package=gamlss.dist. +Subrata C (2015). “Generating Discrete Analogues of Continuous Probability Distributions: +A Survey of Methods and Constructions.” Journal of Statistical Distributions and Applica- +tions, 2(6). doi:10.1186/s40488-015-0028-6. +Taszarek M, Allen JT, Brooks HE, Pilguj N, Czernecki B (2021). “Differing Trends in United +States and European Severe Thunderstorm Environments in a Warming Climate.” Bulletin +of the American Meteorological Society, 102(2), 296–322. doi:10.1175/BAMS-D-20-0004. +1. +Thomas J, Mayr A, Bischl B, Schmid M, Smith A, Hofner B (2018). “Gradient boosting +for distributional regression - faster tuning and improved variable selection via noncyclical +updates.” Statistics and Computing, 28(3), 673–687. doi:10.1007/s11222-017-9754-6. + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +29 +Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005). “Sparsity and Smoothness via +the Fused Lasso.” Journal of the Royal Statistical Society: Series B (Statistical Methodol- +ogy), 67(1), 91–108. doi:10.1111/j.1467-9868.2005.00490.x. +Ukkonen P, Mäkelä A (2019). “Evaluation of Machine Learning Classifiers for Predicting Deep +Convection.” J. Adv. Model. Earth Sy., 11(6), 1784–1802. doi:10.1029/2018MS001561. +Umlauf N, Klein N, Simon T, Zeileis A (2021). “bamlss: A Lego Toolbox for Flexible Bayesian +Regression (and Beyond).” Journal of Statistical Software, 100(4), 1–53. doi:10.18637/ +jss.v100.i04. +Umlauf N, Klein N, Zeileis A (2018). “BAMLSS: Bayesian Additive Models for Location, +Scale, and Shape (and Beyond).” Journal of Computational and Graphical Statistics, 27(3), +612–627. doi:10.1080/10618600.2017.1407325. +Umlauf N, Klein N, Zeileis A, Köhler M (2022). bamlss: Bayesian Additive Models for Location +Scale and Shape (and Beyond). R package version 1.1-9, URL http://CRAN.R-project. +org/package=bamlss. +Wood SN (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society: +Series B (Statistical Methodology), 65(1), 95–114. doi:10.1111/1467-9868.00374. +Wood SN (2017). Generalized Additive Models: An Introduction with R. 2nd edition. Chapman +& Hall/CRC, Boca Raton. +Wood SN (2022). +mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness +Estimation. R package version 1.8-41, URL https://CRAN.R-project.org/package=mgcv. +Wood SN, Li Z, Shaddick G, Augustin NH (2017). “Generalized Additive Models for Gigadata: +Modelling the UK Black Smoke Network Daily Data.” Journal of the American Statistical +Association, 112(519), 1199–1210. doi:10.1080/01621459.2016.1195744. +Zhang B, Hepp T, Greven S, Bergherr E (2022). “Adaptive Step-Length Selection in Gradient +Boosting for Gaussian Location Scale Models.” Computational Statistics. doi:10.1007/ +s00180-022-01199-3. + +30 +Scalable Estimation for Structured Additive Distributional Regression +A. Batchwise Backfitting in bamlss +This section provides introductory examples on how to fit distributional regression models for +very large data sets with the bamlss package and the new batchwise backfitting algorithm. +After loading the package with +R> library("bamlss") +we simulate a data set with 107 observations using the GAMart() function with +R> set.seed(123) +R> d <- GAMart(n = 1e+07, sd = -1) +Then we save the data as a .csv file and remove the R data frame from the global environment. +R> write.csv(d, file = "d.csv", row.names = FALSE) +R> rm(d) +To design the scenario very realistic with respect to a very large data set, we read the data +back into R as a flat file data frame. +R> library("ff") +R> dff <- read.csv.ffdf(file = "d.csv", header = TRUE) +The GAMart() function with sd = -1 simulates Gaussian data with y ∼ N(µ = ηµ, log(σ) = +ησ) and predictors given by +ηµ += +f1(x1) + f2(x3) + f2d(lon, lat) +ησ += +f3(x2) + f2(x3) + f4(x4). +Here functions f1(·), . . . , f4(·) represent univariate smooth functions and function f2d(·) a +smooth two dimensional effect of coordinates lon and lat. Note that the data set contains +additional noise variables x5 and x6. +A.1. Boosting Variant +We first illustrate the usage of the new model fitting engine using the boosting variant of +the batchwise backfitting algorithm, see Section 3.1. Therefore, we set up a list of model +formulae, where each formula includes all covariates. +R> f <- ~ s(x1) + s(x2) + s(x3) + s(x4) + s(x5) + s(x6) + s(lon, lat) +R> f <- list(update(f, y ~ .), f) +Before estimation can be started, batch indices can be specified with +R> set.seed(456) +R> n <- nrow(dff) +R> batch_ids <- lapply(1:400, function(...) sample(n, size = 10000)) + +Umlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +31 +I.e., we use 400 batches with batchsize of 10000 such that the algorithm can practically see +the entire data once. Then, the model is estimated with +R> b <- bamlss(f, data = dff, family = "gaussian", ++ +sampler = FALSE, optimizer = opt_bbfit, ++ +nu = 0.1, always = FALSE, AIC = TRUE, eps_loglik = 0.0001, ++ +batch_ids = batch_ids, select = TRUE, ++ +ff_name = "ff_simdata", delete = FALSE, overwrite = FALSE, ++ +light = TRUE) +Note that the data frame dff is an "ffdf" data frame. +For processing all the design +matrices for estimating the model, we therefore specify a directory name with ff_name = +"ff_simdata", where all matrices can be stored as ff objects. The directory ff_simdata is +created in the current working directory and will not be deleted after estimation if delete += FALSE. This has the advantage, that the ff matrices can be reused for other models, e.g., +using a different distribution, i.e., setting up more models will be much faster. If overwrite = +FALSE, the directory for storing the ff objects will not be overwritten when calling bamlss(). +Moreover, option light = TRUE can be used to reduce the memory footprint of the final +returned object even more. Here, we need to set sampler = FALSE in order to switch off sub- +sequent MCMC sampling. The opt_bbfit() optimizer function is used as the model fitting +engine, for which we specify the step length control parameter nu = 0.1. Argument always = +FALSE causes model terms to be updated only if the relative improvement of the out-of-sample +log-likelihood (on the next batch) is larger than 0.0001 (controlled by argument eps_loglik). +By setting AIC = TRUE the smoothing variances are selected by the out-of-sample AIC, oth- +erwise the out-of-sample log-likelihood is used. As we are interested in the boosting variant +of the batchwise backfitting algorithm in this case, we need to set argument select = TRUE, +i.e., only the model term with the largest contribution to the log-likelihood in the next batch +will be updated. On a Linux system with Intel(R) Core(TM) i7-8550U CPU 1.80GHz pro- +cessors, the estimation time is about 55 minutes, which is considerably fast for such a large +data set. Selection frequencies of the 400 boosting iterations and individual log-likelihood +contributions can be shown with +R> contribplot(b) +mu +Sel. freq. +s.s(x1) +0.116 +s.s(x3) +0.116 +s.s(lon,lat) +0.112 +p +0.004 +s.s(x2) +0.000 +s.s(x4) +0.000 +s.s(x5) +0.000 +s.s(x6) +0.000 +sigma +Sel. freq. + +32 +Scalable Estimation for Structured Additive Distributional Regression +Figure 14: +Log-likelihood contribution paths for selected terms of the Gaussian model. +p +0.220 +s.s(x3) +0.156 +s.s(x4) +0.140 +s.s(x2) +0.136 +s.s(x1) +0.000 +s.s(x5) +0.000 +s.s(x6) +0.000 +s.s(lon,lat) +0.000 +The selection frequencies reveal that the boosting variant of the batchwise backfitting algo- +rithm selected the correct model terms, the corresponding contribution paths are shown in +Figure 14. The paths also show the convergence of the algorithm already at about iteration +200. +A.2. Resampling +This section demonstrates the resampling variant with slice sampling of smoothing variances +of the batchwise backfitting algorithm. +From the selected model terms we set up a new +formula +R> f <- list( ++ +y ~ s(x1) + s(x3) + s(lon, lat), ++ +~ s(x2) + s(x3) + s(x4) ++ +) +and only slightly modify the arguments supplied to the main model fitting function bamlss() + +μ +mstop = 400 +mstop = 400 +009 +s(x2) +s(x3),s(x1),s(lon,lat +500 +6008001000 +s(x4) +LogLik contribution +LogLik contribution +s(x3) +400 +300 +200 +400 +100 +200 +0 +0 +1 +100 +200 +300 +400 +1 +100 +200 +300 +400 +Iteration +IterationUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +33 +R> m <- bamlss(f, data = dff, family = "gaussian", ++ +sampler = FALSE, optimizer = opt_bbfitp, ++ +AIC = TRUE, slice = TRUE, batch_ids = batch_ids, ++ +ff_name = "ff_simdata", delete = FALSE, overwrite = FALSE, ++ +light = TRUE) +Estimation takes about 24 minuts. Note that we use a wrapper version opt_bbfitp() for esti- +mating the model. The only difference is that the parameters are stored as "mcmc" “samples” +in the returned object, so all extractor functions such as predict(), residuals(), etc., can +be used similarly to estimating full Bayesian models with MCMC. For details on using bamlss, +see Umlauf, Klein, Simon, and Zeileis (2021) and the project website http://bamlss.org/. +A major advantage of the new infrastructures, including the ff package, is that all design +matrices can be reused and do not need to be recomputed, saving large amounts of run- +time. To use this feature, all that is required is careful handling of the ff_name, delete and +overwrite arguments (use as described in the last section). By setting slice = TRUE, slice +sampling of smoothing parameters in combination with the resampling variant with nu = 1, +eps_loglik = -Inf and always = TRUE is used for batchwise backfitting, i.e., updates are +always accepted. Convergence of the algorithm can be inspected by, e.g., coefficient paths of +the parameters. + +34 +Scalable Estimation for Structured Additive Distributional Regression +B. Simulation Results +In this section we show all the results of the simulation study presented in Section 4. +Figure 15: +Functions used in the simulation study. Green lines correspond to the estimated +effects of the opt_bbfit model of the 100 replications in the simulation setting: normal +distribution NO, observations n = 5000, noise variables nnoise = 10 and correlation rho = +0. +Figure 16: +Spatial effect used in the simulation study. Spatial effects correspond to the +estimated two-dimensional effects of the method opt_bbfit in the 100 replications of the +simulation setting: normal distribution NO, observations n = 5000, noise variables nnoise = +10 and correlation rho = 0. The mean was calculated over the 100 different estimates of the +two-dimensional effect. + +Effect of X1 on nμ +Effect of X3 on nμ +Effect of X2 on no +Estimates +2 +Truth +2 +2 +8x +X +0 +f3 +0 +f2 +0 +F +乙 +2 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +X1 +X3 +X2 +Effect of X3 on no +Effect of X4 on no +2 +2 +X4 +t3 +0 +- +乙 +-2 +-1 +0 +1 +2 +-2 +-1 +0 +1 +2 +X3 +X4True spatial effect +Mean spatial effect +2 +2 +0 +2 +2 +-2 +0 +2 +-2 +-1 +0 +-1 +2 +lon +lonUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +35 +Figure 17: +Simulation study. Average MSE with the GA distribution for predictor ηµ and ησ +for different number of observations, correlation and noise variable settings. + +opt_bbfit +sam mcmc +Method: +gamboostLss +! +opt_ boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.09 +0.06 += +2 +0 +0.03 +0.00 +0.20 +0.15 +2 +0.10 +0.7 +0.05 +E +MSI +0.00 +0.3 +0.2 +0 +0.1 +0.0 - +0.20 +0.15 += +0.10 +0.7 +0.05 +0.00 +Number of observations36 +Scalable Estimation for Structured Additive Distributional Regression +Figure 18: +Simulation study. Average MSE with the ZAP distribution for predictor ηµ and +ησ for different number of observations, correlation and noise variable settings. + +opt_ bbfit +sam mcmc +Method: +gamboostLSs +opt boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.15 +0.10 +0 +0.05 +0.00- +0.15 +0.10 += +0.7 +0.05 +E +0.00 +MSI +2.0 +1.5- +1.0- +0 +0.5- +0.0- +2.5 - +2.0- +=d +1.5- +0.7 +1.0 +0.5 +0.0 +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +37 +Figure 19: +Simulation study. Average MSE of f1 effect of ηµ for all distributions, different +number of observations, correlation and noise variables. + +opt_bbfit +sam mcmc +Method: +gamboostLSs +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.05 +0.04 +0.03 +0 +NO +" +0.02 +0 +0.01 +0.00 +0.15 +0.10 +p = 0.7 +NO +0.05 +0.00- +0.006 +0.004 + effect +0 +0.002 +ru +0.000- +0.025 +fl +0.020 +MSE +=d +0.015 +GA +0.010 +0.7 +0.005 +0.000 +0.06 +0.04 +ZAP +0 +0.02 +0.00 +0.075 +0.050- + = 0.7 +ZAP +0.025 +0.000- +Number of observations38 +Scalable Estimation for Structured Additive Distributional Regression +Figure 20: +Simulation study. Average MSE of f2 effect of ησ for all distributions, different +number of observations, correlation and noise variables. + +opt_bbfit +sam_mcmc +Method: +gamboostLSs +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.05 +0.04 +0.03 +0 +NO +" +0.02 +0 +0.01 +0.00- +0.125 +0.100 +p = 0.7 +0.075 +NO +0.050. +0.025 +0.06 +0.04 + - effect +0.02 +na +0.00. +0.16 +MSE +=d +0.12 +GA +0.7 +0.08 +0.20 +0.15 +ZAP +0.10- +0 +0.05 +0.00 +0.3 +0.2- + = 0.7 +ZAP +0.1 - +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +39 +Figure 21: +Simulation study. Average MSE of f3 effect of ησ for all distributions, different +number of observations, correlation and noise variables. + +opt_bbfit +sam_mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.075 +0 +0.050- +NO +" +0 +0.025 +0.000 +0.12 +0.09- +p = 0.7 +NO +0.06 +0.03 +0.2 + - effect +0.1 +0 +na +0.0- +0.20- +MSE +0.15 +=d +GA +0.10- +0.7 +0.05 +0.4 +0.3- +ZAP +0.2 - +0 +0.1 - +0.0 - +0.6 +p = 0.7 +0.4 - +ZAP +0.2- +0.0 - +Number of observations40 +Scalable Estimation for Structured Additive Distributional Regression +Figure 22: +Simulation study. Average MSE of f4 effect of ησ for all distributions, different +number of observations, correlation and noise variables. + +opt_bbfit +sam_mcmc +Method: +gamboostLss +opt_boost +nnoise = 0 +nnoise = 10 +nnoise = 20 +0.06 +0.04 - +=d +NO +0 +0.02 +0.00. +0.100 +0.075 +L'O=d +NO +0.050- +0.025 +0.000- +0.20- +0.15 +=d + - effect +GA +0.10 +0 +0.05 +ou +0.00- +MSE +0.10 +=d +GA +0.7 +0.05 +0.00 +0.3 +0.2 +=d +ZAP +0.1 - +0 +0.0 - +0.4 - +0.3 +p= 0.7 +ZAP +0.2 +0.1 +0.0- +Number of observationsUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +41 +Figure 23: +Simulation study. Average false positive rate of the GA distribution for predictor +ηµ and ησ for different number of observations, correlation and noise variable settings. + +Method: +opt_ bbfit +sam_mcmc +gamboostLss +opt_boost +nμ +nμ +na +na +p=0 +p = 0.7 +0=d +p = 0.7 +2.0 +1.5 +nnoise +1.0 +0.5 +0.0 +12.5 +10.0 +nnoise +7.5 +5.0 +2.5 +0.0 +20 +nnoise = +15 +10 +5 +0- +Number of observations42 +Scalable Estimation for Structured Additive Distributional Regression +Figure 24: +Simulation study. Average false positive rate of the ZAP distribution for predictor +ηµ and ησ for different number of observations, correlation and noise variable settings. +Figure 25: +Simulation study. Average false positive rate of 10 replications per setting for +different threshold values. Setting: Number of observations varies, NO, ρ = 0.7 and nnoise += 10. For n ≥ 500 the method opt_bbfit is the best in terms of excluding non-informative +variables. + +Method: +opt_ bbfit +sam mcmc +gamboostLSs +opt_boost +nμ +nμ +na +na +p=0 +p = 0.7 +0=d +p = 0.7 +2.0 +1.5 +nnoise +1.0 += +0.5 +0.0 +12.5 +10.0 +nnoise +7.5 +5.0 += +2.5 +0.0 +20 +nnoise = +15 +10. +5. +01 +Number of observationsMethod: +opt bbfit +sam mcmc +gamboostLSS +opt boost +n = 250 +n = 500 +n = 5000 +n = 10000 +12.5 +10.0 +7.5 +rate +5.0 +2.5 +12.9 +10.0 +7.5 +5.0 +2.5 +0.0- +1 +入 +3 +O: +O: +2 +0.0 +2 +ThresholdUmlauf N., Seiler J., Wetscher M., Simon T., Lang S., Klein N. +43 +Affiliation: +Nikolaus Umlauf, Johannes Seiler, Mattias Wetscher, Thorsten Simon, Stefan Lang +Department of Statistics +Faculty of Economics and Statistics +Universität Innsbruck +Universitätsstr. 15 +6020 Innsbruck, Austria +E-mail: Nikolaus.Umlauf@uibk.ac.at, +Johannes.Seiler@uibk.ac.at, +Mattias.Wetscher@uibk.ac.at, +Thorsten.Simon@uibk.ac.at, +Stefan.Lang@uibk.ac.at +URL: https://eeecon.uibk.ac.at/~umlauf/, +https://www.uibk.ac.at/statistics/personal/lang/ +Nadja Klein +Chair of Uncertainty Quantification and Statistical Learning +Research Center Trustworthy Data Science and Security (UA Ruhr) +Department of Statistics (Technische Universität Dortmund) +Joseph-von-Fraunhofer-Str. 25 +44227 Dortmund, Germany +E-mail: nadja.klein@statistik.tu-dortmund.de +URL: https://rc-trust.ai/klein/ + diff --git a/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/load_file.txt b/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a6212d8bf494ff8eba53f1d6389e21d05dc6a00e --- /dev/null +++ b/T9E5T4oBgHgl3EQfbA-t/content/tmp_files/load_file.txt @@ -0,0 +1,1640 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf,len=1639 +page_content='Scalable Estimation for Structured Additive Distributional Regression Nikolaus Umlauf Universität Innsbruck Johannes Seiler Universität Innsbruck Mattias Wetscher Universität Innsbruck Thorsten Simon Universität Innsbruck Stefan Lang Universität Innsbruck Nadja Klein Technische Universität Dortmund Abstract Recently, fitting probabilistic models have gained importance in many areas but es- timation of such distributional models with very large data sets is a difficult task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In particular, the use of rather complex models can easily lead to memory-related efficiency problems that can make estimation infeasible even on high-performance computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We therefore propose a novel backfitting algorithm, which is based on the ideas of stochastic gradient descent and can deal virtually with any amount of data on a conventional laptop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The algorithm performs automatic selection of variables and smoothing parameters, and its performance is in most cases superior or at least equivalent to other implementations for structured additive distributional regression, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', gradient boosting, while maintain- ing low computation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Performance is evaluated using an extensive simulation study and an exceptionally challenging and unique example of lightning count prediction over Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' A very large dataset with over 9 million observations and 80 covariates is used, so that a prediction model cannot be estimated with standard distributional regression methods but with our new approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Keywords: Generalized additive models for location, scale and shape;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' gradient descent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' itera- tively weighted least squares;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Introduction Fitting distributional regression models of high complexity to large data is challenging with respect to storage and computational feasibility due to data volume or very high-dimensional vectors of model parameters required to define sufficiently flexible models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Moreover, in many applications, solving the problem also requires automatic selection of variables since manual or stepwise searches in such model spaces are impossible to be conducted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In recent years, techniques have already been developed to efficiently estimate generalized additive models (GAM;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Hastie and Tibshirani 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Fahrmeir, Kneib, and Lang 2004) and generalized additive models for location scale and shape (GAMLSS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Rigby and Stasinopoulos 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Klein, Kneib, and Lang 2015b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For example, Wood, Li, Shaddick, and Augustin (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Li and Wood (2020) show how to decompose the iterative estimation algorithm for GAMs to be able to compute models for large data and gigadata with coefficients up to 104 and up to 108 observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05593v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='CO] 13 Jan 2023 2 Scalable Estimation for Structured Additive Distributional Regression Lang, Umlauf, Wechselberger, Harttgen, and Kneib (2014) present efficient algorithms for Bayesian multilevel models for example by, discretization and indexing to significantly reduce the number of floating point operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' These ideas are carried over to estimate fully Bayesian structured additive distributional regression models (Klein, Kneib, Lang, and Sohn 2015c), the Bayesian version of GAMLSS, such that e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' modelling the precipitation climatology across Austria with over 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 million daily observations is possible (Umlauf, Klein, and Zeileis 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' While in principle being easily trainable in terms of data size with the approach of Li and Wood (2020), GAMs are not suited here given the censored nature of the response daily precipitation with a spike at zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Nevertheless, for more complicated probabilistic models or larger n, techniques such as Umlauf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2018) also reach their limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' On the one hand, such models can no longer be computed on conventional computers since there is simply a lack of random-access memory (RAM);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' on the other hand, the computing time increases so much that modeling with many variables is not possible in a foreseeable time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To break down these barriers in structured additive distributional regression models, we propose a novel estimation algorithm, which we call batchwise backfitting and which combines the ideas of the classic backfitting optimization with stochastic gradient descent (SGD), an efficient algorithm based on a stochastic approximation to gradient descent for finding local maxima of an objective function J(θ) of a parameter vector θ ∈ Rp (Robbins and Monro 1951).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Compared to costly gradient descent methods, which involve updates of the form θ = θ − η∇θJ(θ) based on the whole data set, SGD replaces the gradient ∇θJ(θ) by a noisy (yet unbiased) estimate thereof, thus being much faster to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' However, convergence to a local optimum, which is theoretically guaranteed as long as the learning rate vector η fulfils the Robbins-Monroe conditions (Robbins and Monro 1951) can be extremely slow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We show that our batchwise backfitting algorithm induces a learning rate that can be de- composed into the product of a scalar step length ν and an adaptive learning rate vector δ based on second order information of the objective function through an unbiased estimate of the Hessian, similar to the concept of natural gradients motivated from information the- ory (Amari 1998;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Duan, Anand, Ding, Thai, Basu, Ng, and Schuler 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The result is an algorithm that requires little manual tuning and ensures fast convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Depending on the choice of ν we show that our algorithm closely mimics special cases such as resampling or gradient boosting (Efron and Tibshirani 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Mayr, Fenske, Hofner, Kneib, and Schmid 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In addition, we demonstrate that our new algorithm does not only significantly reduce computation time and requires extremely little memory, it also has excellent properties in terms of variable selection;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' thus markedly contributing to a wider applicability of structured additive distributional regression to big data and highly parameterized models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The remainder of the paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In Section 2, structured additive distri- butional regression models are briefly reviewed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In Section 3, the new batchwise backfitting algorithm and its implementation for distributional regression models is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In an extensive simulation study in Section 4, the performance of the algorithm is investigated, whereas in Section 5 we further highlight the usefulness of the algorithm developing a distri- butional model for lightning count forecasting using a very large data set with ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 million observations and 80 covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The final Section 6 concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Additional details on how to use our software implementation and further simulation results are contained in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Structured Additive Distributional Regression Models 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Model Specification The idea in structured additive distributional regression (or GAMLSS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Rigby and Stasinopou- los 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Klein, Kneib, Klasen, and Lang 2015a) is to model all distributional parameters of an arbitrary parametric response distribution (rather than just the mean) through co- variates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Based on data (Yi, xi) of responses Yi (possibly non-continuous or multivariate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Yi = Y i ∈ RD, D > 1) and available covariate information xi, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , n ob- servations, we assume conditional independence of individual response observations given covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Specifically Y |x ∼ DY � θ1(x)) = h−1 1 (η1(x)), θ2(x)) = h−1 2 (η2(x)), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' θK(x)) = h−1 K (ηK(x)) � where DY denotes a parametric distribution with K parameters θk ≡ θk(x), k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , K, and parametric density dY (·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' θ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , θK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Each parameter θk is linked to an additive predictor ηk ≡ ηk(x) using known monotonic and twice differentiable functions hk(·) (with inverses h−1 k also known as link- and response functions) to ensure potential parameter space restrictions on θk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The additive predictor for the k-th parameter is modeled as ηk = ηk(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' βk) = f1k(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' β1k) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' + fJkk(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' βJkk), (1) based on j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , Jk unspecified (possibly non-linear) functions fjk(·), applied to a subset of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For a data set of i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , n observations, let X be the covariate matrix with rows xi, and ηk = (η1,k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , ηn,k)⊤ be the corresponding n dimensional vector of predictors each entry containing the sum of evaluations of fjk(·) at xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The parameters βk = (β1k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , βJkk)⊤ are the regression coefficients and we denote furthermore Xk = (X1k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , XJkk) the predictor specific design matrices, whose structure only depend on the type of covariate(s) and as- sumptions about fjk(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For the models discussed here, matrices Xjk are typically based on a basis function approach, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', using B-spline basis functions (Eilers and Marx 1996) or thin- plate splines (Wood 2003) for modeling smooth effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Therefore, each function fjk(·) may be represented by the linear combination fjk(Xjk, βjk) = Xjkβjk which leads to so-called GAM-type or structured additive predictors ηk (STAR, Fahrmeir et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Penalized Likelihood Estimation Likelihood-based estimation in this flexible model class is typically based on the penalized log-likelihood function ℓpen(β, τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X) = ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X) + K � k=1 Jk � j=1 Pjk(βjk, τ jk), (2) where ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X) is log-likelihood function ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X) = n � i=1 log dY (yi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' θi,1 = h−1 1 (η1(xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' β1)), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , θi,K = h−1 K (ηK(xi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' βK))), θk = (θ1,k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , θn,k)⊤ are the parameter vectors and β = (β⊤ 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , β⊤ K)⊤ the stacked vector of regression coefficients to be estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The overall design matrix is X = (X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , XK), 4 Scalable Estimation for Structured Additive Distributional Regression where each Xk consists of rows xi,k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To avoid the problem of overfitting, each function fjk(·) is regularized through the penalty terms Pjk(βjk, τ jk), where τ jk controls the amount of smoothness and Pjk(·) is specific to fjk(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In general, the penalty terms are assumed to be of the following quadratic form Pjk(βjk, τ jk) = β⊤ jkKjk(τ jk)βjk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (3) For instance, when using P-splines, Pjk(·) is computed by a penalty matrix τ jkKjk formed by the cross-product of difference matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This then penalizes too abrupt jumps of neigh- boring coefficients to achieve a smooth functional form (a similar penalty structure results from, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', thin-plate splines or tensor splines;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Fahrmeir, Kneib, Lang, and Marx 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Wood 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Groll, Hambuckers, Kneib, and Umlauf (2019) extend the classical smoothing penalty for GAMLSS to (fused) LASSO-type penalties Pjk(βjk, τ jk) = β⊤ jkKjk(τ jk)βjk, where the penalty Kjk(·) is also a function of the regression coefficients accounting for (approximate) L1- regularization (Tibshirani, Saunders, Rosset, Zhu, and Knight 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Oelker and Tutz 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the following, we will describe the algorithms with the “classic” penalization (3) for the sake of simplicity, but more complex penalties can be implemented just as straightforwardly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Backfitting To maximize (2), Rigby and Stasinopoulos (2005) proposed a modified backfitting algorithm based on iteratively reweighted (penalized) least squares (IRPLS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Marx 1996), which similar to the backfitting algorithm of Umlauf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2018) employs updates based on iteratively weighted least squares (IWLS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Gamerman 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The updating equation for the jk-th model term of (1) is given by β[t+1] jk = (X⊤ jkWkkXjk + Kjk(τ jk))−1X⊤ jkWkk(zk − η[t+1] k,−j ), (4) with vector of working observations zk = η[t] k + W−1 kk uk, score vectors uk = ∂ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X)/∂ηk and working weights Wkk = −diag(∂2ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X)∂ηk∂η⊤ k ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Here, ηk,−j represents the pre- dictor without the j-th model term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The backfitting iterations at (4) are computed until a certain termination criterion is met, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', when the relative change of the coefficients becomes very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The optimal smoothing parameters can be estimated using e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' stepwise selection (Belitz and Lang 2008), where in each updating step at (4) each τ jk = (τ1jk, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , τLjkjk)⊤ is optimized one after the other using adaptive search intervals, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', using the Akaike (AIC) or Bayesian information criterion (BIC), noting that in many cases, τ jk is just a scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For a detailed description of the algorithm see Umlauf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Moreover, for numerical reasons it is oftentimes better to replace the Hessian by the expected Fisher information with weights Wkk = −diag(E(∂2ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y, X)/∂ηk∂η⊤ k )) (Klein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2015b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To reduce computation times, the design matrix Xjk can be modified by using only the unique values of the covariate data, which in many cases have much less observations than the number of observations in the whole data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This leads to an updating step with reduced working observations and weights, which can be calculated quickly via a simple sum with indices of the unique values (Lang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Although this method can save quite a bit of computing time, memory issues can still occur very quickly in the GAMLSS model class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Scalable Estimation As a solution to large-scale data, we present our batchwise backfitting algorithm as part of this section first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Then we discuss some interesting properties of our algorithm depending on the step length choice but also further computational details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Batchwise Backfitting Instead of using all observations of the data, we replace score vector and Hessian in (4) through unbiased estimates thereof, which are readily available based on a random batch of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' That is, we use a randomly chosen subset denoted by the subindex [i] ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , n} to arrive at a stochastic updating step of the form β[t+1] jk = (1 − ν) · β[t] jk + (5) ν · (X⊤ [i],jkW[i],kkX[i],jk + Kjk(τ jk))−1X⊤ [i],jkW[i],kk(z[i],k − η[t+1] [i],k,−j) = (1 − ν) · β[t] jk + ν · β[i],jk and introduce a step length control parameter ν (or learning rate) specifying the amount of which β[t] jk is updated to β[t+1] jk in the direction of the new estimate β[i],jk on batch [i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In each iteration, (5) is evaluated on exactly one batch [i], such that computational burden can be reduced considerably .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' As mentioned in the introduction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' this mimics a second order SGD algorithm (Bottou 2012) since β[t+1] jk = β[t] jk + ν · (β[i],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='jk − β[t] jk) = β[t] jk + ν · δ[t] jk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (6) where the difference δ[t] jk between parameter updates from iteration t and batch [i] is a de- composition of first and second order derivative information with δ[t] jk = β[i],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='jk − β[t] jk = � β[t] jk − H[i],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='kk � β[t] jk �−1 s[i] � β[t] jk �� − β[t] jk = −H[i],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='kk � β[t] jk �−1 s[i] � β[t] jk � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' where s[i](·) and H[i],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='kk(·) are unbiased estimates of the score and Hessian (see also Umlauf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2018) evaluated on batch [i] s[i](βjk) = ∂ℓpen(β, τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[i], X[i]) ∂βjk = ∂ℓ(β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[i], X[i]) ∂βjk + K � k=1 Jk � j=1 � ∂P(βjk, τ jk) ∂βjk � , H[i],kk(βjk) = ∂s[i](βjk) ∂β⊤ jk = ∂2ℓpen(β, τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[i], X[i]) ∂βjk∂β⊤ jk = ∂2ℓ(β, τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[i], X[i]) ∂βjk∂β⊤ jk + K � k=1 Jk � j=1 � ∂P(βjk, τ jk) ∂βjk∂β⊤ jk � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Using second order information can speed up convergence considerably and our updating rule resembles that of natural gradients (Amari 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In each iteration of the batchwise 6 Scalable Estimation for Structured Additive Distributional Regression backfitting algorithm the update step length is adaptive, because of the curvature information provided in δ[t] jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The working weights W[i],kk, the working responses z[i],k and the predictors η[i],k are computed based on the current states β[t] k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For each batch [i], the algorithm subsequently cycles over all parameters of the response distribution, the outer loop, and all model terms, the inner loop, in the typical backfitting manner, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', the predictors η[i],k and model terms fjk(·) are updated instantly within the inner loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' By iteration through the batches the batchwise backfitting algorithm updates in a memory efficient manner from batch to batch either until all observations are included once, or the algorithm runs through the data a prespecified number of epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This design principle makes the batchwise backfitting optimizer computationally simple and thus scaleable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Choosing the Batch Size The size of the batches is application specific.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In general, a good strategy is to first estimate intercept only models, with ηk = β0k, using batchwise backfitting and small batches, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', about 1000 observations, and then inspect the coefficient paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' If these are stationary after a certain runtime, the batch size is sufficient and if not it should be increased successively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For examples of coefficient paths that are stationary after a certain “burn-in” phase, see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This approach has proven successful, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', in the application Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Choosing the Step Length Our default batchwise backfitting works with a fixed step length ν = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1, which is a good compromise between fast updates and numerical stability and has also been shown to be very robust in simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In addition, we consider the following two variants of the basic algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Resampling Variant If ν = 1, the algorithm can be interpreted as a resampling method and each update β[t+1] jk resembles a “sample” of the “distribution” of βjk, and convergence is achieved in distribution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', once the estimates are fluctuating around a certain level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The final estimate ˆβ is then computed by taking the means or medians of the resulting coefficient paths after convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Boosting Variant In addition, (6) can also be utilized to enforce complete variable selection in a boosting type algorithm when only the model term with the best improvement in the out- of-sample log-likelihood is updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' An important innovation of this variant over classical gradient boosting for GAMLSS is that the smoothing parameters τ jk are also updated in each iteration (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', the last iteration already leads to the final model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In contrast, in classical boosting for GAMLSS the optimal stopping iteration is crucial and has to be determined separately (commonly based on costly cross validation (CV);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Mayr et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Thomas, Mayr, Bischl, Schmid, Smith, and Hofner 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The costly CV makes boosting GAMLSS infeasible for big data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' A further considerable advantage of our algorithm is that it makes the selection of the best model term relatively fair, unlike boosting variants with fixed prechosen degrees of freedom for fjk(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For example, with more complicated distributions, it can easily happen that certain parameters are never selected Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 7 Figure 1: Examples of coefficient paths for βjk of a spline model term fjk(·) using the three different variants of the batchwise backfitting algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' because of too large differences in the gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Zhang, Hepp, Greven, and Bergherr (2022) try to circumvent this problem by adaptive step length selection for ν in the linear normal location-scale model, however, for the general class of GAMLSS this procedure seems to be difficult or even impossible to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Graphical Illustration The three different variants of the algorithm are illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Here, the coefficient paths are shown for a model term estimated with a thin-plate spline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The left plot shows coefficient paths of the batchwise backfitting with ν = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1, it takes approximately 50 iterations for the coefficients to reach a steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The middle plot illustrates coefficients paths for the boosting version with ν = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 of the algorithm and possible updating only if the relative improvement of the log-likelihood on the next batch [˜i] is larger than a prespecified constant c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the first few iterations, the model term is not selected, all coefficients are zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Around iteration 10, coefficients start to deviate from zero and converge to a steady state shortly after iteration 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' After that, the coefficients are no longer updated, as indicated by the strict horizontal movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The right plot shows coefficient paths if the step length is set to ν = 1 and updates are always allowed in combination with slice sampling of the smoothing parameters τ jk under the AIC using the next batch [˜i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Similar to the basic batchwise backfitting algorithm, the coefficients require about 50 iterations to reach a steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' randomly from a proposal density and an acceptance step is not required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Estimation of Hyperparameters As described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2, the smoothness of fjk(·) is controlled by parameters τ jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the proposed implementation these parameters are either estimated according to an information criterion like the AIC or BIC, which is computed on an out-of-sample batch [˜i], or by slice Classic SGD Boosting Resampling 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 Coefficients Coefficients Coefficients 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5 5 1 50 100 150 200 1 50 100 150 200 50 100 150 200 Iteration Iteration Iteration8 Scalable Estimation for Structured Additive Distributional Regression sampling under the information criterion (Neal 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Using the out-of-sample batch for selection is a novelty, aiming to improve the predictive performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Moreover, in addition to commonly used penalties in Pjk(·), complete model term selection can also be incorporated by an additional LASSO-type penalty for coefficients βjk (Groll et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Computational Details and Implementation The complete algorithm is described in pseudo code in Algorithm 1 and is implemented in the R package bamlss (Umlauf, Klein, Zeileis, and Köhler 2022) within the optimizer function opt_bbfit().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' It supports all commonly used model terms for GAMs, as implemented in the mgcv package (Wood 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In addition, to overcome memory issues with very large data, the bamlss package now supports the binary flat file format for data frames, which is implemented in the ff package (Adler, Gläser, Nenadic, Oehlschlägel, Schuemie, and Zucchini 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' By processing data and design matrices with ff, the usual memory limitations of the R ecosystem are circumvented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This is achieved by loading the data sequentially, using chunks that fit in memory, so that the complete data is never in the RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This means that the batchwise backfitting optimizer opt_bbfit() can work directly with ff objects, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', the batches are loaded directly by the ff infrastructure, which usually means only very little additional processing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This makes it possible to use almost arbitrarily large data sets for the estimation of structured additive distributional regression models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In Appendix A, we give detailed examples on how to fit models with the new optimizer function and its handling within the bamlss framework using simulated data with 107 observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Simulation Study To investigate the performance of the proposed batchwise backfitting algorithm in terms of variable selection, mean squared error (MSE), prediction and runtimes, we conduct a benchmark study against classical Markov chain Monte Carlo (MCMC) and gradient boosting algorithms for GAMLSS for which we give details next before describing the simulation design and results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Estimation Approaches In the following, we refer to our proposed approach of batchwise backfitting throughout as opt_bbfit (as the model fitting function is called in the bamlss package).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Our batchwise backfitting combines the boosting and the resampling variant as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The boosting step is run for 400 iterations including all possible covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This first step is used to preselect the covariates, and only covariates that are updated at least once are included in the subsequent resampling variant of the algorithm, which is run for 1500 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The batch indices are drawn randomly, for the very small datasets of 500 observations we use a batchsize of 400, for larger datasets up to 10000 observations the batchsize is 63% of the data, for settings with ≥ 10000 observations, the batchsize is fixed constant at 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We investigate the performance of our batchwise backfitting opt_bbfit approach compared to the following very popular methods in distributional regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' MCMC (sam_mcmc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The default MCMC implementation of the bamlss package (Um- lauf et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2022) in R based on IWLS proposals is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note that the sam_mcmc method Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 9 Algorithm 1 Batchwise backfitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Input: y, X, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Set: Step length ν ∈ [0, 1], batch index B = (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , bT )⊤, goodness-of-fit criterion C, scaling constant c ∈ R, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Initialize: β, τ, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', β = 0, τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='001 · 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' for t in 1 to number of batches T − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' do Set current batch index i = bt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Set next batch index, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', with ˜i = bt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' for k = 1 to K do Initialize η[i],k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' for j = 1 to Jk do Compute state η[i],k = η[i],k + X[i],jkβ[t] jk on current batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' end for end for Likewise compute η[˜i],k on next batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' for k = 1 to K do for j = 1 to Jk do Compute old log-likelihood on next batch ℓ(β[t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[˜i], X[˜i]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Set the working response z[i],k = η[i],k + W−1 [i],kku[i],k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' IWLS step β[i],jk = (X⊤ [i],jkW[i],kkX[i],jk + Kjk))−1X⊤ [i],jkW[i],kk(z[i],k − η[i],−j,k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Therefore find new τ [t+1] jk on next batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' for l = 1 to Ljk do Set search interval for τ [t+1] ljk , e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Iljk = [τ [t] ljk · 10−1, τ [t] ljk · 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Find τ [t+1] ljk ← arg min τ ⋆ ljk∈Iljk C(β[i],jk, τ ⋆ ljk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[˜i], X[˜i]), or slice sample under C(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' end for Now set ˚βjk = β[t] jk + ν · (β[i],jk − β[t] jk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' if Updated log-likelihood ℓ(˚β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[˜i], X[˜i]) > c · ℓ(β[t];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' y[˜i], X[˜i]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' then Update β[t+1] jk = ˚βjk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Update η[i],k = η[i],k + X[i],jkβ[t+1] jk and likewise η[˜i],k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' else Set β[t+1] jk = β[t] jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' end if end for end for Alternatively, only update coefficients βjk which lead to the greatest contribution in the next batch log-likelihood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' end for Output: Estimates ˆβ = β[T −1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' or “samples” β[t], t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , T − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' or boosting like coefficient paths β[t], t = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , T − 1 if only the best working model term is updated in each batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 10 Scalable Estimation for Structured Additive Distributional Regression does not perform variable selection and therefore serves as an unconstrained benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Non-Cyclical Gradient Boosting (gamboostLSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Gradient boosting for GAMLSS com- bines an ensemble of weak base learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Instead of updating every distributional param- eter with a base learner in each iteration (cyclical), in the non-cyclical gradient boosting version (Thomas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2018) the algorithm updates only the base learner (model term) which leads to the highest loss reduction over all distributional parameters in every it- eration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The intercepts are always updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The optimal stopping iteration (mstop) is selected by five-fold CV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The non-cyclical gradient boosting algorithm is implemented in the R package gamboostLSS (Hofner, Mayr, Fenske, and Schmid 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Optimized Non-Cyclical Gradient Boosting (opt_boost).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The optimized version of the non-cyclic gradient boosting algorithm is implemented in the R package bamlss and utilizes methods for large data sets, originally designed to achieve speed improvements in MCMC algorithms (Lang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Unlike the classical non-cyclic gradient boosting algorithm, the model intercepts count as single model terms and are not automatically updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Five-fold CV is applied to find the optimal stopping iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Simulation Design Response Distributions We simulate data from the normal distribution (NO), the gamma distribution (GA), and the zero-adjusted Poisson distribution (ZAP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' All three distributions are implemented in the R package gamlss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='dist (Stasinopoulos and Rigby 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The package uses a specific naming convention for the parameters of the distributions, supporting up to four-parameter distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The parameters are µ, σ, ν and τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the simulation study, we let parameters µ and σ depend on covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Since all distributions studied in this setting have two parameters, no specifications for ν and τ are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Predictor Specifications We use the following predictors ηµ and ησ for each distribution ηµ = β0µ + f1(x1) + f3(x3) + f2d(lon, lat), ησ = β0σ + f2(x2) + f3(x3) + f4(x4), with model intercepts β0µ = 0, β0σ = 0 for NO, β0µ = 1, β0σ = −1 for GA and β0µ = 1, β0σ = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 for ZAP;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' and f1(x) = x f2(x) = x + ((2 · x − 2)2)/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 f3(x) = −x + π · sin(π · x) f4(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 · x + 15 · exp �−2 · (x − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2)2� √ 2π − exp � −(x+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4)2 2 � √ 2π f2d(z1, z2) = sin(z1) · cos(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 · z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The simulated functions are shown in Figure 2, these are centered around zero and scaled so that each effect has a similar range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The link functions for the respective parameters are as follows: µ = ηµ, log(σ2) = ησ for NO, log(µ) = ηµ, log(σ2) = ησ for GA and log(µ2) = ηµ, log � σ 1−σ � = ησ for ZAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Finally, all covariates are drawn independently from uniform distributions x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , x4, lon, lat ∼ U(−2, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 11 Figure 2: Functions used in the simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Further settings To investigate performance for small and large data settings alike, we simulate n =500, 1000, 10000 and 50000 number of observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To challenge variable selection, an additional number of noise variables (denoted with nnoise = 0, 10, 20 in the following) is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Each predictor is modeled including all available covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Accordingly, for each predictor three true covariates and nnoise non-relevant covariates are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note that variables lon, lat are counted as one covariate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the first case the covariates are uncorrelated (ρ = 0), and in the second case correla- tion is introduced by the Cholesky factorization LL⊤ = Σ of the covariance matrix Σ = � � � � � � 1 ρ ρ2 · · ρl−1 ρ 1 ρ · · ρl−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ρl−1 ρl−2 ρl−3 · · 1 � � � � � � , where l is the number of covariates, and correlated covariates are thus generated with Xcorr = XL⊤ with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Each scenario is replicated 100 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Measures of Performance To evaluate the performance of the four algorithms, the MSE of the predictors, the MSE of the effects, the continuous ranked probability score (CRPS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Gneiting and Raftery 2007) and the number of falsely selected variables in each predictor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='(false positives) are calculated based on an out-of-sample validation data-set with 10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Effect of X1 on nμ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Effect of X3 on nμ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Spatial effect on Nμ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='f3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='lon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Effect of X2 on No ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Effect of X3 on no ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Effect of X4 on no ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='t2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='t3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='乙 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='X412 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Scalable Estimation for Structured Additive Distributional Regression ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The validation data-set is fixed throughout each response distribution and each ρ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We define the MSE of the predictor as the mean of the squared dif- ferences of the estimated additive predictors and the true additive predictors (MSEk = 1 n � i(ˆηi,k − ηi,k)2, for k = µ, σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For the MSE of the effects we use a similar notation, namely the mean of the squared differences of the true effects and the estimated effects (MSEfk,j = 1 n � i( ˆfi,k,j − fi,k,j)2, for k = µ, σ and j = 1, 2, 3, 4, 2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The false positive rate is defined as the number of non-informative covariates which have a sufficiently large estimated effect f, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' max(f) − min(f) > threshold, with threshold = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Computational Details The simulation was run on the HPC infrastructure LEO4 of the University of Innsbruck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This HPC infrastructure runs on a Linux system (CentOS 7), and 50 computing nodes with Intel Xeon (Broadwell/Skylake) processors with up to 3000 gigabyte (GB) available memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Depending on the setting, the memory requirements are between 5 and 50 GB per replication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Results Stopping and Computing Times Due to high computing times, we set the number of maximum iterations to identify the optimal stopping iteration mstop for the two boosting algorithms to 12000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 3 shows the average mstop of all settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For both boosting methods the average mstop increases with the sample size and with larger correlations be- tween covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In all but the non-correlated GA settings, opt_boost has a lower average of mstop than gamboostLSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' With increasing n and ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7, the average mstop is 12000 for gamboostLSS, indicating that more iterations are needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 4 shows the elapsed time in minutes for each setting and method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The gamboostLSS boosting method needs around 600 to 1100 minutes to compute a single simulation run when n = 50000 (similar to opt_boost which also needs several hours).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Thus we deem increasing the maximum of available iterations as infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In contrast, the batchwise backfitting method needs only 30 to 60 minutes for these settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' MSE A comparison of the four methods in terms of MSE is made in Figure 5 for all NO- settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The MSE decreases sharply with increasing n, except for gamboostLSS in ηµ with ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7, this method has a much higher MSE here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This is due to the limited number of stopping iterations available for gamboostLSS (note again, that the stopping iteration is set very large to 12000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The bamlss methods perform better in the small n settings than the gamboostLSS method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Remarkably, the method opt_bbfit has the smallest MSE for ηµ when it includes noise variables, and has basically the same performance as sam_mcmc without noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Only in ησ and n = 500 is opt_bbfit second or third best in each case, though it always performs better than gamboostLSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For larger n, the methods are very similar in terms of MSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The results for the GA and ZAP distribution are qualitatively very similar and they can be found in the Appendix (Figures 17 and 18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For the individual effects biases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' the MSE of the effects, we refer to the Figures 6 and 7 and the Appendix (Figures 19, 20, 21 and 22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The overall result is that the opt_bbfit is very competitive in terms of MSE of the effects, in a lot of settings it performs better than the boosting methods, although the MSE Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 13 Figure 3: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average mstop of both boosting variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Correlation ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 leads to higher mstop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For higher n and correlation the gamboostLSS variant hits the upper limit (horizontal dashed line at 12000) of possible stopping iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' of the effects converges for all methods and effects close to zero with high enough numbers of observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' gamboostLSs Method: opt_boost nnoise = 0 nnoise = 10 nnoise = 20 12500 10000 7500 NO 5000 2500 0 12500 10000 7500 NO 5000 0 2500 0 12500 iteration 10000 7500 GA 5000 0 6uidd 2500 0 12500 sto 10000 7500 II GA 5000 0 2500 0 12500 10000 7500 ZAI 5000 0 2500 0 12500 10000 7500 ZAI = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 5000 P 2500 0 Number of observations14 Scalable Estimation for Structured Additive Distributional Regression Figure 4: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Computation times for all distributions, noise variables and correlation settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The most computational intensive settings—the two boosting vari- ants—depending on the number of observations require up to approximately 18 hours to compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the same settings opt_bbfit needs around 1 hour, while the MCMC method runs 3 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 1000 750 NO 500 0 250 0- 1000 750 NO 500- 250 0- 1000 minutes 750 GA 500 II 0 u!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 250 I time 0 Computation 1000 750 = G 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 A 250 0 - 1000 750 ZAP 500 = 0 250 0- 1000 750 ZAP 500- 250- <0 Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 15 Figure 5: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE with the NO distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Predictive Accuracy Figure 8 shows the CRPS of the three different distributions with smaller values indicating higher predictive accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The results are very similar to the results of the MSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' It is again noteworthy that opt_bbfit has the best performance when noise variables are included in the NO settings for all n, and in the other settings, when n ≥ 1000, the performance is almost identical to sam_mcmc and typically better than the boosting methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For larger data settings the methods are very similar in terms of CRPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Variable Selection The average false positive rates with the NO distriubtion are displayed in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The false positive rate is defined as the number of non-informative covariates which have a sufficiently large estimated effect f, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' max(f) − min(f) > threshold = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The proposed batchwise backfitting method opt_bbfit outperforms every other method in terms of false positive rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In all, except two GA distribution settings, n ≥ 5000 observations are always sufficient to exclude all non-informative covariates with the novel approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In all opt_bbfit sam mcmc Method: gamboostLss opt boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 - = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- MSI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 Number of observations16 Scalable Estimation for Structured Additive Distributional Regression Figure 6: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of spatial effect of ηµ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' settings, the true positive rates are 1 for all methods (not shown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We also evaluate the false positive rate with a whole range of thresholds starting very restrictive from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0001 up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 for a NO-setting with different numbers of observations (n = 250, 500, 5000, 10000) and find that except in the n = 250 case the opt_bbfit is performing best (see Appendix Figure 25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The results for the GA and ZAP distribution are qualitatively the same and can be found in opt_bbfit sam_mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 =d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04- NO 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content="075 L'O=d 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='050 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 E Spatial effect nμ 0 GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='01 - 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='020 E =d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='015 MSE GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 Q ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 p= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 17 Figure 7: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of f3 effect of ηµ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' the Appendix (Figures 23 and 24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Summary Our batchwise backfitting algorithm has basically the same perfomance on small datasets (n ≤ 1000) in terms of MSE and CRPS compared to the other three methods used in this study, and on medium and large datasets (n ≥ 5000) it is almost consistently the best opt_bbfit sam_mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0 NO " 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 effect 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0 ru 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='09 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 Number of observations18 Scalable Estimation for Structured Additive Distributional Regression Figure 8: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average CRPS for all distributions, different number of obser- vations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Compared to boosting, where computationally intensive CV (or similar) is needed to determine mstop batchwise backfitting does not require such additional time-consuming tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This makes our algorithm particularly convenient when applied on very large data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Our novel method is also considerably faster than both boosting variants (even with a determined mstop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The speed advantage ranges from around five times faster for n = 500 up opt_bbfit sam_mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='625 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='600 =d NO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='575 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='550 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='525 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='40- p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 NO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='30 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 =d 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0 CRPS 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 - 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8- 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 =d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='85 =d ZAP 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='80- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='84- p= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='78 Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 19 Figure 9: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average false positive rate with the NO distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' to 15 to 20 times faster in the large data setting with n = 50000 observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Compared with the bamlss MCMC implementation, the speed advantage is evident from n = 50000 settings, and we expect it to increase dramatically in even larger data settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The false positive rates of our batchwise backfitting method are excellent in all settings which makes this method also an ideal option for variable selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Please note once more, that due to computational costs of benchmark methods the maximum number of observations was 50000 only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' However, in the next Section 5 we show a model estimated with ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 million observations and in the Appendix A we exemplify that our batchwise backfitting method can easily handle up to 107 and more observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Application: Lightning Count Model Lightning is a major source of atmospheric nitrogen oxides (Schumann and Huntrieser 2007) which is an important greenhouse gas (Figure SPM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 in Masson-Delmotte, Zhai, Pirani, Connors, Péan, Berger, Caud, Chen, Goldfarb, Gomis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Thus, lightning affects the climate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' At the same time lightning is affected by climate change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This effect is subject to scientific debate (Murray 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' As lightning processes cannot be resolved by numeric models of the atmosphere, this debate is mainly based on proxies of lightning that have a simple formulation and often consider only a particular aspect of the physical processes Method: opt_bbfit sam mcmc gamboostLSS opt_boost nμ nμ na na o=d p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 p=0 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 nnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 nnoise 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 20 nnoise = 2 15 10 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' O Number of observations20 Scalable Estimation for Structured Additive Distributional Regression involved in lightning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Such simple formulations might be the cloud top height (Price and Rind 1992), iceflux in the mid atmosphere (Finney, Doherty, Wild, Huntrieser, Pumphrey, and Blyth 2014) or wind shear (Taszarek, Allen, Brooks, Pilguj, and Czernecki 2021), among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' As a reaction, scholars proposed to analyse lightning using machine learning (ML) approaches that incorporates numerous physical processes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Ukkonen and Mäkelä 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Simon, Mayr, Morgenstern, Umlauf, and Zeileis 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' These are capable to process large amounts of data and identify most relevant variables from a pool of inputs, but focus on describing the occurrence of lightning via binary classification and not on the number of lightning counts which would be crucial to investigate the important quantity of flash rates (Cecil, Buechler, and Blakeslee 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The batchwise backfitting method proposed in this manuscript allows, for the first time, the estimation of a high-dimensional, fully probabilistic count data model, including variable selection, using a very large data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Data We use high-resolution data from the Austrian Lightning Detection and Information System (ALDIS, Schulz, Cummins, Diendorfer, and Dorninger 2005) and explain the lightning counts with reanalysis data from ERA5, the fifth generation of ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalyses of global climate (Copernicus Climate Change Service 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Hersbach and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ERA5 provides globally complete and consistent pseudo-observations of the atmosphere using the laws of physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The horizon- tal resolution is approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 32 km, while the temporal resolution is hourly and covers the years from 1950 to present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The model is not only interesting for a more comprehensive description of lightning, but also for a full reanalysis to study climate trends in lightning (Simon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2022), because homogeneous lightning observations from ALDIS are only available for the period in the order of a decade, here 2010–2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We develop a model for the complete lightning count distribution using our proposed batch- wise backfitting algorithm from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Therefore, we aggregate the hourly lightning counts to the ERA5 grid cells, resulting in a final data set of ≈ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 million observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To estimate a well-calibrated model, we preselect 76 ERA5 covariates that are potentially good candidates for lightning and convective processes, such as convective available potential en- ergy (cape), convective precipitation (cp), cloud top height (cth), specific cloud snow water content between −20◦C and −40◦C (cswc2040), among others (for a detailed description of variables see Morgenstern, Stucke, Simon, Mayr, and Zeileis 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Since the distributional model is quite complex and very many covariates also have strong skewness, these are stan- dardized before estimation using the empirical cumulative distribution function estimated with the training data, so that all covariates are in the value range [0, 1] and thus numerical problems can be avoided To examine the final model performance, we split the data into a training and a test data set with ≈ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 million (2010–2018) and ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='9 million (2019) obser- vations, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The distribution of hourly lightning counts is shown in Figure 10 and indicates that the data contain a very large number of zero counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Model Specification For this reason, in a distributional model for the number of light- nings, the extreme frequency of zeros must be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We found that the discretized version of the generalized Pareto distribution, DGP(ξ, σ), provides promising results (see the Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 21 Figure 10: Distribution of hourly lightning counts, gray bars, along with estimated frequen- cies using a discretized generalized Pareto distribution, DGP(ξ, σ), blue dots and lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note the y-axis is broken because of the large number of zeros in the data, 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' first row of Figure 13 and the next paragraph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For details on construction of the DGP, and discrete distributions in general we refer to Subrata (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Krishna and Singh Pundir (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' As a first overall check, we fitted an intercept only model using the batchwise backfitting algorithm to assess the goodness of fit of the unconditional distributional model with DGP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The model estimates the two parameters with a batchsize of 50000 and 1000 batches within about 5 minutes on a conventional laptop with Intel(R) Core(TM) i7-8550U CPU 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='80GHz processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This fitted DGP density is shown in Figure 10 by the blue dots and lines and indicates that the model follows the observed relative frequencies well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' However, some probabilities are overestimated, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', for one and two lightnings, which is due to the fact that the model does not yet include covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Thus, we consider the following prediction model counts ∼ DGP(log(ξ) = ηξ, log(σ) = ησ) and additive predictors ηk = f1k(doy) + f2k(hour) + f3k(lon, lat) + f4k(cape) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' + f80k(mcc), where covariate doy is the day of the year, hour the hour of the day and model term f3k(lon, lat) specifies a spatial effect of longitude and latitude coordiantes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Model terms f4k(·), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , f80k(·) represent the effects of further ERA5 covariates, such as convective avail- able potential energy (cape) or the medium cloud cover (mcc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For the scope of simplicity, we do not elaborate on these covariates in this manuscript;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' we refer the reader to Copernicus Climate Change Service (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Hersbach and et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2020) for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Model Fitting For fitting this model we proceed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We use the boosting variant of the batchwise backfitting algorithm to select the most suitable of the 80 model terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We use the AIC for selecting suitable covariates with 200 batches of size 50000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The estimation time is about 12 hours, which is not very long considering the huge data set and the very 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 % 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Observed frequencies Fitted DGP(≤, o) distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >19 Lightning counts22 Scalable Estimation for Structured Additive Distributional Regression Figure 11: Batchwise backfitting log-likelihood contributions for parameters ξ and σ of selected covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 12: DGP lightning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Selection of estimated smooth effects of the final model for parameter ξ, top row, and parameter σ, bottom row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The gray shaded areas show the variation of estimates in the resampling variant of the batchwise backfitting algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' large number of covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In Figure 11 the log-likelihood contributions for the selected covariates are shown indicating that the algorithm converged running 200 iterations/batches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note that using the AIC in the batchwise backfitting algorithm results in a rather sparse S3 mstop = 200 mstop = 200 s(cape) s(cp) 400 300 LogLik contribution LogLik contribution 100 s(cswc2040) 200 s(cth) s(cape) s(cswc2040) 100 s(hh) s(cth) s(cp) s(mcc) s(hh),s(viwvd),s(mcc) 0 0 1 50 100 150 200 1 50 100 150 200 Iteration Iteration0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 s(cswc2040).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='xi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 s(cape).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='xi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 2 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' O- S 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 4 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0 5 10 15 3 3 3 3 s(cswc2040).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='sigma 2 2 2 2 s(cape).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='sigma s(cth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='sigma (hh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='sigm 0 L- 1 2 2 2 2 3 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 一 一 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0 5 101520 cape cswc2040 cth hhUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 23 model that selects only the most relevant variables, and that the final selected covariates are consistent with the study of Simon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2022) which use binary classification only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This fact is noteworthy because variable selection is done for the entire data set and in one run of the batchwise backfitting algorithm, as opposed, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', to the costly CV commonly used in boosting such models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In a second step, the model is refitted with the selected variables using the resampling variant of the batchwise backfitting algorithm to improve the predictive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We again use 200 batches of size 50000, not using the first 100 iterations as burn-in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The estimation time is approximately 35 minutes using the training data with ≈ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 million observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The reason why the resampling variant is so much faster is mainly due the very sparse model and the use of slice sampling of the smoothing variances under the “out-of-sample” AIC (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Results The estimated smooth effects of the final model are shown in Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The effects show that some of the covariates could be modeled by linear functions, such as the effects for the variables cape and cswc2040 for the parameter ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Instead, others, such as the effect for hh for both ξ and σ, are nonlinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The estimated effects appear plausible, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', an increase in cape for the location parameter ξ increases the number of lightning counts, shifting the probability mass of the DGP distribution to larger counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Similarly, for the scale parameter σ, increasing cape also results in a shift in the probability mass towards larger lightning counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The effects for hh also show that higher counts can be expected in the afternoon, when the ground air temperature reaches its maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the first row of Figure 13, a worm plot is shown along with a probability integral transform (PIT) histogram of the quantile residuals calculated using the test data (year 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Both plots show that the model is quite well calibrated, only for the very large count observations (about 2% in the worm plot) the model does not seem to be optimally balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The reason for this is certainly the extremely low number of cases for large lightning counts, these are simply extremely difficult to model as a result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In the second row of Figure 13 we show the prediction from the DGP model together with the observed lightning counts for two days and locations in the test data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The predictions show well that the model is indeed able to reflect the observed lightning activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In addition, we also show in the plot for comparison the prediction from a logistic model for lightning yes/no (using the same selected covariates), marked by the black dashed line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' It can be seen that the DGP model and the binomial model give basically the same point predictions, however the DGP model is much more informative as it allows to to derive prediction probabilities at different thresholds rather just a binary decision rule yes/no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' These promising results show that the proposed method is capable to process large amounts of data, select the most relevant covariates and explain full probability distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This scalable method promises that distributional regression can be applied to large data sets such as satellite observations (for new developments see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Holmlund, Grandell, Schmetz, Stuhlmann, Bojkov, Munro, Lekouara, Coppens, Viticchie, August, Theodore, Watts, Dob- ber, Fowler, Bojinski, Schmid, Salonen, Tjemkes, Aminou, and Blythe 2021), which will enable better descriptions of flash rates across Europe and Africa (for a recent climatology see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Chakraborty, Menghal, Harshitha, and Sodunke 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 24 Scalable Estimation for Structured Additive Distributional Regression Figure 13: DGP lightning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The top left panel shows a worm plot of the out-of-sample randomized quantile residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The top right panel the corresponding probability integral transform (PIT) histogram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Out-of-sample predictions from the DGP lightning model for two locations and dates are shown in the second row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Observed lightning counts are represented by the black dot line, predicted probabilities are shown in the background in heat colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Predictions for lighting yes/no from a logistic model are shown by the black dashed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Prediction location is shown by the red cross in the map of Austria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Summary This paper presents a novel algorithm for batchwise backfitting with structured additive distri- butional regression models, which is applicable to a much broader class of models as compared to the approach of Li and Wood (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The algorithm combines traditional backfitting with the ideas of SGD algorithms developed for very large data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' It converges extremely fast due to an adaptive learning rate vector employing readily available unbiased estimates of the Hessian, similar to natural gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In combination with the flat file data format, it is thus Worm plot PIT histogram 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 Deviation Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 1 4 2 0 2 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 Unit normal quantile Probability integral transform 2019-07-26 2019-08-05 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 5 P(counts > 0) Logistic P(counts > 0) Logistic P(counts >= 10) P(counts > 0) P(counts >= 10) P(counts > 0) P(counts >= 20) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 4 P(counts >= 20) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8 Lightning counts Lightning counts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 Probability Probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0 0 Q000000001 0 0 0 00:00 05:00 10:00 15:00 20:00 00:00 05:00 10:00 15:00 20:00 Hour HourUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 25 possible to estimate virtually arbitrarily large models on a conventional laptop, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', with 107 observations and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Moreover, depending on the hyperparameter settings, smoothing parameter and variable se- lection is performed on-the-fly without requiring further computations on additional valida- tion data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This is, to the best of our knowledge, novel and has never been presented before in structured additive distributional regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Besides an extensive simulation study, the advantages of the new algorithm are demonstrated using complex distributional regression models on a huge data set for lightning count prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' In terms of extensions to the presented framework, the confidence intervals that are not yet available should be mentioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Therefore, for the future we plan to extend the algorithm towards Bayesian estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Acknowledgments This project was partially funded by the Austrian Science Fund (FWF) grant num- ber 33941, and FWF grant number 31836 (Thorsten Simon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' We are grateful for data sup- port by Gerhard Diendorfer and Wolfgang Schulz from OVE-ALDIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The computational results presented here have been achieved (in part) using the LEO HPC infrastructure of the University of Innsbruck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Nadja Klein was supported by the Deutsche Forschungsge- meinschaft (DFG, German Research Foundation) through the Emmy Noether grant KL 3037/1-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' References Adler D, Gläser C, Nenadic O, Oehlschlägel J, Schuemie M, Zucchini W (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ff: Memory- Efficient Storage of Large Data on Disk and Fast Access Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R package version 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7, URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/package=ff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Amari S (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Natural Gradient Works Efficiently in Learning.” Neural Computation, 10(2), 251–276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1162/089976698300017746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Belitz C, Lang S (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Simultaneous Selection of Variables and Smoothing Parameters in Structured Additive Regression Models.” Computational Statistics & Data Analysis, 53, 61–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Bottou L (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Stochastic Gradient Descent Tricks.” In G Montavon, GB Orr, KR Müller (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ), Neural Networks: Tricks of the Trade, 2nd edition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 421–436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Springer, Berlin, Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ISBN 978-3-642-35289-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/978-3-642-35289-8_25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Cecil DJ, Buechler DE, Blakeslee RJ (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Gridded Lightning Climatology from TRMM- LIS and OTD: Dataset Description.” Atmospheric Research, 135, 404–414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1016/ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='atmosres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='028.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 26 Scalable Estimation for Structured Additive Distributional Regression Chakraborty R, Menghal PS, Harshitha M, Sodunke MA (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Climatology of Lightning Activities Across the Equatorial African Region.” In 2022 3rd URSI Atlantic and Asia Pa- cific Radio Science Meeting (AT-AP-RASC), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='23919/AT-AP-RASC54737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='9814276.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Copernicus Climate Change Service (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “ERA5: Fifth Generation of ECMWF Atmo- spheric Reanalyses of the Global Climate.” Copernicus Climate Change Service Climate Date Store (CDS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Date of access: June 2019, https://cds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='climate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='copernicus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='eu/ cdsapp#!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='/home.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Duan T, Anand A, Ding DY, Thai KK, Basu S, Ng A, Schuler A (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “NGBoost: Natural Gradient Boosting for Probabilistic Prediction.” In HD III, A Singh (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2690–2700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' URL https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' press/v119/duan20a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Efron B, Tibshirani RJ (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' An Introduction to the Bootstrap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Number 57 in Monographs on Statistics and Applied Probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Chapman & Hall/CRC, Boca Raton, Florida, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Eilers PHC, Marx BD (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Flexible Smoothing Using B-Splines and Penalized Likelihood.” Statistical Science, 11, 89–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1214/ss/1038425655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Fahrmeir L, Kneib T, Lang S (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Penalized Structured Additive Regression for Space Time Data: A Bayesian Perspective.” Statistica Sinica, 14, 731–761.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/978-3-642-34333-9_9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Fahrmeir L, Kneib T, Lang S, Marx B (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Regression – Models, Methods and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Springer-Verlag, Berlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Finney DL, Doherty RM, Wild O, Huntrieser H, Pumphrey HC, Blyth AM (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Using Cloud Ice Flux to Parametrise Large-Scale Lightning.” Atmospheric Chemistry and Physics, 14(23), 12665–12682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5194/acp-14-12665-2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Gamerman D (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Sampling from the Posterior Distribution in Generalized Linear Mixed Models.” Statistics and Computing, 7(1), 57–68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1023/a:1018509429360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Gneiting T, Raftery AE (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Strictly Proper Scoring Rules, Prediction, and Esti- mation.” Journal of the American Statistical Association, 102(477), 359–378.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1198/016214506000001437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Groll A, Hambuckers J, Kneib T, Umlauf N (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “LASSO-Type Penalization in the Frame- work of Generalized Additive Models for Location, Scale and Shape.” Computational Statis- tics & Data Analysis, 140, 59–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Hastie T, Tibshirani R (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Generalized Additive Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Chapman & Hall/CRC, New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Hersbach H, et al (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “The ERA5 Global Reanalysis.” Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1002/qj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 27 Hofner B, Mayr A, Fenske N, Schmid M (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' gamboostLSS: Boosting Methods for GAMLSS Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R package version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0-6, URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/package= gamboostLSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Holmlund K, Grandell J, Schmetz J, Stuhlmann R, Bojkov B, Munro R, Lekouara M, Coppens D, Viticchie B, August T, Theodore B, Watts P, Dobber M, Fowler G, Bojinski S, Schmid A, Salonen K, Tjemkes S, Aminou D, Blythe P (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit.” Bulletin of the American Meteorological Society, 102(5), 990–1015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1175/BAMS-D-19-0304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Klein N, Kneib T, Klasen S, Lang S (2015a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Bayesian Structured Additive Distributional Regression for Multivariate Responses.” Journal of the Royal Statistical Society C, 64, 569–591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1111/rssc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='12090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Klein N, Kneib T, Lang S (2015b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Bayesian Generalized Additive Models for Location, Scale and Shape for Zero-Inflated and Overdispersed Count Data.” Journal of the American Statistical Association, 110(509), 405–419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1080/01621459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='912955.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Klein N, Kneib T, Lang S, Sohn A (2015c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Bayesian Structured Additive Distributional Regression with an Application to Regional Income Inequality in Germany.” Annals of Applied Statistics, 9, 1024–1052.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1214/15-aoas823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Krishna H, Singh Pundir P (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Discrete Burr and discrete Pareto Distributions.” Sta- tistical Methodology, 6(2), 177–188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='stamet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Lang S, Umlauf N, Wechselberger P, Harttgen K, Kneib T (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Multilevel Struc- tured Additive Regression.” Statistics and Computing, 24(2), 223–238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/ s11222-012-9366-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Li Z, Wood SN (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Faster Model Matrix Crossproducts for Large Generalized Linear Models With Discretized Covariates.” Statistics and Computing, 30(1), 19–25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1007/s11222-019-09864-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Marx BD (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Iteratively Reweighted Partial Least Squares Estimation for Generalized Linear Regression.” Technometrics, 38(4), 374–381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='jstor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/stable/ 1271308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Climate Change 2021: The Physical Science Basis.” Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Generalized Additive Models for Location, Scale and Shape for High Dimensional Data: A Flexible Approach Based on Boosting.” Journal of the Royal Statistical Society C, 61(3), 403–427.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1467-9876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='01033.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Morgenstern D, Stucke I, Simon T, Mayr GJ, Zeileis A (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Differentiating Lightning in Winter and Summer With Characteristics of the Wind Field and Mass Field: Supplemen- tary Material.” doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5851700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Funding: Austrian Research Promotion Agency (FFG), project no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 872656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 28 Scalable Estimation for Structured Additive Distributional Regression Murray LT (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “An Uncertain Future for Lightning.” Nature Climate Change, 8(3), 191–192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1038/s41558-018-0094-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Neal RM (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Slice Sampling.” The Annals of Statistics, 31(3), 705–767.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1214/ aos/1056562461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Oelker MR, Tutz G (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “A Uniform Framework for the Combination of Penalties in Generalized Structured Models.” Advances in Data Analysis and Classification, 11(1), 97– 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/s11634-015-0205-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Price C, Rind D (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “A Simple Lightning Parameterization for Calculating Global Light- ning Distributions.” Journal of Geophysical Research: Atmospheres, 97(D9), 9919–9933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1029/92JD00719.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Rigby RA, Stasinopoulos DM (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Generalized Additive Models for Location, Scale and Shape.” Journal of the Royal Statistical Society C, 54(3), 507–554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1467-9876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Robbins H, Monro S (1951).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “A Stochastic Approximation Method.” The Annals of Mathe- matical Statistics, 22(3), 400–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1214/aoms/1177729586.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Schulz W, Cummins K, Diendorfer G, Dorninger M (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Cloud-to-Ground Lightning in Austria: A 10-Year Study Using Data from a Lightning Location System.” Journal of Geophysical Research: Atmospheres, 110(D9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1029/2004JD005332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Schumann U, Huntrieser H (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “The Global Lightning-Induced Nitrogen Oxides Source.” Atmospheric Chemistry and Physics, 7(14), 3823–3907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5194/acp-7-3823-2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' URL https://acp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='copernicus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/articles/7/3823/2007/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Simon T, Mayr GJ, Morgenstern D, Umlauf N, Zeileis A (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Amplification of Annual and Diurnal Cycles of Alpine Lightning.” Preprint, Research Square.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='21203/rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='rs-965951/v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Stasinopoulos DM, Rigby RA (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' gamlss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='dist: Distributions for Generalized Additive Models for Location, Scale and Shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R package version 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0-5, URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/package=gamlss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='dist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Subrata C (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Generating Discrete Analogues of Continuous Probability Distributions: A Survey of Methods and Constructions.” Journal of Statistical Distributions and Applica- tions, 2(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1186/s40488-015-0028-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Taszarek M, Allen JT, Brooks HE, Pilguj N, Czernecki B (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Differing Trends in United States and European Severe Thunderstorm Environments in a Warming Climate.” Bulletin of the American Meteorological Society, 102(2), 296–322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1175/BAMS-D-20-0004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Thomas J, Mayr A, Bischl B, Schmid M, Smith A, Hofner B (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Gradient boosting for distributional regression - faster tuning and improved variable selection via noncyclical updates.” Statistics and Computing, 28(3), 673–687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/s11222-017-9754-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 29 Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Sparsity and Smoothness via the Fused Lasso.” Journal of the Royal Statistical Society: Series B (Statistical Methodol- ogy), 67(1), 91–108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1467-9868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Ukkonen P, Mäkelä A (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Evaluation of Machine Learning Classifiers for Predicting Deep Convection.” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Earth Sy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', 11(6), 1784–1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1029/2018MS001561.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N, Klein N, Simon T, Zeileis A (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “bamlss: A Lego Toolbox for Flexible Bayesian Regression (and Beyond).” Journal of Statistical Software, 100(4), 1–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='18637/ jss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='v100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='i04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N, Klein N, Zeileis A (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “BAMLSS: Bayesian Additive Models for Location, Scale, and Shape (and Beyond).” Journal of Computational and Graphical Statistics, 27(3), 612–627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1080/10618600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1407325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Umlauf N, Klein N, Zeileis A, Köhler M (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1-9, URL http://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' org/package=bamlss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Wood SN (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Thin Plate Regression Splines.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 95–114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1111/1467-9868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Wood SN (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Generalized Additive Models: An Introduction with R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Chapman & Hall/CRC, Boca Raton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Wood SN (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='8-41, URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/package=mgcv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Wood SN, Li Z, Shaddick G, Augustin NH (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Generalized Additive Models for Gigadata: Modelling the UK Black Smoke Network Daily Data.” Journal of the American Statistical Association, 112(519), 1199–1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1080/01621459.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1195744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Zhang B, Hepp T, Greven S, Bergherr E (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' “Adaptive Step-Length Selection in Gradient Boosting for Gaussian Location Scale Models.” Computational Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1007/ s00180-022-01199-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 30 Scalable Estimation for Structured Additive Distributional Regression A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Batchwise Backfitting in bamlss This section provides introductory examples on how to fit distributional regression models for very large data sets with the bamlss package and the new batchwise backfitting algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' After loading the package with R> library("bamlss") we simulate a data set with 107 observations using the GAMart() function with R> set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='seed(123) R> d <- GAMart(n = 1e+07, sd = -1) Then we save the data as a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csv file and remove the R data frame from the global environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R> write.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csv(d, file = "d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csv", row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='names = FALSE) R> rm(d) To design the scenario very realistic with respect to a very large data set, we read the data back into R as a flat file data frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R> library("ff") R> dff <- read.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ffdf(file = "d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='csv", header = TRUE) The GAMart() function with sd = -1 simulates Gaussian data with y ∼ N(µ = ηµ, log(σ) = ησ) and predictors given by ηµ = f1(x1) + f2(x3) + f2d(lon, lat) ησ = f3(x2) + f2(x3) + f4(x4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Here functions f1(·), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' , f4(·) represent univariate smooth functions and function f2d(·) a smooth two dimensional effect of coordinates lon and lat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note that the data set contains additional noise variables x5 and x6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Boosting Variant We first illustrate the usage of the new model fitting engine using the boosting variant of the batchwise backfitting algorithm, see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Therefore, we set up a list of model formulae, where each formula includes all covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' R> f <- ~ s(x1) + s(x2) + s(x3) + s(x4) + s(x5) + s(x6) + s(lon, lat) R> f <- list(update(f, y ~ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' ), f) Before estimation can be started, batch indices can be specified with R> set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='seed(456) R> n <- nrow(dff) R> batch_ids <- lapply(1:400, function(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=') sample(n, size = 10000)) Umlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 31 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', we use 400 batches with batchsize of 10000 such that the algorithm can practically see the entire data once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Then, the model is estimated with R> b <- bamlss(f, data = dff, family = "gaussian", + sampler = FALSE, optimizer = opt_bbfit, + nu = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1, always = FALSE, AIC = TRUE, eps_loglik = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0001, + batch_ids = batch_ids, select = TRUE, + ff_name = "ff_simdata", delete = FALSE, overwrite = FALSE, + light = TRUE) Note that the data frame dff is an "ffdf" data frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For processing all the design matrices for estimating the model, we therefore specify a directory name with ff_name = "ff_simdata", where all matrices can be stored as ff objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The directory ff_simdata is created in the current working directory and will not be deleted after estimation if delete = FALSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' This has the advantage, that the ff matrices can be reused for other models, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', using a different distribution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', setting up more models will be much faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' If overwrite = FALSE, the directory for storing the ff objects will not be overwritten when calling bamlss().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Moreover, option light = TRUE can be used to reduce the memory footprint of the final returned object even more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Here, we need to set sampler = FALSE in order to switch off sub- sequent MCMC sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The opt_bbfit() optimizer function is used as the model fitting engine, for which we specify the step length control parameter nu = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Argument always = FALSE causes model terms to be updated only if the relative improvement of the out-of-sample log-likelihood (on the next batch) is larger than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0001 (controlled by argument eps_loglik).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' By setting AIC = TRUE the smoothing variances are selected by the out-of-sample AIC, oth- erwise the out-of-sample log-likelihood is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' As we are interested in the boosting variant of the batchwise backfitting algorithm in this case, we need to set argument select = TRUE, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', only the model term with the largest contribution to the log-likelihood in the next batch will be updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' On a Linux system with Intel(R) Core(TM) i7-8550U CPU 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='80GHz pro- cessors, the estimation time is about 55 minutes, which is considerably fast for such a large data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Selection frequencies of the 400 boosting iterations and individual log-likelihood contributions can be shown with R> contribplot(b) mu Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='116 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='116 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(lon,lat) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='112 p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='004 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 sigma Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 32 Scalable Estimation for Structured Additive Distributional Regression Figure 14: Log-likelihood contribution paths for selected terms of the Gaussian model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' p 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='220 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='156 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='140 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='136 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(x6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='s(lon,lat) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 The selection frequencies reveal that the boosting variant of the batchwise backfitting algo- rithm selected the correct model terms, the corresponding contribution paths are shown in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The paths also show the convergence of the algorithm already at about iteration 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Resampling This section demonstrates the resampling variant with slice sampling of smoothing variances of the batchwise backfitting algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' From the selected model terms we set up a new formula R> f <- list( + y ~ s(x1) + s(x3) + s(lon, lat), + ~ s(x2) + s(x3) + s(x4) + ) and only slightly modify the arguments supplied to the main model fitting function bamlss() μ mstop = 400 mstop = 400 009 s(x2) s(x3),s(x1),s(lon,lat 500 6008001000 s(x4) LogLik contribution LogLik contribution s(x3) 400 300 200 400 100 200 0 0 1 100 200 300 400 1 100 200 300 400 Iteration IterationUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 33 R> m <- bamlss(f, data = dff, family = "gaussian", + sampler = FALSE, optimizer = opt_bbfitp, + AIC = TRUE, slice = TRUE, batch_ids = batch_ids, + ff_name = "ff_simdata", delete = FALSE, overwrite = FALSE, + light = TRUE) Estimation takes about 24 minuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Note that we use a wrapper version opt_bbfitp() for esti- mating the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The only difference is that the parameters are stored as "mcmc" “samples” in the returned object, so all extractor functions such as predict(), residuals(), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', can be used similarly to estimating full Bayesian models with MCMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For details on using bamlss, see Umlauf, Klein, Simon, and Zeileis (2021) and the project website http://bamlss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' A major advantage of the new infrastructures, including the ff package, is that all design matrices can be reused and do not need to be recomputed, saving large amounts of run- time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' To use this feature, all that is required is careful handling of the ff_name, delete and overwrite arguments (use as described in the last section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' By setting slice = TRUE, slice sampling of smoothing parameters in combination with the resampling variant with nu = 1, eps_loglik = -Inf and always = TRUE is used for batchwise backfitting, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', updates are always accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Convergence of the algorithm can be inspected by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', coefficient paths of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 34 Scalable Estimation for Structured Additive Distributional Regression B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Simulation Results In this section we show all the results of the simulation study presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 15: Functions used in the simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Green lines correspond to the estimated effects of the opt_bbfit model of the 100 replications in the simulation setting: normal distribution NO, observations n = 5000, noise variables nnoise = 10 and correlation rho = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 16: Spatial effect used in the simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Spatial effects correspond to the estimated two-dimensional effects of the method opt_bbfit in the 100 replications of the simulation setting: normal distribution NO, observations n = 5000, noise variables nnoise = 10 and correlation rho = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' The mean was calculated over the 100 different estimates of the two-dimensional effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Effect of X1 on nμ Effect of X3 on nμ Effect of X2 on no Estimates 2 Truth 2 2 8x X 0 f3 0 f2 0 F 乙 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 X1 X3 X2 Effect of X3 on no Effect of X4 on no 2 2 X4 t3 0 乙 2 1 0 1 2 2 1 0 1 2 X3 X4True spatial effect Mean spatial effect 2 2 0 2 2 2 0 2 2 1 0 1 2 lon lonUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 35 Figure 17: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE with the GA distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam mcmc Method: gamboostLss !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_ boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 = 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 E MSI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 Number of observations36 Scalable Estimation for Structured Additive Distributional Regression Figure 18: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE with the ZAP distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_ bbfit sam mcmc Method: gamboostLSs opt boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 MSI 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- =d 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 37 Figure 19: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of f1 effect of ηµ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam mcmc Method: gamboostLSs opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 0 NO " 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='004 effect 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='002 ru 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 fl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='020 MSE =d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='015 GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 ZAP 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='050- = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000- Number of observations38 Scalable Estimation for Structured Additive Distributional Regression Figure 20: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of f2 effect of ησ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam_mcmc Method: gamboostLSs opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 0 NO " 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='100 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='075 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 effect 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 na 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='16 MSE =d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='12 GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10- 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2- = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 - Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 39 Figure 21: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of f3 effect of ησ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam_mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='075 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='050- NO " 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='09- p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 effect 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 0 na 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20- MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 =d GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3- ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 - 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='6 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 - ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 - Number of observations40 Scalable Estimation for Structured Additive Distributional Regression Figure 22: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average MSE of f4 effect of ησ for all distributions, different number of observations, correlation and noise variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' opt_bbfit sam_mcmc Method: gamboostLss opt_boost nnoise = 0 nnoise = 10 nnoise = 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='04 - =d NO 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content="075 L'O=d NO 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='050- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='000- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='20- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='15 =d effect GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 ou 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00- MSE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='10 =d GA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 =d ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 - 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='3 p= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 ZAP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- Number of observationsUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 41 Figure 23: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average false positive rate of the GA distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Method: opt_ bbfit sam_mcmc gamboostLss opt_boost nμ nμ na na p=0 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0=d p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 nnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 nnoise 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 20 nnoise = 15 10 5 0- Number of observations42 Scalable Estimation for Structured Additive Distributional Regression Figure 24: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average false positive rate of the ZAP distribution for predictor ηµ and ησ for different number of observations, correlation and noise variable settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Figure 25: Simulation study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Average false positive rate of 10 replications per setting for different threshold values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Setting: Number of observations varies, NO, ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 and nnoise = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' For n ≥ 500 the method opt_bbfit is the best in terms of excluding non-informative variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' Method: opt_ bbfit sam mcmc gamboostLSs opt_boost nμ nμ na na p=0 p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 0=d p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 nnoise 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 nnoise 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 20 nnoise = 15 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 01 Number of observationsMethod: opt bbfit sam mcmc gamboostLSS opt boost n = 250 n = 500 n = 5000 n = 10000 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 rate 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0- 1 入 3 O: O: 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='0 2 ThresholdUmlauf N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Seiler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Wetscher M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Simon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Lang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=', Klein N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 43 Affiliation: Nikolaus Umlauf, Johannes Seiler, Mattias Wetscher, Thorsten Simon, Stefan Lang Department of Statistics Faculty of Economics and Statistics Universität Innsbruck Universitätsstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 15 6020 Innsbruck, Austria E-mail: Nikolaus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Umlauf@uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at, Johannes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Seiler@uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at, Mattias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Wetscher@uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at, Thorsten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Simon@uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at, Stefan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='Lang@uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at URL: https://eeecon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at/~umlauf/, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='uibk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='at/statistics/personal/lang/ Nadja Klein Chair of Uncertainty Quantification and Statistical Learning Research Center Trustworthy Data Science and Security (UA Ruhr) Department of Statistics (Technische Universität Dortmund) Joseph-von-Fraunhofer-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content=' 25 44227 Dortmund, Germany E-mail: nadja.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='klein@statistik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='tu-dortmund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='de URL: https://rc-trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} +page_content='ai/klein/' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf'} diff --git a/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/2301.11480v1.pdf.txt b/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/2301.11480v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3c787af61f0b8f235cd75a84650b65cc700a8199 --- /dev/null +++ b/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/2301.11480v1.pdf.txt @@ -0,0 +1,1912 @@ +Analog Schwarzschild black holes of Bose-Einstein condensates in a cavity: +Quasinormal modes and quasibound states +H. S. Vieira1,2,3, Kyriakos Destounis4,5 and Kostas D. Kokkotas2 +1Department of Physics, Institute of Natural Sciences, +Federal University of Lavras, 37200-000 Lavras, Brazil +2Theoretical Astrophysics, Institute for Astronomy and Astrophysics, +University of T¨ubingen, 72076 T¨ubingen, Germany +3S˜ao Carlos Institute of Physics, University of S˜ao Paulo, 13560-970 S˜ao Carlos, Brazil +4Dipartimento di Fisica, Sapienza Universit`a di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy and +5INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy +Analog models of black holes have unequivocally proven to be extremely beneficial in providing +critical information regarding black hole spectroscopy, superradiance, quantum phenomena and most +importantly Hawking radiation and black hole evaporation; topics that have either recently begun +to bloom through gravitational wave observations or have not yet been investigated in astrophysical +setups. Black hole analog experiments have made astonishing steps toward the aforementioned direc- +tions and are paramount in understanding the quantum nature of the gravitational field. Recently, +a tabletop analog Schwarzschild black hole has been proposed by placing Bose-Einstein condensates +of photons inside a mirror’s cavity, leading to a sink with a radial vortex that represents a velocity +singularity. Here, we provide an extensive spectral analysis of both the tabletop acoustic black hole +and its higher-dimensional gravitational analog. We find that quasinormal modes and quasibound +states share qualitative similarities in both systems and show that the eikonal quasinormal modes +of the analog acoustic black hole have a photon-sphere-like interpretation, which points to the ex- +istence of a phonon sphere in the analog black hole. Our results, complemented with the recently +calculated graybody factors and Hawking radiation of the acoustic analog, can provide a theoretical +test bed for future tabletop experiments with condensates of light in a mirror’s cavity and provide +significant insights regarding classical and quantum phenomena in higher-dimensional black holes. +I. +INTRODUCTION +The emission and detection of gravitational waves +(GWs) from the binary coalescence of black holes (BHs) +[1–7] and compact objects [8] have established the field of +experimental gravitation and continue to provide insights +into the strong field regime towards the search for an ul- +timate theory of gravitation. General relativity (GR) is +currently been tested meticulously [9–12] and has proven +to be the most successful to date. +GWs carry unparalleled information during all stages +of the binary’s evolution as it undergoes the inspiral, +merger and ringdown stage. During these phases, GWs +bear the externally observable properties of the binary’s +components and the eventual compact object’s parame- +ters that forms after ringdown, described by quasinormal +modes (QNMs) [13–15]. +BHs undergo surprising phe- +nomena, such as Hawking radiation when semiclassical +effects are taken into account [16], they superradiate [17] +under the expense of the BH’s spin [18] or charge [19– +23], and when perturbed, they vibrate according to their +characteristic spectra. +The BH spectroscopy program is currently aiming to- +wards an ultimate understanding of QNMs, how to detect +them properly from GW data [24–26], and if nonlinear- +ities [27–30], as well as spectral instabilities [31–38] can +interfere with QNM extraction. Nevertheless, superra- +diance and Hawking radiation have not been detected +experimentally. To this end, different models are being +used in an effort to mimic BHs and recreate such pro- +cesses in controlled laboratory experiments. +Analog gravity [39, 40] has the potential to provide a +better understanding regarding phenomena that would +otherwise elude observation in the strong field regime +and when quantum effects become significant. +Unruh +pioneered the first theoretical BH analog [41], which can +be envisioned through a fluid which on its surface, sound +excitations are mapped to perturbation equations that +are typically found and utilized in classical and quantum +gravity investigations. The surface fluctuations endure +an effective spacetime geometry that is determined by +the propagation speed of these excitations and their rel- +ative speed with respect to the fluid, which enables the +construction of an acoustic BH analog. Tuning the veloc- +ity of the fluid leads to the formation of an acoustic event +horizon analog, beyond which sound fluctuations cannot +escape the dumb hole, in analogy to infalling particles +into a BH event horizon which are causally disconnected +with spatial infinity. +Currently, there is an abundance in analog grav- +ity experiments that function with fluids and superflu- +ids [42–49], Bose-Einstein condensates (BECs) [50–53] +and optical media [54]. +Through these analog experi- +ments, Hawking radiation [42, 51, 52, 55], superradiance +[43–45, 56, 57], QNMs and quasibound states (QBSs) +[46, 48, 49] have been experimentally observed. These ex- +periments are not only successful scientific achievements +but also can provide unmatched insights into the future +of gravitational physics. +Very recently, a novel tabletop experimental three- +arXiv:2301.11480v1 [gr-qc] 27 Jan 2023 + +2 +dimensional analog of a Schwarzschild BH was proposed +with BECs of light placed in a mirror’s cavity [58] which +leads to a sink with a radial vortex pointing towards the +central velocity singularity, that was missing in other ex- +periments with BECs where the analog BH horizons had +a one-dimensional flow pattern that smoothly interpo- +lates between a velocity below the speed of sound and +thus did not possess a singular velocity profile. The novel +proposal in [58] serves as an analog of a rotationally- +symmetric five-dimentional Schwarzschild BH with a +sonic event horizon and a velocity singularity due to the +radial vortex, thus can shed light on the properties close +to the region of the singularity. +In Ref. +[58], the authors have calculated the gray- +body factors and Hawking radiation of the proposed ex- +perimental setup in an attempt to provide data for fu- +ture experiments. +In our analysis we complete their +study by calculating the QNMs and QBSs for the three- +dimensional BEC of light in a cavity and revisit the spec- +trum of five-dimensional Schwarzschild BH. We find that +QNMs and QBSs share qualitative similarities in both +the gravitational and the BEC analog system, thus giv- +ing more legitimacy to the analogy, and identify that +the photon sphere interpretation of eikonal QNMs of the +gravitational BH is shared in the analog system. Thus, +the newly proposed three-dimensional acoustic BH ana- +log possesses a phonon sphere which properties are in- +trinsically connected to the eikonal QNMs of phase fluc- +tuations. +II. +HIGHER-DIMENSIONAL SCHWARZSCHILD +BLACK HOLES +The standard four-dimensional Schwarzschild solution +was generalized to higher dimensions by Tangherlini in +[59]. The higher-dimensional action, which is a general- +ization of the Einstein-Hilbert action, is given by +S = +1 +16πGD +� +dDx√−gR, +(1) +where g ≡ det(gµν), and GD is the D-dimensional grav- +itational constant. +In what follows, for simplicity and +without loss of generality, we adopt the natural units +where GD = c = ℏ = 1. By varying the action with re- +spect to the spacetime metric gµν, we obtain the Einstein +equations in higher dimensions +Rµν − 1 +2Rgµν = 0, +(2) +where Rµν and R are the Ricci tensor and Ricci scalar, re- +spectively. A static, asymptotically flat and spherically- +symmetric vacuum solution of Eq. (2), which generalizes +the Schwarzschild BH solution in D-dimensions, has the +form +ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 +D−2, +(3) +where the metric function, f(r), and the solid angle ele- +ment, dΩ2 +D−2, are given by +f(r) = 1 − +M +rD−3 , +(4) +and +dΩ2 +D−2 = dθ2 +1 + sin2 θ1dθ2 +2 + sin2 θ1 sin2 θ2dθ2 +2 + · · · ++ +� +� +� +� +D−2 +� +j=1 +sin2 θj +� +� dθ2 +D−1 +� +� . +(5) +The parameter M is related to the BH mass M through +the relation +M = +16πM +(D − 2)ΩD−2 +, ΩD−2 = 2π +D−1 +2 +Γ( D−1 +2 ), +(6) +where ΩD−2 is the volume of the (D − 2)-dimensional +unit sphere and Γ(x) is the gamma function. +Note that the solution (3) simplifies to the standard +Schwarzschild metric when D = 4. In addition, we ob- +serve that when the spacetime is higher-dimensional, the +asymptotic fall-off term in the metric function f(r) be- +comes steeper. +This metric is Ricci flat and is called +either the Schwarzschild-Tangherlini solution or simply +the D-dimensional Schwarzschild BH spacetime. In this +work, we will focus on the five-dimensional Schwarzschild +BH, due to the explicit analogy between BECs of light +in a cavity that form a three-dimensional Schwarzschild +analog, as discussed in the introduction. +The explicit line element (3) for D = 5 reads +ds2 = − f(r)dt2 + f(r)−1dr2 ++ r2 � +dθ2 + sin2 θ +� +dφ2 + sin2 φ dχ2�� +, +(7) +with +f(r) = 1 − M +r2 , +M = 8M +3π , +ΩD−2 = 2π2, +(8) +where θ, φ run over the range 0 to π, and χ from 0 to +2π. The causal structure of spacetime can be identified +from the equation +f(r) = 0 = (r − r1)(r − r2), +(9) +whose solutions are the event horizon, r1 = +√ +M, and a +negative non-physical solution, r2 = − +√ +M. +A. +Scalar wave equation +We consider a minimally-coupled massless scalar per- +turbation Ψ = Ψ(t, r, θ, φ, χ), whose equation of motion +is given by the Klein-Gordon equation +� +1 +√−g ∂µ +� +gµν√−g∂ν +�� +Ψ = 0. +(10) + +3 +0.2 +0.4 +0.6 +0.8 +1.0 +1 +2 +3 +4 +5 +6 +7 +ℳ +Re(ωnν) +ω00 +ω01 +ω02 +ω03 +0.2 +0.4 +0.6 +0.8 +1.0 +-1.2 +-1.0 +-0.8 +-0.6 +-0.4 +ℳ +Im(ωnν) +ω00 +ω01 +ω02 +ω03 +0.2 +0.4 +0.6 +0.8 +1.0 +1 +2 +3 +4 +5 +6 +ℳ +Re(ωnν) +ω10 +ω11 +ω12 +ω13 +0.2 +0.4 +0.6 +0.8 +1.0 +-4.0 +-3.5 +-3.0 +-2.5 +-2.0 +-1.5 +-1.0 +ℳ +Im(ωnν) +ω10 +ω11 +ω12 +ω13 +FIG. 1. Top panel: Real (left) and imaginary (right) part of the fundamental massless scalar QNMs ω0ν of a five-dimensional +Schwarzschild black hole with respect to M and varying ν. Bottom panel: Real and imaginary part of the first overtone of +massless scalar QNMs ω1ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν. +Under symmetry assumptions we choose an ansatz +Ψ(t, r, θ, φ, χ) = e−iωtU(r)P(θ, φ, χ), +(11) +where ω is the frequency of the scalar field, U(r) = +R(r)/r3/2 is the radial function and P(θ, φ, χ) is an an- +gular function. +By utilizing the spacetime metric (7), +Eq. (10) can be separated into an angular and a radial +equation as +� +1 +sin2 θ +∂ +∂θ +� +sin2 θ ∂ +∂θ +� ++ λ − +1 +sin2 θ +� +1 +sin φ +∂ +∂φ +� +sin φ ∂ +∂φ +� ++¯λ + +1 +sin2 φ +∂2 +∂χ2 +�� +P(θ, φ) = 0, +(12) +and +R′′(r) + f ′(r) +f(r) R′(r) ++ +� ω2 +f 2(r) − 4λ + 3f(r) + 6rf ′(r) +4r2f(r) +� +R(r) = 0. +(13) +Here, λ and ¯λ are the separation constants to be deter- +mined, and the primes generally denote differentiation +with respect to r. +The general exact solution of the angular equation +(12) is given by P(θ, φ, χ) = P l +ν,4(cos θ)Ylm(φ, χ), where +P l +ν,4(cos θ) are the associated Legendre functions in four- +dimensions [60–62] with arbitrary degree ν ∈ C and order +l such that λ = ν(ν + 2), and Ylm(φ, χ) are the spherical +harmonics with l and m being the angular and magnetic +quantum numbers, respectively, such that ¯λ = l(l + 1). +In what follows, we will revisit the QNMs of five- +dimensional Schwarzschild BHs and calculate analyti- +cally the corresponding QBSs. +B. +Quasinormal modes +Equation (13) can be recast into a Schr¨odinger-like +equation by multiplying it with f 2(r) and utilizing the +tortoise coordinate r∗, with dr/dr∗ = f(r), to obtain +d2R(r) +dr2∗ ++ +� +ω2 − VBH +� +R(r) = 0, +(14) + +4 +where the effective potential VBH is +VBH ≡ f(r) +�ν(ν + 2) +r2 ++ 3f(r) +4r2 ++ 3f ′(r) +2r +� +. +(15) +QNMs ωnν are a discrete set of mode solutions of the ra- +dial equation (14) with purely ingoing (outgoing) bound- +ary conditions at the event horizon (infinity), such that +R(r) ∼ e−iωr∗, r → r1, +R(r) ∼ eiωr∗, r → ∞, +(16) +where n is the overtone number of the frequencies. In +what follows, we present some typical scalar QNMs of +a five-dimensional Schwarzschild BH. We have employed +three different methods, namely a pseudospectral method +[63], a matrix method [64, 65] and the Wentzel-Kramers- +Brillouin (WKB) method [66, 67]. We have found con- +vergence between the pseudospectral and matrix method +QNMs up to at least six digits (convergence can reach +even to 20 digits when more grid points are utilized) and +confirmed the validity of eikonal QNMs with the WKB +approximation finding similar precision. Our results also +are in perfect agreement with those reported in [68]. +Figure 1 demonstrates the typical behavior of five- +dimensional Schwarzschild scalar QNMs, i.e. the incre- +ment of the BH’s mass term decreases the oscillation fre- +quency and increases the perturbation’s lifetime. +Fur- +thermore, the increment of the angular number ν in- +creases the real part of QNMs while the imaginary part +is also increased (in absolute value) as expected from the +eikonal limit which probes the photon sphere of the BH, +where photons occupy unstable circular geodesics [69]. +There, the angular frequency of null geodesics is propor- +tional to the real part of the eikonal QNM and their in- +stability timescale is proportional to the imaginary part +of QNMs with large ν. Therefore, the BH QNMs in study +have a typical photon sphere interpretation [69] which we +will further discuss in the upcoming sections. For a nu- +merical presentation of some QNMs we refer the reader +to Table I and Ref. [68]. +5D Scwarzschild BH +ν +n = 0 +n = 1 +1 1.0160 - 0.3623 i 0.8564 - 1.1576 i +2 1.5106 - 0.3575 i 1.3927 - 1.1046 i +10 5.5028 - 0.3539 i 5.4689 - 1.0639 i +TABLE I. Massless scalar QNMs of the five-dimensional (5D) +Schwarzschild BH with M = 1. +C. +Quasibound states +In what follows, we will analytically solve the radial +equation (13) for a five-dimensional Schwarzschild BH. +QBSs are solutions to (13) with purely ingoing boundary +conditions at the event horizon (same as QNMs) and de- +caying boundary conditions at infinity. Since both QNMs +and QBSs are mode solutions to the same eigenvalue +problem, though with different asymptotic behavior, we +will also refer to QBSs as ωnν. We will see that the fact +that at infinity QBSs decay exponentially enables an an- +alytic evaluation. To find their analytic expression, we +apply the VBK approach [70, 71] in order to write the +radial equation (13) as a Heun-type differential equation +[72]. +We define a new radial coordinate, x, and a new pa- +rameter, x1, as +x = r − r2 +−r2 +, +(17) +and +x1 = r1 − r2 +−r2 +, +(18) +such that the three original singularities (r2, 0, r1) are +moved to the points (0, 1, x1), while maintaining a regular +singularity at spatial infinity. +In addition, the regular +singular point at x = x1 is always located outside the +unit circle |x1| > 1. The final step is to perform an F- +homotopic transformation R(x) �→ y(x) given by +R(x) = xA0(x − 1)A1(x − x1)Ax1 y(x), +(19) +where the coefficients A0, A1, and Ax1 are given by +A0 = − +iω +r1 − r2 +, +(20) +A1 = 1 +2 − 1 +r1 +� +r1 +� +r1 + λ +r2 +� +, +(21) +Ax1 = − +iω +r1 − r2 +. +(22) +Thus, by substituting Eqs. (17)-(22) into Eq. (13), we +obtain +y′′(x) + +�1 + 2A0 +x ++ 2A1 +x − 1 + 1 + 2Ax1 +x − x1 +� +y′(x) ++ +A3x + A4 +x(x − 1)(x − x1)y(x) = 0, +(23) +where the coefficients A3, and A4 are given by +A3 = −3 + Ax1 + 2A1(1 + Ax1) + A0(1 + 2A1 + 2Ax1) +− (x1 − 1)(x2 +1λ − 2ω2 + 2x1ω2) +r2 +1x2 +1 +, +(24) +A4 = −A0 − Ax1 − 2A0Ax1 + 3x1 +2 +− A1x1 − 2A0A1x1 ++ (x1 − 1)2(x2 +1λ + 2ω2) +r2 +1x2 +1 +. +(25) +The radial equation (23) has the form of a general Heun +equation [72]. Therefore, the exact solution for the radial +part of the Klein-Gordon equation can be written as +Rj(x) =x +1 +2 (γ−1)(x − 1) +1 +2 δ(x − x1) +1 +2 (ϵ−1) +[C1,j y1,j(x) + C2,j y2,j(x)], +(26) + +5 +where C1,j and C2,j are constants to be determined, and +j = {0, 1, x1, ∞} labels the solution at each singular +point, which are given as follows. The pair of linearly +independent solutions at x = 0 (r = r2) is given by +y1,0 = HeunG(x1, q; α, β, γ, δ; x), +(27) +y2,0 = x1−γHeunG(x1, (x1δ + ϵ)(1 − γ) + q; +α + 1 − γ, β + 1 − γ, 2 − γ, δ; x), +(28) +where HeunG(x1, q; α, β, γ, δ; x) denotes a general Heun +function, which is analytic in the disk |x| < 1, and has a +Maclaurin expansion given by +HeunG(x1, q; α, β, γ, δ; x) = +∞ +� +n=0 +cnxn, +(29) +with +−qc0 + x1γc1 = 0 +(c0 = 1), (30) +Pncn−1 − (Qn + q)cn + Xncn+1 = 0 +(n ≥ 1), (31) +and +Pn = (n − 1 + α)(n − 1 + β), +Qn = n[(n − 1 + γ)(1 + x1) + x1δ + ϵ], +(32) +Xn = (n + 1)(n + γ)x1. +The pair of linearly independent solutions at x = 1 (r = +0) is given by +y1,1 = HeunG(1 − x1, αβ − q; α, β, δ, γ; 1 − x), +(33) +y2,1 = (1 − x)1−δHeunG(1 − x1, ((1 − x1)γ + ϵ)(1 − δ) ++ αβ − q; α + 1 − δ, β + 1 − δ, 2 − δ, γ; 1 − x). (34) +The pair of linearly independent solutions at x = x1 (r = +r1) is given by +y1,x1 = HeunG +� +x1 +x1 − 1, αβx1 − q +x1 − 1 ; α, β, ϵ, δ; x1 − x +x1 − 1 +� +, +(35) +y2,x1 = +�x1 − x +x1 − 1 +�1−ϵ +HeunG +� +x1 +x1 − 1, +(x1(δ + γ) − γ)(1 − ϵ) +x1 − 1 ++ αβx1 − q +x1 − 1 ; α + 1 − ϵ, +β + 1 − ϵ, 2 − ϵ, δ; x1 − x +x1 − 1 +� +. +(36) +The pair of linearly independent solutions at x = ∞ (r = +∞) is given by +y1,∞ = x−αHeunG +� 1 +x1 +, α(β − ϵ) + α +x1 +(β − δ) +− q +x1 +; α, α − γ + 1, α − β + 1, δ; 1 +x +� +, +(37) +y2,∞ = x−βHeunG +� 1 +x1 +, β(α − ϵ) + β +x1 +(α − δ) +− q +x1 +; β, β − γ + 1, β − α + 1, δ; 1 +x +� +. +(38) +In these solutions, the parameters α, β, γ, δ, ϵ, and q are +given by +α = +1 +r1 − r2 +� +3r1 − +� +r1 +� +r1 + λ +r2 +� ++r2 +�� +1 + +λ +r1r2 +− 3 +� +− 2iω +� +, +(39) +β = − +1 +r1 − r2 +� +r1 + +� +r1 +� +r1 + λ +r2 +� +−r2 +�� +1 + +λ +r1r2 ++ 1 +� ++ 2iω +� +, +(40) +γ = 1 − +2iω +r1 − r2 +, +(41) +δ = 1 − 2 +r1 +� +r2 +1 + λr1 +r2 +, +(42) +ϵ = 1 − +2iω +r1 − r2 +, +(43) +q = r1 +r2 +− λ +r2 +2 +− 1 + 1 +r2 +�� +r2 +1 + λr1 +r2 ++ iω +� +− (r2 + 2iω) +r1r2 +� +r2 +1 + λr1 +r2 +− 2i(r1 − r2 − 2iω)ω +(r1 − r2)2 +. +(44) +The first boundary condition related to QBSs (and +QNMs) requires that the radial solution is purely ingoing +at the event horizon, i.e. to impose r → r1 (or x → x1) +on the radial solution given by Eq. (26). To do this, we +use Eqs. (35) and (36) to get the following asymptotic +behavior +lim +r→r1 Rx1(r) ∼ C1,x1 (r−r1) +1 +2 (ϵ−1)+C2,x1 (r−r1)− 1 +2 (ϵ−1), +(45) +where all the remaining constants were included in C1,x1 +and C2,x1, which will be determined afterwards. Thus, +from Eq. (43), we can write +lim +r→r1 Rx1(r) ∼ C1,x1 Ψin,x1 + C2,x1 Ψout,x1, +(46) +where Ψin,x1 and Ψout,x1 are the ingoing and outgoing +scalar wave solutions, respectively, given by +Ψin,x1(r > r1) = e−iωt(r − r1)− iω +2κ1 , +(47) +Ψout,x1(r > r1) = e−iωt(r − r1)+ iω +2κ1 , +(48) +with the surface gravity of the event horizon, κ1, being +defined as +κ1 = 1 +2 +df(r) +dr +���� +r=r1 += r1 − r2 +2 +. +(49) +The ingoing boundary condition is satisfied when C2,x1 = +0 in Eq. (46) and Eq. (26). Thus, we have +lim +r→r1 Rx1(r) ∼ C1,x1 Ψin,x1. +(50) + +6 +0.2 +0.4 +0.6 +0.8 +1.0 +-4 +-3 +-2 +-1 +0 +ℳ +Re(ωnν) +ω00 +ω01 +ω02 +ω03 +0.2 +0.4 +0.6 +0.8 +1.0 +-3.0 +-2.5 +-2.0 +-1.5 +-1.0 +-0.5 +ℳ +Im(ωnℓ) +ω00 +ω01 +ω02 +ω03 +0.2 +0.4 +0.6 +0.8 +1.0 +-4 +-3 +-2 +-1 +0 +ℳ +Re(ωnℓ) +ω10 +ω11 +ω12 +ω13 +0.2 +0.4 +0.6 +0.8 +1.0 +-4.0 +-3.5 +-3.0 +-2.5 +-2.0 +-1.5 +-1.0 +-0.5 +ℳ +Im(ωnℓ) +ω10 +ω11 +ω12 +ω13 +FIG. 2. Top panel: Real (left) and imaginary (right) part of the fundamental massless scalar QBSs ω0ν of a five-dimensional +Schwarzschild black hole with respect to M and varying ν. Bottom panel: Real and imaginary part of the first overtone of +massless scalar QBSs ω1ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν. +The second boundary condition related to the QBSs +(that differs from that of QNMs) is to require that the +radial solution vanishes at asymptotic infinity, i.e. +to +impose a decaying boundary condition at the limit r → +∞ (or x → ∞) on the radial solution given by Eq. (26). +Thus, we use Eqs. (37) and (38) to obtain the following +asymptotic behavior +lim +r→∞ R∞(r) ∼ C1,∞ +1 +rσ , +(51) +where we have imposed that C2,∞ = 0. The parameter +σ is given by +σ = α − A0 − A1 − Ax1. +(52) +The sign of the real part of σ determines the asymptotic +behavior of the radial scalar wave function as r → ∞: +if Re[σ] > 0, the radial solution tends to zero at spatial +infinity and then it fully satisfies the second boundary +condition for QBSs; if Re[σ] < 0, the radial solution di- +verges at spatial infinity. +The final asymptotic behavior of the radial scalar wave +solution at spatial infinity will be determined when we +know the values of the coefficients Aj, as well as the fre- +quencies ω, and the parameter α. Those will be obtained +by the VBK approach. +The general Heun functions become (class I) polyno- +mials of degree n (≥ 0) if and only if they satisfy two +conditions [72], namely, +α + n = 0, +(53) +cn+1(q) = 0, +(54) +where the accessory parameter q is given by Eq. (44). +The first condition, given by Eq. (53), is called the α- +condition, which is used to find the frequency eigenvalues. +The second condition, given by Eq. (54), determines the +value of the separation constant λ for each value of n, +which is used to find the eigenvalues ν and both the radial +and angular wave eigenfunctions. It is worth emphasizing +that the two polynomial conditions could be applied in +any order we wish, that is, the first condition could give +the values of the separation constant, and the second +condition could give the frequency eigenvalues. Thus, by +imposing Eq. (53), we obtain the exact spectrum of QBSs + +7 +given by +ωnν = −i( +√ +M(n + 3) − +√ +M − λ), +(55) +where we have used the explicit expressions of the event +horizon. +Here, the separation constant is, again, λ = +ν(ν + 2), and n is the overtone number, which can be, +without loss of generality, called the principal quantum +number. On the other hand, by substituting Eqs. (20), +(21), (22), (53) and (55) into Eq. (52), we get +σ = 4, +(56) +which means that the parameter σ is a real, positive +number for any value of the principal quantum num- +ber n, as well as for any value of the separation con- +stant λ, and hence the frequency eigenvalues given by +Eq. (55) represent QBSs for massless scalar fields in the +five-dimensional Schwarzschild spacetime. +In addition, +by substituting these equations into Eq. (44), it is pos- +sible to obtain a nonlinear equation for q = q(λ) and +then impose the second polynomial condition given by +Eq. (54) to obtain the angular eigenvalues λ. +Now, let us discuss a very important case of these +QBSs: the fundamental mode, where n = 0. +In this +case, we have +ω0ν = −i(3 +√ +M − +√ +M − λ), +(57) +where +the +second +polynomial +condition, +given +by +Eq. (54), is automatically satisfied, since it leads to +cn+1(q) +���� +n=0 += q = n(4 + n) +���� +n=0 += 0. +(58) +This means that there is no restriction on the value of the +separation constant λ = ν(ν + 2), with ν = 0, 1, 2, . . . . +In particular, the ground state (n, ν) = (0, 0) of QBSs +is given by ω00 = −2i +√ +M. +This is a very important +result because it designates the absence of bound states +when the angular number is null. These solution are not +oscillatory but only decay in time therefore no bound +state can be formed in this particular case, and the BH +only oscillates in accord to QNMs. +In Fig. 2 we show the behavior of massless scalar QBSs +in the the BH under study. The real part for the QBS ω00 +is always zero since it does not depend on M and cor- +roborates the aforementioned discussion. When ν ̸= 0 +QBSs exist; the mass parameter acts in the opposite way +with respect to that of QNMs, namely their real parts +increase with M while their lifetime decreases. The an- +gular number ν has a somewhat similar effect to that of +QNMs, that is its increment increases (in absolute value) +the oscillation frequency of QBSs and quickly drives the +imaginary parts to their asymptotic, large ν, value. Of +course, since these modes have different boundary con- +ditions they have no connection to null geodesics in the +photon sphere at the eikonal limit. +III. +ANALOG BLACK HOLES: BOSE-EINSTEIN +CONDENSATES OF LIGHT IN A CAVITY +In this section, we begin by considering the general +acoustic BH solution in Minkowski spacetime obtained +by Unruh [41] (see also Refs. [39, 40]), and then show +how to properly choose the sound velocity in order to +obtain a Schwarzschild BH in BECs of photons trapped +in a mirror cavity [58, 73]. +The fundamental equations of motion for an irrota- +tional fluid are given by +∇ × v = 0, +(59) +∂tρ + ∇ · (ρv) = 0, +(60) +ρdv +dt ≡ ρ[∂tv + (v · ∇)v] = −∇p, +(61) +where v, ρ, and p are the velocity, density, and pressure +of the fluid, respectively. Next, we introduce the velocity +potential Ψ, such that v = −∇Ψ, and assume the fluid +as barotropic, which means that ρ = ρ(p). +Then, by +linearizing these equations of motion around some back- +ground (ρ0, p0, Ψ0), namely, +ρ = ρ0 + ϵρ1, +(62) +p = p0 + ϵp1, +(63) +Ψ = Ψ0 + ϵΨ1, +(64) +we obtain the following equation +− ∂t +�∂ρ +∂pρ0(∂tΨ1 + v0 · ∇Ψ1) +� ++ +∇ · +� +ρ0∇Ψ1 − ∂ρ +∂pρ0v0(∂tΨ1 + v0 · ∇Ψ1) +� += 0, +(65) +where the local speed of sound, cs, is defined by +c−2 +s +≡ ∂ρ +∂p. +(66) +Equation (65) describes the propagation of the linearized +scalar potential Ψ1, that is, it governs the propagation of +the phase fluctuations as weak excitations in a homoge- +neous stationary condensate, which can be rewritten as +a wave equation in an analog curved spacetime as +1 +√−g ∂µ(gµν√−g∂νΨ1) = 0. +(67) +Note that Eq. +(67) is similar to the covariant Klein- +Gordon equation (10), where the acoustic line element +can be written as +ds2 = ρ0 +cs +[−c2 +sdt2 + (dxi − vi +0dt)δij(dxj − vj +0dt)]. +(68) +Now, let us revisit how the (1 + 2)-dimensional acous- +tic BH was set up in Ref. [58]. Firstly, we can assume +that the fluid is a static spherically-symmetric conser- +vation flow, with a polar angle θ = π/2, which implies + +8 +that dθ = 0. +Next, we define the speed of sound as +cs ≡ +� +kn0/µ, where k is the strength of the effective +contact interaction, n0 is the condensate density, and µ +is the effective mass of the photon gas. Then, the velocity +of the fluid v is the flow rate along the radial direction +(representing the radial vortex), that is it points to the +center of the acoustic BH towards the velocity singular- +ity, given by +v0 = −ℏc0 +µr ˆr = −ξcs +c0 +r ˆr, +(69) +where ξ(= ℏ/µcs) is the correlation length, and c0(> 0) is +a constant related to the acoustic horizon’s radius. Thus, +the acoustic line element resulting by Eq. (68) can be +written as +ds2 = − +� +1 − c2 +0 +r2 +� +dt2 + 2c0 +r drdt + dr2 + r2dφ2. +(70) +With the coordinate transformation +dt → dt − +c0 +r(1 − c2 +0/r2)dr, +(71) +we can write the line element of an acoustic (1 + 2)- +dimensional BEC of light in a cavity as +ds2 = −f(r)dt2 + f(r)−1dr2 + r2dφ2, +(72) +where the warp factor f(r) has the form +f(r) = 1 − c2 +0 +r2 . +(73) +The radial vortex exists in a spatially (1+2)-dimensional +BEC, therefore since the warp factor (73) is identical to +the metric function (8), under the identification M = c2 +0, +then this model is an analog of a (1 + 4)-dimensional +Schwarzschild BH. This is a consequence of the fact that +the metric of the BEC does not obey Einstein’s field equa- +tions, but rather it is determined by pure hydrodynamics +[58]. +The causal structure of the particular analog BH is +strikingly similar to that presented in Sec. II. The warp +factor equation +f(r) = 0 = (r − r1)(r − r2), +(74) +has two solutions, an acoustic horizon r1 = c0, which is +the outermost marginally trapped surface for outgoing +phonons, and an unphysical negative solution r2 = −c0. +The exterior acoustic event horizon is where the velocity +of the fluid reaches the sound velocity. The central point +of the acoustic BH can be regarded as a sink that leads to +the higher-dimensional space from which the fluid flows +to the three-dimensional space. +It is worth noting that one can also obtain this effec- +tive metric, given by Eq. (72), by using the approach +developed in [74], which is based on the Gross-Pitaevskii +theory [75, 76] that describes a nonlinear complex scalar +field propagating in a curved spacetime background. In +this approach, we simply require a fluid flow with velocity +given by Eq. (69) in a flat Minkowski spacetime. +In what follows, we will calculate, for the first time, the +QNMs and QBSs of the analog BH proposed in Ref. [58], +by using the same methods used for the five-dimensional +Schwarzschild BH analysis in Sec. II. +A. +Scalar wave equation +In order to solve the equation of motion given by +Eq. (67), for the acoustic metric Eq. (72), we will use a +similar separation ansatz for the phase fluctuation wave +function +Ψ1(t, r, φ) = e−i˜ωtU(r)eimφ, +(75) +where ˜ω is the frequency of phase fluctuations, U(r) = +R(r)/r1/2 is the radial function, and m is the magnetic +quantum number. Thus, by substituting Eqs. (72) and +(75) into Eq. (67), we obtain +R′′(r) + f ′(r) +f(r) R′(r) ++ +� ˜ω2 +f 2(r) − 4m2 − f(r) + 2rf ′(r) +4r2f(r) +� +R(r) = 0. +(76) +B. +Quasinormal modes +Equation (76) can be recast into a Schr¨odinger-like +equation by multiplying with f 2(r) and utilizing the tor- +toise coordinate r∗, with dr/dr∗ = f(r), to obtain +d2R(r) +dr2∗ ++ +� +˜ω2 − VBEC +� +R(r) = 0, +(77) +where the effective potential VBEC is +VBEC ≡ f(r) +�m2 +r2 − f(r) +4r2 + f ′(r) +2r +� +. +(78) +QNMs ˜ωnm, similarly, form a discrete set of mode so- +lutions to the radial equation (77) with purely ingoing +(outgoing) boundary conditions at the acoustic horizon +(infinity), such that +R(r) ∼ e−i˜ωr∗, r → r1, +R(r) ∼ ei˜ωr∗, r → ∞. +(79) +In what follows, we present the QNMs of the three- +dimensional BH analog of BECs in a cavity, where we +have employed the same methods to numerically obtain +and benchmark our results. +Figure 3 demonstrates the behavior of the BEC BH +analog’s QNMs. The increment of the vortex radius c0 +decreases the oscillation frequency and increases the per- +turbation’s lifetime. The increment of m increases the + +9 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +2 +4 +6 +8 +10 +12 +14 +c0 +Re(ω +nm) +ω +00 +ω +01 +ω +02 +ω +03 +0.2 +0.4 +0.6 +0.8 +1.0 +-7 +-6 +-5 +-4 +-3 +-2 +-1 +c0 +Im(ω +nm) +ω +00 +ω +01 +ω +02 +ω +03 +0.2 +0.4 +0.6 +0.8 +1.0 +0 +2 +4 +6 +8 +10 +12 +14 +c0 +Re(ω +nm) +ω +10 +ω +11 +ω +12 +ω +13 +0.2 +0.4 +0.6 +0.8 +1.0 +-16 +-14 +-12 +-10 +-8 +-6 +-4 +-2 +c0 +Im(ω +nm) +ω +10 +ω +11 +ω +12 +ω +13 +FIG. 3. Top panel: Real (left) and imaginary (right) part of the fundamental QNMs ˜ω0m of a three-dimensional acoustic +Schwarzschild black hole with respect to c0 and varying m. Bottom panel: Real and imaginary part of the first overtone of +QNMs ˜ω1m of the same system with respect to c0 and varying m. +real part of QNMs while the imaginary part is also in- +creased (in absolute value) as expected from the eikonal +limit which probes, as we will show in the following sec- +tion, the instability timescale of phase fluctuations at a +critical radius where phonons are trapped in unstable +curcular orbits around the acoustic BH. For some typical +QNMs we refer the reader to Table II. +3D BEC analog +m +n = 0 +n = 1 +1 0.4068 - 0.3412 i 0.1968 - 1.2341 i +2 0.9527 - 0.3507 i 0.7856 - 0.2234 i +10 4.9906 - 0.3535 i 4.9532 - 1.1248 i +TABLE II. QNMs of the three-dimensional (3D) BEC acous- +tic BH with c0 = 1. +1. +Eikonal quasinormal mode interpretation +We are already aware that the real and imaginary part +of eikonal QNMs are intrinsically connected to the angu- +lar frequency and instability timescale of null geodesics, +respectively, at the photon sphere of a vast variety of +BH geometries [69, 77–82]. Our calculations demonstrate +that the same behavior occurs for the acoustic BEC BH, +which means that the system, though hydrodynamic in +nature, has an analog photon sphere, i.e. +a phonon +sphere. By calculating the QNMs for large m and com- +paring with those of the five-dimensional BH for large ν +we find that both asymptote to the same value. +Specifically, the QNMs of the acoustic BH in the +eikonal limit are related to the Lyapunov exponent λ0 of +phase fluctuations at a critical radius where phonons are +trapped in unstable circular orbits. The Lyapunov expo- +nent is inversely-proportional to the instability timescale +of phonon orbits there, i.e. [69] +˜ωWKB = mΩph − i +� +n + 1 +2 +� +|λ0|, +(80) + +10 +0 +20 +40 +60 +80 +100 +-0.365 +-0.360 +-0.355 +-0.350 +-0.345 +-0.340 +ν,m +Im(ω0 ν) +Im(ω +0 m) +FIG. 4. +Imaginary parts of fundamental QNMs of a five- +dimensional Schwarzschild black hole, Im(ω0ν) (purple dots), +with M = 1 and increasing ν, and of the acoustic analog +Schwarzschild black hole in a cavity, Im(˜ω0m) (orange dots), +with c0 = 1 and increasing m. The dashed horizontal line +designates the WKB prediction at the eikonal limit. +where +Ωph = +� +f(rph) +r2 +ph +, +(81) +is the angular frequency of phonons at the phonon sphere +r = rph and +|λ0| = +� +−1 +2 +r2 +ph +f(rph) +� d2 +dr2∗ +f(r) +r2 +������ +r=rph +(82) +is the Lyapunov exponent or instability timescale of +phonons. +Figure 4 shows that both the BH and the acoustic BEC +analog reach the same decay timescale of QNMs rapidly +as ν and m become arbitrarily large. The asymptotic val- +ues of eikonal QNMs extracted with the numerical meth- +ods utilized above agree perfectly with those obtained by +Eq. (80) for large m. The fact that both the gravita- +tional and acoustic BH asymptote to the same eikonal +QNMs is routed to the form of their effective potentials. +Equations (15) and (78) are both dominated by ν and +m when those constants acquire large values, hence the +effective potentials practically coincide and lead to the +same mode solutions. +A peculiar, though not necessarily important, aspect +of the convergence of the imaginary part of QNMs is that +when m increases the trend of convergence to the WKB +prediction (shown with a dashed horizontal black line in +Fig. 4) is opposite to that of the BH when ν asymptotes +to infinity. +C. +Quasibound states +The exact solution for the radial part of the mass- +less Klein-Gordon equation, in the acoustic BH system, +can be written through Eqs. +(26)-(38), with the new +radial coordinate, x, the new parameter, x1, and the +F-homotopic transformation, R(x) �→ y(x), defined by +Eqs. (17), (18), and (19), respectively. However, in the +present case, the coefficients A0, A1, Ax1, A3, and A4 are +given by +A0 = − i˜ω +2c0 +, +(83) +A1 = 1 +2 − im +c0 +, +(84) +Ax1 = − i˜ω +2c0 +, +(85) +A3 = −(m + ˜ω)(2ic0 + m + ˜ω) +c2 +0 +, +(86) +A4 = (m + ˜ω)(2ic0 + m + ˜ω) +c2 +0 +, +(87) +such that the parameters α, β, γ, δ, ϵ, and q are given +by +α = 2 − i(m + ˜ω) +c0 +, +(88) +β = −i(m + ˜ω) +c0 +, +(89) +γ = 1 − i˜ω +c0 +, +(90) +δ = 1 − 2im +c0 +, +(91) +ϵ = 1 − i˜ω +c0 +, +(92) +q = −(m + ˜ω)(2ic0 + m + ˜ω) +c2 +0 +. +(93) +Similarly to Sec. II C, by imposing ingoing boundary +conditions at the acoustic horizon, decay at infinity, and +the resulting α-condition given by Eq. (53), we obtain the +exact spectrum of QBSs ˜ωnm in the BEC Schwarzschild +analog +˜ωnm = −m − ic0(2 + n). +(94) +Furthermore, from Eqs. (83)-(94), we get +σ = i(m + ic0n + ˜ωnm) +c0 += 2, +(95) +which means that the parameter σ is a real, positive +(constant) number for any value of the overtone num- +ber n, as well as for any value of the magnetic quantum +number m, and hence the frequency eigenvalues given +by Eq. (94) represent QBSs for phase fluctuations in the +acoustic BEC BH studied here. + +11 +0.2 +0.4 +0.6 +0.8 +1.0 +-3 +-2 +-1 +0 +c0 +Re(ω +nm) +ω +00 +ω +01 +ω +02 +ω +03 +0.2 +0.4 +0.6 +0.8 +1.0 +-2.0 +-1.5 +-1.0 +-0.5 +0.0 +c0 +Im(ω +nm) +ω +00 +ω +01 +ω +02 +ω +03 +0.2 +0.4 +0.6 +0.8 +1.0 +-3 +-2 +-1 +0 +c0 +Re(ω +nm) +ω +10 +ω +11 +ω +12 +ω +13 +0.2 +0.4 +0.6 +0.8 +1.0 +-3.0 +-2.5 +-2.0 +-1.5 +-1.0 +-0.5 +0.0 +c0 +Im(ω +nm) +ω +10 +ω +11 +ω +12 +ω +13 +FIG. 5. +Top panel: Real (left) and imaginary (right) part of the fundamental QBSs ˜ω0m of a three-dimensional acoustic +Schwarzschild black hole with respect to the vortex radius c0 and varying m. Bottom panel: Real and imaginary part of the +first overtone of QBSs ˜ω1m of the same system with respect to c0 and varying m. +By focusing on the fundamental mode (n = 0) we ob- +tain +˜ω0m = −m − 2ic0, +(96) +where +the +second +polynomial +condition, +given +by +Eq. (54), is automatically satisfied, since it leads to +cn+1(q) +���� +n=0 += q = n(2 + n) +���� +n=0 += 0. +(97) +This means that there is no restriction on the value of +the magnetic quantum number m; we can consider it as +m = −∞, . . . , 0, . . . , +∞. It is noteworthy to point that +as in the BH case, the QBSs of the acoustic BH do not +exist when m = 0 since the real part is zero and the +modes only decay in time, i.e. ˜ω00 = −2ic0. +Fig. 5 demonstrates the behavior of QBSs in the ana- +log BEC BH. Surprisingly, they have almost identical ten- +dencies as those found for five-dimensional Schwarzschild +BHs which further supports the analogy between them. +Most surprisingly, the imaginary parts depend linearly +on the vortex radius c0, which is a much more simplified +version of what occurs in the BH case. +IV. +CONCLUSIONS +In this study, we have calculated the QNMs and QBSs +of five-dimensional Schwarzschild BHs which are analog +models of BECs of light in a mirror cavity; an experiment +recently proposed in [58]. We found that the spectra for +both systems share striking qualitative similarities with +respect to their tuning parameters, i.e. +the BH mass +and the cavity’s radius. Most importantly, our investi- +gation provides proof of a phonon-sphere interpretation +of the acoustic BEC BH since the imaginary part of the +eikonal QNMs asymptotes to the instability timescale of +phonons at the phonon sphere in accord to the WKB +prediction. Our results are timely, and together with the +recent investigation of the graybody factors and Hawk- +ing radiation of the analog proposed in [58], can prescribe +numerical data for actual experimental devices that may +be constructed based on such proposal. +In fact, although a multitude of BH analog experiments +have taken place and made significant breakthroughs so +far, the proposal in [58] is quite simple and elegant, in- +cludes a velocity singularity at the center of the vor- + +12 +tex (aspect that other BEC-based experiments lack), has +tabletop dimensions and can provide intuition regarding +classical and quantum aspects of the singularity, as well +as a better understanding of higher-dimensional BH ge- +ometries and their properties. +An interesting extension of the analog [58] can be the +manipulation of the nonlinear coupling of the BECs of +light in order to obtain a massive Klein-Gordon-like equa- +tion for phase fluctuations through the underlying hy- +drodynamic equations of motion [57] and study classical +and quantum phenomena. Most importantly, a general- +ization of the model in [58] onto a rotating BEC acoustic +BH analog should be of utmost importance in order to +simulate phenomena that astrophysical BHs experience. +We leave these directions of research for the future. +ACKNOWLEDGMENTS +H.S.V. is partially supported by the Alexander von +Humboldt-Stiftung/Foundation (Grant No. +1209836). +This study was financed in part by the Conselho Na- +cional de Desenvolvimento Cient´ıfico e Tecnol´ogico – +Brasil (CNPq) – Research Project No. +150410/2022- +0. +It is a great pleasure to thank the Theoretical As- +trophysics at T¨ubingen (TAT Group) for its hospitality +and technical support. K.D. acknowledges financial sup- +port provided under the European Union’s H2020 ERC, +Starting Grant agreement no. DarkGRA–757480 and the +MIUR PRIN and FARE programmes (GW-NEXT, CUP: +B84I20000100001). +[1] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. +Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc]. +[2] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. +Lett. 116, 221101 (2016), [Erratum: Phys.Rev.Lett. 121, +129902 (2018)], arXiv:1602.03841 [gr-qc]. +[3] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. +Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc]. +[4] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. +Lett. 125, 101102 (2020), arXiv:2009.01075 [gr-qc]. +[5] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D +102, 043015 (2020), arXiv:2004.08342 [astro-ph.HE]. +[6] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D +103, 122002 (2021), arXiv:2010.14529 [gr-qc]. +[7] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), +(2021), arXiv:2111.03606 [gr-qc]. +[8] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. +Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc]. +[9] E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), +arXiv:1501.07274 [gr-qc]. +[10] L. Barack et al., Class. Quant. Grav. 36, 143001 (2019), +arXiv:1806.05195 [gr-qc]. +[11] K. Destounis, A. G. Suvorov, and K. D. Kokkotas, Phys. +Rev. D 102, 064041 (2020), arXiv:2009.00028 [gr-qc]. +[12] K. Destounis, A. G. Suvorov, and K. D. Kokkotas, Phys. +Rev. Lett. 126, 141102 (2021), arXiv:2103.05643 [gr-qc]. +[13] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, +2 (1999), arXiv:gr-qc/9909058. +[14] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. +Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc]. +[15] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, +793 (2011), arXiv:1102.4014 [gr-qc]. +[16] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975), +[Erratum: Commun.Math.Phys. 46, 206 (1976)]. +[17] R. Brito, V. Cardoso, +and P. Pani, Lect. Notes Phys. +906, pp.1 (2015), arXiv:1501.06570 [gr-qc]. +[18] R. Penrose and R. M. Floyd, Nature 229, 177 (1971). +[19] J. D. Bekenstein, Phys. Rev. D 7, 949 (1973). +[20] V. Cardoso, +J. L. Costa, +K. Destounis, +P. Hintz, +and A. Jansen, Phys. Rev. D 98, 104007 (2018), +arXiv:1808.03631 [gr-qc]. +[21] K. +Destounis, +Phys. +Rev. +D +100, +044054 +(2019), +arXiv:1908.06117 [gr-qc]. +[22] G. Mascher, K. Destounis, +and K. D. Kokkotas, Phys. +Rev. D 105, 084052 (2022), arXiv:2204.05335 [gr-qc]. +[23] K. Destounis, G. Mascher, +and K. D. Kokkotas, Phys. +Rev. D 105, 124058 (2022), arXiv:2206.07794 [gr-qc]. +[24] M. Isi, M. Giesler, W. M. Farr, M. A. Scheel, +and +S. A. Teukolsky, Phys. Rev. Lett. 123, 111102 (2019), +arXiv:1905.00869 [gr-qc]. +[25] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, Phys. +Rev. X 9, 041060 (2019), arXiv:1903.08284 [gr-qc]. +[26] R. Cotesta, G. Carullo, E. Berti, and V. Cardoso, Phys. +Rev. Lett. 129, 111102 (2022), arXiv:2201.00822 [gr-qc]. +[27] M. H.-Y. Cheung et al., (2022), arXiv:2208.07374 [gr-qc]. +[28] M. Lagos and L. Hui, (2022), arXiv:2208.07379 [gr-qc]. +[29] K. Mitman et al., (2022), arXiv:2208.07380 [gr-qc]. +[30] A. Kehagias, D. Perrone, A. Riotto, and F. Riva, (2023), +arXiv:2301.09345 [gr-qc]. +[31] J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, +Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr- +qc]. +[32] J. L. Jaramillo, R. Panosso Macedo, and L. A. Sheikh, +Phys. Rev. Lett. 128, 211102 (2022), arXiv:2105.03451 +[gr-qc]. +[33] K. Destounis, R. P. Macedo, E. Berti, V. Cardoso, +and J. L. Jaramillo, Phys. Rev. D 104, 084091 (2021), +arXiv:2107.09673 [gr-qc]. +[34] E. Gasperin and J. L. Jaramillo, Class. Quant. Grav. 39, +115010 (2022), arXiv:2107.12865 [gr-qc]. +[35] V. Boyanov, K. Destounis, R. Panosso Macedo, V. Car- +doso, and J. L. Jaramillo, (2022), arXiv:2209.12950 [gr- +qc]. +[36] E. Berti, V. Cardoso, M. H.-Y. Cheung, F. Di Filippo, +F. Duque, P. Martens, and S. Mukohyama, Phys. Rev. +D 106, 084011 (2022), arXiv:2205.08547 [gr-qc]. +[37] J. L. Jaramillo, Class. Quant. Grav. 39, 217002 (2022), +arXiv:2206.08025 [gr-qc]. +[38] R. +A. +Konoplya +and +A. +Zhidenko, +(2022), +arXiv:2209.00679 [gr-qc]. +[39] M. Visser, Class. Quant. Grav. 15, 1767 (1998), arXiv:gr- +qc/9712010. +[40] C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rel. + +13 +8, 12 (2005), arXiv:gr-qc/0505065. +[41] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). +[42] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G. +Unruh, +and G. A. Lawrence, Phys. Rev. Lett. 106, +021302 (2011), arXiv:1008.1911 [gr-qc]. +[43] M. Richartz, A. Prain, S. Liberati, and S. Weinfurtner, +Phys. Rev. D 91, 124018 (2015), arXiv:1411.1662 [gr-qc]. +[44] V. Cardoso, A. Coutant, M. Richartz, +and S. We- +infurtner, +Phys. +Rev. +Lett. +117, +271101 +(2016), +arXiv:1607.01378 [gr-qc]. +[45] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W. +Tedford, +and S. Weinfurtner, Nature Phys. 13, 833 +(2017), arXiv:1612.06180 [gr-qc]. +[46] S. Patrick, A. Coutant, M. Richartz, and S. Weinfurtner, +Phys. Rev. Lett. 121, 061101 (2018), arXiv:1801.08473 +[gr-qc]. +[47] S. Patrick, H. Goodhew, C. Gooding, +and S. We- +infurtner, +Phys. +Rev. +Lett. +126, +041105 +(2021), +arXiv:1905.03045 [gr-qc]. +[48] T. Torres, S. Patrick, M. Richartz, and S. Weinfurtner, +Class. Quant. Grav. 36, 194002 (2019), arXiv:1905.00356 +[gr-qc]. +[49] T. Torres, S. Patrick, M. Richartz, and S. Weinfurtner, +Phys. Rev. Lett. 125, 011301 (2020), arXiv:1811.07858 +[gr-qc]. +[50] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. +Rev. A 63, 023611 (2001), arXiv:gr-qc/0005131. +[51] J. +Steinhauer, +Nature +Phys. +10, +864 +(2014), +arXiv:1409.6550 [cond-mat.quant-gas]. +[52] J. R. Mu˜noz de Nova, K. Golubkov, V. I. Kolobov, and +J. Steinhauer, Nature 569, 688 (2019), arXiv:1809.00913 +[gr-qc]. +[53] C. Gooding, S. Biermann, S. Erne, J. Louko, W. G. Un- +ruh, J. Schmiedmayer, +and S. Weinfurtner, Phys. Rev. +Lett. 125, 213603 (2020), arXiv:2007.07160 [gr-qc]. +[54] J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, +and U. Leonhardt, Phys. Rev. Lett. 122, 010404 (2019), +arXiv:1808.09244 [gr-qc]. +[55] M. Ornigotti, S. Bar-Ad, A. Szameit, +and V. Fleu- +rov, Phys. Rev. A 97, 013823 (2018), arXiv:1704.07609 +[physics.optics]. +[56] M. Richartz, A. Prain, S. Weinfurtner, and S. Liberati, +Class. Quant. Grav. 30, 085009 (2013), arXiv:1208.3601 +[gr-qc]. +[57] M. Ciszak and F. Marino, Phys. Rev. D 103, 045004 +(2021), arXiv:2101.07508 [gr-qc]. +[58] L. Liao, E. C. I. van der Wurff, D. van Oosten, +and +H. T. C. Stoof, Phys. Rev. A 99, 023850 (2019), +arXiv:1806.00023 [cond-mat.quant-gas]. +[59] F. R. Tangherlini, Nuovo Cim. 27, 636 (1963). +[60] G. Torres del Castillo, Revista Mexicana de F´ısica +(2013). +[61] C. R. Frye and C. J. Efthimiou, (2012), arXiv:1205.3548 +[math.CA]. +[62] D. H. Hyers, The Functions of Mathematical Physics +(Harry Hochstadt), Vol. 15 (Society for Industrial and +Applied Mathematics, USA, 1973) p. 235–236. +[63] A. +Jansen, +Eur. +Phys. +J. +Plus +132, +546 +(2017), +arXiv:1709.09178 [gr-qc]. +[64] K. Lin and W.-L. Qian, Class. Quant. Grav. 34, 095004 +(2017), arXiv:1610.08135 [gr-qc]. +[65] K. Lin and W.-L. Qian, Chin. Phys. C 43, 035105 (2019), +arXiv:1902.08352 [gr-qc]. +[66] S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987). +[67] S. Iyer, Phys. Rev. D 35, 3632 (1987). +[68] V. Cardoso, J. P. S. Lemos, and S. Yoshida, Phys. Rev. +D 69, 044004 (2004), arXiv:gr-qc/0309112. +[69] V. Cardoso, +A. S. Miranda, +E. Berti, +H. Witek, +and V. T. Zanchin, Phys. Rev. D 79, 064016 (2009), +arXiv:0812.1806 [hep-th]. +[70] H. S. Vieira and V. B. Bezerra, Annals Phys. 373, 28 +(2016), arXiv:1603.02233 [gr-qc]. +[71] H. S. Vieira and K. D. Kokkotas, Phys. Rev. D 104, +024035 (2021), arXiv:2104.03938 [gr-qc]. +[72] A. Ronveaux, Heun’s Differential Equations (Oxford Uni- +versity Press, New York, 1995). +[73] Q.-B. Wang and X.-H. Ge, Phys. Rev. D 102, 104009 +(2020), arXiv:1912.05285 [hep-th]. +[74] X.-H. Ge, M. Nakahara, S.-J. Sin, Y. Tian, +and S.-F. +Wu, Phys. Rev. D 99, 104047 (2019), arXiv:1902.11126 +[hep-th]. +[75] E. P. Gross, Nuovo Cimento (Italy) Divided into Nuovo +Cimento A and Nuovo Cimento B 10.1007/BF02731494. +[76] L. Pitaevskii, Sov. Phys. JETP 13, 451 (1961). +[77] V. Cardoso, J. a. L. Costa, K. Destounis, P. Hintz, +and A. Jansen, Phys. Rev. Lett. 120, 031103 (2018), +arXiv:1711.10502 [gr-qc]. +[78] K. +Destounis, +Phys. +Lett. +B +795, +211 +(2019), +arXiv:1811.10629 [gr-qc]. +[79] H. Liu, +Z. Tang, +K. Destounis, +B. Wang, +E. Pa- +pantonopoulos, +and H. Zhang, JHEP 03, 187 (2019), +arXiv:1902.01865 [gr-qc]. +[80] K. Destounis, R. D. B. Fontana, F. C. Mena, and E. Pa- +pantonopoulos, JHEP 10, 280 (2019), arXiv:1908.09842 +[gr-qc]. +[81] K. Destounis, R. D. B. Fontana, and F. C. Mena, Phys. +Rev. D 102, 044005 (2020), arXiv:2005.03028 [gr-qc]. +[82] K. Destounis, R. D. B. Fontana, and F. C. Mena, Phys. +Rev. D 102, 104037 (2020), arXiv:2006.01152 [gr-qc]. + diff --git a/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/load_file.txt b/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..95d00364d50ec38bae00d6c1f383f070cce3494d --- /dev/null +++ b/VNFJT4oBgHgl3EQfOCw1/content/tmp_files/load_file.txt @@ -0,0 +1,1128 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf,len=1127 +page_content='Analog Schwarzschild black holes of Bose-Einstein condensates in a cavity: Quasinormal modes and quasibound states H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Vieira1,2,3, Kyriakos Destounis4,5 and Kostas D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas2 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Institute of Natural Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Federal University of Lavras,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 37200-000 Lavras,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Brazil 2Theoretical Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Institute for Astronomy and Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' University of T¨ubingen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 72076 T¨ubingen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Germany 3S˜ao Carlos Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' University of S˜ao Paulo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 13560-970 S˜ao Carlos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Brazil 4Dipartimento di Fisica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Sapienza Universit`a di Roma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Piazzale Aldo Moro 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 00185,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Roma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Italy and 5INFN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Sezione di Roma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Piazzale Aldo Moro 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 00185,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Roma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Italy Analog models of black holes have unequivocally proven to be extremely beneficial in providing critical information regarding black hole spectroscopy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' superradiance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' quantum phenomena and most importantly Hawking radiation and black hole evaporation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' topics that have either recently begun to bloom through gravitational wave observations or have not yet been investigated in astrophysical setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Black hole analog experiments have made astonishing steps toward the aforementioned direc- tions and are paramount in understanding the quantum nature of the gravitational field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Recently, a tabletop analog Schwarzschild black hole has been proposed by placing Bose-Einstein condensates of photons inside a mirror’s cavity, leading to a sink with a radial vortex that represents a velocity singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Here, we provide an extensive spectral analysis of both the tabletop acoustic black hole and its higher-dimensional gravitational analog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We find that quasinormal modes and quasibound states share qualitative similarities in both systems and show that the eikonal quasinormal modes of the analog acoustic black hole have a photon-sphere-like interpretation, which points to the ex- istence of a phonon sphere in the analog black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Our results, complemented with the recently calculated graybody factors and Hawking radiation of the acoustic analog, can provide a theoretical test bed for future tabletop experiments with condensates of light in a mirror’s cavity and provide significant insights regarding classical and quantum phenomena in higher-dimensional black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' INTRODUCTION The emission and detection of gravitational waves (GWs) from the binary coalescence of black holes (BHs) [1–7] and compact objects [8] have established the field of experimental gravitation and continue to provide insights into the strong field regime towards the search for an ul- timate theory of gravitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' General relativity (GR) is currently been tested meticulously [9–12] and has proven to be the most successful to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' GWs carry unparalleled information during all stages of the binary’s evolution as it undergoes the inspiral, merger and ringdown stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' During these phases, GWs bear the externally observable properties of the binary’s components and the eventual compact object’s parame- ters that forms after ringdown, described by quasinormal modes (QNMs) [13–15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' BHs undergo surprising phe- nomena, such as Hawking radiation when semiclassical effects are taken into account [16], they superradiate [17] under the expense of the BH’s spin [18] or charge [19– 23], and when perturbed, they vibrate according to their characteristic spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The BH spectroscopy program is currently aiming to- wards an ultimate understanding of QNMs, how to detect them properly from GW data [24–26], and if nonlinear- ities [27–30], as well as spectral instabilities [31–38] can interfere with QNM extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Nevertheless, superra- diance and Hawking radiation have not been detected experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' To this end, different models are being used in an effort to mimic BHs and recreate such pro- cesses in controlled laboratory experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Analog gravity [39, 40] has the potential to provide a better understanding regarding phenomena that would otherwise elude observation in the strong field regime and when quantum effects become significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Unruh pioneered the first theoretical BH analog [41], which can be envisioned through a fluid which on its surface, sound excitations are mapped to perturbation equations that are typically found and utilized in classical and quantum gravity investigations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The surface fluctuations endure an effective spacetime geometry that is determined by the propagation speed of these excitations and their rel- ative speed with respect to the fluid, which enables the construction of an acoustic BH analog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tuning the veloc- ity of the fluid leads to the formation of an acoustic event horizon analog, beyond which sound fluctuations cannot escape the dumb hole, in analogy to infalling particles into a BH event horizon which are causally disconnected with spatial infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Currently, there is an abundance in analog grav- ity experiments that function with fluids and superflu- ids [42–49], Bose-Einstein condensates (BECs) [50–53] and optical media [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Through these analog experi- ments, Hawking radiation [42, 51, 52, 55], superradiance [43–45, 56, 57], QNMs and quasibound states (QBSs) [46, 48, 49] have been experimentally observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' These ex- periments are not only successful scientific achievements but also can provide unmatched insights into the future of gravitational physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Very recently, a novel tabletop experimental three- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='11480v1 [gr-qc] 27 Jan 2023 2 dimensional analog of a Schwarzschild BH was proposed with BECs of light placed in a mirror’s cavity [58] which leads to a sink with a radial vortex pointing towards the central velocity singularity, that was missing in other ex- periments with BECs where the analog BH horizons had a one-dimensional flow pattern that smoothly interpo- lates between a velocity below the speed of sound and thus did not possess a singular velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The novel proposal in [58] serves as an analog of a rotationally- symmetric five-dimentional Schwarzschild BH with a sonic event horizon and a velocity singularity due to the radial vortex, thus can shed light on the properties close to the region of the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [58], the authors have calculated the gray- body factors and Hawking radiation of the proposed ex- perimental setup in an attempt to provide data for fu- ture experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In our analysis we complete their study by calculating the QNMs and QBSs for the three- dimensional BEC of light in a cavity and revisit the spec- trum of five-dimensional Schwarzschild BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We find that QNMs and QBSs share qualitative similarities in both the gravitational and the BEC analog system, thus giv- ing more legitimacy to the analogy, and identify that the photon sphere interpretation of eikonal QNMs of the gravitational BH is shared in the analog system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, the newly proposed three-dimensional acoustic BH ana- log possesses a phonon sphere which properties are in- trinsically connected to the eikonal QNMs of phase fluc- tuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES The standard four-dimensional Schwarzschild solution was generalized to higher dimensions by Tangherlini in [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The higher-dimensional action, which is a general- ization of the Einstein-Hilbert action, is given by S = 1 16πGD � dDx√−gR, (1) where g ≡ det(gµν), and GD is the D-dimensional grav- itational constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In what follows, for simplicity and without loss of generality, we adopt the natural units where GD = c = ℏ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' By varying the action with re- spect to the spacetime metric gµν, we obtain the Einstein equations in higher dimensions Rµν − 1 2Rgµν = 0, (2) where Rµν and R are the Ricci tensor and Ricci scalar, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A static, asymptotically flat and spherically- symmetric vacuum solution of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (2), which generalizes the Schwarzschild BH solution in D-dimensions, has the form ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 D−2, (3) where the metric function, f(r), and the solid angle ele- ment, dΩ2 D−2, are given by f(r) = 1 − M rD−3 , (4) and dΩ2 D−2 = dθ2 1 + sin2 θ1dθ2 2 + sin2 θ1 sin2 θ2dθ2 2 + · · · + � � � � D−2 � j=1 sin2 θj � � dθ2 D−1 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (5) The parameter M is related to the BH mass M through the relation M = 16πM (D − 2)ΩD−2 , ΩD−2 = 2π D−1 2 Γ( D−1 2 ), (6) where ΩD−2 is the volume of the (D − 2)-dimensional unit sphere and Γ(x) is the gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Note that the solution (3) simplifies to the standard Schwarzschild metric when D = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In addition, we ob- serve that when the spacetime is higher-dimensional, the asymptotic fall-off term in the metric function f(r) be- comes steeper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' This metric is Ricci flat and is called either the Schwarzschild-Tangherlini solution or simply the D-dimensional Schwarzschild BH spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In this work, we will focus on the five-dimensional Schwarzschild BH, due to the explicit analogy between BECs of light in a cavity that form a three-dimensional Schwarzschild analog, as discussed in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The explicit line element (3) for D = 5 reads ds2 = − f(r)dt2 + f(r)−1dr2 + r2 � dθ2 + sin2 θ � dφ2 + sin2 φ dχ2�� , (7) with f(r) = 1 − M r2 , M = 8M 3π , ΩD−2 = 2π2, (8) where θ, φ run over the range 0 to π, and χ from 0 to 2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The causal structure of spacetime can be identified from the equation f(r) = 0 = (r − r1)(r − r2), (9) whose solutions are the event horizon, r1 = √ M, and a negative non-physical solution, r2 = − √ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Scalar wave equation We consider a minimally-coupled massless scalar per- turbation Ψ = Ψ(t, r, θ, φ, χ), whose equation of motion is given by the Klein-Gordon equation � 1 √−g ∂µ � gµν√−g∂ν �� Ψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (10) 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1 2 3 4 5 6 7 ℳ Re(ωnν) ω00 ω01 ω02 ω03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 ℳ Im(ωnν) ω00 ω01 ω02 ω03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1 2 3 4 5 6 ℳ Re(ωnν) ω10 ω11 ω12 ω13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 ℳ Im(ωnν) ω10 ω11 ω12 ω13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Top panel: Real (left) and imaginary (right) part of the fundamental massless scalar QNMs ω0ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bottom panel: Real and imaginary part of the first overtone of massless scalar QNMs ω1ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Under symmetry assumptions we choose an ansatz Ψ(t, r, θ, φ, χ) = e−iωtU(r)P(θ, φ, χ), (11) where ω is the frequency of the scalar field, U(r) = R(r)/r3/2 is the radial function and P(θ, φ, χ) is an an- gular function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' By utilizing the spacetime metric (7), Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (10) can be separated into an angular and a radial equation as � 1 sin2 θ ∂ ∂θ � sin2 θ ∂ ∂θ � + λ − 1 sin2 θ � 1 sin φ ∂ ∂φ � sin φ ∂ ∂φ � +¯λ + 1 sin2 φ ∂2 ∂χ2 �� P(θ, φ) = 0, (12) and R′′(r) + f ′(r) f(r) R′(r) + � ω2 f 2(r) − 4λ + 3f(r) + 6rf ′(r) 4r2f(r) � R(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (13) Here, λ and ¯λ are the separation constants to be deter- mined, and the primes generally denote differentiation with respect to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The general exact solution of the angular equation (12) is given by P(θ, φ, χ) = P l ν,4(cos θ)Ylm(φ, χ), where P l ν,4(cos θ) are the associated Legendre functions in four- dimensions [60–62] with arbitrary degree ν ∈ C and order l such that λ = ν(ν + 2), and Ylm(φ, χ) are the spherical harmonics with l and m being the angular and magnetic quantum numbers, respectively, such that ¯λ = l(l + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In what follows, we will revisit the QNMs of five- dimensional Schwarzschild BHs and calculate analyti- cally the corresponding QBSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quasinormal modes Equation (13) can be recast into a Schr¨odinger-like equation by multiplying it with f 2(r) and utilizing the tortoise coordinate r∗, with dr/dr∗ = f(r), to obtain d2R(r) dr2∗ + � ω2 − VBH � R(r) = 0, (14) 4 where the effective potential VBH is VBH ≡ f(r) �ν(ν + 2) r2 + 3f(r) 4r2 + 3f ′(r) 2r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (15) QNMs ωnν are a discrete set of mode solutions of the ra- dial equation (14) with purely ingoing (outgoing) bound- ary conditions at the event horizon (infinity), such that R(r) ∼ e−iωr∗, r → r1, R(r) ∼ eiωr∗, r → ∞, (16) where n is the overtone number of the frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In what follows, we present some typical scalar QNMs of a five-dimensional Schwarzschild BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We have employed three different methods, namely a pseudospectral method [63], a matrix method [64, 65] and the Wentzel-Kramers- Brillouin (WKB) method [66, 67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We have found con- vergence between the pseudospectral and matrix method QNMs up to at least six digits (convergence can reach even to 20 digits when more grid points are utilized) and confirmed the validity of eikonal QNMs with the WKB approximation finding similar precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Our results also are in perfect agreement with those reported in [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Figure 1 demonstrates the typical behavior of five- dimensional Schwarzschild scalar QNMs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' the incre- ment of the BH’s mass term decreases the oscillation fre- quency and increases the perturbation’s lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fur- thermore, the increment of the angular number ν in- creases the real part of QNMs while the imaginary part is also increased (in absolute value) as expected from the eikonal limit which probes the photon sphere of the BH, where photons occupy unstable circular geodesics [69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' There, the angular frequency of null geodesics is propor- tional to the real part of the eikonal QNM and their in- stability timescale is proportional to the imaginary part of QNMs with large ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Therefore, the BH QNMs in study have a typical photon sphere interpretation [69] which we will further discuss in the upcoming sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' For a nu- merical presentation of some QNMs we refer the reader to Table I and Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 5D Scwarzschild BH ν n = 0 n = 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0160 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3623 i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8564 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1576 i 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5106 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3575 i 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3927 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1046 i 10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5028 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3539 i 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4689 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0639 i TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Massless scalar QNMs of the five-dimensional (5D) Schwarzschild BH with M = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quasibound states In what follows, we will analytically solve the radial equation (13) for a five-dimensional Schwarzschild BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' QBSs are solutions to (13) with purely ingoing boundary conditions at the event horizon (same as QNMs) and de- caying boundary conditions at infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Since both QNMs and QBSs are mode solutions to the same eigenvalue problem, though with different asymptotic behavior, we will also refer to QBSs as ωnν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We will see that the fact that at infinity QBSs decay exponentially enables an an- alytic evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' To find their analytic expression, we apply the VBK approach [70, 71] in order to write the radial equation (13) as a Heun-type differential equation [72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We define a new radial coordinate, x, and a new pa- rameter, x1, as x = r − r2 −r2 , (17) and x1 = r1 − r2 −r2 , (18) such that the three original singularities (r2, 0, r1) are moved to the points (0, 1, x1), while maintaining a regular singularity at spatial infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In addition, the regular singular point at x = x1 is always located outside the unit circle |x1| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The final step is to perform an F- homotopic transformation R(x) �→ y(x) given by R(x) = xA0(x − 1)A1(x − x1)Ax1 y(x), (19) where the coefficients A0, A1, and Ax1 are given by A0 = − iω r1 − r2 , (20) A1 = 1 2 − 1 r1 � r1 � r1 + λ r2 � , (21) Ax1 = − iω r1 − r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (22) Thus, by substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (17)-(22) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (13), we obtain y′′(x) + �1 + 2A0 x + 2A1 x − 1 + 1 + 2Ax1 x − x1 � y′(x) + A3x + A4 x(x − 1)(x − x1)y(x) = 0, (23) where the coefficients A3, and A4 are given by A3 = −3 + Ax1 + 2A1(1 + Ax1) + A0(1 + 2A1 + 2Ax1) − (x1 − 1)(x2 1λ − 2ω2 + 2x1ω2) r2 1x2 1 , (24) A4 = −A0 − Ax1 − 2A0Ax1 + 3x1 2 − A1x1 − 2A0A1x1 + (x1 − 1)2(x2 1λ + 2ω2) r2 1x2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (25) The radial equation (23) has the form of a general Heun equation [72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Therefore, the exact solution for the radial part of the Klein-Gordon equation can be written as Rj(x) =x 1 2 (γ−1)(x − 1) 1 2 δ(x − x1) 1 2 (ϵ−1) [C1,j y1,j(x) + C2,j y2,j(x)], (26) 5 where C1,j and C2,j are constants to be determined, and j = {0, 1, x1, ∞} labels the solution at each singular point, which are given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The pair of linearly independent solutions at x = 0 (r = r2) is given by y1,0 = HeunG(x1, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, β, γ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x), (27) y2,0 = x1−γHeunG(x1, (x1δ + ϵ)(1 − γ) + q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α + 1 − γ, β + 1 − γ, 2 − γ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x), (28) where HeunG(x1, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, β, γ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x) denotes a general Heun function, which is analytic in the disk |x| < 1, and has a Maclaurin expansion given by HeunG(x1, q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, β, γ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x) = ∞ � n=0 cnxn, (29) with −qc0 + x1γc1 = 0 (c0 = 1), (30) Pncn−1 − (Qn + q)cn + Xncn+1 = 0 (n ≥ 1), (31) and Pn = (n − 1 + α)(n − 1 + β), Qn = n[(n − 1 + γ)(1 + x1) + x1δ + ϵ], (32) Xn = (n + 1)(n + γ)x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The pair of linearly independent solutions at x = 1 (r = 0) is given by y1,1 = HeunG(1 − x1, αβ − q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, β, δ, γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1 − x), (33) y2,1 = (1 − x)1−δHeunG(1 − x1, ((1 − x1)γ + ϵ)(1 − δ) + αβ − q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α + 1 − δ, β + 1 − δ, 2 − δ, γ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1 − x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (34) The pair of linearly independent solutions at x = x1 (r = r1) is given by y1,x1 = HeunG � x1 x1 − 1, αβx1 − q x1 − 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, β, ϵ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x1 − x x1 − 1 � , (35) y2,x1 = �x1 − x x1 − 1 �1−ϵ HeunG � x1 x1 − 1, (x1(δ + γ) − γ)(1 − ϵ) x1 − 1 + αβx1 − q x1 − 1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α + 1 − ϵ, β + 1 − ϵ, 2 − ϵ, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' x1 − x x1 − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (36) The pair of linearly independent solutions at x = ∞ (r = ∞) is given by y1,∞ = x−αHeunG � 1 x1 , α(β − ϵ) + α x1 (β − δ) − q x1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' α, α − γ + 1, α − β + 1, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1 x � , (37) y2,∞ = x−βHeunG � 1 x1 , β(α − ϵ) + β x1 (α − δ) − q x1 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' β, β − γ + 1, β − α + 1, δ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1 x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (38) In these solutions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' the parameters α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' γ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' δ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' ϵ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' and q are given by α = 1 r1 − r2 � 3r1 − � r1 � r1 + λ r2 � +r2 �� 1 + λ r1r2 − 3 � − 2iω � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (39) β = − 1 r1 − r2 � r1 + � r1 � r1 + λ r2 � −r2 �� 1 + λ r1r2 + 1 � + 2iω � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (40) γ = 1 − 2iω r1 − r2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (41) δ = 1 − 2 r1 � r2 1 + λr1 r2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (42) ϵ = 1 − 2iω r1 − r2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (43) q = r1 r2 − λ r2 2 − 1 + 1 r2 �� r2 1 + λr1 r2 + iω � − (r2 + 2iω) r1r2 � r2 1 + λr1 r2 − 2i(r1 − r2 − 2iω)ω (r1 − r2)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (44) The first boundary condition related to QBSs (and QNMs) requires that the radial solution is purely ingoing at the event horizon, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' to impose r → r1 (or x → x1) on the radial solution given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' To do this, we use Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (35) and (36) to get the following asymptotic behavior lim r→r1 Rx1(r) ∼ C1,x1 (r−r1) 1 2 (ϵ−1)+C2,x1 (r−r1)− 1 2 (ϵ−1), (45) where all the remaining constants were included in C1,x1 and C2,x1, which will be determined afterwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (43), we can write lim r→r1 Rx1(r) ∼ C1,x1 Ψin,x1 + C2,x1 Ψout,x1, (46) where Ψin,x1 and Ψout,x1 are the ingoing and outgoing scalar wave solutions, respectively, given by Ψin,x1(r > r1) = e−iωt(r − r1)− iω 2κ1 , (47) Ψout,x1(r > r1) = e−iωt(r − r1)+ iω 2κ1 , (48) with the surface gravity of the event horizon, κ1, being defined as κ1 = 1 2 df(r) dr ���� r=r1 = r1 − r2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (49) The ingoing boundary condition is satisfied when C2,x1 = 0 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (46) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, we have lim r→r1 Rx1(r) ∼ C1,x1 Ψin,x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (50) 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 4 3 2 1 0 ℳ Re(ωnν) ω00 ω01 ω02 ω03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 ℳ Im(ωnℓ) ω00 ω01 ω02 ω03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 4 3 2 1 0 ℳ Re(ωnℓ) ω10 ω11 ω12 ω13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 ℳ Im(ωnℓ) ω10 ω11 ω12 ω13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Top panel: Real (left) and imaginary (right) part of the fundamental massless scalar QBSs ω0ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bottom panel: Real and imaginary part of the first overtone of massless scalar QBSs ω1ν of a five-dimensional Schwarzschild black hole with respect to M and varying ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The second boundary condition related to the QBSs (that differs from that of QNMs) is to require that the radial solution vanishes at asymptotic infinity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' to impose a decaying boundary condition at the limit r → ∞ (or x → ∞) on the radial solution given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, we use Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (37) and (38) to obtain the following asymptotic behavior lim r→∞ R∞(r) ∼ C1,∞ 1 rσ , (51) where we have imposed that C2,∞ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The parameter σ is given by σ = α − A0 − A1 − Ax1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (52) The sign of the real part of σ determines the asymptotic behavior of the radial scalar wave function as r → ∞: if Re[σ] > 0, the radial solution tends to zero at spatial infinity and then it fully satisfies the second boundary condition for QBSs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' if Re[σ] < 0, the radial solution di- verges at spatial infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The final asymptotic behavior of the radial scalar wave solution at spatial infinity will be determined when we know the values of the coefficients Aj, as well as the fre- quencies ω, and the parameter α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Those will be obtained by the VBK approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The general Heun functions become (class I) polyno- mials of degree n (≥ 0) if and only if they satisfy two conditions [72], namely, α + n = 0, (53) cn+1(q) = 0, (54) where the accessory parameter q is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The first condition, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (53), is called the α- condition, which is used to find the frequency eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The second condition, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (54), determines the value of the separation constant λ for each value of n, which is used to find the eigenvalues ν and both the radial and angular wave eigenfunctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' It is worth emphasizing that the two polynomial conditions could be applied in any order we wish, that is, the first condition could give the values of the separation constant, and the second condition could give the frequency eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, by imposing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (53), we obtain the exact spectrum of QBSs 7 given by ωnν = −i( √ M(n + 3) − √ M − λ), (55) where we have used the explicit expressions of the event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Here, the separation constant is, again, λ = ν(ν + 2), and n is the overtone number, which can be, without loss of generality, called the principal quantum number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' On the other hand, by substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (20), (21), (22), (53) and (55) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (52), we get σ = 4, (56) which means that the parameter σ is a real, positive number for any value of the principal quantum num- ber n, as well as for any value of the separation con- stant λ, and hence the frequency eigenvalues given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (55) represent QBSs for massless scalar fields in the five-dimensional Schwarzschild spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In addition, by substituting these equations into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (44), it is pos- sible to obtain a nonlinear equation for q = q(λ) and then impose the second polynomial condition given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (54) to obtain the angular eigenvalues λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Now, let us discuss a very important case of these QBSs: the fundamental mode, where n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In this case, we have ω0ν = −i(3 √ M − √ M − λ), (57) where the second polynomial condition, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (54), is automatically satisfied, since it leads to cn+1(q) ���� n=0 = q = n(4 + n) ���� n=0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (58) This means that there is no restriction on the value of the separation constant λ = ν(ν + 2), with ν = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In particular, the ground state (n, ν) = (0, 0) of QBSs is given by ω00 = −2i √ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' This is a very important result because it designates the absence of bound states when the angular number is null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' These solution are not oscillatory but only decay in time therefore no bound state can be formed in this particular case, and the BH only oscillates in accord to QNMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 2 we show the behavior of massless scalar QBSs in the the BH under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The real part for the QBS ω00 is always zero since it does not depend on M and cor- roborates the aforementioned discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' When ν ̸= 0 QBSs exist;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' the mass parameter acts in the opposite way with respect to that of QNMs, namely their real parts increase with M while their lifetime decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The an- gular number ν has a somewhat similar effect to that of QNMs, that is its increment increases (in absolute value) the oscillation frequency of QBSs and quickly drives the imaginary parts to their asymptotic, large ν, value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Of course, since these modes have different boundary con- ditions they have no connection to null geodesics in the photon sphere at the eikonal limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' ANALOG BLACK HOLES: BOSE-EINSTEIN CONDENSATES OF LIGHT IN A CAVITY In this section, we begin by considering the general acoustic BH solution in Minkowski spacetime obtained by Unruh [41] (see also Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [39, 40]), and then show how to properly choose the sound velocity in order to obtain a Schwarzschild BH in BECs of photons trapped in a mirror cavity [58, 73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The fundamental equations of motion for an irrota- tional fluid are given by ∇ × v = 0, (59) ∂tρ + ∇ · (ρv) = 0, (60) ρdv dt ≡ ρ[∂tv + (v · ∇)v] = −∇p, (61) where v, ρ, and p are the velocity, density, and pressure of the fluid, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Next, we introduce the velocity potential Ψ, such that v = −∇Ψ, and assume the fluid as barotropic, which means that ρ = ρ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Then, by linearizing these equations of motion around some back- ground (ρ0, p0, Ψ0), namely, ρ = ρ0 + ϵρ1, (62) p = p0 + ϵp1, (63) Ψ = Ψ0 + ϵΨ1, (64) we obtain the following equation − ∂t �∂ρ ∂pρ0(∂tΨ1 + v0 · ∇Ψ1) � + ∇ · � ρ0∇Ψ1 − ∂ρ ∂pρ0v0(∂tΨ1 + v0 · ∇Ψ1) � = 0, (65) where the local speed of sound, cs, is defined by c−2 s ≡ ∂ρ ∂p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (66) Equation (65) describes the propagation of the linearized scalar potential Ψ1, that is, it governs the propagation of the phase fluctuations as weak excitations in a homoge- neous stationary condensate, which can be rewritten as a wave equation in an analog curved spacetime as 1 √−g ∂µ(gµν√−g∂νΨ1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (67) Note that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (67) is similar to the covariant Klein- Gordon equation (10), where the acoustic line element can be written as ds2 = ρ0 cs [−c2 sdt2 + (dxi − vi 0dt)δij(dxj − vj 0dt)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (68) Now, let us revisit how the (1 + 2)-dimensional acous- tic BH was set up in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Firstly, we can assume that the fluid is a static spherically-symmetric conser- vation flow, with a polar angle θ = π/2, which implies 8 that dθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Next, we define the speed of sound as cs ≡ � kn0/µ, where k is the strength of the effective contact interaction, n0 is the condensate density, and µ is the effective mass of the photon gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Then, the velocity of the fluid v is the flow rate along the radial direction (representing the radial vortex), that is it points to the center of the acoustic BH towards the velocity singular- ity, given by v0 = −ℏc0 µr ˆr = −ξcs c0 r ˆr, (69) where ξ(= ℏ/µcs) is the correlation length, and c0(> 0) is a constant related to the acoustic horizon’s radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, the acoustic line element resulting by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (68) can be written as ds2 = − � 1 − c2 0 r2 � dt2 + 2c0 r drdt + dr2 + r2dφ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (70) With the coordinate transformation dt → dt − c0 r(1 − c2 0/r2)dr, (71) we can write the line element of an acoustic (1 + 2)- dimensional BEC of light in a cavity as ds2 = −f(r)dt2 + f(r)−1dr2 + r2dφ2, (72) where the warp factor f(r) has the form f(r) = 1 − c2 0 r2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (73) The radial vortex exists in a spatially (1+2)-dimensional BEC, therefore since the warp factor (73) is identical to the metric function (8), under the identification M = c2 0, then this model is an analog of a (1 + 4)-dimensional Schwarzschild BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' This is a consequence of the fact that the metric of the BEC does not obey Einstein’s field equa- tions, but rather it is determined by pure hydrodynamics [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The causal structure of the particular analog BH is strikingly similar to that presented in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The warp factor equation f(r) = 0 = (r − r1)(r − r2), (74) has two solutions, an acoustic horizon r1 = c0, which is the outermost marginally trapped surface for outgoing phonons, and an unphysical negative solution r2 = −c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The exterior acoustic event horizon is where the velocity of the fluid reaches the sound velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The central point of the acoustic BH can be regarded as a sink that leads to the higher-dimensional space from which the fluid flows to the three-dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' It is worth noting that one can also obtain this effec- tive metric, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (72), by using the approach developed in [74], which is based on the Gross-Pitaevskii theory [75, 76] that describes a nonlinear complex scalar field propagating in a curved spacetime background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In this approach, we simply require a fluid flow with velocity given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (69) in a flat Minkowski spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In what follows, we will calculate, for the first time, the QNMs and QBSs of the analog BH proposed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [58], by using the same methods used for the five-dimensional Schwarzschild BH analysis in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Scalar wave equation In order to solve the equation of motion given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (67), for the acoustic metric Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (72), we will use a similar separation ansatz for the phase fluctuation wave function Ψ1(t, r, φ) = e−i˜ωtU(r)eimφ, (75) where ˜ω is the frequency of phase fluctuations, U(r) = R(r)/r1/2 is the radial function, and m is the magnetic quantum number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Thus, by substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (72) and (75) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (67), we obtain R′′(r) + f ′(r) f(r) R′(r) + � ˜ω2 f 2(r) − 4m2 − f(r) + 2rf ′(r) 4r2f(r) � R(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (76) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quasinormal modes Equation (76) can be recast into a Schr¨odinger-like equation by multiplying with f 2(r) and utilizing the tor- toise coordinate r∗, with dr/dr∗ = f(r), to obtain d2R(r) dr2∗ + � ˜ω2 − VBEC � R(r) = 0, (77) where the effective potential VBEC is VBEC ≡ f(r) �m2 r2 − f(r) 4r2 + f ′(r) 2r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (78) QNMs ˜ωnm, similarly, form a discrete set of mode so- lutions to the radial equation (77) with purely ingoing (outgoing) boundary conditions at the acoustic horizon (infinity), such that R(r) ∼ e−i˜ωr∗, r → r1, R(r) ∼ ei˜ωr∗, r → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (79) In what follows, we present the QNMs of the three- dimensional BH analog of BECs in a cavity, where we have employed the same methods to numerically obtain and benchmark our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Figure 3 demonstrates the behavior of the BEC BH analog’s QNMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The increment of the vortex radius c0 decreases the oscillation frequency and increases the per- turbation’s lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The increment of m increases the 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0 2 4 6 8 10 12 14 c0 Re(ω\uf02d nm) ω\uf02d 00 ω\uf02d 01 ω\uf02d 02 ω\uf02d 03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 7 6 5 4 3 2 1 c0 Im(ω\uf02d nm) ω\uf02d 00 ω\uf02d 01 ω\uf02d 02 ω\uf02d 03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0 2 4 6 8 10 12 14 c0 Re(ω\uf02d nm) ω\uf02d 10 ω\uf02d 11 ω\uf02d 12 ω\uf02d 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 16 14 12 10 8 6 4 2 c0 Im(ω\uf02d nm) ω\uf02d 10 ω\uf02d 11 ω\uf02d 12 ω\uf02d 13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Top panel: Real (left) and imaginary (right) part of the fundamental QNMs ˜ω0m of a three-dimensional acoustic Schwarzschild black hole with respect to c0 and varying m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bottom panel: Real and imaginary part of the first overtone of QNMs ˜ω1m of the same system with respect to c0 and varying m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' real part of QNMs while the imaginary part is also in- creased (in absolute value) as expected from the eikonal limit which probes, as we will show in the following sec- tion, the instability timescale of phase fluctuations at a critical radius where phonons are trapped in unstable curcular orbits around the acoustic BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' For some typical QNMs we refer the reader to Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 3D BEC analog m n = 0 n = 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4068 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3412 i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1968 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2341 i 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='9527 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3507 i 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='7856 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2234 i 10 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='9906 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3535 i 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='9532 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1248 i TABLE II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' QNMs of the three-dimensional (3D) BEC acous- tic BH with c0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Eikonal quasinormal mode interpretation We are already aware that the real and imaginary part of eikonal QNMs are intrinsically connected to the angu- lar frequency and instability timescale of null geodesics, respectively, at the photon sphere of a vast variety of BH geometries [69, 77–82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Our calculations demonstrate that the same behavior occurs for the acoustic BEC BH, which means that the system, though hydrodynamic in nature, has an analog photon sphere, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' a phonon sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' By calculating the QNMs for large m and com- paring with those of the five-dimensional BH for large ν we find that both asymptote to the same value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Specifically, the QNMs of the acoustic BH in the eikonal limit are related to the Lyapunov exponent λ0 of phase fluctuations at a critical radius where phonons are trapped in unstable circular orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The Lyapunov expo- nent is inversely-proportional to the instability timescale of phonon orbits there, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [69] ˜ωWKB = mΩph − i � n + 1 2 � |λ0|, (80) 10 0 20 40 60 80 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='365 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='355 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='340 ν,m Im(ω0 ν) Im(ω\uf02d 0 m) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Imaginary parts of fundamental QNMs of a five- dimensional Schwarzschild black hole, Im(ω0ν) (purple dots), with M = 1 and increasing ν, and of the acoustic analog Schwarzschild black hole in a cavity, Im(˜ω0m) (orange dots), with c0 = 1 and increasing m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The dashed horizontal line designates the WKB prediction at the eikonal limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' where Ωph = � f(rph) r2 ph , (81) is the angular frequency of phonons at the phonon sphere r = rph and |λ0| = � −1 2 r2 ph f(rph) � d2 dr2∗ f(r) r2 ������ r=rph (82) is the Lyapunov exponent or instability timescale of phonons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Figure 4 shows that both the BH and the acoustic BEC analog reach the same decay timescale of QNMs rapidly as ν and m become arbitrarily large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The asymptotic val- ues of eikonal QNMs extracted with the numerical meth- ods utilized above agree perfectly with those obtained by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (80) for large m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' The fact that both the gravita- tional and acoustic BH asymptote to the same eikonal QNMs is routed to the form of their effective potentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Equations (15) and (78) are both dominated by ν and m when those constants acquire large values, hence the effective potentials practically coincide and lead to the same mode solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A peculiar, though not necessarily important, aspect of the convergence of the imaginary part of QNMs is that when m increases the trend of convergence to the WKB prediction (shown with a dashed horizontal black line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 4) is opposite to that of the BH when ν asymptotes to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quasibound states The exact solution for the radial part of the mass- less Klein-Gordon equation, in the acoustic BH system, can be written through Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (26)-(38), with the new radial coordinate, x, the new parameter, x1, and the F-homotopic transformation, R(x) �→ y(x), defined by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (17), (18), and (19), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' However, in the present case, the coefficients A0, A1, Ax1, A3, and A4 are given by A0 = − i˜ω 2c0 , (83) A1 = 1 2 − im c0 , (84) Ax1 = − i˜ω 2c0 , (85) A3 = −(m + ˜ω)(2ic0 + m + ˜ω) c2 0 , (86) A4 = (m + ˜ω)(2ic0 + m + ˜ω) c2 0 , (87) such that the parameters α, β, γ, δ, ϵ, and q are given by α = 2 − i(m + ˜ω) c0 , (88) β = −i(m + ˜ω) c0 , (89) γ = 1 − i˜ω c0 , (90) δ = 1 − 2im c0 , (91) ϵ = 1 − i˜ω c0 , (92) q = −(m + ˜ω)(2ic0 + m + ˜ω) c2 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (93) Similarly to Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' II C, by imposing ingoing boundary conditions at the acoustic horizon, decay at infinity, and the resulting α-condition given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (53), we obtain the exact spectrum of QBSs ˜ωnm in the BEC Schwarzschild analog ˜ωnm = −m − ic0(2 + n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (94) Furthermore, from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (83)-(94), we get σ = i(m + ic0n + ˜ωnm) c0 = 2, (95) which means that the parameter σ is a real, positive (constant) number for any value of the overtone num- ber n, as well as for any value of the magnetic quantum number m, and hence the frequency eigenvalues given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (94) represent QBSs for phase fluctuations in the acoustic BEC BH studied here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3 2 1 0 c0 Re(ω\uf02d nm) ω\uf02d 00 ω\uf02d 01 ω\uf02d 02 ω\uf02d 03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 c0 Im(ω\uf02d nm) ω\uf02d 00 ω\uf02d 01 ω\uf02d 02 ω\uf02d 03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3 2 1 0 c0 Re(ω\uf02d nm) ω\uf02d 10 ω\uf02d 11 ω\uf02d 12 ω\uf02d 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='0 c0 Im(ω\uf02d nm) ω\uf02d 10 ω\uf02d 11 ω\uf02d 12 ω\uf02d 13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Top panel: Real (left) and imaginary (right) part of the fundamental QBSs ˜ω0m of a three-dimensional acoustic Schwarzschild black hole with respect to the vortex radius c0 and varying m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bottom panel: Real and imaginary part of the first overtone of QBSs ˜ω1m of the same system with respect to c0 and varying m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' By focusing on the fundamental mode (n = 0) we ob- tain ˜ω0m = −m − 2ic0, (96) where the second polynomial condition, given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (54), is automatically satisfied, since it leads to cn+1(q) ���� n=0 = q = n(2 + n) ���� n=0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (97) This means that there is no restriction on the value of the magnetic quantum number m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' we can consider it as m = −∞, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' , 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' , +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' It is noteworthy to point that as in the BH case, the QBSs of the acoustic BH do not exist when m = 0 since the real part is zero and the modes only decay in time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' ˜ω00 = −2ic0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 5 demonstrates the behavior of QBSs in the ana- log BEC BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Surprisingly, they have almost identical ten- dencies as those found for five-dimensional Schwarzschild BHs which further supports the analogy between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Most surprisingly, the imaginary parts depend linearly on the vortex radius c0, which is a much more simplified version of what occurs in the BH case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' CONCLUSIONS In this study, we have calculated the QNMs and QBSs of five-dimensional Schwarzschild BHs which are analog models of BECs of light in a mirror cavity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' an experiment recently proposed in [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We found that the spectra for both systems share striking qualitative similarities with respect to their tuning parameters, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' the BH mass and the cavity’s radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Most importantly, our investi- gation provides proof of a phonon-sphere interpretation of the acoustic BEC BH since the imaginary part of the eikonal QNMs asymptotes to the instability timescale of phonons at the phonon sphere in accord to the WKB prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Our results are timely, and together with the recent investigation of the graybody factors and Hawk- ing radiation of the analog proposed in [58], can prescribe numerical data for actual experimental devices that may be constructed based on such proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' In fact, although a multitude of BH analog experiments have taken place and made significant breakthroughs so far, the proposal in [58] is quite simple and elegant, in- cludes a velocity singularity at the center of the vor- 12 tex (aspect that other BEC-based experiments lack), has tabletop dimensions and can provide intuition regarding classical and quantum aspects of the singularity, as well as a better understanding of higher-dimensional BH ge- ometries and their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' An interesting extension of the analog [58] can be the manipulation of the nonlinear coupling of the BECs of light in order to obtain a massive Klein-Gordon-like equa- tion for phase fluctuations through the underlying hy- drodynamic equations of motion [57] and study classical and quantum phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Most importantly, a general- ization of the model in [58] onto a rotating BEC acoustic BH analog should be of utmost importance in order to simulate phenomena that astrophysical BHs experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We leave these directions of research for the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' ACKNOWLEDGMENTS H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' is partially supported by the Alexander von Humboldt-Stiftung/Foundation (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 1209836).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' This study was financed in part by the Conselho Na- cional de Desenvolvimento Cient´ıfico e Tecnol´ogico – Brasil (CNPq) – Research Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 150410/2022- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' It is a great pleasure to thank the Theoretical As- trophysics at T¨ubingen (TAT Group) for its hospitality and technical support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' acknowledges financial sup- port provided under the European Union’s H2020 ERC, Starting Grant agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' DarkGRA–757480 and the MIUR PRIN and FARE programmes (GW-NEXT, CUP: B84I20000100001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 116, 061102 (2016), arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03837 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 116, 221101 (2016), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 121, 129902 (2018)], arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03841 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 119, 141101 (2017), arXiv:1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09660 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 125, 101102 (2020), arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='01075 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 102, 043015 (2020), arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08342 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 103, 122002 (2021), arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='14529 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, VIRGO, KAGRA), (2021), arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03606 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Abbott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' (LIGO Scientific, Virgo), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 119, 161101 (2017), arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='05832 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [9] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=', Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 32, 243001 (2015), arXiv:1501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07274 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Barack et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=', Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 36, 143001 (2019), arXiv:1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='05195 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Suvorov, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 102, 064041 (2020), arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00028 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Suvorov, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 126, 141102 (2021), arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='05643 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Schmidt, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 2, 2 (1999), arXiv:gr-qc/9909058.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Starinets, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 26, 163001 (2009), arXiv:0905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='2975 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Konoplya and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Zhidenko, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 83, 793 (2011), arXiv:1102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='4014 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Hawking, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 43, 199 (1975), [Erratum: Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 46, 206 (1976)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Brito, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Pani, Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Notes Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 906, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1 (2015), arXiv:1501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='06570 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Penrose and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Floyd, Nature 229, 177 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bekenstein, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 7, 949 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [20] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Costa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Hintz, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jansen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 98, 104007 (2018), arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03631 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 100, 044054 (2019), arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='06117 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mascher, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 105, 084052 (2022), arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='05335 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mascher, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 105, 124058 (2022), arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07794 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Isi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Giesler, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Farr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Scheel, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Teukolsky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 123, 111102 (2019), arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00869 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Giesler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Isi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Scheel, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Teukolsky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' X 9, 041060 (2019), arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08284 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [26] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cotesta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Carullo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 129, 111102 (2022), arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00822 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cheung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=', (2022), arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07374 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lagos and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Hui, (2022), arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07379 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [29] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mitman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=', (2022), arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07380 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kehagias, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Perrone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Riotto, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Riva, (2023), arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09345 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [31] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Panosso Macedo, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Al Sheikh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' X 11, 031003 (2021), arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='06434 [gr- qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Panosso Macedo, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Sheikh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 128, 211102 (2022), arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03451 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [33] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Macedo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 104, 084091 (2021), arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09673 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [34] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Gasperin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 39, 115010 (2022), arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='12865 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [35] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Boyanov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Panosso Macedo, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Car- doso, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, (2022), arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='12950 [gr- qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [36] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cheung, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Di Filippo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Duque, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Martens, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mukohyama, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 106, 084011 (2022), arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08547 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [37] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jaramillo, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 39, 217002 (2022), arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08025 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [38] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Konoplya and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Zhidenko, (2022), arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00679 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Visser, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 15, 1767 (1998), arXiv:gr- qc/9712010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [40] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Barcelo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Liberati, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Visser, Living Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 13 8, 12 (2005), arXiv:gr-qc/0505065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [41] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Unruh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 46, 1351 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [42] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tedford, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Penrice, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Unruh, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lawrence, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 106, 021302 (2011), arXiv:1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1911 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Prain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Liberati, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 91, 124018 (2015), arXiv:1411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1662 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [44] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Coutant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We- infurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 117, 271101 (2016), arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='01378 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [45] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Torres, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Patrick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Coutant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tedford, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 13, 833 (2017), arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='06180 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Patrick, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Coutant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 121, 061101 (2018), arXiv:1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08473 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [47] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Patrick, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Goodhew, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Gooding, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' We- infurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 126, 041105 (2021), arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03045 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [48] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Torres, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Patrick, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 36, 194002 (2019), arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00356 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [49] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Torres, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Patrick, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 125, 011301 (2020), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07858 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [50] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Garay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Anglin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cirac, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Zoller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A 63, 023611 (2001), arXiv:gr-qc/0005131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [51] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Steinhauer, Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 10, 864 (2014), arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='6550 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='quant-gas].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mu˜noz de Nova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Golubkov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kolobov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Steinhauer, Nature 569, 688 (2019), arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00913 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [53] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Gooding, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Biermann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Erne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Louko, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Un- ruh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Schmiedmayer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 125, 213603 (2020), arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07160 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [54] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Drori, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rosenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bermudez, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Silberberg, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Leonhardt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 122, 010404 (2019), arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09244 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [55] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Ornigotti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bar-Ad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Szameit, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fleu- rov, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A 97, 013823 (2018), arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07609 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='optics].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [56] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Richartz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Prain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Weinfurtner, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Liberati, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 30, 085009 (2013), arXiv:1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3601 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [57] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Ciszak and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Marino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 103, 045004 (2021), arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='07508 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [58] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Liao, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' van der Wurff, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' van Oosten, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Stoof, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' A 99, 023850 (2019), arXiv:1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='00023 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='quant-gas].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [59] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tangherlini, Nuovo Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 27, 636 (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [60] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Torres del Castillo, Revista Mexicana de F´ısica (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [61] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Frye and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Efthimiou, (2012), arXiv:1205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='3548 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='CA].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [62] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Hyers, The Functions of Mathematical Physics (Harry Hochstadt), Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 15 (Society for Industrial and Applied Mathematics, USA, 1973) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 235–236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jansen, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Plus 132, 546 (2017), arXiv:1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09178 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [64] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lin and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Qian, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 34, 095004 (2017), arXiv:1610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08135 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [65] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lin and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Qian, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C 43, 035105 (2019), arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='08352 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [66] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Iyer and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Will, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 35, 3621 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [67] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Iyer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 35, 3632 (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [68] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lemos, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Yoshida, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 69, 044004 (2004), arXiv:gr-qc/0309112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [69] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Miranda, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Berti, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Witek, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Zanchin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 79, 064016 (2009), arXiv:0812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1806 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [70] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Vieira and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Bezerra, Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 373, 28 (2016), arXiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='02233 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [71] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Vieira and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Kokkotas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 104, 024035 (2021), arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03938 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [72] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Ronveaux, Heun’s Differential Equations (Oxford Uni- versity Press, New York, 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [73] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Wang and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Ge, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 102, 104009 (2020), arXiv:1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='05285 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [74] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Ge, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Nakahara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Sin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tian, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Wu, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 99, 104047 (2019), arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='11126 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [75] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Gross, Nuovo Cimento (Italy) Divided into Nuovo Cimento A and Nuovo Cimento B 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='1007/BF02731494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [76] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Pitaevskii, Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' JETP 13, 451 (1961).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [77] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Cardoso, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Costa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Hintz, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Jansen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' 120, 031103 (2018), arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='10502 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [78] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B 795, 211 (2019), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='10629 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [79] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Tang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Pa- pantonopoulos, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Zhang, JHEP 03, 187 (2019), arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='01865 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [80] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fontana, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mena, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Pa- pantonopoulos, JHEP 10, 280 (2019), arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='09842 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [81] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fontana, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mena, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 102, 044005 (2020), arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='03028 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' [82] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Destounis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Fontana, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Mena, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content=' D 102, 104037 (2020), arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} +page_content='01152 [gr-qc].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VNFJT4oBgHgl3EQfOCw1/content/2301.11480v1.pdf'} diff --git a/VtFKT4oBgHgl3EQfmy5j/content/2301.11859v1.pdf b/VtFKT4oBgHgl3EQfmy5j/content/2301.11859v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..7f3e1955cb69b1f2297ff422c20f3c0268cb1c6e --- /dev/null +++ b/VtFKT4oBgHgl3EQfmy5j/content/2301.11859v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:54883721638c3c278b551cebbc297f4142f66da8ee6c1a9e9f427218ae83306e +size 1295330 diff --git a/VtFKT4oBgHgl3EQfmy5j/vector_store/index.faiss b/VtFKT4oBgHgl3EQfmy5j/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..836f9d8de0664825e53cdde2cc0cf6731e11191f --- /dev/null +++ b/VtFKT4oBgHgl3EQfmy5j/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1a8971bed4caee740fb39e448047d502792c46dfadae0be024fa95c96b5981a6 +size 6881325 diff --git a/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/2301.04518v1.pdf.txt b/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/2301.04518v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f5ca997551cb4f5d635e79bc059abcff01c588f7 --- /dev/null +++ b/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/2301.04518v1.pdf.txt @@ -0,0 +1,1756 @@ +1 +Large Scale Qualitative Evaluation of Generative Image +Model Outputs +Yannick Assogba, Adam Pearce and Madison Elliott +Abstract—Evaluating generative image models remains a difficult problem. This is due to the high dimensionality of the outputs, the +challenging task of representing but not replicating training data, and the lack of metrics that fully correspond to human perception and +capture all the properties we want these models to exhibit. Therefore, qualitative evaluation of model outputs is an important part of +model development and research publication practice. Quantitative evaluation is currently under-served by existing tools, which do not +easily facilitate structured exploration of a large number of examples across the latent space of the model. To address this issue, we +present Ravel, a visual analytics system that enables qualitative evaluation of model outputs on the order of hundreds of thousands of +images. Ravel allows users to discover phenomena such as mode collapse, and find areas of training data that the model has failed to +capture. It allows users to evaluate both quality and diversity of generated images in comparison to real images or to the output of +another model that serves as a baseline. Our paper describes three case studies demonstrating the key insights made possible with +Ravel, supported by a domain expert user study. +Index Terms—Information visualization, Picture/Image Generation, Machine learning +! +1 +INTRODUCTION +Generative image models are a class of neural network +based models that aim to produce novel, high-quality and +diverse images that faithfully model a target image distribu- +tion. A variety of architectures and training methods have been +designed to learn such models, such as Generative Adversarial +Networks (GANs) [1], Variational Auto-Encoders (VAEs) [2], +Flow Based Models [3] and Diffusion Models [4]. +Evaluating these models remains difficult [5]. The high +dimensionality of the output architectures used make likeli- +hood estimates of model outputs difficult, and in some cases +intractable. It has also been demonstrated that measures like +average log likelihood do not always correlate with human +perceptual judgments of sample quality [6]. Additionally, while +we want models to capture the target distribution well, we +do not want them to produce images that are actually in the +training set (an issue commonly referred to as memorization). +A number of metrics have emerged in the literature around +generative image models [7] [8], with Fr´echet Inception Dis- +tance (FID) [9] being the most popular. However, issues have +been identified with FID, leading to the development of more +granular metrics such as precision and recall [10] [11]. +Single-number metrics such as FID, while necessary for +forward progress in the field, do not capture the full range +of qualities desired of these models. Because of this, human +visual inspection often plays a critical role in the evaluation +and dissemination of advances in generative image modeling. +However with existing evaluation tools, practitioners can typi- +cally only look at a small fraction of the output space of these +models, on the order of 10s to 100s of images (e.g., [12], [13], +[14], [15], [16]). +Our interviews with domain experts confirm that human +evaluation is a critical part of practitioner workflows. Some ex- +perts rely on human evaluation with crowd-sourced evaluators, +they however recognize that these are often expensive or time +consuming and are thus left to the final stages of evaluation +• +Yannick Assogba, Adam Pearce and Madison Elliot are with Google +Research. +E-mail: {yassogba,adampearce,madisone}@google.com +if done at all, leaving them to primarily rely on small scale +qualitative evaluation during the model development process. +At the same time, experts in the field are concerned about +cherry picking of results for publication but typically have no +means to expansively explore model outputs in the rare occa- +sions that these are published alongside academic manuscripts. +To address these needs, we built a system called Ravel, +which enables users to perform visual inspection of model +outputs on scales up to three orders of magnitude greater that +typical user workflows. We demonstrate usage of this system +on datasets varying from 50k - 120k images. These dataset sizes +are comparable to those used in standard quantitative evaluation +of generative image models. +Our primary contributions include: +• +A visual analytics system that supports multiple evalua- +tion tasks (e.g. evaluating quality & diversity, discovering +mode collapse or gaps in model output) for generative +image models and is agnostic to model architecture and +internals. +• +Interactive exploration of large generative image model +datasets, facilitated by clustering and the use of fine +grained visualization of cluster metrics to guide quali- +tative evaluation. +• +A user interface that uses visual comparison driven by +semantically meaningful embedding spaces to support +reasoning about differences between image distributions +and generate hypotheses about model behaviour. +2 +BACKGROUND +2.1 +Generative Image Models +The capabilities of generative image models have greatly in- +creased over the last several years. Since the original GAN +paper [1] that broke the dam on modelling of faces, we now +have systems like BigGAN [12], StyleGAN [13], GLOW [14], +VQ-VAE [15], CDM [16] and many others that present a wide +variety of model architecture and training algorithms and are +capable of producing very realistic images in a wide variety of +domains. +arXiv:2301.04518v1 [cs.HC] 11 Jan 2023 + +2 +2.2 +Quantitative Metrics for Evaluating Generative Image +Models +In this section, we outline the most commonly cited metrics in +the research literature: +• +Fr´echet Inception Distance [9]: Uses a pre-trained In- +ceptionV3 classifier [17] to generate embeddings for +both real and generated images, then uses a statistical +measure to compare the distribution of embeddings +from the two sources. FID is the most popular metric +in the literature. It requires a large number of samples +to produce an accurate estimate (generally at least 50k +generated images), and cannot detect memorization of +the training set. Karras et al [18] point out that the +texture bias in ImageNet based CNNs like InceptionV3 +[19] imply that metrics derived from them will not +capture all aspects of image quality. +• +Inception Score [20]: Uses a pre-trained inception clas- +sifier to measure, a) how well each generated image +matches a single ImageNet class, and b) if the full the +set of generated images has uniform coverage over all +the ImageNet classes. Similar to FID, Inception Score +requires a fairly large number of images and cannot +be used to detect memorization. It also cannot measure +intra-class diversity or detect mode collapse. See Barrat +and Sharma [21] for a detailed discussion of issues +with this metric. Both Inception Score and FID are +scalar scores designed to capture both image quality and +diversity, and thus cannot reveal if the model is trading +off one of these properties for the other to achieve a +better score. +• +Precision and Recall Metrics: To disentangle the mea- +surement of image quality and diversity, Sajjadi et al +[10] and Kynk¨a¨anniemi et al [11] propose precision and +recall metrics to measure each independently. Broadly +speaking, precision corresponds to the sample quality, +whereas recall corresponds to the coverage of the sample +distribution with respect to the target distribution - i.e. +diversity. +These metrics are generally computed over the entire dataset, +and thus have low granularity. Even when they indicate that +a model is better or worse, they don’t specify where in the +distribution of generated images improvements or regressions +lie. Ravel increases the granularity of these metrics, providing +a way to find specific clusters of images that score poorly on +some metric +2.3 +Qualitative Evaluation / Visualization of Generative Im- +age Model Outputs +Due to the limitations of quantitative metrics discussed above, +researchers also rely on visual inspection of model outputs +to evaluate model performance. Visual inspection is typically +performed during training, to monitor that the process has +not immediately failed, as well as after training, to evaluate +overall quality of the model. We validate and elaborate on +this workflow and strategy with domain experts in Section 6.1. +Although models often output 100s of thousands of images, +our user study found that researchers are only able to inspect a +small portion of images (in the 100s) during their analyses. +Visually impressive samples are paramount for successfully +publishing model advancements in scientific venues. Relevant +papers in the field of generative image models typically include +10s-100s of images [12] [13] [18] [22]. This represents a very +limited sample of the variety of images these models are typi- +cally trained to generate. Our user study also found that there +is an assumption that authors ”cherry-pick” the best images +to include in their publications. Relatively few authors have +published large datasets of un-cherry-picked output images +alongside their publications. +There are currently no purpose-built interfaces that make +these convenient to browse or examine. For example, [13] [18] +each publish 100k output images to a publicly accessible Google +drive. These images are organized into 1000 sub-folders to +make the interface more usable given the large number of files. +To view this output, users must either click through the folders +individually, or bring their own interface to browse the images. +3 +RELATED WORK +Borji [7] [8] catalogues many of the metrics for automatic +evaluation of generative models. Ravel utilizes the precision +and recall metrics from [10] and [11], but does not propose any +new metrics. We thus situate this work in primarily relation +to work on qualitative evaluation and interfaces to explore +generative model output. +Crowd-worker Evaluation +Denton et al. [23] use a small volunteer sample of human +annotators to estimate quality by asking whether they can +distinguish real from generated images. Zhou et al. [24] refine +and scale this technique, asking crowd-sourced workers from +Amazon’s Mechanical Turk to make psychophysical judgments +about real vs. generated images. While these methods are +good at scaling up evaluation to larger dataset sizes, they are +more time-consuming and expensive than manual inspection +by researchers. Thus they are typically reserved for later stages +of the evaluation pipeline. They also tend to focus on measures +that can be evaluated on individual images (e.g. image quality), +rather that corpus level properties (such as image diversity). +By contrast, Ravel is designed to support researcher evalu- +ation earlier in the development pipeline before the use of external +raters, and allows researchers to evaluate both quality and diver- +sity in the same interface. It fits in between initial monitoring of +training dynamics to ensure that the model is converging and +larger scale human rater evaluation typically performed closer +to model release. +Explaining Model Internals +Bau et al. [25] explore finding interpretable units (neurons) +within GANs and visualizing the causal effects of ablating these +neurons. Their method depends on having access to model +internals and having a pre-trained object segmentation network +to find objects within the scene to establish the casual relation- +ship between neuron activation and network output. [26] Bau +et al. use a pre-trained segmentation network to compare the +distribution of objects found in generated images with those +found in a set of real images. This provides a measure of +diversity of the models outputs with respect to the objects that +can be segmented by the pre-trained network. The authors also +propose a method (Layer Inversion), to train networks that +compute approximate inversions of real images into the latent +space of the model, to see what the network generates instead +of the missing objects. +While these approaches are critical to better understanding +of the internal mechanisms that drive model behavior, they +are typically specific to a particular model architecture. Ravel +treats models as black boxes and is thus agnostic to model +architecture. Ravel does use pre-trained networks to compute +vector representations of images, but is less sensitive to the +final task the pre-trained network is trained to perform. For + +3 +example one could use the embeddings from the model under +examination or any model that has learned semantically useful +features such as InceptionV3. +Online Exploration of Model Outputs +White [27] explores a variety of ways to sample images from +latent space that enable repeatable visual comparisons between +models. They introduce a number of visualizations designed +to examine how models perform with respect to specific input +images that are used to test model behaviour. In a follow- +up work White & Loh [28] introduce a novel visual interface +based on a spreadsheet metaphor that allows users to use +geometric operations in the latent space to interactively query +these models and thus explore their output. +While online methods enable users to explore specific hy- +potheses, they generally suffer from supporting relatively small +exploration spaces due to the slow generation of images. Ravel +focuses on offline analysis of generated images, which allows +examining much larger datasets and can thus complement +online methods as means of generating hypotheses for further, +more targeted investigation. +Embedding Based Visualizations +A number of works have visualized embedding spaces of +large, high-dimensional datasets [29] [30] [31] [32]. +Liu et al. [33] present a visual analysis system which uses the +latent space learned by the encoder of a VAE to explore variation +in an existing image dataset. This task is conceptually similar to +what we support in Ravel, however we do not attempt to learn +a new latent space as we want to focus on the generator output +and its latent space (rather than fixed input data). +Ravel builds on these earlier works visualizing embedding +spaces, and incorporates clustering to make navigating these +spaces more tractable. We focus on dataset comparison as a +way to ground exploration of the output space and cater to the +needs of the image generation use case. +Xiang et al. [34] present a visual analytics system for +correcting labelling errors in large datasets. They visualize t- +SNE projections of image embeddings color coded by label to +highlight data points that are mislabelled. In contrast, Ravel is +designed to support unconditional generation scenarios, where +the generated (and ground truth images) have no labels. Thus, +rather than relying on labels for grounding, Ravel enables com- +parative evaluation of datasets to allow grounding evaluation +of generated images in the distribution of real images. +4 +APPROACH & SYSTEM DESIGN +Ravel focuses on enabling visual inspection of model outputs +in comparison with some baseline set of images, typically +real ’ground truth’ images. From our interviews (section 6.1), +we know that practitioners perform visual analysis of image +samples coming out of models, but typically on small numbers +of images. Our aim is to support and scale up those workflows to +allow more systematic visual inspection from 10s or 100s of images to +10,000s or 100,000s of images. We leverage four key concepts to +facilitate this comparison across a large set of images: +1) +Image Embeddings: Neural image embeddings pro- +vide a semantically rich vector space for images that +allow computing similarity scores between pairs of im- +ages [35]. They have become the standard in evaluation +pipelines for generative image models (section 4.1.2) +and we want to leverage the familiarity researchers +have with embedding based metrics in Ravel. The abil- +ity to compute semantic similarity between images al- +lows us to group similar generated images together and +allow comparison of those images to similar ground +truth images. By default we compute the standard In- +ceptionV3 embeddings used in metrics like FID, but can +also add embeddings from other models including pre- +trained models or from the model under examination if +those are available. +2) +Clustering Images: In order to enable visual explo- +ration of hundreds of thousands of images we need +to group them into a smaller number of meaningful +groups. We use unsupervised clustering of images to +reduce the number of top-level items the user has to +consider from e.g. 100k images to 1000, 500 or even 250 +clusters. We use k-means clustering and provide more +details about this in the pipeline details section below +3) +Cluster Metrics: Once we have reduced the number of +top-level elements to a manageable number we wish to +provide hints to the user as to which clusters might be +most interesting to explore first, as well as scaffold a +repeatable workflow that can guide exploration. We +compute metrics over each cluster that enable sorting +clusters into predictable order. Many of the metrics we +compute are designed to surface differences between +the generated data and the baseline data in a cluster, +with others show general properties of the cluster itself. +We provide more details about the metrics we compute +in the pipeline details section below. By sorting clusters +by these metrics we allow discovery of outlier clusters +as well as analyzing properties of different parts of +the generative image space (e.g. seeing what kinds of +output images have low precision) +4) +Interactive Visualization: Finally we provide respon- +sive interactive visualization of images, clusters and +associated cluster metrics. Because we compute all the +data offline, the user interface is quite responsive and +enable fast and free exploration of a large number of +data-points. +4.1 +Pipeline Details +4.1.1 +Clustering +Ravel clusters the image embeddings using the implementa- +tion of k-means clustering from scikit-learn. k-means was an +attractive clustering algorithm to start with because it is a well +known algorithm that has a single easily understood hyper- +parameter, namely the number of clusters. This allows the user +to directly specify values for this hyper-parameter that they believe +make sense for their dataset. In addition to this, compared to +other algorithms with similar hyper parameter options such +as spectral clustering, k-means scales well with the number of +examples and number of clusters selected [36]. k-means also +tends to produce fairly evenly sized clusters, which is helpful +for displaying their contents in a uniform way. +All clustering methods suffer from issues of imperfect +cluster assignment, particularly at the boundaries of clusters. +However, Ravel mitigates this issue somewhat by visualizing +clusters according to their positions in latent space. This allows +users to quickly discover and examine clusters that are near +to each other and ascertain whether they are truly a single se- +mantic cluster. For more details see the dimensionality reduction +section (4.1.3) below. +4.1.2 +Cluster Metrics +We compute a number of metrics for each cluster. Having +multiple metrics provides different lenses through which to +consider the clusters. For example one might be interested in + +4 +Fig. 1. The Ravel interface primarily consists of: A) Dataset & view options. B) Summary charts & linked cluster plots. C) Side by side image grids +for visual comparison of clusters. This view shows a cluster comparing real images on the left to generated images on the right. +where recall or precision are low, or alternatively where clusters +are tightly packed or more spread out. +Clusters may have images from either the generated data +or the baseline/ground truth, in the UI we refer to these data +sources as splits and typically display the baseline data on the left, +though the user can change this interactively. Many metrics are +geared toward exposing differences between the two splits that +are currently being explored. +• +Percent of Split 2: The percentage of images in the +cluster that come from the split displayed on the right +(usually the generated data). +• +Recall: Recall is a metric that describes what fraction +of samples in the ground truth split have support in the +alternate split. We compute recall as defined in [11] but +aggregate the per-image values for each cluster. When +comparing generated images to real ones a high recall +implies the model is producing images as diverse as the +real data. +• +Precision: Precision is an metric that describes what +fraction of samples in the generated data have support +in the ground truth. As above we compute precision +as defined in [11] but aggregate the per-image values +for each cluster. When comparing generated images to +real ones a high precision implies better image qual- +ity/realism. +• +Distance between split centroids: Measures the dis- +tance between centroids of the samples in a cluster that +belong to each split. Larger values suggest that the data +from the two splits are more visually different while +smaller values suggest that the left and right split are +more visually similar. +• +Median distance to centroid: Median distance of sam- +ples in the cluster to the centroid of that cluster. Smaller +values here imply more compact clusters with more +similar samples, higher values suggest the cluster has +a greater variety of images. +4.1.3 +Dimensionality Reduction +In addition to visualizing clusters by the metrics described +above, we also visualize the positions of cluster centroids in +the embedding space itself. Since these are high dimensional +embeddings spaces we need to use dimensionality reduction in +order to visualize them in 2D. We use the UMAP algorithm +[37] to do this projection. Other options for dimensionality +reduction include PCA [38] or t-SNE [39]. Compared to t- +SNE, UMAP has been reported to preserve more of the global +structure of the original space and is significantly more compu- +tationally efficient both as the number of dimensions increases +and as the size of the dataset grows [37] [40]. The InceptionV3 +embedding we use is 2048 dimensional embedding, making a +computationally efficient method particularly attractive. While +not as directly interpretable as linear methods like PCA, UMAP +is better able to capture some of the complex non-linear rela- +tionships between images encoded in the embedding space. +4.2 +User Interface +The user interface is a browser-based application. We describe +the design of the user interface and further discuss the utility +of these affordances in the case study section. +Figure 1 shows the Ravel interface, divided into 3 main +sections: + +DATA +EMBEDDING +N CLUSTERS +A +SPLIT1 +SPLIT 2 +SAMPLE VIEW +Update +inception_pool_3 +500 +ImageNet 128 Eval +BigGAN 128, 1.0 truncation +Grid +56 Samples +50 Samples +c +Dataset Stats +B +Samples +100000 +nples in ImageNet128Eval +50000 +SamplesinBigGAN128,1.0truncation +50000 +FrechetDistance +8.08 +Recall +0.378 +Precision +0.726 +70) harvestman,_ 309) bee +309) bee +309) bee +09Q (606 +320) damselly +985) daisy +985) daisy +985) dalsy +985) daisy +As)ep (s86 +935) dalsy +Highlight Classes +Cluster Metrics +PercentofSplit2(BigGAN128,1.0truncation) +658) mitten +658) mitten +658) mitten +850) teddy, teddy_985) daisy +ks)ep (s86 +985) daisy +985) daisy +985) daisy +985) daisy +985) daisy +985) daisy +Recall with'lmageNet 128 Eval'as ground truth +985) daisy +985) daisy +985) daisy +985) daisy +Asep (S85 +985) daisy +985) daisy +985) daisy +985) dalsy +As)ep (s86 +ks)ep (s86 +985) daisy +0.2 +0.6 +0.8 +Precisionwith'imageNet128Evalasgroundtruth +985) daisy +985) daisy +985) daisy +985) daisy +As)ep (S86 +985) daisy +985) daisy +985) daisy +985) daisy +985) daisy +985) daisy +985) daisy +0 +0.2 +0.4 +0.6 +0.8 +Median Distanceto Centroid +985) daisy +985) daisy +985) daisy985) daisy +Asep(585 +985) daisy +XsJep (S85 +985) daisy +985) dalsy +985) dalisy +sep (S86 +985) dalsy +Distance between Split Centroids +ClustersUMAP +985) daisy +Ase(s86 +985) daisy +985) daisy +985) daisy +985) daisy +sJep (S85 +ks)ep (S86 +sjep (s86 +985) daisy +985) daisy +ksjep (s86 +985) daisy +As)ep (s86 +935) daisy +985) dalsy +Asep (s85 +985) daisy +985) daisy +985) daisy +985) dalsy +985) daisy +985) daisy +W +As)ep ($86 +985) daisy985) daisy +985) daisy985) daisy +985) daisy +ks)ep (s86 +985) dalsy +985) daisy +AsI8p (S86 +985) daisy +Ksjep (585 +Ksep (s86 +985) dalsy +985) dalisy +985) daisy +As)ep (s86 +As)ep (S85 +985) daisy5 +4.2.1 +(A): Dataset and View Controls +The user can select which embedding to use, the number of +clusters and which split to show on the left or right. +4.2.2 +(B): Charts +There are three main kinds of data display in the charts section +of the UI. +Summary Statistics +First is a static table showing summary statistics and metrics +for the dataset as a whole. These include things like the number +of samples in the whole dataset, the number of samples in each +split as well as dataset level metrics such as Fr´echet distance1, +recall and precision [11]. +Cluster Metric Plots +Below the summary charts are a series of beeswarm plots for +the per-cluster metrics that were computed (see Cluster Metrics +section above for details). Each beeswarm shows each cluster +as a dot and plots the distribution of clusters over that metric. +These charts are interactive, individual dots can be selected to +show the images from that cluster in the sample viewer. +Fig. 2. Beeswarm plot showing distribution of cluster precision scores. +Each dot is a cluster which the currently selected dot shown in orange. +A description of the metric can be accessed by clicking on the ? icon. +A color encoding can also be applied by clicking on the +rainbow icon toggle next to that plot. This color encoding is +applied across all charts allowing comparison of one metric to +another (Figure 3). +Fig. 3. Recall and Precision beeswarm plots colored by precision score. +High recall, low precision clusters can be identified using the position +encoding in the recall plot and the color encoding applied from the +precision plot. To save space in the display we do not display a legend, +as the relationship between high-low values and hue is directly visible in +the chart whose rainbow icon was toggled and exact values are of less +importance than relative comparisons +UMAP Plots +1. When using the Inceptionv3 embedding this is Fr´echet Inception +Distance (FID) +Below the beeswarm plots are two plots showing 2D UMAP +projections of: a) all the clusters and b) images from the currently +selected cluster (See Figure 4). The Cluster UMAP view in +particular allows browsing clusters by visual similarity rather +than by the metric scores. Previews of individual images are +shown on mouseover of points on the Samples UMAP plot +Fig. 4. Top: UMAP projection of cluster centroids in embedding space. +Bottom: UMAP projection of currently selected cluster, real samples are +shown in blue and generated samples are show in red +Highlight Classes +In cases where the dataset does contain class labels, Ravel +will display a search interface that allows users to search for +and select any number of matching classes in the dataset. +If one or more classes is selected Ravel will dim clusters +that do not contain any images from those classes in the cluster +plots (5). +All the cluster plot interactions are linked, enabling users to +see where a cluster falls in multiple metrics or in embedding +space. +Any chart can be collapsed by by clicking on its title, this +allows making more room for the charts the user finds most +useful for their analysis. +4.2.3 +Sample Viewer +To the right of the charts is the sample viewer. This consists of a +pair of scrollable views displaying image thumbnails from the +selected cluster divided by split. If there are classes/labels asso- +ciated with the images they are displayed below the thumbnail +and images from the same class are grouped together, otherwise +they are displayed in the order they were processed by the +pipeline (effectively random). Users can click on images to get +a larger view of the image and see any additional metadata. +Image thumbnails are displayed at a maximum size of +150x150px and a minimum size of 100x100px depending on + +Precision with 'lmageNet 128 Eval' as ground truth +0.2 +0.4 +0.6 +0.8Recall with 'lmageNet 128 Eval' as ground truth +0.2 +0.4 +0.6 +0.8 +Precision with 'lmageNet 128 Eval' as ground truth +0.2 +0.4 +0.6 +0.8Clusters UMAP +Samples UMAP6 +Fig. 5. Clusters containing at least one image with the selected classes +are highlighted in all cluster plots. +how large the browser window is. On a 3840 x 2160 resolution +display2 one can typically see 72 images per split for a total of +144 images in a single screenful. However one clear limitation +is that if there are more images than this in a cluster a user +cannot see them all at once and does have to scroll through to +get a better understanding of the cluster. One way to mitigate +this is to use choose a higher number of clusters to view. Which +results in smaller, more granular clusters, at the cost of having +more to explore. +5 +CASE STUDIES +In this section, we illustrate how the design features of Ravel +support user exploration in a series of case studies. These case +studies highlight discoveries the authors made when using the +tool. Our 3 use cases are: 1) Unconditional image generation in +a single domain (faces), 2) Class conditioned generation on Im- +ageNet data and 3) Analyzing downstream use of a generative +model for another task - in this case, super-resolution. +While Ravel supports the use of multiple embeddings for +clustering and exploration, in this paper we focus primarily on +the same Inceptionv3 embeddings used in FID score and other metrics, +as they have become a de-facto standard in the generative +model space and are publicly available. +5.0.1 +Unconditional Image Generation +Unconditional generation refers to situations where a trained +model is used to generate images with no ’conditioning’ other +than an input vector (often referred to as a ’noise’ or ’Z’ vector) +drawn from a random distribution. In this case study, we +generate 60k images from an implementation of the StyleGAN2 +architecture 3 [18] trained on the FFHQ dataset. The images are +2. This resolution is the default 4K resolution which is widely avail- +able. It is also close to the native resolution of a 2021 14 inch MacBook +Pro (3024 x 1964) +3. We want to make clear that we are using an independently trained +StyleGAN2 and not the StyleGAN2 weights released by the original +authors +Fig. 6. The StyleGAN2-based model struggles to model images of +faces with facepaint and other colorful accessories occluding the face, it +instead produces these artefacts. +generated using Z vectors drawn from a random distribution +with a mean of zero and a standard deviation of one. We load +those images, along with 67,542 images from the training set +for a total of 127,542 images. +Are there images that this model generates that are not part +of the input distribution? +Our analyst opens the Ravel interface in her browser and +sets the number of clusters to 250, with images from the training +data on the left and generated images on the right. Knowing +that low precision generally implies less realistic images, she +begins by exploring clusters on the low end of the precision +chart and notes that the clusters with the 10 lowest values +each contain generated images with visually obvious defects. +Seeing these images contrasted with ground truth data gives +her a sense of what the model is struggling to capture in each +category. For example she notes that the model has a difficult +time modeling complex backgrounds, portraits where there are +more than one face, or portraits with occluding objects like +hands or microphones. Another problem that stands out to her +is the difficulty the model has generating faces with face-paint +as in Figure 6. Seeing these corrupted images juxtaposed with +real images from the training data allows her to hypothesize +why the model struggles with this, in particularly she observes +that these types of images are relatively rare in the training +data. +In examining 10 clusters, she has quickly scanned through +approximately 4234 generated images and 2718 real images. +5.0.2 +Class Conditioned Image Generation +Class conditioned generation refers to models that have been +trained to generate output images for a fixed set of distinct +classes. Here, we look at directly comparing the output of two +models trained on the same data and task: namely, generating +images from 1000 classes of the ImageNet dataset [41] at a +resolution of 128x128px. We use model implementations from +Lucic et al’s ”Are GANs Created Equal? A Large-Scale Study” +[42]. +We set up a Ravel instance with 50k images generated by +BigGAN 128 and BigGAN-deep 128 [12], and 50k images from + +Highlight Classes +Select allSelect none +Filter Class List +SelectedClasses +117)chambered nautilus,pearlynautilus,nautilus +685) odometer, hodometer,mileometer,milometer +√715)pickelhaube +810)spacebar +878)typewriterkeyboard +946)cardoon +984) rapeseed +Cluster Metrics +Percent of Split2 (BigGANDeep128,1.0truncation) +0% +20% +40% +60% +80% +100% +RecallwithBiqGAN 128,1.0truncation'as ground truth +? +0 +0.2 +0.4 +0.6 +0.87 +the validation set for ImageNet4. Input vectors for each model +are drawn from a random normal distribution, as described in +[42], and no truncation is applied to the input vectors. +Using these models demonstrates a workflow where re- +searchers are trying to determine how one variant of a model, or +an improved model architecture, behaves differently from some +baseline model. This comparison is a common workflow in +machine learning, typically achieved by reporting performance +on key metrics such as FID. We demonstrate how Ravel can +complement traditional metrics to find specific differences in +model behaviour. +Fig. 7. Mode collapse of the ”space bar” and ”typewriter keyboard” +classes in the BigGAN-deep model. All 100 images in this cluster look +identical as both classes have collapsed onto the same output. +Fig. 8. Output of the ”space bar” and ”typewriter keyboard” classes in +BigGAN show much more variety. This model does not exhibit mode +collapse for these classes +How does BigGAN compare to BigGAN-deep in terms of +diversity of output +Our analyst opens Ravel and sets the number of clusters to +500, with the left split showing output from BigGAN, and the +right split showing output from BigGAN-deep. +It immediately jumps out to him that there are a number +of clusters that have scores of 0 in the recall chart. He clicks +4. Data retrived from https://www.tensorflow.org/datasets/ cata- +log/imagenet2012 +on one of them and discovers it only contains images from +BigGAN-deep. All 100 images from this model are from two +classes, appear virtually identical, and are of low visual quality +(see Figure 7). This is a classic case of mode collapse [43]; +the model was unable to learn the true distribution for these +classes and has ’collapsed’ all output for these classes to a +single image. In this case, both classes have been collapsed into +the same output image. The analyst clicks on other clusters +with zero recall and finds similar mode collapse in BigGAN- +deep for the following classes: ”space bar”, ”typewriter keyboard”, +”pickelhaube”, ”rapeseed”, ”cardoon”, ”chambered nautilus, pearly +nautilus, nautilus”, and ”odometer”. +Using the ”highlight classes” feature of Ravel 5, our analyst +is able to find all clusters that contain images from these classes, +and confirms that the BigGAN model does not show mode +collapse for these classes (Figure 8). +What about classes where both models do okay at gen- +eration (i.e. neither model exhibits a pathological failure like +mode collapse)? +Our analyst now chooses to increase the granularity of +clusters by setting the number of clusters to 1000. He turns +on the color by option of the precision chart, and then looks at +the recall chart to find clusters with high recall but relatively +low precision (though not as low as in the previous section). +Looking at higher recall clusters allows finding ones that have +at least some overlap in their distribution, while keeping an +eye on precision suggests differences in quality. These appear +as light yellow dots on the right side of the recall chart. He +randomly selects one, and discovers a cluster of sea urchins. +Both generators produce high quality outputs, however visual +inspection shows that BigGAN-deep produces more diverse +output (Figure 9). +Fig. 9. A cluster of sea urchin samples from two generators, both +produce high quality images, but the generator on the right produces +more diverse output. The images on the right show a greater variety of +colors, textures and poses. +A benefit of clustering by visual similarity, rather than +grouping by label, is making it easier to discover overlap or +leakage of visual semantics between classes. Using the same +method as above, our analyst selects another cluster that con- +sists of relatively realistic images of dishrags (Figure 10). He +then highlights all clusters containing dishrags. He can now + +810) spacebar +810) space bar810) space bar +810) space bar +810) space bar +810) space bar878) typewriter k... 878) typewriter k. +878) tvpewriter k... 878) typewriter k... 878) typewriter k... 878) typewriter k.810)spacebar810)spacebar +810)spacebar +810)spacebar +810)spacebar +810)spacebar +810)spacebar +878) typewriter k.. +878)typewriterk...878)typewriterk...878)typewriterk...878)typewriterk.SPLIT 1 +SPLIT 2 +SAMPLE VIEW +BigGAN 128, 1.0 truncation +BigGANDeep 128, 1.0 truncation +Grid +39 Samples +45 Samples +328) sea urchin +328) sea urchin +328) sea urchin328) sea urchin +328) sea urchin + 328) sea urchin +328) sea urchin328) sea urchin328) sea urchin +328) sea urchin328) sea urchin + 328) sea urchin +328) sea urchin 328) sea urchin328) sea urchin328) sea urchin +328) sea urchin + 328) sea urchin +328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin +328) sea urchin +328) sea urchin +328) sea urchin328) sea urchin328) sea urchin328) sea urchin +328) sea urchin328) sea urchin +328) sea urchin328) sea urchin328) sea urchin + 328) sea urchin +328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin +328) sea urchin +328) sea urchin328) sea urchin328) sea urchin +328) sea urchin + 328) sea urchin +328) sea urchin328) sea urchin328) sea urchin +328) sea urchin328) sea urchin328) sea urchin +328) sea urchin 328) sea urchin +396) lionfish +328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin +328) sea urchin 328) sea urchin 328) sea urchin8 +individually examine all these clusters. His findings, shown in +(Figure 11 and Figure 12), suggests that other classes, namely +handkerchief’ and ’doormat’, are ’leaking’ into how each gen- +erator models dishrags. +Fig. 10. A cluster of ’dishrag’ samples from BigGAN on the left and +BigGAN-deep on the right, both produce somewhat realistic dishrags, +but the generator on the right produces images with more diverse +textures and colors. +Fig. 11. BigGAN cluster with a few dishrags but many colorful hand- +kerchiefs that have similar patterns to those seen in the main dishrag +cluster. This suggests some leakage in visual representation between +the two concepts. +Fig. 12. BigGAN-deep cluster with a few dishrags but many doormats, +this suggests a hypothesis for why many of the BIgGAN-deep dishrags +have a very rough texture. +5.0.3 +Downstream Applications of Generative Models: Super- +Resolution +In our final case study we consider the PULSE (Photo Upsam- +pling via Latent Space Exploration) algorithm [22], a super- +resolution algorithm that searches the manifold of a genera- +tive image model (in this case StyleGAN2) to create plausible +upsampled images corresponding to low resolution input im- +ages. The post-publication release of this model received sharp +critique, as users quickly discovered weaknesses in the mod- +els ability to upsample images of people with non-caucasian +features [44]. We use this example to illustrate how broader +exploration of output manifolds could help researchers and +Fig. 13. Cluster metric charts colored by cluster precision. On the left +of the precision chart is a group of clusters with very low precision +that are mostly composed of images only from the ground truth data, +many of these also have low recall, suggesting the algorithm struggles +to produce any output for them. +practitioners who are using these kinds models in downstream +applications to understand their weaknesses and mitigate risks +before release. +In this scenario, we use the original CelebA-HQ dataset +from Karras, et al. [13]. This dataset consists 30,000 facial por- +traits of celebrities at 1024x1024px. We take CelebA-HQ images +at 32x32px and upsample them back to 1020x1024px using the +PULSE algorithm5. We invoke PULSE with the default settings +provided by the authors in their model release 6, however we +increased the number of steps we run the algorithm from 100 to +200 steps to increase the chances of PULSE producing a result +for a given input.7 +We then compare the original 1024x1024px images and the +PULSE up-sampled ones using Ravel. In total, we have 30000 +original CelebA-HQ images and 22092 images output from +PULSE. 7908 images failed to produce any output after 200 +steps of the PULSE algorithm. +What kinds of images does PULSE struggle to produce any +output for? +Our analyst sets the number of clusters to 250 and the +original CelabA-HQ images on the left split, and immediately +notices a group of clusters on the lowest end of the precision +chart. She notices that many clusters also have low recall and +are mostly composed of images only from the ground truth (see +Figure 13). She clicks on some low-recall/low-precision clusters +and observes a few categories where the algorithm struggles +to produce any output. These include: people wearing hats or +other headgear, images where the person has a a microphone or +hand in front of them, faces with a lot of facepaint or makeup, +and images where people are wearing sunglasses. Each of these +clusters has between 60-120 images and a few samples are +shown in Figure 14. +What kinds of images does PULSE struggle to produce high +quality output for? +5. This scale factor (24x) is within the range of scale factors (8x-64x) +the original authors used in evaluation +6. https://github.com/adamian98/pulse +7. We did this because PULSE will not always produce a result for +an input image, and we found increasing the number of steps allowed +substantially more input images to produce some result. + +SPLIT 1 +SPLIT 2 +SAMPLE +BigGAN 128, 1.0 truncation +BigGANDeep 128, 1.0 truncation +Grid +36 Samples +48 Samples +533) dishrag, di... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, di... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, di.. 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, di. 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis. +533) dishrag, dis... 533) dishrag, di.533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, di.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, di.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... +533) dishrag, dis... 533) dishrag, dis. 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis... 533) dishrag, dis.. +533) dishrag, dis... 533) dishrag, dis... 539) doormat, w... 539) doormat, w... 735) poncho +748) purse533) dishrag, dis...533) dishrag, dis... 549) envelope +591)handkerchi... 591) handkerchi... 591)handkerchi..533) dishrag, dis... 539) doormat, w... 539) doormat, w... 539) doormat, w... 539) doormat, w... 539) doormat, w..Percent of Split 2 (PULSE upscaled CelebA 32px->1024px.) +0% +20% +40% +60% +80% +100% +Recall with 'CelebA HQ 1024px' as ground truth +0.2 +0.4 +0.6 +0.8 +Precision with 'CelebA HQ 1024px' as ground truth +0 +0.2 +0.4 +0.6 +0.89 +Fig. 14. Each row contains samples from a different cluster with that only +has images from the ground truth data and none from the algorithm out- +put. These are examples of images the algorithm struggles to upscale. +She continues to explore low precision clusters by scanning +left to right along the chart. One of the lowest precision clusters +contains ground truth images of people wearing spectacles (and +a few wearing sunglasses), however from the algorithm output +she sees a number of low quality (i.e. unrealistic) images that +are likely up-scaled from ones where the subject is wearing +sunglasses (Figure 15). She refines her hypothesis about what +the algorithm does to portraits with sunglasses, determining +that, ”if a person is wearing sunglasses, the algorithm often fails to +produce any image, and when it does, it produces unrealistic output”. +Fig. 15. Samples from a cluster of upscaled images of people wearing +sunglasses. +What kinds of images does PULSE do well at upsampling? +The precision chart can also be used to look at what images +PULSE does well at. As our analyst browses clusters on the +right side of the distribution, she observes that a majority of +high quality outputs seem to be of lighter skin tone faces that +look relatively young or middle aged. +Her manual inspection reveals some of the model’s fail- +ure modes and strengths along demographic categories even +though she does not have access to quantitative measures of +performance across sensitive features such as skin tone or age. +6 +DOMAIN EXPERT USER STUDY +We evaluated Ravel in a two-stage study, where the first stage +identified domain experts’ model evaluation goals, workflows +and existing tools, and the second stage investigated the us- +ability and utility of the Ravel UI. Participants were recruited +from a convenience sample of full time employees as a large +technology company, and there was a diversity in gender +identity (nfemale = 1, nMale = 5), product area (5 different +teams), and office location (nIsrael = 2, nUnitedStates = 4). Stage +one (n = 4) included four expert research scientists and soft- +ware engineers who currently work on training and evaluating +generative models, and stage two (n = 5) included three of +the users from stage one plus two additional users who have +experience working with generative models. Both evaluation +stages used remote moderated Google Meet video calls to speak +with users and allow them to share their screen to show how +they interacted with Ravel. +6.1 +Stage One: The Current State of Evaluation +Stage one aimed to understand the current state of evaluation +for generative image model output. Semi-structured interviews +were used, with questions about participants’ familiarity and +day to day work with generative models, goals and motivation +for model evaluation, as well as current workflows and prac- +tices. All four users currently work on generative models, and +were familiar with StyleGAN and its variants, BigGAN and +its variants, as well as other models trained on ImageNet and +FFHQ. There was diversity in architectures they work with and +the tasks they apply generative models to. Here, we report the +most common practices among users. +6.1.1 +Evaluation Goals & Workflows +All four participants reported that publication of model per- +formance/improvement was a primary goal for their work. All +four participants also expressed that evaluating output image +quality was critical to understanding model performance. +All four participants reported a mix of quantitative and +qualitative evaluation methods. In general, their workflows +could be characterized by a common pattern of: model training +accompanied by limited visual inspection for sanity-checking +→ examination of metrics → continued training → reexamina- +tion of metrics until a predetermined threshold is reached → +qualitative visual inspection of image output. +Two participants indicated that they believed the current +“best practice” for determining image quality was human +qualitative evaluation, often from crowdsourced studies. Im- +portantly, all four participants also emphasized the ubiquitous +reliance upon and limitations of FID scores in model evaluation. +While one user suggested that “FID scores are much better +than inception scores and other metrics”, they also conceded +that “there is not a gold standard for evaluation of generated +images”. All users indicated that they were dissatisfied with +FID score as a primary evaluation metric, and that they had +all experienced and read cases where they felt that FID score +did not align with human inference, a sentiment supported in +Zhou, et al. [24]. +6.1.2 +Evaluation Tools +All four users mentioned using TensorBoard [45] or Colab8 +(a computational notebook envrionment similar to Jupyter +Notebook [46]) to examine model output. For Colab, the main +strength reported was flexibility. The flexibility of Colab enables +bespoke analyses that we elaborate on in section 6.2.5. Its main +limitations were difficulties reusing code between projects and +sharing results, especially with non-technical collaborators or +stakeholders not directly involved with model training. For +TensorBoard, the main strengths reported were ease of use +during training to quickly visualize metrics and see sample +output at different stages of training. The main limitations +mentioned about TensorBoard were its latency when loading +many images, and lack of customization compared to an open +ended tool like Colab. +8. https://colab.research.google.com/ + +RUCAEN10 +6.1.3 +Qualitative Visual Evaluation Tasks +Determining image quality was reported as the most important +task. Determining the diversity of images was also important +to all four users, and one user mentioned that looking for +the occurrence of mode collapse was an explicit part of their +evaluation workflow. All users indicated that it was important +to do more granular and bespoke image generation, including +looking at samples within certain classes or samples close to +each other in embedding space. One user discussed examining +different levels of truncation for latent vectors to make deci- +sions about both realism and aesthetics in the output. Users +reported viewing a small number of images. One user reported +looking at approximately 64 images, and never more than 100 +images, per evaluation step of the model training pipeline. +Another user explained that when they work with a team on an +evaluation, they typically generate and inspect about 50 images. +However, when working alone, this user said that they would +inspect at least 200 images, noting that it was difficult to get a +group consensus on more than 50 images at a time. +We determined four categories of critical evaluation tasks +from this part of the study: image diversity, image quality, mode +collapse, and a “catch-all” category of additional explorations +of classes and samples. +6.2 +Stage Two: Observing how Ravel is Used +The objective of this stage was to determine how the Ravel UI +can be used for the critical evaluation tasks identified in stage +one. A brief slide deck and video explaining the UI components +was sent to users upon confirmation of their participation, +which they were asked to review before the study session. The +study sessions themselves lasted for one hour and consisted +of task based user exploration of the tool and semi-structured +interview questions. +6.2.1 +Task one: Diversity +The first task we asked users to attempt was to decide whether +BigGAN or BigGAN-deep was performing better in terms of +the diversity of sea urchin images, in a setup mirroring the +Ravel instance described in Section 5.0.2. This instance showed +128x128 pixel images from both models, with 50,000 images +per model and 50 images per class from each model. The UI +resolution was set to show the same number of images for each +user: 5 images per row in each split. +Users were presented with an instance of Ravel with the +”sea urchin” class selected in the Highlighted Classes menu, +showing results from BigGAN and BigGAN-deep in the left +split and right split, respectively. On initial load the instance +displayed the cluster containing most of sea urchin images +selected: 39 (out of 50) urchins from BigGAN and 45 (out of +50) urchins from BigGAN-deep. +All users started by attending to images in each split. No +users examined metrics or asked about metrics as a first step. +This emphasizes the importance of Ravel intuitively depicting +some of the most important information for assessing image +diversity: a salient grid of sample images within a cluster +of interest. Three users immediately noted the number of +samples in each split, paying close attention to which model +had a greater number of samples in the cluster of interest. +The most common flow involved inspecting individual images +and counting or “eyeballing” the number of images in each +model with unique background colors, sea urchin poses, and +sea urchin colors (all users mentioned these three features). +Three users scanned the metrics charts and clicked on the +other highlighted clusters with sea urchins. All five users made +the determination that BigGAN-deep was performing better in +terms of the diversity of sea urchin images, with one user ex- +plicitly stating that this confirmed their prior expectations. This +demonstrates consistency in how users complete this critical +task with Ravel, and shows the potential for convergent deci- +sion making and operationalization of workflows in qualitative +visual evaluation. It is also notable that Ravel helped confirm +one user’s prior expectations about BigGAN-deep’s diversity +performance, although that could also have been a potential +biasing factor in their evaluation process. +6.2.2 +Task two: Quality +For the second task, users were asked to decide whether Big- +GAN or BigGAN-deep was performing better in terms of the +quality of golden retriever images. Users were presented with +the same Ravel instance as task one, but this time the ”golden +retriever” class was selected in the Highlighted Classes menu +and a cluster showing most of the golden retriever images was +selected: 46 (out of 50) in the BigGAN split and 46 (out of 50) in +the BigGAN-deep split. +All users immediately noted many artifacts in output im- +ages from both models. All users clicked on individual images +and narrated particular issues, such as the shape of dogs’ noses, +the number of legs, and the accuracy of the form and pose of the +dogs in each sample. The most common workflow was to count +or “eyeball” the number of artifacts in each split to make an +initial determination, but evaluation workflows were notably +more diverse between users for the rest of the task. Five users +reported that this task was more difficult than the diversity +task while one user reported that it was easier. Some users +indicated that FID and Inception score for each model would be +an important part of making this determination in their typical +workflow. Four out of the five users made the determination +that BigGAN-deep also performed better in terms of the quality +of golden retriever images, and one user did not make an ex- +plicit determination for this task. Once again, Ravel supported +consistency in the primary image quality evaluation strategy +across all users, but individual exploration varied after this +initial decision. Some users validated their visual judgments +by looking at recall and precision charts, but others simply +explored the charts without forming additional opinions about +the task. +6.2.3 +Task three: Mode Collapse +Following the Quality task, users were asked if they were +familiar with the term mode collapse and if it was something +they used to evaluate generative model output. Four out of +five users were familiar with mode collapse and reported it as +a useful discovery in the model evaluation process, while one +user was unfamiliar with the term. Users who were familiar +with mode collapse were then asked to use Ravel to determine +whether it had occurred for either model within any class. +Because this task was not constrained to a single class, it +was more open-ended, and thus more challenging for users to +make a determination about. Workflows varied widely between +users, as they were given no guidance about how to accomplish +the task or make a determination. Several users mentioned that +they expected BigGAN to exhibit more mode collapse after +observing that BigGAN-deep had better diversity in the first +task. Four users who found concrete instances of mode collapse +(e.g. Fig. 6) did so by selecting clusters with the smallest +values in the Recall chart. Four out of five users viewed the +cluster samples displayed in figure 7 at some point during +their exploration, but one user did not identify it as mode +collapse, and one user did not select it at all. Nevertheless, + +11 +this was a promising observation, and demonstrates further +consistency of Ravel’s usability and specific utility of the recall +visualization. There was majority agreement that the recall +chart can be used to identify mode collapse, and it was revealed +to occur more often in BigGAN-deep. +6.2.4 +Task four: Additional exploration of classes, samples, +and features +For their final task, users were asked to view an instance +of Ravel showing generated images from a StyleGAN2-based +model in the right split, and images from its ground-truth +training data, FFHQ, in the left split. Users were told they +could freely explore the interface, either repeating the quality +and diversity assessments or trying a new task that they might +be interested in. +This task was fully unguided, but most users started by +assessing image quality for the StyleGAN2-based model. It was +common for users to select clusters at the low and high ends +of the Precision distribution. One user observed that clicking +on a cluster with high precision revealed “typical FFHQ im- +ages. . . very good images without occlusion, faces looking at +the camera, showing people with straight hair, and the model +output is very similar to these images.”. Four out of five users +discovered and explicitly verbalized that StyleGAN2-based +model struggled to generate images of people with facepaint. +They did this by clicking on clusters with low precision and +noticing artifacts on many of the generated images. All four +of these users expressed surprise upon making this new dis- +covery about the model. This demonstrates that even without +a specific prompt, many users will make the same kinds of +discoveries and follow the same types of evaluation processes +with Ravel. One of our participants was on the team that had +originally trained the StyleGAN2-based model that we used +and discovered that the model was unable to generate faces of +people wearing a particular style of fuzzy winter hat that was +fairly common in the ground truth data. He remarked that he +wasn’t aware of that inability and was pleasantly surprised to +be able to discover it. +The other common tasks were “semantic explorations” of +the clusters and the embedding space. Four out of five users +examined images in the FFHQ split to make decisions about +whether the clusters were semantically meaningful, and to +explore the diversity of FFHQ. Two users pondered whether +or not the embedding space was doing a good job of capturing +what they, as humans, would group together. These users inves- +tigated the proximity of samples in the Samples UMAP chart +and determined that the ImageNet feature space is not optimal +for clustering faces, since they could not find consistent visual +similarity between nearby samples in some of the clusters. +6.2.5 +Discussion of Expert Feedback +Users were overall impressed with the tool. All five users +thought that Ravel would fit into their current evaluation +process, and that it was especially useful for researchers who +publish generative models. Here, we summarize additional +feedback from the reflection portion of stage two. +Two users reported that their exploration made them doubt +whether the Inceptionv3 features were good for evaluating face +portrait generation. In reflection, one of these users stated that +Ravel could be used to learn about the feature space itself, +which could be broadly useful in generative image model +evaluation. +Upon discovering mode collapse in BigGAN-deep, one user +stated that Ravel would be useful for probing state-of-the-art +models to learn which classes they can’t generate images for, +which could point to systematic failure modes for researchers +to focus on improving. +One user noted that Ravel could help their team reach +conclusions about model performance more quickly than using +Colab, especially for understanding the diversity of images. +They explained that using Colab required developing a bespoke +visualization tool and manual calculations of FID in each clus- +ter, whereas the same type of useful information was readily +available in the Ravel UI. Two users emphasized that Ravel +could help operationalize how researchers evaluate quality and +diversity, one of which explained that Ravel could be “a forcing +function for having a standard UI/pipeline for results”, arguing +that this would make it “easier to share results with someone +on another team, or someone non-technical. . . even with my +manager who doesn’t have time to run my code”. This confirms +for us that there is a place for bespoke purpose built interfaces +like Ravel, that while less flexible than Colab, are more purpose +built for common evaluation tasks that researchers perform. +Overall, the expert feedback from stage two was positive +and enthusiastic, with several users expressing excitement +about continued exploration in Ravel and incorporating it into +their own workflows. +7 +LIMITATIONS AND FUTURE WORK +Our qualitative user study was performed with a small, domain +expert sample from a single company, and therefore may not be +an externally valid representation of all researcher experiences +with generative image models. The study sessions were also +limited to one hour per user, with each evaluation task time- +boxed to 15 minutes or less. Richer and more diverse interac- +tions and discoveries could be possible with a longer duration +of tool use. +Two users wanted to see images at a higher resolution, +and two other users wanted to see the original resolution of +the images when examining them for artifacts; this is not an +inherent issue with Ravel but is an important design affordance +for the future. Two users wanted to be able to mark images in +each split once they had viewed them, and enabling this would +support the ’counting’ based workflows we saw participants +use to complete the tasks. +When using the class conditional model, users initially +reported that they would prefer to see all images from a given +class in the same view (i.e. clustering by class label) to make a +judgement about that class. However on further exploration +they noted it was useful to see ’outlier’ images for a given +label in context with the other images they are most similar +to. This suggests that both workflows are important to support +for class conditioned models and should be supported by tools +like Ravel. +The authors also note a number of limitations of the system +we observed while watching users use the tool: +User’s cannot always interpret the ’meaning’ of clusters (i.e., +construct a rationale for why a set of images are clustered +together). This is a general issue with unsupervised methods +like clustering, but we found that users would often try to +attach some semantically meaningful description to each cluster +to ground their comparison. +Exploring ways to ’describe’ clusters or summarize differ- +ences between clusters could be important future work to aid +user comprehension. We also think exploring other clustering +methods, in particular hierarchical methods, could be a partic- +ularly attractive means to produce clusters at different levels of +granularity to help build understanding of groups within the +dataset. + +12 +In describing the Sample viewer (section 4.2.3) we noted +that one limitation is that not all of the images are visible in one +screen if there are many images present in the cluster. While one +mitigation is to decrease the size of clusters by increasing the +number of clusters, we believe that future work could provide +better ways to get the visual gestalt of the entire cluster in one +view. Possibly adapting techniques such as those described in +Activation Atlas [47], creating stacks of very similar images +within a cluster, or other ways of sub-sampling or sorting to +ensure that we are displaying the maximum variety about a +cluster in a single screen. +One user task that Ravel does not directly support is de- +tecting memorization. One user commented that adding a real +time nearest-neighbor search to the interface would likely make +it useful for this task. +8 +CONCLUSION +We presented Ravel, a visual analysis tool that enables re- +searchers to perform large scale qualitative evaluation of gen- +erative model outputs. Our primary contributions included: +• +A visual analytics system that supports multiple evalua- +tion tasks (e.g. evaluating quality & diversity, discovering +mode collapse or gaps in model output) for generative +image models and is agnostic to model architecture and +internals. +• +Interactive exploration of large generative image model +datasets, facilitated by clustering and the use of fine +grained visualization of cluster metrics to guide quali- +tative evaluation. +• +A user interface that uses visual comparison driven by +semantically meaningful embedding spaces to support +reasoning about differences between image distributions +and generate hypotheses about model behaviour. +The expert users in our study were able to generate consis- +tent insights about model behaviour including identifying areas +of the true data distribution the model was not capturing, such as +face paint or certain kinds of headgear in the StyleGAN2-based +model or mode collapse in BigGAN-deep. This kind of insight +is an example of one that is not possible to get from just looking +at quantitative metrics like FID. +Our study participants confirmed our hypotheses that single +number metrics are not fully sufficient measures of model +performance. In addition to exploring metrics at greater granu- +larity, Ravel allows users to explore metrics at finer granularity, +revealing areas of model output where metrics like recall or +precision do not capture problems in the generated images. +Our users hypothesized that the underlying InceptionV3 em- +bedding, used both in our tool and in the primarily metrics in +the field, may not attend to certain kinds visual artefacts that +are easily visible to humans. We believe that future work in +this direction could enable better understanding of limits of the +embedding spaces themselves and how they affect both metrics +and the workflows that use them. +ACKNOWLEDGMENTS +The authors wish to thank Mario Lucic, Marvin Ritter, Ben +Poole, Han Zhang, Chitwan Saharia, James Wexler and Lucas +Dixon for their help and feedback on this work. We also thank +our study participants for their feedback. +REFERENCES +[1] +I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, +S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial +Nets,” in Advances in Neural Information Processing Systems, vol. 27, +2014. [Online]. Available: https://proceedings.neurips.cc/paper/ +2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html +[2] +D. P. Kingma and M. Welling, “Auto-Encoding Variational +Bayes,” Dec. 2013. [Online]. Available: https://arxiv.org/abs/ +1312.6114v10 +[3] +L. +Dinh, +D. +Krueger, +and +Y. +Bengio, +“NICE: +Non-linear +Independent Components Estimation,” arXiv:1410.8516 [cs], Apr. +2015, arXiv: 1410.8516. [Online]. Available: http://arxiv.org/abs/ +1410.8516 +[4] +J. +Sohl-Dickstein, +E. +Weiss, +N. +Maheswaranathan, +and +S. +Ganguli, +“Deep +Unsupervised +Learning +using +Nonequi- +librium +Thermodynamics,” +in +Proceedings +of +the +32nd +International +Conference +on +Machine +Learning, +Jun. +2015, +pp. +2256–2265, +iSSN: +1938-7228. +[Online]. +Available: +https://proceedings.mlr.press/v37/sohl-dickstein15.html +[5] +A. +Odena, +“Open +Questions +about +Generative +Adversarial +Networks,” Distill, vol. 4, no. 4, p. e18, Apr. 2019. [Online]. +Available: https://distill.pub/2019/gan-open-problems +[6] +L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation +of generative models,” arXiv:1511.01844 [cs, stat], Apr. 2016, arXiv: +1511.01844. [Online]. Available: http://arxiv.org/abs/1511.01844 +[7] +A. +Borji, +“Pros +and +Cons +of +GAN +Evaluation +Measures,” +arXiv:1802.03446 [cs], Oct. 2018. +[8] +——, “Pros and Cons of GAN Evaluation Measures: New Devel- +opments,” arXiv:2103.09396 [cs], Mar. 2021. +[9] +M. +Heusel, +H. +Ramsauer, +T. +Unterthiner, +B. +Nessler, +and +S. Hochreiter, “GANs Trained by a Two Time-Scale Update +Rule Converge to a Local Nash Equilibrium,” in Advances +in +Neural +Information +Processing +Systems, +vol. +30, +2017. +[Online]. Available: https://proceedings.neurips.cc/paper/2017/ +hash/8a1d694707eb0fefe65871369074926d-Abstract.html +[10] M. S. M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and S. Gelly, +“Assessing Generative Models via Precision and Recall,” in +Advances in Neural Information Processing Systems, vol. 31, 2018. +[Online]. Available: https://proceedings.neurips.cc/paper/2018/ +hash/f7696a9b362ac5a51c3dc8f098b73923-Abstract.html +[11] T. Kynk¨a¨anniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila, +“Improved Precision and Recall Metric for Assessing Generative +Models,” arXiv:1904.06991 [cs, stat], Oct. 2019, arXiv: 1904.06991. +[Online]. Available: http://arxiv.org/abs/1904.06991 +[12] A. +Brock, +J. +Donahue, +and +K. +Simonyan, +“Large +Scale +GAN Training for High Fidelity Natural Image Synthesis,” +arXiv:1809.11096 [cs, stat], Feb. 2019, arXiv: 1809.11096. [Online]. +Available: http://arxiv.org/abs/1809.11096 +[13] T. +Karras, +S. +Laine, +and +T. +Aila, +“A +Style-Based +Generator Architecture for Generative Adversarial Networks,” +arXiv:1812.04948 [cs, stat], Mar. 2019, arXiv: 1812.04948. [Online]. +Available: http://arxiv.org/abs/1812.04948 +[14] D. P. Kingma and P. Dhariwal, “Glow: Generative Flow with +Invertible 1x1 Convolutions,” arXiv:1807.03039 [cs, stat], Jul. 2018, +arXiv: 1807.03039. [Online]. Available: http://arxiv.org/abs/1807. +03039 +[15] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural Discrete +Representation Learning,” arXiv:1711.00937 [cs], May 2018, arXiv: +1711.00937. [Online]. Available: http://arxiv.org/abs/1711.00937 +[16] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and +T. Salimans, “Cascaded Diffusion Models for High Fidelity Image +Generation,” arXiv:2106.15282 [cs], Dec. 2021, arXiv: 2106.15282. +[Online]. Available: http://arxiv.org/abs/2106.15282 +[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, +“Rethinking the Inception Architecture for Computer Vision,” +arXiv:1512.00567 [cs], Dec. 2015. +[18] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, +“Analyzing and improving the image quality of stylegan,” in +Proceedings of the IEEE/CVF conference on computer vision and pattern +recognition, 2020, pp. 8110–8119. +[19] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, +and W. Brendel, “ImageNet-trained CNNs are biased towards +texture; increasing shape bias improves accuracy and robustness,” +arXiv:1811.12231 [cs, q-bio, stat], Jan. 2019. +[20] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, +X. Chen, and X. Chen, “Improved Techniques for Training GANs,” +in Advances in Neural Information Processing Systems, vol. 29, 2016. + +13 +[Online]. Available: https://proceedings.neurips.cc/paper/2016/ +hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html +[21] S. Barratt and R. Sharma, “A Note on the Inception Score,” +arXiv:1801.01973 [cs, stat], Jun. 2018, arXiv: 1801.01973. [Online]. +Available: http://arxiv.org/abs/1801.01973 +[22] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “PULSE: +Self-Supervised Photo Upsampling via Latent Space Exploration +of Generative Models,” in 2020 IEEE/CVF Conference on Computer +Vision and Pattern Recognition (CVPR), Seattle, WA, USA, Jun. 2020, +pp. 2434–2442. +[23] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep Gener- +ative Image Models using a Laplacian Pyramid of Adversarial +Networks,” arXiv:1506.05751 [cs], Jun. 2015. +[24] S. Zhou, M. Gordon, R. Krishna, A. Narcomey, L. F. Fei-Fei, and +M. Bernstein, “HYPE: A Benchmark for Human eYe Perceptual +Evaluation of Generative Models,” p. 13. +[25] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. +Freeman, and A. Torralba, “GAN Dissection: Visualizing and Un- +derstanding Generative Adversarial Networks,” arXiv:1811.10597 +[cs], Dec. 2018. +[26] D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou, +and A. Torralba, “Seeing What a GAN Cannot Generate,” +arXiv:1910.11626 [cs, eess], Oct. 2019. +[27] T. White, “Sampling Generative Networks,” arXiv:1609.04468 [cs, +stat], Dec. 2016. +[28] T. White and B. Loh, “SpaceSheet: Navigating Conceptual Space +with a Spreadsheet Interface,” p. 8. +[29] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Vi´egas, and +M. Wattenberg, “Embedding Projector: Interactive Visualization +and Interpretation of Embeddings,” arXiv:1611.05469 [cs, stat], +Nov. 2016. +[30] K. Ho, “Font Map,” https://experiments.withgoogle.com/font- +map. +[31] C. +Diagne +and +S. +Doury, +“Curator +Table,” +https://experiments.withgoogle.com/curator-table. +[32] K. +McDonald, +M. +Tan, +and +Y. +Mann, +“Bird +Sounds,” +https://experiments.withgoogle.com/bird-sounds. +[33] Y. Liu, E. Jun, Q. Li, and J. Heer, “Latent Space Cartography: Visual +Analysis of Vector Space Embeddings,” Computer Graphics Forum, +vol. 38, no. 3, pp. 67–78, Jun. 2019. +[34] S. Xiang, X. Ye, J. Xia, J. Wu, Y. Chen, and S. Liu, “Interactive +Correction of Mislabeled Training Data,” in 2019 IEEE Conference +on Visual Analytics Science and Technology (VAST), Oct. 2019, pp. +57–68. +[35] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, +“The +Unreasonable +Effectiveness +of +Deep +Features +as +a +Perceptual +Metric,” +2018, +pp. +586–595. +[Online]. +Avail- +able: +https://openaccess.thecvf.com/content cvpr 2018/html/ +Zhang The Unreasonable Effectiveness CVPR 2018 paper.html +[36] “Scikit-learn +Overview +of +Clustering.” +[Online]. +Avail- +able: +https://scikit-learn.org/stable/modules/clustering.html# +overview-of-clustering-methods +[37] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uni- +form manifold approximation and projection,” The Journal of Open +Source Software, vol. 3, no. 29, p. 861, 2018. +[38] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of +points in space,” The London, Edinburgh, and Dublin Philosophical +Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. +[39] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” +Journal of machine learning research, vol. 9, no. 11, 2008. +[40] A. Coenen and A. Pearce, “Understanding UMAP,” 2019. [Online]. +Available: https://pair-code.github.io/understanding-umap/ +[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, +Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and +L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” +International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. +211–252, 2015. +[42] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, +“Are +GANs +Created +Equal? +A +Large-Scale +Study,” +in +Advances +in +Neural +Information +Processing +Systems, +vol. +31, +2018. [Online]. Available: https://proceedings.neurips.cc/paper/ +2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html +[43] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Net- +works,” arXiv:1701.00160 [cs], Apr. 2017. +[44] “Lessons +from +the +PULSE +Model +and +Discussion,” +https://thegradient.pub/pulse-lessons/, Jun. 2020. +[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, +G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good- +fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, +M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, +C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, +P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, +P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, +“TensorFlow: Large-Scale Machine Learning on Heterogeneous +Distributed Systems,” arXiv:1603.04467 [cs], Mar. 2016. +[46] T. Kluyver, B. Ragan-Kelley, F. P´erez, B. Granger, M. Bussonnier, +J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, +D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks – a +publishing format for reproducible computational workflows,” in +Positioning and Power in Academic Publishing: Players, Agents and +Agendas, F. Loizides and B. Schmidt, Eds. +IOS Press, 2016, pp. 87 +– 90. +[47] S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah, +“Activation Atlas,” Distill, vol. 4, no. 3, p. e15, Mar. 2019. [Online]. +Available: https://distill.pub/2019/activation-atlas + diff --git a/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/load_file.txt b/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..fb3fb5577a9160d856658e78550ef43f2ed0c4db --- /dev/null +++ b/XNE3T4oBgHgl3EQfbwpA/content/tmp_files/load_file.txt @@ -0,0 +1,1326 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf,len=1325 +page_content='1 Large Scale Qualitative Evaluation of Generative Image Model Outputs Yannick Assogba, Adam Pearce and Madison Elliott Abstract—Evaluating generative image models remains a difficult problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This is due to the high dimensionality of the outputs, the challenging task of representing but not replicating training data, and the lack of metrics that fully correspond to human perception and capture all the properties we want these models to exhibit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Therefore, qualitative evaluation of model outputs is an important part of model development and research publication practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Quantitative evaluation is currently under-served by existing tools, which do not easily facilitate structured exploration of a large number of examples across the latent space of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' To address this issue, we present Ravel, a visual analytics system that enables qualitative evaluation of model outputs on the order of hundreds of thousands of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel allows users to discover phenomena such as mode collapse, and find areas of training data that the model has failed to capture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It allows users to evaluate both quality and diversity of generated images in comparison to real images or to the output of another model that serves as a baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our paper describes three case studies demonstrating the key insights made possible with Ravel, supported by a domain expert user study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Index Terms—Information visualization, Picture/Image Generation, Machine learning !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 1 INTRODUCTION Generative image models are a class of neural network based models that aim to produce novel, high-quality and diverse images that faithfully model a target image distribu- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A variety of architectures and training methods have been designed to learn such models, such as Generative Adversarial Networks (GANs) [1], Variational Auto-Encoders (VAEs) [2], Flow Based Models [3] and Diffusion Models [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Evaluating these models remains difficult [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The high dimensionality of the output architectures used make likeli- hood estimates of model outputs difficult, and in some cases intractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It has also been demonstrated that measures like average log likelihood do not always correlate with human perceptual judgments of sample quality [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Additionally, while we want models to capture the target distribution well, we do not want them to produce images that are actually in the training set (an issue commonly referred to as memorization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A number of metrics have emerged in the literature around generative image models [7] [8], with Fr´echet Inception Dis- tance (FID) [9] being the most popular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However, issues have been identified with FID, leading to the development of more granular metrics such as precision and recall [10] [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Single-number metrics such as FID, while necessary for forward progress in the field, do not capture the full range of qualities desired of these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Because of this, human visual inspection often plays a critical role in the evaluation and dissemination of advances in generative image modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However with existing evaluation tools, practitioners can typi- cally only look at a small fraction of the output space of these models, on the order of 10s to 100s of images (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=', [12], [13], [14], [15], [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our interviews with domain experts confirm that human evaluation is a critical part of practitioner workflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Some ex- perts rely on human evaluation with crowd-sourced evaluators, they however recognize that these are often expensive or time consuming and are thus left to the final stages of evaluation Yannick Assogba, Adam Pearce and Madison Elliot are with Google Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' E-mail: {yassogba,adampearce,madisone}@google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com if done at all, leaving them to primarily rely on small scale qualitative evaluation during the model development process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' At the same time, experts in the field are concerned about cherry picking of results for publication but typically have no means to expansively explore model outputs in the rare occa- sions that these are published alongside academic manuscripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' To address these needs, we built a system called Ravel, which enables users to perform visual inspection of model outputs on scales up to three orders of magnitude greater that typical user workflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We demonstrate usage of this system on datasets varying from 50k - 120k images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These dataset sizes are comparable to those used in standard quantitative evaluation of generative image models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our primary contributions include: A visual analytics system that supports multiple evalua- tion tasks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' evaluating quality & diversity, discovering mode collapse or gaps in model output) for generative image models and is agnostic to model architecture and internals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Interactive exploration of large generative image model datasets, facilitated by clustering and the use of fine grained visualization of cluster metrics to guide quali- tative evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A user interface that uses visual comparison driven by semantically meaningful embedding spaces to support reasoning about differences between image distributions and generate hypotheses about model behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2 BACKGROUND 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Generative Image Models The capabilities of generative image models have greatly in- creased over the last several years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Since the original GAN paper [1] that broke the dam on modelling of faces, we now have systems like BigGAN [12], StyleGAN [13], GLOW [14], VQ-VAE [15], CDM [16] and many others that present a wide variety of model architecture and training algorithms and are capable of producing very realistic images in a wide variety of domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04518v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='HC] 11 Jan 2023 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Quantitative Metrics for Evaluating Generative Image Models In this section, we outline the most commonly cited metrics in the research literature: Fr´echet Inception Distance [9]: Uses a pre-trained In- ceptionV3 classifier [17] to generate embeddings for both real and generated images, then uses a statistical measure to compare the distribution of embeddings from the two sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' FID is the most popular metric in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It requires a large number of samples to produce an accurate estimate (generally at least 50k generated images), and cannot detect memorization of the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Karras et al [18] point out that the texture bias in ImageNet based CNNs like InceptionV3 [19] imply that metrics derived from them will not capture all aspects of image quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Inception Score [20]: Uses a pre-trained inception clas- sifier to measure, a) how well each generated image matches a single ImageNet class, and b) if the full the set of generated images has uniform coverage over all the ImageNet classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Similar to FID, Inception Score requires a fairly large number of images and cannot be used to detect memorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It also cannot measure intra-class diversity or detect mode collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' See Barrat and Sharma [21] for a detailed discussion of issues with this metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Both Inception Score and FID are scalar scores designed to capture both image quality and diversity, and thus cannot reveal if the model is trading off one of these properties for the other to achieve a better score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Precision and Recall Metrics: To disentangle the mea- surement of image quality and diversity, Sajjadi et al [10] and Kynk¨a¨anniemi et al [11] propose precision and recall metrics to measure each independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Broadly speaking, precision corresponds to the sample quality, whereas recall corresponds to the coverage of the sample distribution with respect to the target distribution - i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These metrics are generally computed over the entire dataset, and thus have low granularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Even when they indicate that a model is better or worse, they don’t specify where in the distribution of generated images improvements or regressions lie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel increases the granularity of these metrics, providing a way to find specific clusters of images that score poorly on some metric 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Qualitative Evaluation / Visualization of Generative Im- age Model Outputs Due to the limitations of quantitative metrics discussed above, researchers also rely on visual inspection of model outputs to evaluate model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Visual inspection is typically performed during training, to monitor that the process has not immediately failed, as well as after training, to evaluate overall quality of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We validate and elaborate on this workflow and strategy with domain experts in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Although models often output 100s of thousands of images, our user study found that researchers are only able to inspect a small portion of images (in the 100s) during their analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Visually impressive samples are paramount for successfully publishing model advancements in scientific venues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Relevant papers in the field of generative image models typically include 10s-100s of images [12] [13] [18] [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This represents a very limited sample of the variety of images these models are typi- cally trained to generate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our user study also found that there is an assumption that authors ”cherry-pick” the best images to include in their publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Relatively few authors have published large datasets of un-cherry-picked output images alongside their publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' There are currently no purpose-built interfaces that make these convenient to browse or examine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For example, [13] [18] each publish 100k output images to a publicly accessible Google drive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These images are organized into 1000 sub-folders to make the interface more usable given the large number of files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' To view this output, users must either click through the folders individually, or bring their own interface to browse the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3 RELATED WORK Borji [7] [8] catalogues many of the metrics for automatic evaluation of generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel utilizes the precision and recall metrics from [10] and [11], but does not propose any new metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We thus situate this work in primarily relation to work on qualitative evaluation and interfaces to explore generative model output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Crowd-worker Evaluation Denton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [23] use a small volunteer sample of human annotators to estimate quality by asking whether they can distinguish real from generated images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [24] refine and scale this technique, asking crowd-sourced workers from Amazon’s Mechanical Turk to make psychophysical judgments about real vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' generated images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While these methods are good at scaling up evaluation to larger dataset sizes, they are more time-consuming and expensive than manual inspection by researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Thus they are typically reserved for later stages of the evaluation pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They also tend to focus on measures that can be evaluated on individual images (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' image quality), rather that corpus level properties (such as image diversity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' By contrast, Ravel is designed to support researcher evalu- ation earlier in the development pipeline before the use of external raters, and allows researchers to evaluate both quality and diver- sity in the same interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It fits in between initial monitoring of training dynamics to ensure that the model is converging and larger scale human rater evaluation typically performed closer to model release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Explaining Model Internals Bau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [25] explore finding interpretable units (neurons) within GANs and visualizing the causal effects of ablating these neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Their method depends on having access to model internals and having a pre-trained object segmentation network to find objects within the scene to establish the casual relation- ship between neuron activation and network output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [26] Bau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' use a pre-trained segmentation network to compare the distribution of objects found in generated images with those found in a set of real images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This provides a measure of diversity of the models outputs with respect to the objects that can be segmented by the pre-trained network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The authors also propose a method (Layer Inversion), to train networks that compute approximate inversions of real images into the latent space of the model, to see what the network generates instead of the missing objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While these approaches are critical to better understanding of the internal mechanisms that drive model behavior, they are typically specific to a particular model architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel treats models as black boxes and is thus agnostic to model architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel does use pre-trained networks to compute vector representations of images, but is less sensitive to the final task the pre-trained network is trained to perform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For 3 example one could use the embeddings from the model under examination or any model that has learned semantically useful features such as InceptionV3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Online Exploration of Model Outputs White [27] explores a variety of ways to sample images from latent space that enable repeatable visual comparisons between models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They introduce a number of visualizations designed to examine how models perform with respect to specific input images that are used to test model behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In a follow- up work White & Loh [28] introduce a novel visual interface based on a spreadsheet metaphor that allows users to use geometric operations in the latent space to interactively query these models and thus explore their output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While online methods enable users to explore specific hy- potheses, they generally suffer from supporting relatively small exploration spaces due to the slow generation of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel focuses on offline analysis of generated images, which allows examining much larger datasets and can thus complement online methods as means of generating hypotheses for further, more targeted investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Embedding Based Visualizations A number of works have visualized embedding spaces of large, high-dimensional datasets [29] [30] [31] [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [33] present a visual analysis system which uses the latent space learned by the encoder of a VAE to explore variation in an existing image dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This task is conceptually similar to what we support in Ravel, however we do not attempt to learn a new latent space as we want to focus on the generator output and its latent space (rather than fixed input data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravel builds on these earlier works visualizing embedding spaces, and incorporates clustering to make navigating these spaces more tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We focus on dataset comparison as a way to ground exploration of the output space and cater to the needs of the image generation use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Xiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [34] present a visual analytics system for correcting labelling errors in large datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They visualize t- SNE projections of image embeddings color coded by label to highlight data points that are mislabelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In contrast, Ravel is designed to support unconditional generation scenarios, where the generated (and ground truth images) have no labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Thus, rather than relying on labels for grounding, Ravel enables com- parative evaluation of datasets to allow grounding evaluation of generated images in the distribution of real images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4 APPROACH & SYSTEM DESIGN Ravel focuses on enabling visual inspection of model outputs in comparison with some baseline set of images, typically real ’ground truth’ images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' From our interviews (section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1), we know that practitioners perform visual analysis of image samples coming out of models, but typically on small numbers of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our aim is to support and scale up those workflows to allow more systematic visual inspection from 10s or 100s of images to 10,000s or 100,000s of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We leverage four key concepts to facilitate this comparison across a large set of images: 1) Image Embeddings: Neural image embeddings pro- vide a semantically rich vector space for images that allow computing similarity scores between pairs of im- ages [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They have become the standard in evaluation pipelines for generative image models (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2) and we want to leverage the familiarity researchers have with embedding based metrics in Ravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The abil- ity to compute semantic similarity between images al- lows us to group similar generated images together and allow comparison of those images to similar ground truth images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' By default we compute the standard In- ceptionV3 embeddings used in metrics like FID, but can also add embeddings from other models including pre- trained models or from the model under examination if those are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2) Clustering Images: In order to enable visual explo- ration of hundreds of thousands of images we need to group them into a smaller number of meaningful groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We use unsupervised clustering of images to reduce the number of top-level items the user has to consider from e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 100k images to 1000, 500 or even 250 clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We use k-means clustering and provide more details about this in the pipeline details section below 3) Cluster Metrics: Once we have reduced the number of top-level elements to a manageable number we wish to provide hints to the user as to which clusters might be most interesting to explore first, as well as scaffold a repeatable workflow that can guide exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We compute metrics over each cluster that enable sorting clusters into predictable order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Many of the metrics we compute are designed to surface differences between the generated data and the baseline data in a cluster, with others show general properties of the cluster itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We provide more details about the metrics we compute in the pipeline details section below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' By sorting clusters by these metrics we allow discovery of outlier clusters as well as analyzing properties of different parts of the generative image space (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' seeing what kinds of output images have low precision) 4) Interactive Visualization: Finally we provide respon- sive interactive visualization of images, clusters and associated cluster metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Because we compute all the data offline, the user interface is quite responsive and enable fast and free exploration of a large number of data-points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Pipeline Details 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Clustering Ravel clusters the image embeddings using the implementa- tion of k-means clustering from scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' k-means was an attractive clustering algorithm to start with because it is a well known algorithm that has a single easily understood hyper- parameter, namely the number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This allows the user to directly specify values for this hyper-parameter that they believe make sense for their dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In addition to this, compared to other algorithms with similar hyper parameter options such as spectral clustering, k-means scales well with the number of examples and number of clusters selected [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' k-means also tends to produce fairly evenly sized clusters, which is helpful for displaying their contents in a uniform way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All clustering methods suffer from issues of imperfect cluster assignment, particularly at the boundaries of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However, Ravel mitigates this issue somewhat by visualizing clusters according to their positions in latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This allows users to quickly discover and examine clusters that are near to each other and ascertain whether they are truly a single se- mantic cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For more details see the dimensionality reduction section (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Cluster Metrics We compute a number of metrics for each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Having multiple metrics provides different lenses through which to consider the clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For example one might be interested in 4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The Ravel interface primarily consists of: A) Dataset & view options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' B) Summary charts & linked cluster plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' C) Side by side image grids for visual comparison of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This view shows a cluster comparing real images on the left to generated images on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' where recall or precision are low, or alternatively where clusters are tightly packed or more spread out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Clusters may have images from either the generated data or the baseline/ground truth, in the UI we refer to these data sources as splits and typically display the baseline data on the left, though the user can change this interactively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Many metrics are geared toward exposing differences between the two splits that are currently being explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Percent of Split 2: The percentage of images in the cluster that come from the split displayed on the right (usually the generated data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Recall: Recall is a metric that describes what fraction of samples in the ground truth split have support in the alternate split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We compute recall as defined in [11] but aggregate the per-image values for each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' When comparing generated images to real ones a high recall implies the model is producing images as diverse as the real data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Precision: Precision is an metric that describes what fraction of samples in the generated data have support in the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' As above we compute precision as defined in [11] but aggregate the per-image values for each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' When comparing generated images to real ones a high precision implies better image qual- ity/realism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Distance between split centroids: Measures the dis- tance between centroids of the samples in a cluster that belong to each split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Larger values suggest that the data from the two splits are more visually different while smaller values suggest that the left and right split are more visually similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Median distance to centroid: Median distance of sam- ples in the cluster to the centroid of that cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Smaller values here imply more compact clusters with more similar samples, higher values suggest the cluster has a greater variety of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Dimensionality Reduction In addition to visualizing clusters by the metrics described above, we also visualize the positions of cluster centroids in the embedding space itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Since these are high dimensional embeddings spaces we need to use dimensionality reduction in order to visualize them in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We use the UMAP algorithm [37] to do this projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Other options for dimensionality reduction include PCA [38] or t-SNE [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Compared to t- SNE, UMAP has been reported to preserve more of the global structure of the original space and is significantly more compu- tationally efficient both as the number of dimensions increases and as the size of the dataset grows [37] [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The InceptionV3 embedding we use is 2048 dimensional embedding, making a computationally efficient method particularly attractive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While not as directly interpretable as linear methods like PCA, UMAP is better able to capture some of the complex non-linear rela- tionships between images encoded in the embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 User Interface The user interface is a browser-based application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We describe the design of the user interface and further discuss the utility of these affordances in the case study section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Figure 1 shows the Ravel interface, divided into 3 main sections: DATA EMBEDDING N CLUSTERS A SPLIT1 SPLIT 2 SAMPLE VIEW Update inception_pool_3 500 ImageNet 128 Eval BigGAN 128, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0 truncation Grid 56 Samples 50 Samples c Dataset Stats B Samples 100000 nples in ImageNet128Eval 50000 SamplesinBigGAN128,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0truncation 50000 FrechetDistance 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='08 Recall 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='378 Precision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='726 70) harvestman,_ 309) bee 309) bee 309) bee 09Q (606 320) damselly 985) daisy 985) daisy 985) dalsy 985) daisy As)ep (s86 935) dalsy Highlight Classes Cluster Metrics PercentofSplit2(BigGAN128,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="0truncation) 658) mitten 658) mitten 658) mitten 850) teddy, teddy_985) daisy ks)ep (s86 985) daisy 985) daisy 985) daisy 985) daisy 985) daisy 985) daisy Recall with'lmageNet 128 Eval'as ground truth 985) daisy 985) daisy 985) daisy 985) daisy Asep (S85 985) daisy 985) daisy 985) daisy 985) dalsy As)ep (s86 ks)ep (s86 985) daisy 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="8 Precisionwith'imageNet128Evalasgroundtruth 985) daisy 985) daisy 985) daisy 985) daisy As)ep (S86 985) daisy 985) daisy 985) daisy 985) daisy 985) daisy 985) daisy 985) daisy 0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Median Distanceto Centroid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Asep(585 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='XsJep (S85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='sep (S86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Distance between Split Centroids ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='ClustersUMAP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Ase(s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='sJep (S85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='ks)ep (S86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='sjep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='ksjep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='As)ep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='935) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Asep (s85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='W ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='As)ep ($86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='ks)ep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='AsI8p (S86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Ksjep (585 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Ksep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalsy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) dalisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='As)ep (s86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='As)ep (S85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='985) daisy5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 (A): Dataset and View Controls The user can select which embedding to use, the number of clusters and which split to show on the left or right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 (B): Charts There are three main kinds of data display in the charts section of the UI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Summary Statistics First is a static table showing summary statistics and metrics for the dataset as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These include things like the number of samples in the whole dataset, the number of samples in each split as well as dataset level metrics such as Fr´echet distance1, recall and precision [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Cluster Metric Plots Below the summary charts are a series of beeswarm plots for the per-cluster metrics that were computed (see Cluster Metrics section above for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Each beeswarm shows each cluster as a dot and plots the distribution of clusters over that metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These charts are interactive, individual dots can be selected to show the images from that cluster in the sample viewer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Beeswarm plot showing distribution of cluster precision scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Each dot is a cluster which the currently selected dot shown in orange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A description of the metric can be accessed by clicking on the ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' icon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A color encoding can also be applied by clicking on the rainbow icon toggle next to that plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This color encoding is applied across all charts allowing comparison of one metric to another (Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Recall and Precision beeswarm plots colored by precision score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' High recall, low precision clusters can be identified using the position encoding in the recall plot and the color encoding applied from the precision plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' To save space in the display we do not display a legend, as the relationship between high-low values and hue is directly visible in the chart whose rainbow icon was toggled and exact values are of less importance than relative comparisons UMAP Plots 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' When using the Inceptionv3 embedding this is Fr´echet Inception Distance (FID) Below the beeswarm plots are two plots showing 2D UMAP projections of: a) all the clusters and b) images from the currently selected cluster (See Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The Cluster UMAP view in particular allows browsing clusters by visual similarity rather than by the metric scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Previews of individual images are shown on mouseover of points on the Samples UMAP plot Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Top: UMAP projection of cluster centroids in embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bottom: UMAP projection of currently selected cluster, real samples are shown in blue and generated samples are show in red Highlight Classes In cases where the dataset does contain class labels, Ravel will display a search interface that allows users to search for and select any number of matching classes in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' If one or more classes is selected Ravel will dim clusters that do not contain any images from those classes in the cluster plots (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All the cluster plot interactions are linked, enabling users to see where a cluster falls in multiple metrics or in embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Any chart can be collapsed by by clicking on its title, this allows making more room for the charts the user finds most useful for their analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Sample Viewer To the right of the charts is the sample viewer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This consists of a pair of scrollable views displaying image thumbnails from the selected cluster divided by split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' If there are classes/labels asso- ciated with the images they are displayed below the thumbnail and images from the same class are grouped together, otherwise they are displayed in the order they were processed by the pipeline (effectively random).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users can click on images to get a larger view of the image and see any additional metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=" Image thumbnails are displayed at a maximum size of 150x150px and a minimum size of 100x100px depending on Precision with 'lmageNet 128 Eval' as ground truth 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="8Recall with 'lmageNet 128 Eval' as ground truth 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="8 Precision with 'lmageNet 128 Eval' as ground truth 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='8Clusters UMAP Samples UMAP6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Clusters containing at least one image with the selected classes are highlighted in all cluster plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' how large the browser window is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' On a 3840 x 2160 resolution display2 one can typically see 72 images per split for a total of 144 images in a single screenful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However one clear limitation is that if there are more images than this in a cluster a user cannot see them all at once and does have to scroll through to get a better understanding of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One way to mitigate this is to use choose a higher number of clusters to view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Which results in smaller, more granular clusters, at the cost of having more to explore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5 CASE STUDIES In this section, we illustrate how the design features of Ravel support user exploration in a series of case studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These case studies highlight discoveries the authors made when using the tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our 3 use cases are: 1) Unconditional image generation in a single domain (faces), 2) Class conditioned generation on Im- ageNet data and 3) Analyzing downstream use of a generative model for another task - in this case, super-resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While Ravel supports the use of multiple embeddings for clustering and exploration, in this paper we focus primarily on the same Inceptionv3 embeddings used in FID score and other metrics, as they have become a de-facto standard in the generative model space and are publicly available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Unconditional Image Generation Unconditional generation refers to situations where a trained model is used to generate images with no ’conditioning’ other than an input vector (often referred to as a ’noise’ or ’Z’ vector) drawn from a random distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In this case study, we generate 60k images from an implementation of the StyleGAN2 architecture 3 [18] trained on the FFHQ dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The images are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This resolution is the default 4K resolution which is widely avail- able.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It is also close to the native resolution of a 2021 14 inch MacBook Pro (3024 x 1964) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We want to make clear that we are using an independently trained StyleGAN2 and not the StyleGAN2 weights released by the original authors Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The StyleGAN2-based model struggles to model images of faces with facepaint and other colorful accessories occluding the face, it instead produces these artefacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' generated using Z vectors drawn from a random distribution with a mean of zero and a standard deviation of one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We load those images, along with 67,542 images from the training set for a total of 127,542 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Are there images that this model generates that are not part of the input distribution?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our analyst opens the Ravel interface in her browser and sets the number of clusters to 250, with images from the training data on the left and generated images on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Knowing that low precision generally implies less realistic images, she begins by exploring clusters on the low end of the precision chart and notes that the clusters with the 10 lowest values each contain generated images with visually obvious defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Seeing these images contrasted with ground truth data gives her a sense of what the model is struggling to capture in each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For example she notes that the model has a difficult time modeling complex backgrounds, portraits where there are more than one face, or portraits with occluding objects like hands or microphones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Another problem that stands out to her is the difficulty the model has generating faces with face-paint as in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Seeing these corrupted images juxtaposed with real images from the training data allows her to hypothesize why the model struggles with this, in particularly she observes that these types of images are relatively rare in the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In examining 10 clusters, she has quickly scanned through approximately 4234 generated images and 2718 real images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Class Conditioned Image Generation Class conditioned generation refers to models that have been trained to generate output images for a fixed set of distinct classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Here, we look at directly comparing the output of two models trained on the same data and task: namely, generating images from 1000 classes of the ImageNet dataset [41] at a resolution of 128x128px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We use model implementations from Lucic et al’s ”Are GANs Created Equal?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A Large-Scale Study” [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We set up a Ravel instance with 50k images generated by BigGAN 128 and BigGAN-deep 128 [12], and 50k images from Highlight Classes Select allSelect none Filter Class List SelectedClasses 117)chambered nautilus,pearlynautilus,nautilus 685) odometer, hodometer,mileometer,milometer √715)pickelhaube 810)spacebar 878)typewriterkeyboard 946)cardoon 984) rapeseed Cluster Metrics Percent of Split2 (BigGANDeep128,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0truncation) 0% 20% 40% 60% 80% 100% RecallwithBiqGAN 128,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="0truncation'as ground truth ?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='87 the validation set for ImageNet4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Input vectors for each model are drawn from a random normal distribution, as described in [42], and no truncation is applied to the input vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Using these models demonstrates a workflow where re- searchers are trying to determine how one variant of a model, or an improved model architecture, behaves differently from some baseline model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This comparison is a common workflow in machine learning, typically achieved by reporting performance on key metrics such as FID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We demonstrate how Ravel can complement traditional metrics to find specific differences in model behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Mode collapse of the ”space bar” and ”typewriter keyboard” classes in the BigGAN-deep model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All 100 images in this cluster look identical as both classes have collapsed onto the same output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Output of the ”space bar” and ”typewriter keyboard” classes in BigGAN show much more variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This model does not exhibit mode collapse for these classes How does BigGAN compare to BigGAN-deep in terms of diversity of output Our analyst opens Ravel and sets the number of clusters to 500, with the left split showing output from BigGAN, and the right split showing output from BigGAN-deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It immediately jumps out to him that there are a number of clusters that have scores of 0 in the recall chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He clicks 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Data retrived from https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='tensorflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/datasets/ cata- log/imagenet2012 on one of them and discovers it only contains images from BigGAN-deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All 100 images from this model are from two classes, appear virtually identical, and are of low visual quality (see Figure 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This is a classic case of mode collapse [43];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' the model was unable to learn the true distribution for these classes and has ’collapsed’ all output for these classes to a single image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In this case, both classes have been collapsed into the same output image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The analyst clicks on other clusters with zero recall and finds similar mode collapse in BigGAN- deep for the following classes: ”space bar”, ”typewriter keyboard”, ”pickelhaube”, ”rapeseed”, ”cardoon”, ”chambered nautilus, pearly nautilus, nautilus”, and ”odometer”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Using the ”highlight classes” feature of Ravel 5, our analyst is able to find all clusters that contain images from these classes, and confirms that the BigGAN model does not show mode collapse for these classes (Figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' What about classes where both models do okay at gen- eration (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' neither model exhibits a pathological failure like mode collapse)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our analyst now chooses to increase the granularity of clusters by setting the number of clusters to 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He turns on the color by option of the precision chart, and then looks at the recall chart to find clusters with high recall but relatively low precision (though not as low as in the previous section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Looking at higher recall clusters allows finding ones that have at least some overlap in their distribution, while keeping an eye on precision suggests differences in quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These appear as light yellow dots on the right side of the recall chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He randomly selects one, and discovers a cluster of sea urchins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Both generators produce high quality outputs, however visual inspection shows that BigGAN-deep produces more diverse output (Figure 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A cluster of sea urchin samples from two generators, both produce high quality images, but the generator on the right produces more diverse output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The images on the right show a greater variety of colors, textures and poses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A benefit of clustering by visual similarity, rather than grouping by label, is making it easier to discover overlap or leakage of visual semantics between classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Using the same method as above, our analyst selects another cluster that con- sists of relatively realistic images of dishrags (Figure 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He then highlights all clusters containing dishrags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He can now 810) spacebar 810) space bar810) space bar 810) space bar 810) space bar 810) space bar878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 878) tvpewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='810)spacebar810)spacebar 810)spacebar 810)spacebar 810)spacebar 810)spacebar 810)spacebar 878) typewriter k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 878)typewriterk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='878)typewriterk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='878)typewriterk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='878)typewriterk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='SPLIT 1 SPLIT 2 SAMPLE VIEW BigGAN 128, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0 truncation BigGANDeep 128, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0 truncation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='Grid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='39 Samples ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='45 Samples ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin 328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin 328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin328) sea urchin328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='396) lionfish ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin 328) sea urchin ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='328) sea urchin8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='individually examine all these clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' His findings, shown in (Figure 11 and Figure 12), suggests that other classes, namely handkerchief’ and ’doormat’, are ’leaking’ into how each gen- erator models dishrags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A cluster of ’dishrag’ samples from BigGAN on the left and BigGAN-deep on the right, both produce somewhat realistic dishrags, but the generator on the right produces images with more diverse textures and colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' BigGAN cluster with a few dishrags but many colorful hand- kerchiefs that have similar patterns to those seen in the main dishrag cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This suggests some leakage in visual representation between the two concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' BigGAN-deep cluster with a few dishrags but many doormats, this suggests a hypothesis for why many of the BIgGAN-deep dishrags have a very rough texture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Downstream Applications of Generative Models: Super- Resolution In our final case study we consider the PULSE (Photo Upsam- pling via Latent Space Exploration) algorithm [22], a super- resolution algorithm that searches the manifold of a genera- tive image model (in this case StyleGAN2) to create plausible upsampled images corresponding to low resolution input im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The post-publication release of this model received sharp critique, as users quickly discovered weaknesses in the mod- els ability to upsample images of people with non-caucasian features [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We use this example to illustrate how broader exploration of output manifolds could help researchers and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Cluster metric charts colored by cluster precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' On the left of the precision chart is a group of clusters with very low precision that are mostly composed of images only from the ground truth data, many of these also have low recall, suggesting the algorithm struggles to produce any output for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' practitioners who are using these kinds models in downstream applications to understand their weaknesses and mitigate risks before release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In this scenario, we use the original CelebA-HQ dataset from Karras, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This dataset consists 30,000 facial por- traits of celebrities at 1024x1024px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We take CelebA-HQ images at 32x32px and upsample them back to 1020x1024px using the PULSE algorithm5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We invoke PULSE with the default settings provided by the authors in their model release 6, however we increased the number of steps we run the algorithm from 100 to 200 steps to increase the chances of PULSE producing a result for a given input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='7 We then compare the original 1024x1024px images and the PULSE up-sampled ones using Ravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In total, we have 30000 original CelebA-HQ images and 22092 images output from PULSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 7908 images failed to produce any output after 200 steps of the PULSE algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' What kinds of images does PULSE struggle to produce any output for?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our analyst sets the number of clusters to 250 and the original CelabA-HQ images on the left split, and immediately notices a group of clusters on the lowest end of the precision chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' She notices that many clusters also have low recall and are mostly composed of images only from the ground truth (see Figure 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' She clicks on some low-recall/low-precision clusters and observes a few categories where the algorithm struggles to produce any output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These include: people wearing hats or other headgear, images where the person has a a microphone or hand in front of them, faces with a lot of facepaint or makeup, and images where people are wearing sunglasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Each of these clusters has between 60-120 images and a few samples are shown in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' What kinds of images does PULSE struggle to produce high quality output for?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This scale factor (24x) is within the range of scale factors (8x-64x) the original authors used in evaluation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/adamian98/pulse 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We did this because PULSE will not always produce a result for an input image, and we found increasing the number of steps allowed substantially more input images to produce some result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' SPLIT 1 SPLIT 2 SAMPLE BigGAN 128, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0 truncation BigGANDeep 128, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0 truncation Grid 36 Samples 48 Samples 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='. 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 735) poncho 748) purse533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 549) envelope 591)handkerchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 591) handkerchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 591)handkerchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='.533) dishrag, dis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 539) doormat, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='.Percent of Split 2 (PULSE upscaled CelebA 32px->1024px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=") 0% 20% 40% 60% 80% 100% Recall with 'CelebA HQ 1024px' as ground truth 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content="8 Precision with 'CelebA HQ 1024px' as ground truth 0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='89 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Each row contains samples from a different cluster with that only has images from the ground truth data and none from the algorithm out- put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These are examples of images the algorithm struggles to upscale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' She continues to explore low precision clusters by scanning left to right along the chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One of the lowest precision clusters contains ground truth images of people wearing spectacles (and a few wearing sunglasses), however from the algorithm output she sees a number of low quality (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' unrealistic) images that are likely up-scaled from ones where the subject is wearing sunglasses (Figure 15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' She refines her hypothesis about what the algorithm does to portraits with sunglasses, determining that, ”if a person is wearing sunglasses, the algorithm often fails to produce any image, and when it does, it produces unrealistic output”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Samples from a cluster of upscaled images of people wearing sunglasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' What kinds of images does PULSE do well at upsampling?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The precision chart can also be used to look at what images PULSE does well at.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' As our analyst browses clusters on the right side of the distribution, she observes that a majority of high quality outputs seem to be of lighter skin tone faces that look relatively young or middle aged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Her manual inspection reveals some of the model’s fail- ure modes and strengths along demographic categories even though she does not have access to quantitative measures of performance across sensitive features such as skin tone or age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6 DOMAIN EXPERT USER STUDY We evaluated Ravel in a two-stage study, where the first stage identified domain experts’ model evaluation goals, workflows and existing tools, and the second stage investigated the us- ability and utility of the Ravel UI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Participants were recruited from a convenience sample of full time employees as a large technology company, and there was a diversity in gender identity (nfemale = 1, nMale = 5), product area (5 different teams), and office location (nIsrael = 2, nUnitedStates = 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Stage one (n = 4) included four expert research scientists and soft- ware engineers who currently work on training and evaluating generative models, and stage two (n = 5) included three of the users from stage one plus two additional users who have experience working with generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Both evaluation stages used remote moderated Google Meet video calls to speak with users and allow them to share their screen to show how they interacted with Ravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Stage One: The Current State of Evaluation Stage one aimed to understand the current state of evaluation for generative image model output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Semi-structured interviews were used, with questions about participants’ familiarity and day to day work with generative models, goals and motivation for model evaluation, as well as current workflows and prac- tices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All four users currently work on generative models, and were familiar with StyleGAN and its variants, BigGAN and its variants, as well as other models trained on ImageNet and FFHQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' There was diversity in architectures they work with and the tasks they apply generative models to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Here, we report the most common practices among users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Evaluation Goals & Workflows All four participants reported that publication of model per- formance/improvement was a primary goal for their work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All four participants also expressed that evaluating output image quality was critical to understanding model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All four participants reported a mix of quantitative and qualitative evaluation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In general, their workflows could be characterized by a common pattern of: model training accompanied by limited visual inspection for sanity-checking → examination of metrics → continued training → reexamina- tion of metrics until a predetermined threshold is reached → qualitative visual inspection of image output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two participants indicated that they believed the current “best practice” for determining image quality was human qualitative evaluation, often from crowdsourced studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Im- portantly, all four participants also emphasized the ubiquitous reliance upon and limitations of FID scores in model evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While one user suggested that “FID scores are much better than inception scores and other metrics”, they also conceded that “there is not a gold standard for evaluation of generated images”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All users indicated that they were dissatisfied with FID score as a primary evaluation metric, and that they had all experienced and read cases where they felt that FID score did not align with human inference, a sentiment supported in Zhou, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Evaluation Tools All four users mentioned using TensorBoard [45] or Colab8 (a computational notebook envrionment similar to Jupyter Notebook [46]) to examine model output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For Colab, the main strength reported was flexibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The flexibility of Colab enables bespoke analyses that we elaborate on in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Its main limitations were difficulties reusing code between projects and sharing results, especially with non-technical collaborators or stakeholders not directly involved with model training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' For TensorBoard, the main strengths reported were ease of use during training to quickly visualize metrics and see sample output at different stages of training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The main limitations mentioned about TensorBoard were its latency when loading many images, and lack of customization compared to an open ended tool like Colab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' https://colab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/ RUCAEN10 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Qualitative Visual Evaluation Tasks Determining image quality was reported as the most important task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Determining the diversity of images was also important to all four users, and one user mentioned that looking for the occurrence of mode collapse was an explicit part of their evaluation workflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All users indicated that it was important to do more granular and bespoke image generation, including looking at samples within certain classes or samples close to each other in embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user discussed examining different levels of truncation for latent vectors to make deci- sions about both realism and aesthetics in the output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users reported viewing a small number of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user reported looking at approximately 64 images, and never more than 100 images, per evaluation step of the model training pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Another user explained that when they work with a team on an evaluation, they typically generate and inspect about 50 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However, when working alone, this user said that they would inspect at least 200 images, noting that it was difficult to get a group consensus on more than 50 images at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We determined four categories of critical evaluation tasks from this part of the study: image diversity, image quality, mode collapse, and a “catch-all” category of additional explorations of classes and samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Stage Two: Observing how Ravel is Used The objective of this stage was to determine how the Ravel UI can be used for the critical evaluation tasks identified in stage one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A brief slide deck and video explaining the UI components was sent to users upon confirmation of their participation, which they were asked to review before the study session.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The study sessions themselves lasted for one hour and consisted of task based user exploration of the tool and semi-structured interview questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='1 Task one: Diversity The first task we asked users to attempt was to decide whether BigGAN or BigGAN-deep was performing better in terms of the diversity of sea urchin images, in a setup mirroring the Ravel instance described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This instance showed 128x128 pixel images from both models, with 50,000 images per model and 50 images per class from each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The UI resolution was set to show the same number of images for each user: 5 images per row in each split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users were presented with an instance of Ravel with the ”sea urchin” class selected in the Highlighted Classes menu, showing results from BigGAN and BigGAN-deep in the left split and right split, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' On initial load the instance displayed the cluster containing most of sea urchin images selected: 39 (out of 50) urchins from BigGAN and 45 (out of 50) urchins from BigGAN-deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All users started by attending to images in each split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' No users examined metrics or asked about metrics as a first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This emphasizes the importance of Ravel intuitively depicting some of the most important information for assessing image diversity: a salient grid of sample images within a cluster of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Three users immediately noted the number of samples in each split, paying close attention to which model had a greater number of samples in the cluster of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The most common flow involved inspecting individual images and counting or “eyeballing” the number of images in each model with unique background colors, sea urchin poses, and sea urchin colors (all users mentioned these three features).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Three users scanned the metrics charts and clicked on the other highlighted clusters with sea urchins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All five users made the determination that BigGAN-deep was performing better in terms of the diversity of sea urchin images, with one user ex- plicitly stating that this confirmed their prior expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This demonstrates consistency in how users complete this critical task with Ravel, and shows the potential for convergent deci- sion making and operationalization of workflows in qualitative visual evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It is also notable that Ravel helped confirm one user’s prior expectations about BigGAN-deep’s diversity performance, although that could also have been a potential biasing factor in their evaluation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2 Task two: Quality For the second task, users were asked to decide whether Big- GAN or BigGAN-deep was performing better in terms of the quality of golden retriever images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users were presented with the same Ravel instance as task one, but this time the ”golden retriever” class was selected in the Highlighted Classes menu and a cluster showing most of the golden retriever images was selected: 46 (out of 50) in the BigGAN split and 46 (out of 50) in the BigGAN-deep split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All users immediately noted many artifacts in output im- ages from both models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All users clicked on individual images and narrated particular issues, such as the shape of dogs’ noses, the number of legs, and the accuracy of the form and pose of the dogs in each sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The most common workflow was to count or “eyeball” the number of artifacts in each split to make an initial determination, but evaluation workflows were notably more diverse between users for the rest of the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Five users reported that this task was more difficult than the diversity task while one user reported that it was easier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Some users indicated that FID and Inception score for each model would be an important part of making this determination in their typical workflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four out of the five users made the determination that BigGAN-deep also performed better in terms of the quality of golden retriever images, and one user did not make an ex- plicit determination for this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Once again, Ravel supported consistency in the primary image quality evaluation strategy across all users, but individual exploration varied after this initial decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Some users validated their visual judgments by looking at recall and precision charts, but others simply explored the charts without forming additional opinions about the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3 Task three: Mode Collapse Following the Quality task, users were asked if they were familiar with the term mode collapse and if it was something they used to evaluate generative model output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four out of five users were familiar with mode collapse and reported it as a useful discovery in the model evaluation process, while one user was unfamiliar with the term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users who were familiar with mode collapse were then asked to use Ravel to determine whether it had occurred for either model within any class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Because this task was not constrained to a single class, it was more open-ended, and thus more challenging for users to make a determination about.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Workflows varied widely between users, as they were given no guidance about how to accomplish the task or make a determination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Several users mentioned that they expected BigGAN to exhibit more mode collapse after observing that BigGAN-deep had better diversity in the first task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four users who found concrete instances of mode collapse (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6) did so by selecting clusters with the smallest values in the Recall chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four out of five users viewed the cluster samples displayed in figure 7 at some point during their exploration, but one user did not identify it as mode collapse, and one user did not select it at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Nevertheless, 11 this was a promising observation, and demonstrates further consistency of Ravel’s usability and specific utility of the recall visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' There was majority agreement that the recall chart can be used to identify mode collapse, and it was revealed to occur more often in BigGAN-deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='4 Task four: Additional exploration of classes, samples, and features For their final task, users were asked to view an instance of Ravel showing generated images from a StyleGAN2-based model in the right split, and images from its ground-truth training data, FFHQ, in the left split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Users were told they could freely explore the interface, either repeating the quality and diversity assessments or trying a new task that they might be interested in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This task was fully unguided, but most users started by assessing image quality for the StyleGAN2-based model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' It was common for users to select clusters at the low and high ends of the Precision distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user observed that clicking on a cluster with high precision revealed “typical FFHQ im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' very good images without occlusion, faces looking at the camera, showing people with straight hair, and the model output is very similar to these images.”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four out of five users discovered and explicitly verbalized that StyleGAN2-based model struggled to generate images of people with facepaint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They did this by clicking on clusters with low precision and noticing artifacts on many of the generated images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All four of these users expressed surprise upon making this new dis- covery about the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This demonstrates that even without a specific prompt, many users will make the same kinds of discoveries and follow the same types of evaluation processes with Ravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One of our participants was on the team that had originally trained the StyleGAN2-based model that we used and discovered that the model was unable to generate faces of people wearing a particular style of fuzzy winter hat that was fairly common in the ground truth data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' He remarked that he wasn’t aware of that inability and was pleasantly surprised to be able to discover it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The other common tasks were “semantic explorations” of the clusters and the embedding space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Four out of five users examined images in the FFHQ split to make decisions about whether the clusters were semantically meaningful, and to explore the diversity of FFHQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two users pondered whether or not the embedding space was doing a good job of capturing what they, as humans, would group together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' These users inves- tigated the proximity of samples in the Samples UMAP chart and determined that the ImageNet feature space is not optimal for clustering faces, since they could not find consistent visual similarity between nearby samples in some of the clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='5 Discussion of Expert Feedback Users were overall impressed with the tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' All five users thought that Ravel would fit into their current evaluation process, and that it was especially useful for researchers who publish generative models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Here, we summarize additional feedback from the reflection portion of stage two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two users reported that their exploration made them doubt whether the Inceptionv3 features were good for evaluating face portrait generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In reflection, one of these users stated that Ravel could be used to learn about the feature space itself, which could be broadly useful in generative image model evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Upon discovering mode collapse in BigGAN-deep, one user stated that Ravel would be useful for probing state-of-the-art models to learn which classes they can’t generate images for, which could point to systematic failure modes for researchers to focus on improving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user noted that Ravel could help their team reach conclusions about model performance more quickly than using Colab, especially for understanding the diversity of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' They explained that using Colab required developing a bespoke visualization tool and manual calculations of FID in each clus- ter, whereas the same type of useful information was readily available in the Ravel UI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two users emphasized that Ravel could help operationalize how researchers evaluate quality and diversity, one of which explained that Ravel could be “a forcing function for having a standard UI/pipeline for results”, arguing that this would make it “easier to share results with someone on another team, or someone non-technical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' even with my manager who doesn’t have time to run my code”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This confirms for us that there is a place for bespoke purpose built interfaces like Ravel, that while less flexible than Colab, are more purpose built for common evaluation tasks that researchers perform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Overall, the expert feedback from stage two was positive and enthusiastic, with several users expressing excitement about continued exploration in Ravel and incorporating it into their own workflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 7 LIMITATIONS AND FUTURE WORK Our qualitative user study was performed with a small, domain expert sample from a single company, and therefore may not be an externally valid representation of all researcher experiences with generative image models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The study sessions were also limited to one hour per user, with each evaluation task time- boxed to 15 minutes or less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Richer and more diverse interac- tions and discoveries could be possible with a longer duration of tool use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two users wanted to see images at a higher resolution, and two other users wanted to see the original resolution of the images when examining them for artifacts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' this is not an inherent issue with Ravel but is an important design affordance for the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Two users wanted to be able to mark images in each split once they had viewed them, and enabling this would support the ’counting’ based workflows we saw participants use to complete the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' When using the class conditional model, users initially reported that they would prefer to see all images from a given class in the same view (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' clustering by class label) to make a judgement about that class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' However on further exploration they noted it was useful to see ’outlier’ images for a given label in context with the other images they are most similar to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This suggests that both workflows are important to support for class conditioned models and should be supported by tools like Ravel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The authors also note a number of limitations of the system we observed while watching users use the tool: User’s cannot always interpret the ’meaning’ of clusters (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=', construct a rationale for why a set of images are clustered together).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This is a general issue with unsupervised methods like clustering, but we found that users would often try to attach some semantically meaningful description to each cluster to ground their comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Exploring ways to ’describe’ clusters or summarize differ- ences between clusters could be important future work to aid user comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We also think exploring other clustering methods, in particular hierarchical methods, could be a partic- ularly attractive means to produce clusters at different levels of granularity to help build understanding of groups within the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 12 In describing the Sample viewer (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='3) we noted that one limitation is that not all of the images are visible in one screen if there are many images present in the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' While one mitigation is to decrease the size of clusters by increasing the number of clusters, we believe that future work could provide better ways to get the visual gestalt of the entire cluster in one view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Possibly adapting techniques such as those described in Activation Atlas [47], creating stacks of very similar images within a cluster, or other ways of sub-sampling or sorting to ensure that we are displaying the maximum variety about a cluster in a single screen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user task that Ravel does not directly support is de- tecting memorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' One user commented that adding a real time nearest-neighbor search to the interface would likely make it useful for this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 8 CONCLUSION We presented Ravel, a visual analysis tool that enables re- searchers to perform large scale qualitative evaluation of gen- erative model outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our primary contributions included: A visual analytics system that supports multiple evalua- tion tasks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' evaluating quality & diversity, discovering mode collapse or gaps in model output) for generative image models and is agnostic to model architecture and internals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Interactive exploration of large generative image model datasets, facilitated by clustering and the use of fine grained visualization of cluster metrics to guide quali- tative evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A user interface that uses visual comparison driven by semantically meaningful embedding spaces to support reasoning about differences between image distributions and generate hypotheses about model behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' The expert users in our study were able to generate consis- tent insights about model behaviour including identifying areas of the true data distribution the model was not capturing, such as face paint or certain kinds of headgear in the StyleGAN2-based model or mode collapse in BigGAN-deep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' This kind of insight is an example of one that is not possible to get from just looking at quantitative metrics like FID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our study participants confirmed our hypotheses that single number metrics are not fully sufficient measures of model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' In addition to exploring metrics at greater granu- larity, Ravel allows users to explore metrics at finer granularity, revealing areas of model output where metrics like recall or precision do not capture problems in the generated images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Our users hypothesized that the underlying InceptionV3 em- bedding, used both in our tool and in the primarily metrics in the field, may not attend to certain kinds visual artefacts that are easily visible to humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We believe that future work in this direction could enable better understanding of limits of the embedding spaces themselves and how they affect both metrics and the workflows that use them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' ACKNOWLEDGMENTS The authors wish to thank Mario Lucic, Marvin Ritter, Ben Poole, Han Zhang, Chitwan Saharia, James Wexler and Lucas Dixon for their help and feedback on this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' We also thank our study participants for their feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' REFERENCES [1] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Goodfellow, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Pouget-Abadie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Mirza, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Warde-Farley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ozair, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Courville, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bengio, “Generative Adversarial Nets,” in Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 27, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='cc/paper/ 2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kingma and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Welling, “Auto-Encoding Variational Bayes,” Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/ 1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='6114v10 [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Dinh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Krueger, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bengio, “NICE: Non-linear Independent Components Estimation,” arXiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='8516 [cs], Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2015, arXiv: 1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='8516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/ 1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='8516 [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Sohl-Dickstein, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Weiss, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Maheswaranathan, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ganguli, “Deep Unsupervised Learning using Nonequi- librium Thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2256–2265, iSSN: 1938-7228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='mlr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='press/v37/sohl-dickstein15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Odena, “Open Questions about Generative Adversarial Networks,” Distill, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' e18, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://distill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='pub/2019/gan-open-problems [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Theis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Oord, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bethge, “A note on the evaluation of generative models,” arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01844 [cs, stat], Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2016, arXiv: 1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01844.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01844 [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Borji, “Pros and Cons of GAN Evaluation Measures,” arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='03446 [cs], Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [8] ——, “Pros and Cons of GAN Evaluation Measures: New Devel- opments,” arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='09396 [cs], Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Heusel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ramsauer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Unterthiner, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Nessler, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Hochreiter, “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” in Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='cc/paper/2017/ hash/8a1d694707eb0fefe65871369074926d-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Sajjadi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bachem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Lucic, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bousquet, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Gelly, “Assessing Generative Models via Precision and Recall,” in Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='cc/paper/2018/ hash/f7696a9b362ac5a51c3dc8f098b73923-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kynk¨a¨anniemi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Karras, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Laine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Lehtinen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Aila, “Improved Precision and Recall Metric for Assessing Generative Models,” arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='06991 [cs, stat], Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019, arXiv: 1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='06991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='06991 [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Brock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Donahue, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Simonyan, “Large Scale GAN Training for High Fidelity Natural Image Synthesis,” arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='11096 [cs, stat], Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019, arXiv: 1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='11096.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='11096 [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Karras, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Laine, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04948 [cs, stat], Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019, arXiv: 1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04948 [14] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kingma and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Dhariwal, “Glow: Generative Flow with Invertible 1x1 Convolutions,” arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='03039 [cs, stat], Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2018, arXiv: 1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='03039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 03039 [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Oord, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vinyals, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kavukcuoglu, “Neural Discrete Representation Learning,” arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='00937 [cs], May 2018, arXiv: 1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='00937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='00937 [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ho, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Saharia, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fleet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Norouzi, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Salimans, “Cascaded Diffusion Models for High Fidelity Image Generation,” arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='15282 [cs], Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2021, arXiv: 2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='15282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='15282 [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Szegedy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vanhoucke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ioffe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Shlens, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wojna, “Rethinking the Inception Architecture for Computer Vision,” arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='00567 [cs], Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [18] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Karras, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Laine, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Aittala, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Hellsten, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Lehtinen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Aila, “Analyzing and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 8110–8119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Geirhos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Rubisch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Michaelis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bethge, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wichmann, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Brendel, “ImageNet-trained CNNs are biased towards texture;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' increasing shape bias improves accuracy and robustness,” arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='12231 [cs, q-bio, stat], Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Salimans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Goodfellow, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zaremba, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Cheung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Radford, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chen, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chen, “Improved Techniques for Training GANs,” in Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 29, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 13 [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='cc/paper/2016/ hash/8a3363abe792db2d8761d6403605aeb7-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Barratt and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Sharma, “A Note on the Inception Score,” arXiv:1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01973 [cs, stat], Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2018, arXiv: 1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/abs/1801.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='01973 [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Menon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Damian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Hu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ravi, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Rudin, “PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2434–2442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [23] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Denton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chintala, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Szlam, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fergus, “Deep Gener- ative Image Models using a Laplacian Pyramid of Adversarial Networks,” arXiv:1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='05751 [cs], Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Gordon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Krishna, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Narcomey, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fei-Fei, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bernstein, “HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models,” p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bau, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Strobelt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Tenenbaum, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Freeman, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Torralba, “GAN Dissection: Visualizing and Un- derstanding Generative Adversarial Networks,” arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='10597 [cs], Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [26] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bau, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wulff, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Peebles, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Strobelt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhou, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Torralba, “Seeing What a GAN Cannot Generate,” arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='11626 [cs, eess], Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [27] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' White, “Sampling Generative Networks,” arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04468 [cs, stat], Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [28] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' White and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Loh, “SpaceSheet: Navigating Conceptual Space with a Spreadsheet Interface,” p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Smilkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Thorat, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Nicholson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Reif, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vi´egas, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wattenberg, “Embedding Projector: Interactive Visualization and Interpretation of Embeddings,” arXiv:1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='05469 [cs, stat], Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [30] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ho, “Font Map,” https://experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='withgoogle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/font- map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [31] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Diagne and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Doury, “Curator Table,” https://experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='withgoogle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/curator-table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' McDonald, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Tan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Mann, “Bird Sounds,” https://experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='withgoogle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/bird-sounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [33] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Liu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Jun, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Heer, “Latent Space Cartography: Visual Analysis of Vector Space Embeddings,” Computer Graphics Forum, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 67–78, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Xiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Liu, “Interactive Correction of Mislabeled Training Data,” in 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 57–68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Isola, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Efros, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Shechtman, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wang, “The Unreasonable Effectiveness of Deep Features as a Perceptual Metric,” 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 586–595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Avail- able: https://openaccess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='thecvf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='com/content cvpr 2018/html/ Zhang The Unreasonable Effectiveness CVPR 2018 paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [36] “Scikit-learn Overview of Clustering.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Avail- able: https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='org/stable/modules/clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html# overview-of-clustering-methods [37] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' McInnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Healy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Saul, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Grossberger, “Umap: Uni- form manifold approximation and projection,” The Journal of Open Source Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 29, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 861, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [38] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=', “Liii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 559–572, 1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [39] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Van der Maaten and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 11, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [40] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Coenen and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Pearce, “Understanding UMAP,” 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://pair-code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='io/understanding-umap/ [41] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Russakovsky, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Deng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Su, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Krause, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Satheesh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Karpathy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Khosla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bernstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Berg, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 115, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Lucic, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kurach, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Michalski, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Gelly, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bousquet, “Are GANs Created Equal?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' A Large-Scale Study,” in Advances in Neural Information Processing Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 31, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='cc/paper/ 2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='html [43] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Net- works,” arXiv:1701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='00160 [cs], Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [44] “Lessons from the PULSE Model and Discussion,” https://thegradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='pub/pulse-lessons/, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [45] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Abadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Agarwal, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Barham, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Brevdo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Citro, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Corrado, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Dean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Devin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ghemawat, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Good- fellow, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Harp, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Irving, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Isard, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Jia, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Jozefowicz, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kaiser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kudlur, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Levenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Mane, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Monga, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Moore, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Murray, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Olah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Schuster, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Shlens, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Steiner, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Sutskever, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Talwar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Tucker, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vanhoucke, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vasudevan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Viegas, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Vinyals, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Warden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wattenberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Wicke, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Yu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” arXiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='04467 [cs], Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [46] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kluyver, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ragan-Kelley, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' P´erez, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Granger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Bussonnier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Frederic, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Kelley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Hamrick, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Grout, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Corlay, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Ivanov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Avila, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Abdalla, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Willing, “Jupyter notebooks – a publishing format for reproducible computational workflows,” in Positioning and Power in Academic Publishing: Players, Agents and Agendas, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Loizides and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Schmidt, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' IOS Press, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 87 – 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [47] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Carter, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Armstrong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Schubert, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Johnson, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Olah, “Activation Atlas,” Distill, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 3, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' e15, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content=' Available: https://distill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} +page_content='pub/2019/activation-atlas' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XNE3T4oBgHgl3EQfbwpA/content/2301.04518v1.pdf'} diff --git a/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/2301.01338v1.pdf.txt b/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/2301.01338v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1f2a7e27e3a802196dcbb52acd24e6ed50945f72 --- /dev/null +++ b/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/2301.01338v1.pdf.txt @@ -0,0 +1,667 @@ +Condensed Matter Physics, 2022, Vol. 25, No. 4, 43701: 1–11 +DOI: 10.5488/CMP.25.43701 +http://www.icmp.lviv.ua/journal +The antiferromagnetic phase transition in the +layered Cu0.15Fe0.85PS3 semiconductor: experiment +and DFT modelling +V. Pashchenko +1, O. Bludov +1, D. Baltrunas +2, K. Mazeika +2, S. Motria3, +K. Glukhov +3∗, Yu. Vysochanskii +3. +1 B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., 61103, +Kharkiv, Ukraine +2 Department of Nuclear Research Center for Physical Sciences and Technology, 231 Savanoriu ave., LT-02300, +Vilnius, Lithuania +3 Institute for Solid State Physics and Chemistry, Uzhhorod National University, 54 Voloshyn Str., 88000, +Uzhhorod, Ukraine +Received July 23, 2022, in final form October 15, 2022 +The experimental studies of the paramagnetic-antiferromagnetic phase transition through Mössbauer spec- +troscopy and measurements of temperature and field dependencies of magnetic susceptibility in the layered +Cu0.15Fe0.85PS3 crystal are presented. The peculiar behavior of the magnetization — field dependence at low- +temperature region gives evidence of a weak ferromagnetism in the studied alloy. By the ab initio simulation of +electronic and spin subsystems, in the framework of electron density functional theory, the peculiarities of spin +ordering at low temperature as well as changes in interatomic interactions in the vicinity of the Cu substitutional +atoms are analyzed. The calculated components of the electric field gradient tensor and asymmetry parameter +for Fe ions are close to the ones found from Mössbauer spectra values. The Mulliken populations show that the +main contribution to the ferromagnetic spin density is originated from 3𝑑-copper and 3𝑝-sulfur orbitals. The es- +timated total magnetic moment of the unit cell (8.543 emu/mol) is in reasonable agreement with the measured +experimental value of ∼ 9 emu/mol. +Key words: metal phosphorus trichalcogenides, magnetic ordering, Mösbauer spectroscopy, phase transition, +density functional theory +1. Introduction +Two-dimensional (2D) van der Waals (vdW) materials offer possibilities to study novel physical +properties and explore their potential applications in electronic, optical, and spintronic devices in the +nanoscale [1]. The realization of magnetism in easily exfoliated layered crystals provides accessibility +to control and manipulate magnetic properties at a single atomic layer level [2–6]. The presence of +multiferroicity in such materials, when they exhibit two or more primary ferroic properties, is important +for potential applications in the non-volatile storage devices controlled by an external electric field. +Recently, 2D ferroelectric polarization was found in CuInP2S6 several layers flakes and even in +monolayers [7, 8]. On the other hand, 2D antiferromagnetism is also demonstrated for CuCrP2S6 layers [9]. +Furthermore, multiferroic material can be prepared by doping or modifying some monolayers, such as +black phosphorus and graphene [10]. 2D materials with spontaneous ferromagnetism and ferroelectricity +have rarely been reported. Recenrly, it was found that 2D CuCrP2S6 is multiferroic with magnetism +and ferroelectricity stems from Cr and Cu cations, and the magnetoelectric coupling follows from +∗Corresponding author: kglukhov@gmail.com +This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution +of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. +43701-1 +arXiv:2301.01338v1 [physics.comp-ph] 3 Jan 2023 + +V. Pashchenko et al. +the spin-orbit interaction [11]. Copper chromium thiophosphate CuCrP2S6 is an antiferromagnetic- +antiferroelectric multiferroic involving collective ordering mechanisms of magnetic Cr3+ ions and off- +centered Cu+ ions, respectively [12]. The indium compound CuInP2S6 belongs to the same C2/c space +group as CuCrP2S6 at room temperature, but due to a specific second-order Jahn–Teller instability +of Cu+, it attains a ferrielectric structure with Cc symmetry below 𝑇𝑐 ≈ 315 K. The solid solutions +CuCr1−𝑥In𝑥P2S6 reveal disordered dipolar glass phases, because of randomness and frustration, and +quasimolecular magnetic properties [13]. Dynamic polar clustering occurs in these solid solutions and +superposes structural glassiness to the ferrielectric long-range Cu+ order at low temperatures. +Transition metal phosphorus trichalcogenides MPS3 (M = Mn, Fe, Co, Ni, . . . ) have monoclinic crystal +structure (space group of C2/m), in which the metal cations (M) are surrounded by an octahedral cage +of (P2S6)4− bipyramids, and the neighboring metals have a 2D honeycomb lattice arrangement [5]. The +crystal layers stack with vdW forces. Resulting from the competitions between the direct M–M exchange +and indirect superexchange, mediated through S2− anions within each layer, as well as the interlayer +exchange, determine antiferromagnetic (AFM) ordering temperature T𝑁 and its type — zigzag, Neel or +stripy pattern [14]. +In 2D materials, magnetic anisotropy is also crucial in establishing a long-range correlation. For +FePS3 compound, the trigonal distortion combined with the spin-orbit coupling yields a large single-axis +magnetic anisotropy [15], and it can be described by the Ising model. In this compound, the long-range +order is present in the direction perpendicular to the crystal layers, and FePS3 has a zigzag type of +antiferromagnetic ground state. +Incorporation of atomic defects and chemical substitutions in MPS3 2D materials could manipu- +late and control their magnetic properties [16–18]. Distinct magnetic order, spin direction, and magnetic +anisotropy, exotic phases and properties are expected to be revealed in solid solutions of these layered crys- +tals. For example, spin glass behavior was found in Fe1−𝑥Mn𝑥PS3 [19, 20] and in CuCr1−𝑥In𝑥P2S6 [13]. +In this paper there are presented magnetic properties of FePS3 as a function of temperature, field +and dilution of the magnetic atoms by means of substitution of a non-magnetic species, in this case +copper — we studied the magnetic properties of 2D vdW layered Cu0.15Fe1.85PS3. The crystalline flakes +with stoichiometry Cu0.15Fe1.85PS3 were grown using the gas transport method [21]. By dielectric, +specific heat, and ultrasonic measurements the structural phase transition close to 109 K was found in +these crystals [21]. Obviously, similarly to FePS3, it should be the antiferromagnetic phase transition. In +this work, using the Mössbauer spectroscopy and magnetic investigations, together with first-principles +studies, the peculiarities of magnetic ordering in the Cu0.15Fe1.85PS3 alloy are traced with the aim to +search for a new layered multiferroic material for nanoscale devices. +2. Mössbauer data +Mössbauer spectra were measured using 57Co(Rh) source in the transmission geometry. The sample +was composed of not grinded separate plates. The low-temperature spectra were obtained using the closed +cycle He cryostat (Advanced Research Systems, Inc.). The doublet and Hamiltonian were applied to fit +the Mössbauer spectra using WinNormos Site software [22]. Isomer shift is presented relative to 𝛼-Fe at +room temperature. +Mössbauer spectra displays the transition from an antiferromagnetic state to a paramagnetic state +near the 110 K temperature (figure 1). Above the antiferromagnetic transition temperature, Mössbauer +spectra were fitted to one doublet. On contrary, the magnetic subspectra (Hamiltonian method in Normos +Site) should be used to fit the Mössbauer spectra below the transition temperature. Previously, the spectra +of FePS3 were fitted using one set of hyperfine parameters (one subspectrum) [23]. We found that for +Cu0.15Fe0.85PS3, a good quality of fitting was achieved using three subspectra described by Hamiltonian +method (WinNormos Site) in the case of single crystal [24] except the spectra measured above 103 K +temperature and below transition point which were broadened and needed extra subspectra to fit. These +spectra were fitted using hyperfine field distribution. The set of Hamiltonian parameters included electric +field gradient (EFG) asymmetry parameter 𝜂 and angles 𝜃 and 𝛽. 𝜃 is the angle between 𝑧 axis of EFG +system and the direction of the magnetic field while 𝛽 is between 𝑧 axis of EFG system and 𝛾-ray +direction. The isomer shift 𝛿 and quadrupole coupling constant 𝑒𝑄𝑉𝑧𝑧/2, where 𝑄 is nuclear quadrupole +43701-2 + +The antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor +moment, 𝑉𝑧𝑧 is EFG tensor component, were the same for all three subspectra. The main area (70–75%) +of the Mössbauer spectrum below 102 K can be attributed to two magnetically split subspectra having +hyperfine fields 𝐵1 and 𝐵2 differing approximately by 1T (figure 2 a). However, the effective hyperfine +field of them ⟨𝐵12⟩ was very close to that found for FePS3 [23, 25]. For these two subspectra, 𝜃 and 𝛽 +angles were fixed to zero i.e., 𝜃 = 0 and 𝛽 = 0. In this case, 𝑧 axis of EFG and the magnetization were +normal to ab-plane similar to single-crystalline FePS3. For both subspectra, the combined quadruple and +magnetic interactions gave two sets of overlapping four lines (figure 1). For the third subspectrum fitted to +the experimental spectra, the angles were allowed to change and the best fits were obtained for 𝜃 ≈ 10–30◦ +and 𝛽 ≈ 20–40◦. Moreover, the asymmetry parameter 𝜂 ≈ 0.76 for the third subspectrum was larger +than that of the first two subspectra (𝜂 = 0.23–0.28). Therefore, taking the Cu atoms distribution into +consideration, the third subspectrum can be considered to be due to distorted iron atom sites having Cu +atoms as first neighbours in hexagonal arrangement of metal atoms along ab-plane. Thus, the other two +subspectra were attributed to iron sites similar to FePS3 [23, 25]. It should be noted that FePS3 undergoes +first order phase transition at 120 K temperature. Coexistence of paramagnetic and antiferromagnetic +phases was observed [23]. For Cu0.15Fe0.85PS3, the paramagnetic doublet starts also appear together with +much more broadened magnetically split part of spectra above 102 K. +0.9 +1.0 + + +8 K +0.96 +0.98 +1.00 + +R elative transm ission +102 K +0.90 +0.95 +1.00 + +110 K +-6 +-4 +-2 +0 +2 +4 +6 +0.90 +0.95 +1.00 + +v, mm/s +240 K +0.90 +0.95 +1.00 + + +106 K +Figure 1. Mössbauer spectra of Cu0.15Fe0.85PS3 measured at the indicated temperature. +The lines of the doublet can be attributed to 𝛾-ray transitions to ±3/2 and ±1/2 excited energy +levels of 57Fe nucleus. The line intensity ratio of 1.8–2.03 found above the phase transition temperature +(figure 2 d) according to +𝐼3/4/𝐼1/2 = (1 + cos2 𝛽)/(5/3 − cos2 𝛽) +gave the angle 𝛽 = 27–32◦. Here, it is assumed that the EFG asymmetry parameter 𝜂 = 0. Quadruple +splitting Δ = (𝑒𝑄𝑉𝑧𝑧/2) �1 + 𝜂2/3�1/2 was somewhat different below and above the antiferromagnetic +43701-3 + +V. Pashchenko et al. +transition point. This can be explained by the first-order transition because the lattice undergoes some +transformations [23], as in the case of FePS3 when 𝑉𝑧𝑧 > 0. +0 +2 +4 +6 +8 +10 +0.90 +0.95 +1.00 +1.05 +0 +50 +100 +150 +200 +250 +300 +1.5 +1.6 +1.7 +1.8 + B +1 + B +2 + B +3 + + + + +B, T +a) + + +d, m m /s +b) + D + D +12 + D +3 + +D, m m /s +T, K +c) +0 +50 +100 +150 +200 +250 +300 +1.8 +1.9 +2.0 +2.1 + +I +3/2 +/I +1/2 +T, K +d) +Figure 2. Dependence of hyperfine field 𝐵 (a), isomer shift 𝛿 (b), quadrupole splitting Δ (c) and intensity +ratio of lines of doublet (d) of Mössbauer spectra of Cu0.15Fe0.85PS3 crystal on temperature. +3. Magnetic moment measurements +3.1. Temperature dependence of the magnetic susceptibility +Single crystal Cu0.15Fe0.85PS3 sample, of ∼ 3×4 mm flake-shaped (depicted in figure 3) and 1.54 mg +was used for magnetic moment measurements. For all orientations of the external magnetic field at a +temperature of about 108 K, a sharp change in the temperature dependence of the magnetic susceptibility +(see figure 4) was observed, which may indicate the presence of a magnetic phase transition at this +temperature. +No narrow anomaly associated with 3D ordering is observed on the 𝜒(𝑇) curve in the region of +108 K. Therefore, it is possible that the ordering can also occur at a higher temperature, and in this case, +we are dealing with a phase transformation of a magnetically ordered phase. For 𝐻⊥ plane of crystal +layers and 𝑇 < 108 K, as the temperature is lowered, the magnetic susceptibility 𝜒(𝑇) of the sample +decreases significantly, which is typical when antiferromagnetic correlations are established in the spin +system. +In addition to the experimental curves 𝜒(𝑇) (in a constant magnetic field 𝐻 = 2000 Oe) in figure 4, +the asterisks show several estimates of the values of the magnetic susceptibility of the Cu0.15Fe0.85PS3 +sample obtained by analyzing the linear sections of the field dependence 𝑀(𝐻) measured up to 5 T +[see 𝑀(𝐻) in the following figures]. As seen in figure 4, the match for the orientation of the 𝐻∥ plane +43701-4 + +The antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor +is perfect, with little deviation found between different experimental techniques for the 𝐻⊥ plane. The +latter seems to be connected with the discovery of remanent magnetization (or a spontaneous weakly +ferromagnetic moment in an antiferromagnet as a result of a small sublattice canting) in experiments for +the 𝐻⊥ plane. +Figure 3. (Colour online) The sample of Cu0.15Fe0.85PS3 crystal used for magnetic moment measure- +ments. +0 +50 +100 +150 +200 +250 +300 +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +Cu +0.15 +Fe +0.85 +PS +3 +H=2000 Oe +c (cm +3 +/mol) +T (K) + H^ plane + H II plane + from M(H) + from M(H) +Figure 4. (Colour online) Temperature dependence of the magnetic susceptibility 𝜒(𝑇) = 𝑀(𝑇)/𝐻 of a +Cu0.15Fe0.85PS3 single crystal in magnetic field 𝐻 = 2000 Oe for two directions 𝐻⊥ plane and 𝐻∥ plane +of crystal layers. +3.2. Field dependence of the magnetic moment +The field dependencies of the magnetic moment of the Cu0.15Fe0.85PS3 sample were studied at 120 K +— above the assumed phase transition, 100 K — approximately the middle of the phase transformation, +and 10 K — the low-temperature point, where all the magnetic transformation processes have already +been completed based on their general form 𝜒(𝑇). All the obtained curves 𝑀(𝐻) for the 𝐻⊥ plane and +𝐻∥ plane of crystal layers are shown in figure 5. All of them demonstrate a fairly good linear behavior of +𝑀(𝐻) at any temperatures both above and below the assumed phase transition. +For the 𝐻⊥ plane at 𝑇 = 10 K, extrapolation of the linear dependence (region above 2000 Oe) to +zero magnetic fields detects the presence of a non-zero residual magnetic moment of the sample of the +43701-5 + +V. Pashchenko et al. +0 +10000 +20000 +30000 +40000 +50000 +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +Cu +0.15 +Fe +0.85 +PS +3 +H ^ plane +M (emu/mol) +H (Oe) + 5 K + 7 K + 10 K + 100 K + 120 K +0 +10000 +20000 +30000 +40000 +50000 +0 +200 +400 +600 +800 +1000 +1200 +1400 +Cu +0.15 +Fe +0.85 +PS +3 +H II plane +M (emu/mol) +H (Oe) + 10 K + 100 K + 120 K +Figure 5. (Colour online) Field dependence of the magnetic moment 𝑀(𝐻) of Cu0.15Fe0.85PS3 sample +at different temperatures for two orientations of the magnetic field: 𝐻⊥ plane (top panel) and 𝐻∥ plane +of crystal layers (bottom panel). +order of 9 emu/mol (dotted line in the insertion in figure 6). This may be due to the existence of a canted +magnetic sublattice in an ordered antiferromagnetic system and, hence, to a weak ferromagnetic moment +of the system in this direction. At the same time, such a feature in 𝑀(𝐻) is completely absent for the +other direction of the 𝐻∥ plane. This behavior of the magnetization for the 𝐻⊥ plane can be satisfactorily +explained within the framework of the four-sublattice model of an antiferromagnet of the flat cross-type. +In very weak fields, the ground state will be similar to the state with latent ferromagnetism and the total +moment of the system will be close to zero. A rapid increase in the magnetization with the increasing field +43701-6 + +The antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor +will occur due to the orientational flip of a skewed pair with a weakly ferromagnetic moment oriented +against the field to the direction of the skewed pair in which this moment is oriented along the field. In +the fields above 2000 Oe, the four-sublattice system effectively turns into a simple two-sublattice system, +in which the brace between the sublattices gives a weak moment along the field. +0 +10000 +20000 +30000 +40000 +50000 +0 +200 +400 +600 +800 +1000 +0 +2000 +4000 +6000 +8000 +10000 +0 +20 +40 +60 +80 + H ^ plane + H II plane +Cu +0.15 +Fe +0.85 +PS +3 +T=10 K +M (emu/mol) +H (Oe) + M ( em u/m ol) + H (Oe) +Figure 6. (Colour online) Field dependence of the magnetic moment of the Cu0.15Fe0.85PS3 sample at a +temperature of 𝑇 = 10 K for 𝐻⊥ plane and 𝐻∥ plane. The insertion shows a low-field region. +Thus, a characteristic field of about 2000 Oe can be considered as a phase transition field between +the effective four-sublattice and two-sublattice magnetic structures for the system under study. +4. Ab initio simulation results +The QUANTUM ESPRESSO package [26], was used to perform calculations. They were carried out +within the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof functional [27] +or with the CA-PZ local functional based on the Ceperley and Alder data [28] parameterized by Perdew +and Zunger [29]. The layered Cu0.15Fe0.85PS3 crystal possesses the so-called vdW gap between layers. +Therefore, the DFT-D method taking into account the dispersion interaction elaborated by Grimme [30] is +needed to calculate electronic properties of the material. The ultra-soft pseudopotential [31] was used to +perform calculations for Fe — 3𝑑6 4𝑠2, Cu — 3𝑑10 4𝑠1, P — 3𝑠2 3𝑝3, S — 3𝑠2 3𝑝4 atomic configurations. +The plane-wave basis set cut-off was chosen to be equal to 600 eV. The Monkhorst–Pack 𝑘-points grid [32] +sampling was set at 12×12×3 points for the Brillouin zone. The convergence tolerance parameters were +as follows: energy 5 · 10−6 eV, force 0.01 eV Å−1; stress 0.02 GPa; displacement 0.05 Å. The total energy +convergence criterion was assumed to be fulfilled when the self-consistent field tolerance reaches the +value 10−7 eV per atom. The ab initio simulation of the features of electronic and spin subsystems in the +framework of electron density functional theory (DFT) allows us to estimate the values of spin density +(figure 7) in the vicinity of all species’ sites present in the investigated system. The supercell of 3 × 3 × 1 +unit cells of FePS3 single-crystal was used for modelling the proper concentration of Cu substitutional +atoms. A pair of Cu was used to preserve the symmetry of the Cu0.15Fe0.85PS3 lattice. +Components of the EFG tensor and asymmetry parameter 𝜂 for Fe ions close to the experimental +value for FePS3 crystal (𝜂 ≈ 0.23–0.28) were calculated for the system under study at 𝑇 = 0 K (table 1). +43701-7 + +V. Pashchenko et al. +Figure 7. (Colour online) Spatial distribution of the calculated spin density of the Cu0.15Fe0.85PS3 model +at 0 K. Red and blue regions correspond to opposite spin orientations. +Table 1. Calculated averaged components of the EFG tensor and asymmetry parameter for +Cu0.15Fe0.85PS3 crystal. +Species +⟨𝐶𝑞⟩, MHz +⟨𝜂⟩ +Cu +−3.1501 +0.8797 +Fe +11.2971 +0.2911 +P +32.7594 +0.2774 +S +−26.1410 +0.0941 +Furthermore, analysis of the Mulliken population shows that the main contribution to the ferromag- +netic spin density is originated from 3𝑑-copper and 3𝑝-sulfur orbitals (see table 2). +Table 2. Decomposition of spin density (spin up – spin down) contributions over orbitals in +Cu0.15Fe0.85PS3 crystal. The largest contributions are typed in bold. +Species +3𝑑 +3𝑝 +4 𝑓 +4𝑠 +Total +Cu +−0.248 +−0.028 +0.000 +−0.002 +−0.278 +Fe +−0.087 +0.030 +0.010 +−0.002 +−0.049 +P +−0.028 +−0.030 +0.000 +0.000 +−0.058 +S +−0.072 +−0.282 +0.000 +−0.016 +−0.370 +Total +−0.435 +−0.310 +0.010 +−0.020 +−0.755 +Thevalues of the valence charge transferandthespinpolarizationwere estimatedforthe Cu0.15Fe0.85PS3 +crystal (table 3). The presence of uncompensated spin ordering is found. +5. Discussions +In contrast to the expectation that Cu with spin 1 +2 will dilute the magnetic moments contributed by Fe +with a larger spin, we found that 15% Cu doping partially keeps the effective fluctuating moment, although +there is a long-range magnetic order partially distorted. This follows from the magnetic susceptibility +43701-8 + +FeThe antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor +Table 3. The calculated values of the spin components of the valence charge and the spin polarization in +Cu0.15Fe0.85PS3 crystal. +Species +𝑄up, e +𝑄dw, e +𝑄, e +Σ𝑆, ℏ/2 +Cu +15.31 ± 0.00 +15.45 ± 0.00 +−3.53 +−0.28 +Fe +13.86 ± 1.36 +13.86 ± 1.37 +−27.51 +−0.07 +P +7.16 ± 0.03 +7.16 ± 0.03 +12.22 +−0.07 +S +7.82 ± 0.08 +7.83 ± 0.07 +18.82 +−0.35 +temperature dependence around transition from paramagnetic into antiferromagnetic phase — amplitude +of the observed 𝜒(𝑇) anomaly is like the one observed in case of FePS3 pure crystal [23]. At Fe by Cu +partial substitution, the temperature of 𝜒(𝑇) maximum is lowered from 120 K in FePS3 to 108 K in case +of Cu0.15Fe0.85PS3. The jump of 𝜒(𝑇) at ferromagnetic transition is smeared by Cu dilution. +In real crystal, the sulfur vacancies 𝑉S presence can also effectively suppress the strong intralayer +antiferromagnetic correlation, giving rise to a weak ferromagnetic ground state, which is observed on the +𝑀(𝐻) dependence below 10 K. The presence of 𝑉S disrupts anion-mediated AFM interactions and may +be responsible for the suppression of long-range AFM correlations. Herein, the competing ferromagnetic +exchange interactions can dominate at low temperatures, creating a magnetically frustrated system. The +exchange interactions between the 𝑉S and metal ions, and with the local atomic distortion in the vicinity +of defects, could also induce ferromagnetism. +A canting configuration and the resulting net moments along the easy axis can also be attributed to +atomic substitution. All these signatures exhibit the complexity of magnetic structure for the 15% Cu +substituted sample. +The susceptibilities of Cu0.15Fe1.85PS3 can be considered as for configurationally averaged clusters +sum of two terms: a randomly diluted antiferromagnet susceptibility, as in pure FePS3, and a Curie +correction arising from local fluctuations of the uncompensated spins due to the finite size of the cluster. +For Cu0.15Fe1.85PS3 crystal, there is observed a weak paramagnetic contribution for small temperatures +(figure 4), because many of the spins no longer belong to the infinite cluster. The uncompensated moments +in the diluted 2D AFM can give rise to a Curie contribution into the magnetic susceptibility, and the +presence of field dependence of the magnetization suggests that they interact ferromagnetically to give a +spontaneous magnetization below 10 K. +6. Conclusions +According to the presented experimental data on Mössbauer spectroscopy and direct magnetic moment +temperature and field dependencies measurements, it can be stated that the Cu0.15Fe0.85PS3 single-crystal +undergoes a magnetic phase transition at the region of 102–108 K. A weak ferromagnetic moment at the +low-temperature region (𝑇 = 10 K) was observed in the 𝐻⊥ plane direction. This correlates with ab initio +calculated non-zero spin polarization of the considered material. Furthermore, the calculated values of +the electric field gradient components and estimations of the total magnetic moment of the unit cell +(0.764 ℏ/2 corresponds to 8.543 emu/mol) are in reasonable agreement with the measured experimental +quantities of ∼ 9 emu/mol. +The present studies of Cu0.15Fe0.85PS3 magnetic properties show that the uncompensated moments +in the diluted 2D AFM can give rise to a Curie contribution, and the observed field dependence of the +magnetization suggests that they do interact ferromagnetically to give a spontaneous magnetization at low +temperatures. The relation of the magnetic ordering with structural change at antiferromagnetic phase +transition can also be important and must be investigated further on. +It is worth to note that the flattening of magnetic susceptibility at low temperature was also observed in +rare-earth containing compounds caused by Kondo effect [33]. In the case of the studied Cu0.15Fe0.85PS3 +crystal, the system seems not to be such a strongly correlated material as rare earth materials but, of +course, the proper investigation of the low temperature dependence of resistivity is needed. +43701-9 + +V. Pashchenko et al. +References +1. Chu J., Wang Y., Wang X., Hu K., Rao G., Gong C., Wu C., Hong H., Wang X., Liu K., Gao C., Xiong J., +Adv. Mater., 2020, 33, 2004469, doi:10.1002/adma.202004469. +2. Hu T., Kan E., WIREs Comput. Mol. Sci., 2019, 9, e1409, doi:10.1002/wcms.1409. +3. Liu Z., Deng L., Peng B., Nano Res., 2021, 14, 1802–1813, doi:10.1007/s12274-020-2860-3. +4. Gong C., Kim E. M., Wang Y., Lee G., Zhang X., Nat. Commun., 2019, 10, 2657, doi:10.1038/s41467-019- +10693-0. +5. Wang F., Shifa T. A., Yu P., He P., Liu Y., Wang F., Wang Z., Zhan X., Lou X., Xia F., He J., Adv. Funct. Mater., +2018, 28, 1802151, doi:10.1002/adfm.201802151. +6. Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z. Q., Cava R. J., +Louie S. G., Xia J., Zhang X., Nature, 2017, 546, 265–269, doi:10.1038/nature22060. +7. Belianinov A., He Q., Dziaugys A., Maksymovych P., Eliseev E., Borisevich A., Morozovska A., Banys J., +Vysochanskii Yu., Kalinin S. V., Nano Lett., 2015, 15, 3808–3814, doi:10.1021/acs.nanolett.5b00491. +8. Liu F., You L., Seyler K. L., Li X., Yu P., Lin J., Wang X., Zhou J., Wang H., He H., Pantelides S. T., Zhou W., +Sharma P., Xu X., Ajayan P. M., Wang J., Liu Z., Nat. Commun., 2016, 7, 12357, doi:10.1038/ncomms12357. +9. Qi J., Wang H., Chen X., Qian X., Appl. Phys. Lett., 2018, 113, 043102, doi:10.1063/1.5038037. +10. Osada M., Sasaki T., APL Mater., 2019, 7, 120902, doi:10.1063/1.5129447. +11. Lai Y., Song Z., Wan Y., Xue M., Wang C., Ye Y., Dai L., Zhang Z., Yang W., Dua H., Yangace J., Nanoscale, +2019, 11, 5163–5170, doi:10.1039/C9NR00738E. +12. Dziaugys A., Shvartsman V. V., Macutkevic J., Banys J., Vysochanskii Yu., Kleemann W., Phys. Rev. B, 2012, +85, 134105, doi:10.1103/PhysRevB.85.134105. +13. Kleemann W., Shvartsman V. V., Borisov P., Banys J., Vysochanskii Yu. M., Phys. Rev. B, 2011, 84, 094411, +doi:10.1103/PhysRevB.84.094411. +14. Olsen T., J. Phys. D: Appl. Phys., 2021, 54, 314001, doi:10.1088/1361-6463/ac000e. +15. Wildes A. R., Zhitomirsky M. E., Ziman T., Lançon D., Walker H. C., J. Phys. D: Appl. Phys., 2020, 127, +223903, doi:10.1063/5.0009114. +16. Sakai H., Yamazaki T., Machida N., Shigematsu T., Nasu S., Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2000, +341, 105–110, doi:10.1080/10587250008026125. +17. Chandrasekharan N., Vasudevan S., Phys. Rev. B, 1996, 54, 14903, doi:10.1103/PhysRevB.54.14903. +18. Mulders A. M., Klaasse J. C. P., Goossens D. J., Chadwick J., Hicks T. J., J. Phys.: Condens. Matter, 2002, 14, +8697, doi:10.1088/0953-8984/14/37/306. +19. Masubuchi T., Hoya H., Watanabe T., Takahashi Y., Ban S., Ohkubo N., Takase K., Takano Y., J. Alloys Compd., +2008, 460, 668–674, doi:10.1016/j.jallcom.2007.06.063. +20. Bhutani A., Zuo J. L., McAuliffe R. D., dela Cruz C. R., Shoemaker D. P., Phys. Rev. Mater., 2020, 4, 034411, +doi:10.1103/PhysRevMaterials.4.034411. +21. Dziaugys A., Macutkevic J., Svirskas S., Juskenas R., Wencka M., Banys J., Motria S. F., Vysochanskii Yu., +J. Alloys Compd., 2015, 650, 386–392, doi:10.1016/j.jallcom.2015.07.261. +22. WissEl, Data Evaluation Software — WissEl, Wissenschaftliche Elektronik GmbH, [Online; accessed 10-Jul- +2022], URL http://www.wissel-gmbh.de/index.php?option=com_content&task=view&id=55&Itemid=116. +23. Jernberg P., Bjarman S., Wäppling R., J. Magn. Magn. Mater., 1984, 46, 178–190, doi:10.1016/0304- +8853(84)90355-X. +24. Chen Y. L., Yang D. P., Mössbauer Effect in Lattice Dynamics: Experimental Techniques and Applications, +Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. +25. Rule K. C., Cashion J. D., Mulders A. M., Hicks T. J., Hyperfine Interact., 2002, 141, 219–222, +doi:10.1023/A:1021286910897. +26. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococ- +cioni M., Dabo I. et al., J. Phys.: Condens. Matter, 2009, 21, 395502, doi:10.1088/0953-8984/21/39/395502. +27. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1997, 78, 1396, doi:10.1103/PhysRevLett.78.1396. +28. Ceperley D. M., Alder B. J., Phys. Rev. Lett., 1980, 45, 566, doi:10.1103/PhysRevLett.45.566. +29. Perdew J. P., Zunger A., Phys. Rev. B, 1981, 23, 5048, doi:10.1103/PhysRevB.23.5048. +30. Grimme S., J. Comput. Chem., 2006, 27, 1787–1799, doi:10.1002/jcc.20495. +31. Vanderbilt D., Phys. Rev. B, 1990, 41, 7892, doi:10.1103/PhysRevB.41.7892. +32. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, 5188, doi:10.1103/PhysRevB.13.5188. +33. Menth A., Buehler E., Geballe T. H., Phys. Rev. Lett., 1969, 22, 295, doi:10.1103/PhysRevLett.22.295. +43701-10 + +The antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor +Антиферомагнiтний фазовий перехiд в шаруватому +напiвпровiднику Cu0.15Fe0.85PS3: експеримент та DFT +моделювання +В. Пащенко1, О. Блудов1, Д. Балтрунас2, К. Мазейка2, С. Мотря3, К. Глухов3, +Ю. Височанський3 +1 Iнститут фiзики i технiки низьких температур iм. Б. Вєркiна НАН України, просп. Науки 47, 61103, Харкiв, +Україна +2 Вiддiл ядерних дослiджень Центру фiзичних наук та технологiї, просп. Саванорiу 231, LT-02300, Вiльнюс, +Литва +3 Iнститут фiзики i хiмiї твердого тiла, Ужгородський нацiональний унiверситет, вул. Волошина 54, 88000, +Ужгород, Україна +Представленi експериментальнi дослiдження парамагнiтно-антиферомагнiтного фазового переходу ме- +тодом мессбауерiвської спектроскопiї та вимiрювання температурних i польових залежностей магнiтної +сприйнятливостi в шаруватому кристалi Cu0.15Fe0.85PS3. Особлива поведiнка польової залежностi намаг- +нiченостi в областi низьких температур свiдчить про слабкий феромагнетизм дослiджуваного матерiалу. +За допомогою ab initio моделювання електронної та спiнової пiдсистем, в рамках теорiї функцiоналу +електронної густини, проаналiзовано особливостi спiнового впорядкування при низькiй температурi, а +також змiни мiжатомних взаємодiй поблизу атомiв замiщення Cu. Розрахованi компоненти тензора гра- +дiєнта електричного поля та параметра асиметрiї для iонiв Fe близькi до значень знайдених з мессбау- +ерiвських спектрiв. Маллiкенiвськi заселеностi показують, що основний внесок у феромагнiтну спiнову +густину вносять 3𝑑 орбiталi мiдi та 3𝑝 сiрки. Розрахунковий загальний магнiтний момент елементарної +комiрки (8.543 emu/mol) цiлком узгоджується з вимiряним експериментальним значенням ∼ 9 emu/mol. +Ключовi слова: метал-фосфорнi трихалькогенiди, магнiтне впорядкування, мессбауерiвська +спектроскопiя, фазовi переходи, теорiя функцiоналу електронної густини +43701-11 + + diff --git a/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/load_file.txt b/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..cb33e9bcfd420f60b4992089b73555cd75931e3e --- /dev/null +++ b/XdAzT4oBgHgl3EQfYfz7/content/tmp_files/load_file.txt @@ -0,0 +1,833 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf,len=832 +page_content='Condensed Matter Physics, 2022, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 4, 43701: 1–11 DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5488/CMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='43701 http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='icmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='lviv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='ua/journal The antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor: experiment and DFT modelling V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko 1, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Bludov 1, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Baltrunas 2, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mazeika 2, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Motria3, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Glukhov 3∗, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Vysochanskii 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 1 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 61103, Kharkiv, Ukraine 2 Department of Nuclear Research Center for Physical Sciences and Technology, 231 Savanoriu ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', LT-02300, Vilnius, Lithuania 3 Institute for Solid State Physics and Chemistry, Uzhhorod National University, 54 Voloshyn Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 88000, Uzhhorod, Ukraine Received July 23, 2022, in final form October 15, 2022 The experimental studies of the paramagnetic-antiferromagnetic phase transition through Mössbauer spec- troscopy and measurements of temperature and field dependencies of magnetic susceptibility in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The peculiar behavior of the magnetization — field dependence at low- temperature region gives evidence of a weak ferromagnetism in the studied alloy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' By the ab initio simulation of electronic and spin subsystems, in the framework of electron density functional theory, the peculiarities of spin ordering at low temperature as well as changes in interatomic interactions in the vicinity of the Cu substitutional atoms are analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The calculated components of the electric field gradient tensor and asymmetry parameter for Fe ions are close to the ones found from Mössbauer spectra values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The Mulliken populations show that the main contribution to the ferromagnetic spin density is originated from 3𝑑-copper and 3𝑝-sulfur orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The es- timated total magnetic moment of the unit cell (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='543 emu/mol) is in reasonable agreement with the measured experimental value of ∼ 9 emu/mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Key words: metal phosphorus trichalcogenides, magnetic ordering, Mösbauer spectroscopy, phase transition, density functional theory 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Introduction Two-dimensional (2D) van der Waals (vdW) materials offer possibilities to study novel physical properties and explore their potential applications in electronic, optical, and spintronic devices in the nanoscale [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The realization of magnetism in easily exfoliated layered crystals provides accessibility to control and manipulate magnetic properties at a single atomic layer level [2–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The presence of multiferroicity in such materials, when they exhibit two or more primary ferroic properties, is important for potential applications in the non-volatile storage devices controlled by an external electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Recently, 2D ferroelectric polarization was found in CuInP2S6 several layers flakes and even in monolayers [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' On the other hand, 2D antiferromagnetism is also demonstrated for CuCrP2S6 layers [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Furthermore, multiferroic material can be prepared by doping or modifying some monolayers, such as black phosphorus and graphene [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 2D materials with spontaneous ferromagnetism and ferroelectricity have rarely been reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Recenrly, it was found that 2D CuCrP2S6 is multiferroic with magnetism and ferroelectricity stems from Cr and Cu cations, and the magnetoelectric coupling follows from ∗Corresponding author: kglukhov@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='com This work is licensed under a Creative Commons Attribution 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='0 International License.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 43701-1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='01338v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='comp-ph] 3 Jan 2023 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' the spin-orbit interaction [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Copper chromium thiophosphate CuCrP2S6 is an antiferromagnetic- antiferroelectric multiferroic involving collective ordering mechanisms of magnetic Cr3+ ions and off- centered Cu+ ions, respectively [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The indium compound CuInP2S6 belongs to the same C2/c space group as CuCrP2S6 at room temperature, but due to a specific second-order Jahn–Teller instability of Cu+, it attains a ferrielectric structure with Cc symmetry below 𝑇𝑐 ≈ 315 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The solid solutions CuCr1−𝑥In𝑥P2S6 reveal disordered dipolar glass phases, because of randomness and frustration, and quasimolecular magnetic properties [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Dynamic polar clustering occurs in these solid solutions and superposes structural glassiness to the ferrielectric long-range Cu+ order at low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Transition metal phosphorus trichalcogenides MPS3 (M = Mn, Fe, Co, Ni, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' ) have monoclinic crystal structure (space group of C2/m), in which the metal cations (M) are surrounded by an octahedral cage of (P2S6)4− bipyramids, and the neighboring metals have a 2D honeycomb lattice arrangement [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The crystal layers stack with vdW forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Resulting from the competitions between the direct M–M exchange and indirect superexchange, mediated through S2− anions within each layer, as well as the interlayer exchange, determine antiferromagnetic (AFM) ordering temperature T𝑁 and its type — zigzag, Neel or stripy pattern [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In 2D materials, magnetic anisotropy is also crucial in establishing a long-range correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For FePS3 compound, the trigonal distortion combined with the spin-orbit coupling yields a large single-axis magnetic anisotropy [15], and it can be described by the Ising model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In this compound, the long-range order is present in the direction perpendicular to the crystal layers, and FePS3 has a zigzag type of antiferromagnetic ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Incorporation of atomic defects and chemical substitutions in MPS3 2D materials could manipu- late and control their magnetic properties [16–18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Distinct magnetic order, spin direction, and magnetic anisotropy, exotic phases and properties are expected to be revealed in solid solutions of these layered crys- tals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For example, spin glass behavior was found in Fe1−𝑥Mn𝑥PS3 [19, 20] and in CuCr1−𝑥In𝑥P2S6 [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In this paper there are presented magnetic properties of FePS3 as a function of temperature, field and dilution of the magnetic atoms by means of substitution of a non-magnetic species, in this case copper — we studied the magnetic properties of 2D vdW layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The crystalline flakes with stoichiometry Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 were grown using the gas transport method [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' By dielectric, specific heat, and ultrasonic measurements the structural phase transition close to 109 K was found in these crystals [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Obviously, similarly to FePS3, it should be the antiferromagnetic phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In this work, using the Mössbauer spectroscopy and magnetic investigations, together with first-principles studies, the peculiarities of magnetic ordering in the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 alloy are traced with the aim to search for a new layered multiferroic material for nanoscale devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mössbauer data Mössbauer spectra were measured using 57Co(Rh) source in the transmission geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The sample was composed of not grinded separate plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The low-temperature spectra were obtained using the closed cycle He cryostat (Advanced Research Systems, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The doublet and Hamiltonian were applied to fit the Mössbauer spectra using WinNormos Site software [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Isomer shift is presented relative to 𝛼-Fe at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mössbauer spectra displays the transition from an antiferromagnetic state to a paramagnetic state near the 110 K temperature (figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Above the antiferromagnetic transition temperature, Mössbauer spectra were fitted to one doublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' On contrary, the magnetic subspectra (Hamiltonian method in Normos Site) should be used to fit the Mössbauer spectra below the transition temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Previously, the spectra of FePS3 were fitted using one set of hyperfine parameters (one subspectrum) [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' We found that for Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3, a good quality of fitting was achieved using three subspectra described by Hamiltonian method (WinNormos Site) in the case of single crystal [24] except the spectra measured above 103 K temperature and below transition point which were broadened and needed extra subspectra to fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' These spectra were fitted using hyperfine field distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The set of Hamiltonian parameters included electric field gradient (EFG) asymmetry parameter 𝜂 and angles 𝜃 and 𝛽.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 𝜃 is the angle between 𝑧 axis of EFG system and the direction of the magnetic field while 𝛽 is between 𝑧 axis of EFG system and 𝛾-ray direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The isomer shift 𝛿 and quadrupole coupling constant 𝑒𝑄𝑉𝑧𝑧/2, where 𝑄 is nuclear quadrupole 43701-2 The antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor moment, 𝑉𝑧𝑧 is EFG tensor component, were the same for all three subspectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The main area (70–75%) of the Mössbauer spectrum below 102 K can be attributed to two magnetically split subspectra having hyperfine fields 𝐵1 and 𝐵2 differing approximately by 1T (figure 2 a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' However, the effective hyperfine field of them ⟨𝐵12⟩ was very close to that found for FePS3 [23, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For these two subspectra, 𝜃 and 𝛽 angles were fixed to zero i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 𝜃 = 0 and 𝛽 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In this case, 𝑧 axis of EFG and the magnetization were normal to ab-plane similar to single-crystalline FePS3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For both subspectra, the combined quadruple and magnetic interactions gave two sets of overlapping four lines (figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For the third subspectrum fitted to the experimental spectra, the angles were allowed to change and the best fits were obtained for 𝜃 ≈ 10–30◦ and 𝛽 ≈ 20–40◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Moreover, the asymmetry parameter 𝜂 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='76 for the third subspectrum was larger than that of the first two subspectra (𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='23–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Therefore, taking the Cu atoms distribution into consideration, the third subspectrum can be considered to be due to distorted iron atom sites having Cu atoms as first neighbours in hexagonal arrangement of metal atoms along ab-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Thus, the other two subspectra were attributed to iron sites similar to FePS3 [23, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' It should be noted that FePS3 undergoes first order phase transition at 120 K temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Coexistence of paramagnetic and antiferromagnetic phases was observed [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3, the paramagnetic doublet starts also appear together with much more broadened magnetically split part of spectra above 102 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='0 8 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 R elative transm ission 102 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 110 K 6 4 2 0 2 4 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 v, mm/s 240 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 106 K Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mössbauer spectra of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 measured at the indicated temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The lines of the doublet can be attributed to 𝛾-ray transitions to ±3/2 and ±1/2 excited energy levels of 57Fe nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The line intensity ratio of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='8–2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='03 found above the phase transition temperature (figure 2 d) according to 𝐼3/4/𝐼1/2 = (1 + cos2 𝛽)/(5/3 − cos2 𝛽) gave the angle 𝛽 = 27–32◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Here, it is assumed that the EFG asymmetry parameter 𝜂 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Quadruple splitting Δ = (𝑒𝑄𝑉𝑧𝑧/2) �1 + 𝜂2/3�1/2 was somewhat different below and above the antiferromagnetic 43701-3 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' transition point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' This can be explained by the first-order transition because the lattice undergoes some transformations [23], as in the case of FePS3 when 𝑉𝑧𝑧 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 0 2 4 6 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='05 0 50 100 150 200 250 300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='8 B 1 B 2 B 3 B, T a) d, m m /s b) D D 12 D 3 D, m m /s T, K c) 0 50 100 150 200 250 300 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1 I 3/2 /I 1/2 T, K d) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Dependence of hyperfine field 𝐵 (a), isomer shift 𝛿 (b), quadrupole splitting Δ (c) and intensity ratio of lines of doublet (d) of Mössbauer spectra of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal on temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Magnetic moment measurements 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Temperature dependence of the magnetic susceptibility Single crystal Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 sample, of ∼ 3×4 mm flake-shaped (depicted in figure 3) and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='54 mg was used for magnetic moment measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For all orientations of the external magnetic field at a temperature of about 108 K, a sharp change in the temperature dependence of the magnetic susceptibility (see figure 4) was observed, which may indicate the presence of a magnetic phase transition at this temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' No narrow anomaly associated with 3D ordering is observed on the 𝜒(𝑇) curve in the region of 108 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Therefore, it is possible that the ordering can also occur at a higher temperature, and in this case, we are dealing with a phase transformation of a magnetically ordered phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For 𝐻⊥ plane of crystal layers and 𝑇 < 108 K, as the temperature is lowered, the magnetic susceptibility 𝜒(𝑇) of the sample decreases significantly, which is typical when antiferromagnetic correlations are established in the spin system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In addition to the experimental curves 𝜒(𝑇) (in a constant magnetic field 𝐻 = 2000 Oe) in figure 4, the asterisks show several estimates of the values of the magnetic susceptibility of the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 sample obtained by analyzing the linear sections of the field dependence 𝑀(𝐻) measured up to 5 T [see 𝑀(𝐻) in the following figures].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' As seen in figure 4, the match for the orientation of the 𝐻∥ plane 43701-4 The antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor is perfect, with little deviation found between different experimental techniques for the 𝐻⊥ plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The latter seems to be connected with the discovery of remanent magnetization (or a spontaneous weakly ferromagnetic moment in an antiferromagnet as a result of a small sublattice canting) in experiments for the 𝐻⊥ plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' (Colour online) The sample of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal used for magnetic moment measure- ments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 0 50 100 150 200 250 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='08 Cu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15 Fe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85 PS 3 H=2000 Oe c (cm 3 /mol) T (K) H^ plane H II plane from M(H) from M(H) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' (Colour online) Temperature dependence of the magnetic susceptibility 𝜒(𝑇) = 𝑀(𝑇)/𝐻 of a Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 single crystal in magnetic field 𝐻 = 2000 Oe for two directions 𝐻⊥ plane and 𝐻∥ plane of crystal layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Field dependence of the magnetic moment The field dependencies of the magnetic moment of the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 sample were studied at 120 K — above the assumed phase transition, 100 K — approximately the middle of the phase transformation, and 10 K — the low-temperature point, where all the magnetic transformation processes have already been completed based on their general form 𝜒(𝑇).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' All the obtained curves 𝑀(𝐻) for the 𝐻⊥ plane and 𝐻∥ plane of crystal layers are shown in figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' All of them demonstrate a fairly good linear behavior of 𝑀(𝐻) at any temperatures both above and below the assumed phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For the 𝐻⊥ plane at 𝑇 = 10 K, extrapolation of the linear dependence (region above 2000 Oe) to zero magnetic fields detects the presence of a non-zero residual magnetic moment of the sample of the 43701-5 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 0 10000 20000 30000 40000 50000 0 500 1000 1500 2000 2500 3000 3500 Cu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15 Fe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85 PS 3 H ^ plane M (emu/mol) H (Oe) 5 K 7 K 10 K 100 K 120 K 0 10000 20000 30000 40000 50000 0 200 400 600 800 1000 1200 1400 Cu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15 Fe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85 PS 3 H II plane M (emu/mol) H (Oe) 10 K 100 K 120 K Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' (Colour online) Field dependence of the magnetic moment 𝑀(𝐻) of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 sample at different temperatures for two orientations of the magnetic field: 𝐻⊥ plane (top panel) and 𝐻∥ plane of crystal layers (bottom panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' order of 9 emu/mol (dotted line in the insertion in figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' This may be due to the existence of a canted magnetic sublattice in an ordered antiferromagnetic system and, hence, to a weak ferromagnetic moment of the system in this direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' At the same time, such a feature in 𝑀(𝐻) is completely absent for the other direction of the 𝐻∥ plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' This behavior of the magnetization for the 𝐻⊥ plane can be satisfactorily explained within the framework of the four-sublattice model of an antiferromagnet of the flat cross-type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In very weak fields, the ground state will be similar to the state with latent ferromagnetism and the total moment of the system will be close to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A rapid increase in the magnetization with the increasing field 43701-6 The antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor will occur due to the orientational flip of a skewed pair with a weakly ferromagnetic moment oriented against the field to the direction of the skewed pair in which this moment is oriented along the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In the fields above 2000 Oe, the four-sublattice system effectively turns into a simple two-sublattice system, in which the brace between the sublattices gives a weak moment along the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 0 10000 20000 30000 40000 50000 0 200 400 600 800 1000 0 2000 4000 6000 8000 10000 0 20 40 60 80 H ^ plane H II plane Cu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15 Fe 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85 PS 3 T=10 K M (emu/mol) H (Oe) M ( em u/m ol) H (Oe) Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' (Colour online) Field dependence of the magnetic moment of the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 sample at a temperature of 𝑇 = 10 K for 𝐻⊥ plane and 𝐻∥ plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The insertion shows a low-field region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Thus, a characteristic field of about 2000 Oe can be considered as a phase transition field between the effective four-sublattice and two-sublattice magnetic structures for the system under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Ab initio simulation results The QUANTUM ESPRESSO package [26], was used to perform calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' They were carried out within the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof functional [27] or with the CA-PZ local functional based on the Ceperley and Alder data [28] parameterized by Perdew and Zunger [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal possesses the so-called vdW gap between layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Therefore, the DFT-D method taking into account the dispersion interaction elaborated by Grimme [30] is needed to calculate electronic properties of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The ultra-soft pseudopotential [31] was used to perform calculations for Fe — 3𝑑6 4𝑠2, Cu — 3𝑑10 4𝑠1, P — 3𝑠2 3𝑝3, S — 3𝑠2 3𝑝4 atomic configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The plane-wave basis set cut-off was chosen to be equal to 600 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The Monkhorst–Pack 𝑘-points grid [32] sampling was set at 12×12×3 points for the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The convergence tolerance parameters were as follows: energy 5 · 10−6 eV, force 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='01 eV Å−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' stress 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='02 GPa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' displacement 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='05 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The total energy convergence criterion was assumed to be fulfilled when the self-consistent field tolerance reaches the value 10−7 eV per atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The ab initio simulation of the features of electronic and spin subsystems in the framework of electron density functional theory (DFT) allows us to estimate the values of spin density (figure 7) in the vicinity of all species’ sites present in the investigated system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The supercell of 3 × 3 × 1 unit cells of FePS3 single-crystal was used for modelling the proper concentration of Cu substitutional atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A pair of Cu was used to preserve the symmetry of the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Components of the EFG tensor and asymmetry parameter 𝜂 for Fe ions close to the experimental value for FePS3 crystal (𝜂 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='23–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='28) were calculated for the system under study at 𝑇 = 0 K (table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 43701-7 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' (Colour online) Spatial distribution of the calculated spin density of the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 model at 0 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Red and blue regions correspond to opposite spin orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Calculated averaged components of the EFG tensor and asymmetry parameter for Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Species ⟨𝐶𝑞⟩, MHz ⟨𝜂⟩ Cu −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1501 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='8797 Fe 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2971 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2911 P 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='7594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2774 S −26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='0941 Furthermore, analysis of the Mulliken population shows that the main contribution to the ferromag- netic spin density is originated from 3𝑑-copper and 3𝑝-sulfur orbitals (see table 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Decomposition of spin density (spin up – spin down) contributions over orbitals in Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The largest contributions are typed in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Species 3𝑑 3𝑝 4 𝑓 4𝑠 Total Cu −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='248 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='000 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='278 Fe −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='049 P −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='028 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='000 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='058 S −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='072 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='282 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='000 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='016 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='370 Total −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='435 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='310 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='020 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='755 Thevalues of the valence charge transferandthespinpolarizationwere estimatedforthe Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal (table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The presence of uncompensated spin ordering is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Discussions In contrast to the expectation that Cu with spin 1 2 will dilute the magnetic moments contributed by Fe with a larger spin, we found that 15% Cu doping partially keeps the effective fluctuating moment, although there is a long-range magnetic order partially distorted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' This follows from the magnetic susceptibility 43701-8 FeThe antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The calculated values of the spin components of the valence charge and the spin polarization in Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Species 𝑄up, e 𝑄dw, e 𝑄, e Σ𝑆, ℏ/2 Cu 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='31 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='45 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='00 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='53 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='28 Fe 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='86 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='36 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='86 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='37 −27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='51 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='07 P 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='03 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='16 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='03 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='22 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='07 S 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='82 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='08 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='83 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='07 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='82 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='35 temperature dependence around transition from paramagnetic into antiferromagnetic phase — amplitude of the observed 𝜒(𝑇) anomaly is like the one observed in case of FePS3 pure crystal [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' At Fe by Cu partial substitution, the temperature of 𝜒(𝑇) maximum is lowered from 120 K in FePS3 to 108 K in case of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The jump of 𝜒(𝑇) at ferromagnetic transition is smeared by Cu dilution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In real crystal, the sulfur vacancies 𝑉S presence can also effectively suppress the strong intralayer antiferromagnetic correlation, giving rise to a weak ferromagnetic ground state, which is observed on the 𝑀(𝐻) dependence below 10 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The presence of 𝑉S disrupts anion-mediated AFM interactions and may be responsible for the suppression of long-range AFM correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Herein, the competing ferromagnetic exchange interactions can dominate at low temperatures, creating a magnetically frustrated system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The exchange interactions between the 𝑉S and metal ions, and with the local atomic distortion in the vicinity of defects, could also induce ferromagnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A canting configuration and the resulting net moments along the easy axis can also be attributed to atomic substitution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' All these signatures exhibit the complexity of magnetic structure for the 15% Cu substituted sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The susceptibilities of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 can be considered as for configurationally averaged clusters sum of two terms: a randomly diluted antiferromagnet susceptibility, as in pure FePS3, and a Curie correction arising from local fluctuations of the uncompensated spins due to the finite size of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' For Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal, there is observed a weak paramagnetic contribution for small temperatures (figure 4), because many of the spins no longer belong to the infinite cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The uncompensated moments in the diluted 2D AFM can give rise to a Curie contribution into the magnetic susceptibility, and the presence of field dependence of the magnetization suggests that they interact ferromagnetically to give a spontaneous magnetization below 10 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Conclusions According to the presented experimental data on Mössbauer spectroscopy and direct magnetic moment temperature and field dependencies measurements, it can be stated that the Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 single-crystal undergoes a magnetic phase transition at the region of 102–108 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A weak ferromagnetic moment at the low-temperature region (𝑇 = 10 K) was observed in the 𝐻⊥ plane direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' This correlates with ab initio calculated non-zero spin polarization of the considered material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Furthermore, the calculated values of the electric field gradient components and estimations of the total magnetic moment of the unit cell (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='764 ℏ/2 corresponds to 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='543 emu/mol) are in reasonable agreement with the measured experimental quantities of ∼ 9 emu/mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The present studies of Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 magnetic properties show that the uncompensated moments in the diluted 2D AFM can give rise to a Curie contribution, and the observed field dependence of the magnetization suggests that they do interact ferromagnetically to give a spontaneous magnetization at low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' The relation of the magnetic ordering with structural change at antiferromagnetic phase transition can also be important and must be investigated further on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' It is worth to note that the flattening of magnetic susceptibility at low temperature was also observed in rare-earth containing compounds caused by Kondo effect [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' In the case of the studied Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 crystal, the system seems not to be such a strongly correlated material as rare earth materials but, of course, the proper investigation of the low temperature dependence of resistivity is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 43701-9 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Pashchenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Chu J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hu K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Rao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Gong C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wu C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hong H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Liu K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Gao C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xiong J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2020, 33, 2004469, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1002/adma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='202004469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Hu T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Kan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', WIREs Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2019, 9, e1409, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1002/wcms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Liu Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Deng L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Peng B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nano Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2021, 14, 1802–1813, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1007/s12274-020-2860-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Gong C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Kim E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Lee G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2019, 10, 2657, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1038/s41467-019- 10693-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Wang F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Shifa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', He P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Liu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhan X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Lou X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xia F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', He J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2018, 28, 1802151, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1002/adfm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='201802151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Gong C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Li L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Li Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ji H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Stern A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xia Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Cao T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Bao W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Qiu Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Cava R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Louie S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xia J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nature, 2017, 546, 265–269, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1038/nature22060.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Belianinov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', He Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Dziaugys A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Maksymovych P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Eliseev E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Borisevich A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Morozovska A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Banys J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Vysochanskii Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Kalinin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2015, 15, 3808–3814, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='nanolett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5b00491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Liu F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', You L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Seyler K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Li X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Lin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhou J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', He H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Pantelides S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhou W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Sharma P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ajayan P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Liu Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2016, 7, 12357, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1038/ncomms12357.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Qi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Chen X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Qian X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2018, 113, 043102, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5038037.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Osada M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Sasaki T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', APL Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2019, 7, 120902, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5129447.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Lai Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Song Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wan Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Xue M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ye Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Dai L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhang Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yang W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Dua H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yangace J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nanoscale, 2019, 11, 5163–5170, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1039/C9NR00738E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Dziaugys A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Shvartsman V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Macutkevic J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Banys J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Vysochanskii Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Kleemann W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 2012, 85, 134105, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='134105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Kleemann W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Shvartsman V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Borisov P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Banys J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Vysochanskii Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 2011, 84, 094411, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='094411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Olsen T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' D: Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2021, 54, 314001, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1088/1361-6463/ac000e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Wildes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zhitomirsky M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ziman T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Lançon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Walker H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' D: Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2020, 127, 223903, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='0009114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Sakai H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yamazaki T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Machida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Shigematsu T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Nasu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Liq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Cryst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' A, 2000, 341, 105–110, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1080/10587250008026125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Chandrasekharan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Vasudevan S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 1996, 54, 14903, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='14903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mulders A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Klaasse J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Goossens D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Chadwick J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hicks T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Matter, 2002, 14, 8697, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1088/0953-8984/14/37/306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Masubuchi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hoya H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Watanabe T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Takahashi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ban S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ohkubo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Takase K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Takano Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Alloys Compd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2008, 460, 668–674, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='jallcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='063.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Bhutani A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zuo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', McAuliffe R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', dela Cruz C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Shoemaker D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2020, 4, 034411, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevMaterials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='034411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Dziaugys A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Macutkevic J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Svirskas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Juskenas R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wencka M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Banys J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Motria S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Vysochanskii Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Alloys Compd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2015, 650, 386–392, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='jallcom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' WissEl, Data Evaluation Software — WissEl, Wissenschaftliche Elektronik GmbH, [Online;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' accessed 10-Jul- 2022], URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='wissel-gmbh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='de/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='php?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='option=com_content&task=view&id=55&Itemid=116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Jernberg P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Bjarman S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Wäppling R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 1984, 46, 178–190, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1016/0304- 8853(84)90355-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Chen Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Yang D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Mössbauer Effect in Lattice Dynamics: Experimental Techniques and Applications, Wiley-VCH Verlag GmbH & Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' KGaA, Weinheim, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rule K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Cashion J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Mulders A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hicks T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Hyperfine Interact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2002, 141, 219–222, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1023/A:1021286910897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Giannozzi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Baroni S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Bonini N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Calandra M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Car R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Cavazzoni C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ceresoli D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Chiarotti G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Cococ- cioni M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Dabo I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Matter, 2009, 21, 395502, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1088/0953-8984/21/39/395502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Perdew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Burke K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Ernzerhof M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 1997, 78, 1396, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Ceperley D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Alder B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 1980, 45, 566, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Perdew J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Zunger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 1981, 23, 5048, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Grimme S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 2006, 27, 1787–1799, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1002/jcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='20495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Vanderbilt D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 1990, 41, 7892, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='7892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Monkhorst H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Pack J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' B, 1976, 13, 5188, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='5188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Menth A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Buehler E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Geballe T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=', 1969, 22, 295, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' 43701-10 The antiferromagnetic phase transition in the layered Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3 semiconductor Антиферомагнiтний фазовий перехiд в шаруватому напiвпровiднику Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3: експеримент та DFT моделювання В.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Пащенко1, О.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Блудов1, Д.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Балтрунас2, К.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Мазейка2, С.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Мотря3, К.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Глухов3, Ю.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Височанський3 1 Iнститут фiзики i технiки низьких температур iм.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Б.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Вєркiна НАН України, просп.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Науки 47, 61103, Харкiв, Україна 2 Вiддiл ядерних дослiджень Центру фiзичних наук та технологiї, просп.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Саванорiу 231, LT-02300, Вiльнюс, Литва 3 Iнститут фiзики i хiмiї твердого тiла, Ужгородський нацiональний унiверситет, вул.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Волошина 54, 88000, Ужгород, Україна Представленi експериментальнi дослiдження парамагнiтно-антиферомагнiтного фазового переходу ме- тодом мессбауерiвської спектроскопiї та вимiрювання температурних i польових залежностей магнiтної сприйнятливостi в шаруватому кристалi Cu0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='15Fe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='85PS3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Особлива поведiнка польової залежностi намаг- нiченостi в областi низьких температур свiдчить про слабкий феромагнетизм дослiджуваного матерiалу.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' За допомогою ab initio моделювання електронної та спiнової пiдсистем, в рамках теорiї функцiоналу електронної густини, проаналiзовано особливостi спiнового впорядкування при низькiй температурi, а також змiни мiжатомних взаємодiй поблизу атомiв замiщення Cu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Розрахованi компоненти тензора гра- дiєнта електричного поля та параметра асиметрiї для iонiв Fe близькi до значень знайдених з мессбау- ерiвських спектрiв.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Маллiкенiвськi заселеностi показують, що основний внесок у феромагнiтну спiнову густину вносять 3𝑑 орбiталi мiдi та 3𝑝 сiрки.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Розрахунковий загальний магнiтний момент елементарної комiрки (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content='543 emu/mol) цiлком узгоджується з вимiряним експериментальним значенням ∼ 9 emu/mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} +page_content=' Ключовi слова: метал-фосфорнi трихалькогенiди, магнiтне впорядкування, мессбауерiвська спектроскопiя, фазовi переходи, теорiя функцiоналу електронної густини 43701-11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdAzT4oBgHgl3EQfYfz7/content/2301.01338v1.pdf'} diff --git a/_9E1T4oBgHgl3EQfowSL/content/tmp_files/2301.03324v1.pdf.txt b/_9E1T4oBgHgl3EQfowSL/content/tmp_files/2301.03324v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9c4c9550bc6d8063d841dd3a8758b66a71504d11 --- /dev/null +++ b/_9E1T4oBgHgl3EQfowSL/content/tmp_files/2301.03324v1.pdf.txt @@ -0,0 +1,1336 @@ +Received: Added at production +Revised: Added at production +Accepted: Added at production +DOI: xxx/xxxx +ARTICLE TYPE +Numerical approximation of a thermodynamically complete +rate-type model for the elastic–perfectly plastic response +Pablo Alexei Gazca-Orozco*1,2 | Vít Průša2 | Karel Tůma2 +1Department of Mathematics, University of +Freiburg, Ernst-Zermelo-Straße, 79104, +Freiburg, Germany +2Charles University, Faculty of Mathematics +and Physics, Sokolovská 83, Praha, CZ 186 +75, Czech Republic +Correspondence +*Pablo Alexei Gazca–Orozco, Department +of Mathematics, University of Freiburg, +Ernst-Zermelo-Straße, 79104, Freiburg, +Germany. Email: +alexei.gazca@mathematik.uni-freiburg.de +Abstract +We analyse a numerical scheme for a system arising from a novel description of the +standard elastic–perfectly plastic response. The elastic–perfectly plastic response is +described via rate-type equations that do not make use of the standard elastic-plastic +decomposition, and the model does not require the use of variational inequalities. +Furthermore, the model naturally includes the evolution equation for temperature. +We present a low order discretisation based on the finite element method. Under +certain restrictions on the mesh we subsequently prove the existence of discrete solu- +tions, and we discuss the stability properties of the numerical scheme. The analysis +is supplemented with computational examples. +KEYWORDS: +Rate-type constitutive relations, perfect plasticity, finite element method, thermodynamically consistent +models +1 +INTRODUCTION +The rate-independent hysteretic response is frequently encountered in various engineering applications such as electrical engi- +neering, geomechanics and mechanical engineering. Each of these research communities have developed its own approaches +to the modelling of the hysteretic response, see[31],[16] and[21] for a list of various hysteretic models and a discussion of their +relations. In solid mechanics the prime example of a rate-independent hysteretic response is the elastic-plastic response, see for +example[3] and[17] for comments on the historical development of plasticity theory. In the present contribution we work with a +novel model for the standard elastic–plastic response, see[22,23] and[6], and we focus on mathematical aspects of the model. In +particular we prove solvability of the corresponding spatially discretised system of governing partial differential equations. +Before we proceed with the numerical analysis, let us briefly comment on the status of the considered model. Concerning +the elastic–plastic response of metals, the predominant modelling approach is based on the concepts of the elastic–plastic +decomposition, the flow rule and the yield condition, which in turn leads to a characterisation of the elastic–plastic response +using the concepts of optimisation theory, see especially[29]. Concerning the elastic-plastic response of non-metallic materials +such as soils, the situation is different, see, for example,[13, Ch. 8] for a critical review of some popular models. These materials +typically exhibit “diffuse yielding behaviour”, see[17] and the discussion therein, which means that the transition from the elastic +to the plastic regime is not sharp, but it progresses gradually, hence the concept of sharp yield condition must be abandoned. +In this case the elastic–plastic response is typically modelled using rate-type equations designed in such a way that the whole +model still predicts the rate-independent behaviour. +We shall investigate the family of models introduced in[22]. This class of models belongs to the class of rate-type models, +but it goes one step further. It also abandons the concept of elastic–plastic decomposition. In particular, the models do not use +the traditional concept of strain decomposition to the elastic and plastic part, see[27] or[30] and references therein; the models +arXiv:2301.03324v1 [math.NA] 9 Jan 2023 + +2 +AUTHOR ONE ET AL +stemming from[22] work with the stress and the strain only. In a one-dimensional setting the stress–strain relation is given by the +rate-type equation +d휎 +d푡 = E +[ +1 − 퐻 +( +휎 d휀 +d푡 +) +퐻 ( +|휎| − 휎푦 +)] d휀 +d푡 , +(1) +where 휎 denotes the stress, 휀 denotes the strain, 휎푦 denotes the yield stress, E denotes the Young modulus and 퐻 denotes the +Heaviside step function (5). (Compare with the standard models that lead to optimisation problems, see[29, Ch. 1].) The rate-type +stress–strain relation (1) is clearly rate-independent, and it leads to the standard elastic–perfectly plastic response. Indeed, if the +yield stress is reached, |휎| = 휎푦, and if the material is being loaded, 휎 d휀 +d푡 ≥ 0, then (1) reduces to +d휎 +d푡 = 0, +(2) +hence the stress 휎 remains constant and equal to the yield stress value. This is the plastic flow regime. On the other hand, if the +stress is below the yield stress value, |휎| < 휎푦, or if the material is being unloaded, 휎 d휀 +d푡 < 0, then (1) reduces to +d휎 +d푡 = E d휀 +d푡 . +(3) +This is the standard elastic response rewritten in terms of rates. Indeed, equation (3) is just the time derivative of Hooke law +휎 = E 휀. Once we have (2) and (3), it is straightforward to see that the cyclic change of strain leads to the standard hysteretic +behaviour. +An important feature of the model (1) is that the second Heaviside function 퐻 ( +|휎| − 휎푦 +) can be replaced by a smoothed +version thereof, which allows one to easily deal with the “diffuse yielding behaviour”, see[22] and for further comments also[17]. +Furthermore, the family of one-dimensional models based on the rate-type equation (1) can be extended to the fully three- +dimensional finite deformations setting, see[23] and[6]. +Finally, the finite deformation version of the models can be shown to be thermodynamically consistent, see[6]. This implies +that the energy conversions in the material are fully characterised. In particular, the heat generated in the inelastic processes is +known, and the models allow one to study fully coupled thermomechanical processes in the finite strain setting. Despite their +importance, such coupled thermomechanical processes are rarely studied, especially in the case of rate-type models for soils, +see[12–14], and the situation is only slightly better for metals, see[25] for an early example thereof. +In the present work, we focus on a model of type (1) that arises in the small strain approximation of a finite deformation model +based on (1). The model is described in[6], and it focuses on the core features of elastic–plastic material response. The model is a +simple model without additional subtleties such as the kinematic/isotropic hardening and so forth, and as such the model is perfect +for a proof-of-concept numerical analysis of this class of models. In particular, we prove solvability of the equations arising +from the spatial discretisation of the corresponding partial differential equations, and we also investigate stability properties of +the corresponding numerical scheme. +2 +MODEL DESCRIPTION +Let the computational domain Ω—which is tantamount to the reference stress-free configuration of the body of interest—be +an open bounded subset of R푑, with 푑 ∈ {2, 3}, whose boundary 휕Ω is Lipschitz, and it is disjointly divided into a Dirichlet +(displacement) 휕Ω퐷 and a Neumann (traction) 휕Ω푁 component. +As shown in[6] the standard elastic–perfectly plastic response with von Mises yield criterion in the small strain regime can be +described by the following system of equations posed on the space-time domain 푄 ∶= (0, 푇 ) × Ω: +휌⋆ ̇풗 − div τ = 휌⋆퐟 +in (0, 푇 ) × Ω, +(4a) +1 +E ((1 + 휈) ̇τ − 휈(tr ̇τ)I) = ̇ε − 퐻(τ ∶ ̇ε)퐻(|τ훿|2 − 휅2 +⋆) ̇ε +in (0, 푇 ) × Ω, +(4b) +plus initial conditions 풗(0, ⋅) = 풗0(⋅) and τ(0, ⋅) = τ0, and boundary conditions 풗|휕Ω퐷 = 풗푏 and τ풏|휕Ω푁 = 퐭푏, where (휕Ω퐷) ∪ +휕Ω푁 = 휕Ω. +Here 풖 denotes the displacement, ε = ε(풖) ∶= +1 +2(∇풖 + ∇풖⊤) denotes the linearised strain operator (infinitesimal strain +tensor), τ denotes the stress tensor, and A훿 ∶= A − 1 +푑 tr(A)I denotes the traceless part of the corresponding tensor A. The symbol + +AUTHOR ONE ET AL +3 +(A ∶ B) ∶= tr ( +ABT) denotes the matrix scalar product. The function 퐻 is the classical Heaviside function, defined as +퐻(푠) ∶= +{ 1, 푠 ≥ 0, +0, 푠 < 0. +(5) +All the quantities of interest are functions of the position in the reference configuration 퐗 ∈ Ω and time 푡 ∈ (0, 푇 ); the dot +represents the time derivative +̇A ∶= 휕 +휕푡A(푡, 퐗). +The symbols E , 휈, 휅⋆ denote material parameters, namely Young modulus, Poisson ratio, and yield stress; the density in the +reference configuration is denoted by 휌⋆ and we assume that 휌⋆ ≥ 휌− +⋆, for some positive constant 휌− +⋆. +The first equation (4a) represents balance of momentum, and the second equation (4b) is the rate-type constitutive relation for +the elastic–perfectly plastic response. Since in the small strain regime we have ̇ε = ε(풗), we see that the system (4) is a system +of evolution equations for the velocity field 풗 and the stress tensor τ. +The displacement 풖 and temperature 휃 can be computed post-hoc. Once the stress τ and the velocity 풗 fields are known, it +remains to solve +̇풖 = 풗 +in (0, 푇 ) × Ω, +(6a) +휌⋆푐푣 ̇휃 − div(휅th∇휃) = 퐻(τ ∶ ̇ε)퐻(|τ훿|2 − 휅2 +⋆)τ ∶ ̇ε +in (0, 푇 ) × Ω, +(6b) +for 풖 and 휃. Here 푐푣 denotes the specific heat capacity at constant volume, and 휅th is the thermal conductivity. The boundary +conditions for the displacement are chosen to be consistent with those of 풗; i.e. if 풖|휕Ω퐷 = 풖푏 then 풗|휕Ω퐷 = 풗푏 ∶= ̇풖푏. For the +temperature we impose the no-flux boundary condition, that is ∇휃 ⋅ 풏|휕Ω = 0. +One of the challenging aspects of system (4) is the presence of the Heaviside function, since then one has to deal with a +differential equation with a discontinuous nonlinearity. To alleviate this difficulty, we will employ a non-sharp yield condition. +(In the terminology used in[17] this is tantamount to the “diffusive yielding behaviour”.) The non-sharp yield condition means +that the last term in (4b) is substituted by 퐻(τ ∶ ̇ε)퐻휖(|τ훿|2 −휅2 +⋆) ̇ε, where 퐻휖 is a regularised version of the Heaviside function. +We consider three different options in this work, namely +퐻(1) +휖 (푠) ∶= 1 +2 + 1 +2 +푠 +휖 +√ +1 + ( 푠 +휖)2 +휖 > 0, 푠 ∈ R, +(7a) +퐻(2) +휖 (푠) ∶= 1 +2 + 1 +2 tanh +(푠 +휖 +) +휖 > 0, 푠 ∈ R, +(7b) +퐻(3) +휖 (푠) ∶= 1 +2 + 1 +휋 arctan +(푠 +휖 +) +휖 > 0, 푠 ∈ R, +(7c) +where 휖 is the regularisation parameter. +The qualitative one-dimensional behaviour during loading and unloading, for the stress 휎 and strain 휖, that can be described by +the non-sharp yield condition is depicted in Figure 1. (The magnitude of the regularisation parameter 휖 controls the “sharpness” +of the corner on the loading curve.) We reiterate that the regularisation is in some physically relevant cases not artificial. In +fact many materials exhibit such non-sharp yield conditions, see[17] and the discussion therein. The freedom to model such +non-sharp/diffusive yield condition is an advantage of the approach presented here, in contrast with the more widely used +rate-independent models, where modelling non-sharp yield conditions is more cumbersome, see again[17]. +3 +DISCRETE FORMULATION +We employ the standard notation for Lebesgue spaces (퐿푝(Ω), ‖⋅‖퐿푝(Ω)) and Sobolev spaces (푊 1,푝(Ω), ‖⋅‖푊 1,푝(Ω)). Let {ℎ}ℎ>0 +be a family of shape-regular triangulations of Ω associated to a sequence of mesh sizes ℎ → 0; we assume here that Ω is a +Lipschitz domain with polyhedral boundary, and also for simplicity we assume that the mesh is quasi-uniform, which implies +that following inverse inequalites are available[9], +‖∇풗‖퐿2(Ω) ≤ 푐invℎ−1‖풗‖퐿2(Ω) +∀풗 ∈ 푉 ℎ, +(8a) +‖풗‖퐿2(휕Ω) ≤ 푐trℎ−1∕2‖풗‖퐿2(Ω) +∀풗 ∈ 푉 ℎ, +(8b) + +4 +AUTHOR ONE ET AL +휀 +휎 +휅⋆ +Figure 1 Non-sharp yield condition obtained as a consequence of a regularised Heaviside function 퐻휀. +where 푐inv, 푐tr > 0 are positive constants independent of ℎ; this quasi-uniformity assumption is not crucial, if desired one can +apply instead local inverse inequalities. +The finite element spaces for the stress and velocity are chosen as +Σℎ = { ∈ 퐿∞(Ω)푑×푑 +sym ∶ |퐾 ∈ P0(퐾)푑×푑 +sym, ∀퐾 ∈ ℎ} = DG(0)푑×푑 +sym, +푉 ℎ = {풗 ∈ 푊 1,∞(Ω)푑 ∶ 풗|퐾 ∈ P1(퐾)푑, ∀퐾 ∈ ℎ, 풗|휕Ω퐷 = ퟎ}, +that is, piecewise-linear Lagrange elements for the velocity and piecewise-constant approximations for the stress; here P푞(퐾) +denotes the set of polynomials of degree at most 푞 on an element 퐾 ∈ ℎ. Since we are interested in approximating discontinuous +terms, it is natural to employ lower order approximations, because higher degree polynomials could, in the absence of for +example adaptivity, lead to unwanted oscillations. +For later use it is convenient to define the compliance operator ∶ R푑×푑 +sym → R푑×푑 +sym as +(σ) ∶= 1 +E ((1 + 휈)σ − 휈(tr σ)I), +σ ∈ R푑×푑 +sym. +(9) +that is  = C−1, where C is the standard linear elasticity tensor. Since  is positive definite, we can use it to define a norm on +the space of discrete stresses Σℎ: +‖σ‖2 + ∶= ∫ +Ω +σ ∶ σ, +σ ∈ Σℎ. +(10) +This norm is clearly equivalent to the 퐿2-norm; namely, 퐴min‖σ‖2 +퐿2(Ω) ≤ ‖σ‖2 + ≤ 퐴max‖σ‖2 +퐿2(Ω), where 퐴min and 퐴max denote +the minimum and maximum eigenvalues of , respectively. Similarly, we equip the velocity space 푉 ℎ with the weighted norm +‖풗‖2 +휌⋆ ∶= ∫ +Ω +휌⋆풗 ⋅ 풗, +풗 ∈ 푉 ℎ. +(11) +The corresponding weighted spaces of square integrable functions at the continuous level will be denoted by 퐿2 +휌⋆(Ω) and 퐿2 +(Ω). +Concerning the discretisation in time, we choose a time-step 휏 > 0, and we define a uniform time grid 푡푘 ∶= 푘휏, for 푘 ∈ +{1, … , 푇 ∕휏}. (We can without loss of generality assume that 푇 ∕휏 ∈ N.) The system of governing equations is then discretised in +time with the implicit Euler method; given a family of functions {풗푘}푘∈{0,…,푇 ∕휏} we define the discrete time derivative operator +(or temporal difference quotient) as +d휏 +푡 풗푘 ∶= 풗푘 − 풗푘−1 +휏 +, +푘 ∈ {1, … , 푇 ∕휏}. +(12) +Now we are in the position to formulate a time-stepping scheme. We assume that the boundary datum 풗푏 can be seen as the +restriction of some CG(1) function on Ω, which we still denote by 풗푏, and we set τ0 ∶= τ0 and 풗0 ∶= 풗0. In the finite element +formulation, assuming that approximations τ푘−1 ∈ Σℎ and 풗푘−1 ∈ 풗푏 + 푉 ℎ at time 푡푘−1 have already been found, we look for +(τ푘 +ℎ,휏,휖, 풗푘 +ℎ,휏,휖) ∶= (τ푘, 풗푘) ∈ Σℎ × (풗푏 + 푉 ℎ) such that +∫ +Ω +(d휏 +푡 τ푘) ∶ σ − ∫ +Ω +ε(풗푘) ∶ σ + ∫ +Ω +퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)ε(풗푘) ∶ σ = 0 +∀σ ∈ Σℎ, +∫ +Ω +휌⋆d휏 +푡 풗푘 ⋅ 풘 + ∫ +Ω +τ푘 ∶ ε(풘) = ∫ +Ω +휌⋆퐟푘 ⋅ 풘 + ∫ +휕Ω푁 +퐭푘 +푏 ⋅ 풘 +∀풘 ∈ 푉 ℎ. +(13) + +AUTHOR ONE ET AL +5 +Here 퐟푘 and 퐭푘 +푏 are approximations of 퐟 and 퐭푏 at time 푡 = 푡푘, respectively. E.g. if 퐟 and 퐭 continuous, we can set 퐟푘(⋅) ∶= 퐟(푡푘, ⋅) +and 퐭푘 +푏 (⋅) ∶= 퐭푏(푡푘, ⋅). +The displacement and temperature problems (6) are be discretised with piecewise linear Lagrange elements, that is the spaces +of discrete displacements 푈 ℎ and discrete temperatures Θℎ are defined as +푈 ℎ = {풖 ∈ 푊 1,∞(Ω)푑 ∶ 풖|퐾 ∈ 푃1(퐾)푑, ∀퐾 ∈ ℎ, 풖|휕Ω퐷 = ퟎ}, +Θℎ = {휃 ∈ 푊 1,∞(Ω) ∶ 휃|퐾 ∈ 푃1(퐾), ∀퐾 ∈ ℎ} = CG(1). +In the discrete formulation we set 풖0 ∶= 풖0 and 휃0 ∶= 휃0, and for 푘 ∈ {1, … , 푇 ∕휏}, assuming that τ푘 ∈ Σℎ, 풗푘 ∈ 풗푏 + 푉 ℎ, +풖푘−1 ∈ 풖푏 + 푈 ℎ and 휃푘−1 ∈ Θℎ are known, we look for (풖푘, 휃푘) ∈ (풖푏 + 푈 ℎ) × Θℎ such that +∫ +Ω +d휏 +푡 풖푘 ⋅ 풘 − ∫ +Ω +풗푘 ⋅ 풘 = 0 +∀풘 ∈ 푈 ℎ, +∫ +Ω +휌⋆푐푣d휏 +푡 휃푘휙 + ∫ +Ω +휅th∇휃푘 ⋅ ∇휙 = ∫ +Ω +퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)τ푘 ∶ ε(풗푘)휙 +∀휙 ∈ Θℎ. +(14) +Remark 1. Given the discontinuous nature of the stress space Σℎ, and noting that nonlinear functions of τ푘 remain piecewise +constant, the equation for τ푘 in (13) holds pointwise, +(d휏 +푡 τ푘) − ε(풗푘) + 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)ε(풗푘) = 0 +in Ω. +This defines (implicitly) a mapping 풗푘 → ̃τ푘(풗푘), which could be used to define a velocity-only problem +∫ +Ω +휌⋆d휏 +푡 풗푘 ⋅ 풘 + ∫ +Ω +̃τ푘(풗푘) ∶ ε(풘) = ∫ +Ω +휌⋆퐟푘 ⋅ 풘 + ∫ +휕Ω푁 +퐭푘 ⋅ 풘 +∀풘 ∈ 푉 ℎ. +Using tools from automatic differentiation this can be solved, resulting in a strategy similar to the one employed traditionally, +in which consistent tangents are employed in the linearisation[29, Ch. 4.3.6]. We do not pursue this further in this work. +3.1 +Existence of discrete solutions +The goal in this section is to prove that numerical solutions to (13) exist. To help with this, we look first at the system in which +both Heaviside functions are regularised. (The regularisation parameters are denoted as 휂 and 휖.) For simplicity we also assume +that 풗푏 = ퟎ. Define the function 퐹휂 ∶ Σℎ × 푉 ℎ → Σℎ × 푉 ℎ through the relation +⟨퐹휂(τ, 풗), (σ, 풘)⟩ ∶= ∫ +Ω +(τ) ∶ σ − 휏 ∫ +Ω +ε(풗) ∶ σ + 휏 ∫ +Ω +퐻휂(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 +⋆)ε(풗) ∶ σ ++ 휏 ∫ +Ω +τ ∶ ε(풘) + ∫ +Ω +휌⋆풗 ⋅ 풘 − ∫ +Ω +(τ푘−1) ∶ σ − ∫ +Ω +휌⋆풗푘−1 ⋅ 풘 +− 휏 ∫ +Ω +휌⋆퐟푘 ⋅ 풘 − 휏 ∫ +휕Ω푁 +퐭푘 +푏 ⋅ 풘. +Note that the (regularised) discrete formulation can be written simply as 퐹휂(τ, 풗) = 0; note also that the function 퐹휂 is continuous. +If we manage to find a positive number ̂푐, such that ⟨퐹휂(τ, 풗), (τ, 풗)⟩ ≥ 0, for all (τ, 풗) ∈ Σℎ × 푉 ℎ with ‖τ‖2 + + ‖풗‖2 +휌⋆ = ̂푐, then +a corollary of Brouwer’s fixed point theorem will guarantee the existence of a discrete solution[11, Ch. 4, Cor. 1.1]. To this end, we +take (σ, 풘) = (τ, 풗) in the definition of 퐹휂; this yields: +⟨퐹휂(τ, 풗), (σ, 풘)⟩ ≥ ∫ +Ω +(τ) ∶ τ + ∫ +Ω +휌⋆|풗|2 − ‖τ푘−1‖‖τ‖ − ‖풗푘−1‖휌⋆‖풗‖휌⋆ − 휏‖퐟푘‖휌⋆‖풗‖휌⋆ +− +휏푐tr +(ℎ휌− +⋆)1∕2 ‖퐭푘 +푏 ‖퐿2(휕Ω푁)‖풗‖휌⋆ + 휏 ∫ +Ω +퐻휂(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 +⋆)ε(풗) ∶ τ +≥ ‖τ‖2 + + ‖풗‖2 +휌⋆ − 1 +2‖τ푘−1‖2 + − 1 +2‖τ‖2 + − ‖풗푘−1‖2 +휌⋆ − 1 +2‖풗‖2 +휌⋆ − 휏 +2‖풗‖2 +휌⋆ − 휏 +2‖퐟푘‖2 +휌⋆ + +6 +AUTHOR ONE ET AL +− +푐2 +tr휏 +2휌− +⋆ℎ‖풗‖2 +휌⋆ − 휏 +2‖퐭푘 +푏 ‖퐿2(휕Ω푁) − +푐inv휏 +ℎ(퐴min휌− +⋆)1∕2 ‖풗‖휌⋆‖τ‖ +≥ 1 +2 +( +1 − +푐inv +(퐴min휌− +⋆)1∕2 +휏 +ℎ +) +‖τ‖2 + + 1 +2 +( +1 − +(퐴min휌− +⋆)1∕2 + 퐴1∕2 +min푐2 +tr + 푐inv휌− +⋆ +1∕2 +퐴1∕2 +min휌− +⋆ +휏 +ℎ +) +‖풗‖2 +휌⋆ +− 1 +2‖τ푘−1‖2 + − ‖풗푘−1‖2 +휌⋆ − 1 +2‖퐟‖2 +퐿2 +휌⋆(푄) + 1 +2‖퐭푏‖퐿2(0,푇 ;퐿2(휕Ω푁)), +where we employed Young’s inequality, the inverse inequalites (8), and the fact that 휏‖퐟푘‖2 +휌⋆ ≤ ‖퐟‖2 +퐿2 +휌⋆(Ω). Hence, the claim +follows if we assume that +휏 +ℎ < +퐴1∕2 +min휌− +⋆ +푐inv휌− +⋆ +1∕2 + 푐2 +tr퐴1∕2 +min + 퐴1∕2 +min휌− +⋆ +1∕2 . +(15) +The same corollary to Brouwer’s fixed point theorem in addition implies that the solution is bounded, +‖τ푘 +휂‖2 + + ‖풗푘 +휂‖2 +휌⋆ ≤ ̂푐. +We remark that it is likely that existence of discrete solutions can be proved without assuming a condition like (15) by relying +on the equivalence of norms in finite dimensions and the fact that 휏 and ℎ are fixed. However, we choose to stick to the argument +presented above, since the condition (15) will appear once again in the next section where we analyse the stability of the numerical +scheme, for which uniform bounds are desirable. +Now, since the bounds are independent of the regularisation parameter 휂 in the first Heaviside function 퐻휂, the Heine– +Borel theorem implies that up to a subsequence, for every 푘 ∈ {1, … , 푇 ∕휏} the sequence of solutions τ푘 +휂 (here we make the +휂-dependence explicit) converges as 휂 → 0, +τ푘 +휂 → τ푘 +strongly in 퐿∞(Ω)푑×푑, +풗푘 +휂 → 풗푘 +strongly in 푊 1,∞(Ω)푑, +for some τ푘 ∈ Σℎ and 풗푘 ∈ 푉 ℎ. At this point we have used the fact that weak and strong convergence are equivalent in finite- +dimensional spaces. This implies in particular that 퐻휂(τ푘 +휂 ∶ ε(풗푘 +휂)) → 퐻(τ푘 ∶ ε(풗푘)) pointwise a.e. in Ω, and so the limiting +functions satisfy the system with the unregularised Heaviside function. +In summary, numerical solutions are guaranteed to exist, assuming the ratio 휏 +ℎ is small enough. We note also that very similar +arguments yield the existence of solutions for the displacement-temperature system (14). +Remark 2. We could also consider semi-implicit discretisation schemes such as +∫ +Ω +(d휏 +푡 τ푘) ∶ σ − ∫ +Ω +ε(풗푘) ∶ σ + ∫ +Ω +퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)ε(풗푘) ∶ σ = 0 +∀σ ∈ Σℎ, +∫ +Ω +휌⋆d휏 +푡 풗푘 ⋅ 풘 + ∫ +Ω +τ푘−1 ∶ ε(풘) = ∫ +Ω +휌⋆퐟푘−1 ⋅ 풘 + ∫ +휕Ω푁 +퐭푘−1 ⋅ 풘 +∀풘 ∈ 푉 ℎ, +(16) +and a similar analysis applies. The difference in this scheme compared to (13) is that here the velocity 풗푘 is computed first using +the information at time 푡푘−1 and the equation for τ푘 is solved afterwards. In the absence of plastic behaviour this results in a +symplectic scheme that conserves a (modified) energy. +Remark 3. A consequence of the fact that 햣햣햣(푉 ℎ) ⊂ Σℎ and that 푉 ℎ ⊂ 퐻1 +휕Ω퐷(Ω)푑 is that the following discrete inf-sup condition +holds: +inf +풘∈푉 ℎ sup +σ∈Σℎ +∫Ω σ ∶ ε(풘) +‖풘‖퐻1(Ω)‖σ‖2 +퐿2(Ω) +≥ 훾⋆ > 0. +(17) +where 훾⋆ > 0 is independent of ℎ; note that the above is then simply a reformulation of Korn’s inequality. The validity of (17) is +not essential for the analysis of the discrete problem (13), but it would be crucial if we were interested in solving the quasi-static +problem (i.e. without the time derivative ̇풗). +3.2 +Stability +Now we take a more careful look at the stability of the scheme. Let us first look at the continuous system (4). First we assume +that solutions are smooth enough so that all subsequent manipulations are well-defined in the classical sense. The multiplication + +AUTHOR ONE ET AL +7 +of the first equation in system (4) by 풗, the second by τ and integrating over Ω results in the energy balance in the form +1 +2 +d +d푡 +⎛ +⎜ +⎜⎝∫ +Ω +(τ) ∶ τ + 휌⋆|풗|2 +⎞ +⎟ +⎟⎠ ++ ∫ +Ω +퐻(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 +⋆)τ ∶ ε(풗) = ∫ +Ω +휌⋆퐟 ⋅ 풗 + ∫ +휕Ω푁 +퐭푏 ⋅ 풗. +(18) +If we follow the terminology used in[29], thus, if we denote the kinetic energy by 퐸kin(풗) ∶= ∫Ω +1 +2휌⋆|풗|2, the elastic potential +energy by 퐸int(τ) ∶= ∫Ω +1 +2(τ) ∶ τ, and the potential energy associated with the applied loads by 퐸ext(풖) ∶= − ∫Ω 휌⋆퐟 ⋅ 풖 − +∫휕Ω푁 퐭푏 ⋅ 풖, then the energy balance can be rewritten as +d +d푡 +[퐸kin(풗) + 퐸int(τ) + 퐸ext(풖)] = − ∫ +Ω +퐻(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 +⋆)τ ∶ ε(풗) ≤ 0. +(19) +Inspecting (19), it is clear that there is mechanical dissipation only when the material is being loaded and the yield stress has +been reached. Moreover, if we define the thermal energy as 퐸th(휃) ∶= ∫Ω 휌⋆푐푣휃, then integrating the temperature equation (6b) +and adding the result to (19), yields the total energy balance +d +d푡 +[퐸kin(풗) + 퐸int(τ) + 퐸ext(풖) + 퐸th(휃)] = 0. +(20) +The balance (20) highlights the fact that, as a consequence of the thermodynamically consistent derivation of the model, all +various energy dissipation mechanisms are accounted for in the model. +We now obtain an analogue of (19) at the discrete level. Choosing σ ∶= τ푘 and 풘 = 풗푘 in the numerical formulation (13), +and using the elementary identity (푎 − 푏)푎 = 1 +2푎2 − 1 +2푏2 + 1 +2|푎 − 푏|2 for two numbers 푎, 푏 ∈ R, yields for all 푘 ∈ {1, … , 푇 ∕휏} +the equality +1 +2휏 ‖풗푘‖2 +휌⋆ − 1 +2휏 ‖풗푘−1‖2 +휌⋆ + 1 +2휏 ‖τ푘‖2 + − 1 +2휏 ‖τ푘−1‖2 + + 1 +2휏 ‖풗푘 − 풗푘−1‖2 +휌⋆ ++ 1 +2휏 ‖τ푘 − τ푘−1‖2 + + ∫ +Ω +퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)ε(풗푘) ∶ τ푘 = ∫ +Ω +휌⋆퐟 ⋅ 풗푘 + ∫ +휕Ω푁 +퐭푏 ⋅ 풗푘. +Hence, if we define the numerical dissipation 푘 +휏 ∶= +1 +2휏 ‖풗푘 − 풗푘−1‖2 +휌⋆ + 1 +2휏 ‖τ푘 − τ푘−1‖2 +, then the equality just derived above +can be rewritten as +d휏 +푡 +[퐸kin(풗푘) + 퐸int(τ푘)] + 퐸ext(풗푘) = −푘 +휏 − ∫ +Ω +퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 +훿|2 − 휅2 +⋆)ε(풗푘) ∶ τ푘 ≤ 0. +(21) +This equality clearly mimics the continuous energy balance (19), except for the presence of the numerical dissipation term 푘 +휏. +Moreover, testing the temperature equation (14) with 휙 = 1 we also obtain the discrete total energy balance: +d휏 +푡 +[퐸kin(풗푘) + 퐸int(τ푘) + 퐸th(휃푘)] + 퐸ext(풗푘) = −푘 +휏 ≤ 0, +(22) +which is analogous to the total energy balance (20), up to numerical dissipation. +Remark 4. If we denote the piecewise-linear (in time) interpolant of the sequence {풗푘}푇 ∕휏 +푘=0 by ̃풗ℎ,휏 ∈ 퐶([0, 푇 ]; 푉 ℎ), then we see +that +1 +휏 ‖풗푘 − 풗푘−1‖2 +퐿2(Ω) = 휏 +‖‖‖‖‖ +휕 ̃풗ℎ,휏(푡푘 +−) +휕푡 +‖‖‖‖‖ +2 +퐿2(Ω) +, +and so if the problem satisfies appropriate regularity properties so that the norm on the right-hand-side is bounded, then it is +clear that the numerical dissipation term vanishes as 휏 → 0. Similar arguments apply to the stress. +Now, let us denote the piecewise-constant (in time) interpolant associated to the sequence {풗푘}푇 ∕휏 +푘=0 by 풗ℎ,휏 ∈ 퐿∞((0, 푇 ); 푉 ℎ), +and define τℎ,휏 analogously. Then, multiplying the discrete energy balance (22) by 2휏, using a similar argument to the one +employed in the previous section, and summing over 푘, we obtain the stability estimate +‖풗ℎ,휏‖2 +퐿∞(0,푇 ;퐿2 +휌⋆(Ω)) + ‖τℎ,휏‖2 +퐿∞(0,푇 ;퐿2 +(Ω)) + +푇 ∕휏 +∑ +푘=1 +휏푘 +휏 ≤ ‖풗0‖2 +휌⋆ + ‖τ0‖2 + + ‖퐟‖2 +퐿2 +휌⋆(푄) + ‖퐭푏‖2 +퐿2(0,푇 ;퐿2(휕Ω푁)), +(23) +where we assume that the condition (15) is satisfied. We remark here that analogous arguments apply to the displacement and +the temperature system (14). + +8 +AUTHOR ONE ET AL +Remark 5. From the inf-sup condition (17) we can also try to obtain a bound for the discrete velocities +휏‖풗푘‖퐻1(Ω) ≤ 휏 sup +σ∈Σℎ +∫Ω ε(풗푘) ∶ σ +‖σ‖퐿2(Ω) +≤ 퐴−1 +min(‖τ푘‖ + ‖τ푘−1‖) + 휏‖ε(풗푘)‖퐿2(Ω). +In the absence of plastic behaviour the last term is not present and this would imply, together with (23), that we can bound +uniformly ‖풗ℎ,휏‖퐿2(0,푇 ;퐻1(Ω)) in terms of the data; this is what would be expected in the linear elasticity model. However, in +general this only yields a bound for 풗ℎ,휏 in 퐿2(푄)푑, which does not improve (23). This lack of a priori boundedness of the +velocity gradients is what results in the restriction on the ratio 휏 +ℎ. +Remark 6. Note that +푇 ∕휏 +∑ +푘=1 +휏푘 +휏 = +푇 ∕휏 +∑ +푘=1 +‖풗푘 − 풗푘−1‖2 +휌⋆ + ‖τ푘 − τ푘−1‖2 + = ‖휕푡풗ℎ,휏‖(0,푇 ;퐿2 +휌⋆(Ω)) + ‖휕푡τℎ,휏‖(0,푇 ;퐿2 +(Ω)), +and so the discrete stability estimate (23) also yields a bound on the time derivatives of the approximate solutions; here +(0, 푇 ; 퐿2 +휌⋆(Ω)) denotes the space of Radon measures in time with values into 퐿2 +휌⋆(Ω). (The space (0, 푇 ; 퐿2 +(Ω)) is defined +analogously.) This is enough, for example by applying[26, Cor. 7.9]), to prove that as 휏 → 0, the solutions (τℎ,휏, 풗ℎ,휏) converge to +functions (τℎ, 풗ℎ) that solve the system +휌⋆ ̇풗ℎ − div τℎ = 휌⋆퐟 +in 푉 ℎ, +( ̇τℎ) = ε(풗)ℎ − 퐻(τℎ ∶ ε(풗)ℎ)퐻휖(|(τℎ)훿|2 − 휅2 +⋆)ε(풗)ℎ +in Σℎ. +(24) +Obtaining convergence as ℎ → 0 is a more delicate matter given the relatively weak bounds available to us (c.f. Remark 5). In +fact, at this point we face the lack of analytical results for a system of partial differential equations of the rate-type (4)—it is not +completely obvious what the proper notion of weak solution should be. Conceivably, this problem could become more tractable +by introducing hardening into the model, and then the solutions for the perfect plasticity model would be obtained in a vanishing +hardening limit; this will be the subject of future research. +4 +NUMERICAL EXPERIMENTS +We now implement the discrete formulations (13) and (14) to illustrate that they indeed capture the behaviour expected from the +model. We first implement the problem in one spatial dimension, and we show that the mechanical response is as expected during +one loading-unloading cycle. Subsequently we implement the problem describing a two dimensional plate with an elliptical hole. +The nonlinear systems for the stress and velocity at each time step are handled with Newton’s method supplemented with the +error oriented line search NLEQERR from PETSc[2]; the absolute and relative tolerances for the nonlinear solver are set to 10−6. +The linear systems at each Newton step are solved using the LU factorisation algorithm from MUMPS[1]; the linear systems for +the displacement and the temperature are solved in turn using MUMPS as well. Everything is implemented through the finite +element software firedrake[24]; the code used to implement the computational experiments, including the exact components of +firedrake that have been employed, has been archived in Zenodo (https://zenodo.org/record/7342357)[33] for reproducibility +purposes. +4.1 +One dimensional mechanical response +We solve the problem on the unit interval Ω = (0, 1) and for times 푡 ∈ [0, 1]. (If not stated otherwise all physical quantities are +given in the SI base units or use combination thereof.) We impose boundary conditions on the displacement: +푢(푡, 0) = −푢(푡, 1) ∶= +{ +− 1 +10푒1+ +1 +4푡(푡−1) 푡 ∈ (0, 1). +0 +otherwise. +(25) +This describes loading for 푡 ∈ (1, 1 +2) s and unloading otherwise. Since the problem is one-dimensional, we denote the scalar +displacement, stress and strain are denoted by 푢, 휎, and 휀, respectively. We set the Young modulus to E = 104 Pa. (The values +of physical constants are in this example entirely artificial.) We employ a simple continuation algorithm with respect to 휖 to +produce better initial guesses for Newton’s method; for instance, the problem is solved with a larger (and thus easier) value for 휖 +and the solution is used as an initial guess for the problem with regularisation parameter 휖 −훿휖 until the desired value is reached. + +AUTHOR ONE ET AL +9 +(a) Stress-strain response +(b) Maximum stress +Figure 2 Mechanical response at 푋 = 0.75 m for the problem with 휅⋆ = 107 Pa. +(a) Heaviside function 퐻(1) +휖 , 휖 = 10 +(b) Heaviside function 퐻(1) +휖 , 휖 = 200 +Figure 3 Stress-strain response at 푋 = 0.75 m for the problem with 휅⋆ = 80 Pa. +Figure 2 shows the stress-strain response at the point 푋 = 0.75 m with a very large yield-stress 휅⋆ = 107 Pa; the problem is +solved with 482 spatial degrees of freedom and a time step 휏 = 5 × 10−4 s; a plot of the maximum stress ‖휎‖퐿∞(Ω) with respect +to time is also shown for reference. This is simply a sanity check to verify that the solution of our proposed numerical scheme +behaves as expected; namely, the solution exhibits solely elastic behaviour. +The same problem is subsequently solved for the yield stress of 휅⋆ = 80 Pa with different values of 휖; the stress-strain +relations are shown in Figure 3. The values of the maximum stress are plotted in Figure 4 for different values of 휖 and the +different approximations/regularisations of the Heaviside function. We observe that the numerical solutions capture the expected +elastic–perfectly plastic behaviour during one loading-unloading cycle. We also observe for large 휖 a non-sharp yield transition; +depending on which Heaviside approximation we employ, the computed stress can be allowed to go slightly beyond 휅⋆, but this +effect disappears as 휖 decreases; in this regard we observe that the regularisation 퐻(2) +휖 +based on the hyperbolic tangent is the one +that violates the constraint the least. + +200 +160 +120 +b +80 +40 +loading +unloading +0 +0.000 +0.004 +0.008 +0.012 +0.016 +0.020 +[3 ]200 +160 +?120 +)αT +b +80 +40 +loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +40 +20 +b +0 +-20 +-40 +-60 +loading +-80 +-×-- +unloading +0.000 +0.004 +0.008 +0.012 +0.016 +0.02080 +60 +40 +20 +b +0 +-20 +-40 +-60 +loading +-80 +unloading +0.000 +0.004 +0.008 +0.012 +0.016 +0.02010 +AUTHOR ONE ET AL +(a) Heaviside function 퐻(1) +휖 , 휖 = 10 +(b) Heaviside function 퐻(1) +휖 , 휖 = 100 +(c) Heaviside function 퐻(2) +휖 , 휖 = 10 +(d) Heaviside function 퐻(2) +휖 , 휖 = 100 +(e) Heaviside function 퐻(3) +휖 , 휖 = 10 +(f) Heaviside function 퐻(3) +휖 , 휖 = 100 +Figure 4 Maximum stress over time for the problem with 휅⋆ = 80 Pa, and various approximations of the Heaviside function. + +80 +60 +()T / +40 +b +20 +--.-- +loading +11×1 +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +(U)αT +40 +b +20 +--.-- loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +()T / +40 +b +20 +--o-- loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +(U)αT +40 +b +20 +--.-- loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +(U)αT +:40 +b +20 +--.-- loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +t80 +60 +()T / +40 +b +20 +--.-- loading +unloading +0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +tAUTHOR ONE ET AL +11 +x +l +L +2a +2b +P(t) +P(t) +y +Figure 5 Square domain with an elliptical hole. +4.2 +2D plate with an elliptical hole +The problem is solved on the two-dimensional domain (− 퐿 +2 , 퐿 +2 ) × ( −푙 +2 , −푙 +2 ), in which an elliptical hole is made, with semi-minor +and semi-major axis of lengths 푎 and 푏, respectively (see Figure 5); in the implementation we choose 퐿 = 푙 = 1 m, 푎 = 0.3 m, +and 푏 = 0.5 m. We consider homogeneous Neumann boundary conditions for the temperature, while on the left and right +boundaries and on the elliptical boundary we prescribe homogeneous natural boundary conditions for the mechanical problem, +while on the top and bottom we apply a time-dependent traction 푃 (푡) in the vertical direction. This traction is meant to represent +one loading-unloading cycle, and its magnitude taken to be a bump function +푃 (푡) ∶= +{ +20푒1+ +1 +4푡(푡−1) 푡 ∈ (0, 1), +0 +otherwise. +Concerning the initial conditions we assume that the body of interest is initially in the stress-free state and that the initial +displacement is equal to zero. The initial temperature distribution is homogeneous in space, and in what follows we report only +temperature changes with respect to this initial state. +Concerning the material parameters we take the values E = 104 Pa, 휈 = 0.3, 휅⋆ = 1 Pa, 휅th = 1W ⋅ m−1 ⋅ K−1, and +푐푣 = 1 J ⋅ kg−1 ⋅ K−1. (These parameter values are again artificial, we do not aim at a particular set of parameter values for a +real material.) The problem is solved with a time step of 휏 = 5 × 10−4 s, 1.52 × 105 degrees of freedom for the stress-velocity +problem (13) and 5.8 × 104 degrees of freedom for the displacement-temperature problem (14). We employ the first Heaviside +regularisation 퐻(1) +휖 +with the regularisation parameter fixed as 휖 = 100. +Figure 6 shows plots of the magnitude of the deviatoric part of the stress τ훿, for the elastic problem and the problem with 휅⋆; +the domain is deformed according to the solution for the displacement. (The deformation is magnified 15 times.) We observe +stresses concentrating on the sides of the elliptical hole. Note that the stress reaches much higher values in the elastic case. +Figure 7 shows the solution at the final time 푡 = 1 s; in the elastic case the strain is practically zero, while in the plastic case +there is still a residual strain on the sides of the elliptical hole. +The evolution of the temperature difference 휃 with respect to the initial temperature is shown in Figure 8, along with plots of +the function 퐻휖(|τ훿|2−휅2 +⋆), which allows us to track whether the yield criterion is satisfied. In Figure 8 we observe the behaviour +expected from the model; namely, the regions where the stress concentrates—and where the yield criterion is satisfied—act as +a heat source for the temperature field. Note that without this heat source the temperature field would be otherwise identically +zero, thanks to the boundary conditions. Moreover, we also see in Figure 8 (F) that at time 푡 = 0.54 s there is no longer a heat +source for the temperature field, since at this time the loading criterion τ ∶ ε > 0 is not satisfied. + +12 +AUTHOR ONE ET AL +(a) 푡 = 0 s +(b) 푡 = 0 s +(c) 푡 = 0.25 s +(d) 푡 = 0.25 s +(e) 푡 = 0.5 s +(f) 푡 = 0.5 s +Figure 6 Magnitude of τ훿 for the elastic problem with 휅⋆ = 107 Pa (right) and the problem with 휅⋆ = 60 Pa (left). + +65 +60 +55 +50 +45 +40 +35 +30 +25 +20 +15 +10 +5 +0110 +100 +06 +80 +70 +60 +. 50 +40 +.30 +20 +1065 +60 +55 +50 +45 +40 +一 +35 +一 +30 +一 +25 +20 +15 +10 +5 +0110 +100 +90 +80 +70 +60 +50 +40 +一 +30 +20 +1065 +60 +55 +50 +45 +40 +一 +35 +一 +30 +25 +20 +15 +10 +5 +0110 +100 +90 +一 +80 +70 +60 +50 +40 +一 +30 +20 +10AUTHOR ONE ET AL +13 +(a) 휅⋆ = 60 Pa, 푡 = 1 s +(b) 휅⋆ = 107 Pa, 푡 = 1 s +Figure 7 Magnitude of ε at the final time near the interior hole. +5 +CONCLUDING REMARKS +The family of models stemming from the simple rate-type equation (1) provides a novel approach to the modelling of inelastic +response. Starting with the introduction of the simple rate-type equation (1) in[22], several variants and generalisation of (1) have +been investigated, see, for example,[23], and a thermodynamical framework for some of these models have been successfully +developed even in the finite deformations setting, see[6]. (For another treatment of rate-type models from a thermodynamic point +of view see also[10] and the discussion in[15] based on the concept of internal variables, to name a few.) Furthermore, the models +in this class have also been employed in modelling the response of various materials, see[32],[20],[19] [28] and[4]. We have focused +on a generalisation of (1) that describes the standard elastic–perfectly plastic response. +In particular, we have investigated numerical schemes for the solution of the corresponding governing equations (4) and (6) +respectively. Given the novelty of the model, the mathematical theory for the corresponding model is clearly underdeveloped +compared to the mathematical theory for the classical models of elastic–perfectly plastic behaviour, see, for example,[8],[29] +or[18]. From this perspective, it might seem useless to develop yet another variant of mathematical theory for the standard elastic– +perfectly plastic response. However, our analysis serves a different purpose. We focus on a prototypical example of a rate-type +evolution equation for a rate-independent process, and our objective is to investigate the viability of the rate-type models based +approach. Naturally, the vision is to continue with numerical analysis of more involved models for inelastic responses that go +beyond the standard elastic–perfectly plastic response. +The considered model for elastic–perfectly plastic response is from the physical point of view conceptually very clean and +simple, and this transfers to the numerical analysis as well. The model is amenable to standard discretisation techniques, and +we show that the “straightforward” finite element discretisation of the model inherits directly the energy stability properties +of the continuous model. Furthermore, since the model possesses a solid thermodynamical basis, we can also compute the +evolution of the temperature field. (Concerning the temperature evolution, our model is a simple one, the thermal response related +to the plastic deformation can be more complicated, see[25] and subsequent works.) Finally, we show that—up to numerical +dissipation—all the energy budget of the system is accounted for. The numerical analysis is documented by an implementation +of the proposed scheme. +The analysis shows that the rate-type model under consideration is numerically tractable. From a broader perspective this +suggests that the modelling of inelastic rate-independent phenomena via the rate-type models might be—from the theoretical +numerical analysis point of view—feasible as well. In particular numerical schemes for models describing complex inelastic +phenomena such as Mullins effect, see[7] for a general discussion and[5] for a rate-type model, might be of interest in this regard. + +0 +0.002 +0.004 +0.006 +0.008 +0.010 +0.002 +0.004 +0.006 +0.008 +0.0114 +AUTHOR ONE ET AL +(a) 푡 = 0 s +(b) 푡 = 0 s +(c) 푡 = 0.375 s +(d) 푡 = 0.375 s +(e) 푡 = 0.54 s +(f) 푡 = 0.54 s +Figure 8 Plot of the temperature difference 휃 with respect to the initial state (right) and 퐻휖(|τ훿|2 − 휅2 +⋆) (left) for the problem +with 휅⋆ = 60 Pa. + +1.0 +0.95 +0.9 +0.85 +0.8 +0.75 +0.7 +0.65 +0.6 + 0.55 + 0.5 +0.45 + 0.4 +0.35 + 0.3 +0.25 + 0.2 +0.15 + 0. 1 +0.05 +0.0-0.005 +0.0045 +0.004 +0.0035 +0.003 +0.0025 +0.002 +0.0015 +0.001 +0.00051.0 +0.95 +0.9 +0.85 +- 0.8 +0.75 +- 0.7 +0.65 +0.6 +0.55 +- 0.5 + 0.45 +- 0.4 +0.35 + 0.3 +0.25 + 0.2 + 0.15 + 0. 1 +0.05 +0.0-0.005 +0.0045 +0.004 +0.0035 +0.003 +0.0025 +0.002 +0.0015 +0.001 +0.0005 +01.0 +0.95 +0.9 +0.85 +- 0.8 +0.75 +- 0.7 +0.65 +0.6 +0.55 +- 0.5 + 0.45 +- 0.4 +0.35 + 0.3 +0.25 + 0.2 + 0.15 + 0. 1 +0.05 +0.0 0.005 +0.0045 +0.004 +0.0035 +0.003 +0.0025 +0.002 +0.0015 +.0.001 +0.0005 +0AUTHOR ONE ET AL +15 +References +[1] P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent. A fully asynchronous multifrontal solver using distributed +dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2001. +[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijhout, W. D. Gropp, D. Kaushik, +M. G. Knepley, L. C. McInnes, K. Rupp, S. Smith, B. F. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Tech. +Report ANL–95/11–Revision 3.8, Argonne National Laboratory, 2017. http://www.mcs.anl.gov/petsc. +[3] Otto T. Bruhns. History of plasticity. In Holm Altenbach and Andreas Öchsner, editors, Encyclopedia of Continuum +Mechanics, pages 1–61. Springer, Berlin, 2018. +[4] R. Bustamante and K. R. Rajagopal. +A three-dimensional implicit constitutive relation for a body exhibiting stress +softening: Part I – theoretical underpinnings. Acta Mech., 233(7):2541–2559, 2022. +[5] D. Cichra, P. A. Gazca-Orozco, V. Průša, and K. Tůma. A thermodynamic framework for non-isothermal phenomenolog- +ical models of Mullins effect. ArXiv Preprint: 2209.09148, 2022. +[6] D. Cichra and V. Průša. A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response +of solids undergoing finite deformation. Math. Mech. Solids, 25(12):2222–2230, 2020. +[7] Julie Diani, Bruno Fayolle, and Pierre Gilormini. A review on the Mullins effect. Eur. Polym. J., 45(3):601–612, 2009. +[8] G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics. Springer, 1976. +[9] A. Ern and J-L. Guermond. Finite Elements I: Approximation and Interpolation, volume 72. Springer Nature, 2021. +[10] C. Giorgi and A. Morro. A thermodynamic approach to rate-type models of elastic-plastic materials. J. Elast., 147:113–148, +2021. +[11] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer +Verlag, 1986. +[12] K. Hashiguchi. Nonlinear continuum mechanics for finite elasticity–plasticity. Elsevier, 2020. +[13] Koichi Hashiguchi. +Elastoplasticity theory, volume 69 of Lecture Notes in Applied and Computational Mechanics. +Springer, Berlin, 2nd edition, 2014. +[14] Koichi Hashiguchi. Foundations of elastoplasticity: subloading surface model. Springer, 3rd edition, 2017. +[15] G. T. Houlsby and A. M. Puzrin. Principles of hyperplasticity: An approach to plasticity theory based on thermodynamic +principles. Springer, London, 2006. +[16] M. Ismail, F. Ikhouane, and J. Rodellar. The hysteresis Bouc–Wen model – A survey. Arch. Comput. Methods Eng., +16(2):161–188, 2009. +[17] D. Jarecki, A. R. Srinivasa, and N. Iyyer. +Rate-independent elasto-plastic materials—a brief history and some new +developments. Int. J. Adv. Eng. Sci. Appl. Math., 13(1):3–17, 2021. +[18] Martin Kružík and Tomáš Roubíček. Mathematical methods in continuum mechanics of solids. Interaction of Mechanics +and Mathematics. Springer, 2019. +[19] F. Mozafari, P. Thamburaja, N. Moslemi, and A. Srinivasa. +Finite-element simulation of multi-axial fatigue loading +in metals based on a novel experimentally-validated microplastic hysteresis-tracking method. Finite Elem. Anal. Des., +187:103481, 2021. +[20] F. Mozafari, P. Thamburaja, A.R. Srinivasa, and N. Moslemi. A rate independent inelasticity model with smooth transition +for unifying low-cycle to high-cycle fatigue life prediction. Int. J. Mech. Sci., 159:325–335, 2019. + +16 +AUTHOR ONE ET AL +[21] Jin-Song Pei, François Gay-Balmaz, Darby J Luscher, James L Beck, Michael D Todd, Joseph P Wright, Yu Qiao, Marco B +Quadrelli, Chuck R Farrar, and Nicholas AJ Lieven. Connecting mem-models with classical theories. Nonlinear Dyn., +103(2):1321–1344, 2021. +[22] K. R. Rajagopal and A. R. Srinivasa. Inelastic response of solids described by implicit constitutive relations with nonlinear +small strain elastic response. Int. J. Plast., 71:1–9, 2015. +[23] K. R. Rajagopal and A. R. Srinivasa. An implicit three-dimensional model for describing the inelastic response of solids +undergoing finite deformation. Z. angew. Math. Phys., 67(4):86, 2016. +[24] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G-T. Bercea, G. R. Markall, and P. H. J. Kelly. +Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw., 43(3), 2016. +[25] P. Rosakis, A.J. Rosakis, G. Ravichandran, and J. Hodowany. A thermodynamic internal variable model for the partition +of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids, 48(3):581–607, 2000. +[26] T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, second edition, 2013. +[27] Souhayl Sadik and Arash Yavari. On the origins of the idea of the multiplicative decomposition of the deformation gradient. +Math. Mech. Solids, 22(4):771–772, 2017. +[28] U. Saravanan, K. R. Rajagopal, R. M. Tom, and K. Bharadwaj. A model for a solid undergoing rate-independent dissipative +mechanical processes. Math. Mech. Solids, 26(2):230–243, 2021. +[29] J. C. Simo and T.J. R. Hughes. Computational Inelasticity, volume 7. Springer Science & Business Media, 2006. +[30] David J. Steigmann. A primer on plasticity, pages 125–153. Springer, Cham, 2020. +[31] A. Visintin. Differential models of hysteresis, volume 111 of Applied Mathematical Sciences. Springer, Berlin, 1994. +[32] Zhujiang Wang, Arun R. Srinivasa, K. R. Rajagopal, and J. N. Reddy. Simulation of inextensible elasto-plastic beams +based on an implicit rate type model. Int. J. Non-Linear Mech., 99:165–172, 2018. +[33] Software used in ‘Numerical approximation of a thermodynamically complete rate-type model for the elastic–perfectly +plastic response’, https://zenodo.org/record/7342357, 2022. + diff --git a/_9E1T4oBgHgl3EQfowSL/content/tmp_files/load_file.txt b/_9E1T4oBgHgl3EQfowSL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2b04a49f4b8e82528f7397494505ebac00f6033f --- /dev/null +++ b/_9E1T4oBgHgl3EQfowSL/content/tmp_files/load_file.txt @@ -0,0 +1,843 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf,len=842 +page_content='Received: Added at production Revised: Added at production Accepted: Added at production DOI: xxx/xxxx ARTICLE TYPE Numerical approximation of a thermodynamically complete rate-type model for the elastic–perfectly plastic response Pablo Alexei Gazca-Orozco*1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 | Vít Průša2 | Karel Tůma2 1Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' University of Freiburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ernst-Zermelo-Straße,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 79104,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Freiburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Germany 2Charles University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Faculty of Mathematics and Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Sokolovská 83,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Praha,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' CZ 186 75,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Czech Republic Correspondence Pablo Alexei Gazca–Orozco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' University of Freiburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ernst-Zermelo-Straße,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 79104,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Freiburg,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Email: alexei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='gazca@mathematik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='uni-freiburg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='de Abstract We analyse a numerical scheme for a system arising from a novel description of the standard elastic–perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The elastic–perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Furthermore, the model naturally includes the evolution equation for temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We present a low order discretisation based on the finite element method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Under certain restrictions on the mesh we subsequently prove the existence of discrete solu- tions, and we discuss the stability properties of the numerical scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The analysis is supplemented with computational examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' KEYWORDS: Rate-type constitutive relations, perfect plasticity, finite element method, thermodynamically consistent models 1 INTRODUCTION The rate-independent hysteretic response is frequently encountered in various engineering applications such as electrical engi- neering, geomechanics and mechanical engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Each of these research communities have developed its own approaches to the modelling of the hysteretic response, see[31],[16] and[21] for a list of various hysteretic models and a discussion of their relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In solid mechanics the prime example of a rate-independent hysteretic response is the elastic-plastic response, see for example[3] and[17] for comments on the historical development of plasticity theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the present contribution we work with a novel model for the standard elastic–plastic response, see[22,23] and[6], and we focus on mathematical aspects of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular we prove solvability of the corresponding spatially discretised system of governing partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Before we proceed with the numerical analysis, let us briefly comment on the status of the considered model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Concerning the elastic–plastic response of metals, the predominant modelling approach is based on the concepts of the elastic–plastic decomposition, the flow rule and the yield condition, which in turn leads to a characterisation of the elastic–plastic response using the concepts of optimisation theory, see especially[29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Concerning the elastic-plastic response of non-metallic materials such as soils, the situation is different, see, for example,[13, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 8] for a critical review of some popular models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' These materials typically exhibit “diffuse yielding behaviour”, see[17] and the discussion therein, which means that the transition from the elastic to the plastic regime is not sharp, but it progresses gradually, hence the concept of sharp yield condition must be abandoned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In this case the elastic–plastic response is typically modelled using rate-type equations designed in such a way that the whole model still predicts the rate-independent behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We shall investigate the family of models introduced in[22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This class of models belongs to the class of rate-type models, but it goes one step further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' It also abandons the concept of elastic–plastic decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular, the models do not use the traditional concept of strain decomposition to the elastic and plastic part, see[27] or[30] and references therein;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the models arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='03324v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='NA] 9 Jan 2023 2 AUTHOR ONE ET AL stemming from[22] work with the stress and the strain only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In a one-dimensional setting the stress–strain relation is given by the rate-type equation d휎 d푡 = E [ 1 − 퐻 ( 휎 d휀 d푡 ) 퐻 ( |휎| − 휎푦 )] d휀 d푡 , (1) where 휎 denotes the stress, 휀 denotes the strain, 휎푦 denotes the yield stress, E denotes the Young modulus and 퐻 denotes the Heaviside step function (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (Compare with the standard models that lead to optimisation problems, see[29, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') The rate-type stress–strain relation (1) is clearly rate-independent, and it leads to the standard elastic–perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Indeed, if the yield stress is reached, |휎| = 휎푦, and if the material is being loaded, 휎 d휀 d푡 ≥ 0, then (1) reduces to d휎 d푡 = 0, (2) hence the stress 휎 remains constant and equal to the yield stress value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This is the plastic flow regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' On the other hand, if the stress is below the yield stress value, |휎| < 휎푦, or if the material is being unloaded, 휎 d휀 d푡 < 0, then (1) reduces to d휎 d푡 = E d휀 d푡 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (3) This is the standard elastic response rewritten in terms of rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Indeed, equation (3) is just the time derivative of Hooke law 휎 = E 휀.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Once we have (2) and (3), it is straightforward to see that the cyclic change of strain leads to the standard hysteretic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' An important feature of the model (1) is that the second Heaviside function 퐻 ( |휎| − 휎푦 ) can be replaced by a smoothed version thereof, which allows one to easily deal with the “diffuse yielding behaviour”, see[22] and for further comments also[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Furthermore, the family of one-dimensional models based on the rate-type equation (1) can be extended to the fully three- dimensional finite deformations setting, see[23] and[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Finally, the finite deformation version of the models can be shown to be thermodynamically consistent, see[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This implies that the energy conversions in the material are fully characterised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular, the heat generated in the inelastic processes is known, and the models allow one to study fully coupled thermomechanical processes in the finite strain setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Despite their importance, such coupled thermomechanical processes are rarely studied, especially in the case of rate-type models for soils, see[12–14], and the situation is only slightly better for metals, see[25] for an early example thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the present work, we focus on a model of type (1) that arises in the small strain approximation of a finite deformation model based on (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The model is described in[6], and it focuses on the core features of elastic–plastic material response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The model is a simple model without additional subtleties such as the kinematic/isotropic hardening and so forth, and as such the model is perfect for a proof-of-concept numerical analysis of this class of models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular, we prove solvability of the equations arising from the spatial discretisation of the corresponding partial differential equations, and we also investigate stability properties of the corresponding numerical scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 2 MODEL DESCRIPTION Let the computational domain Ω—which is tantamount to the reference stress-free configuration of the body of interest—be an open bounded subset of R푑, with 푑 ∈ {2, 3}, whose boundary 휕Ω is Lipschitz, and it is disjointly divided into a Dirichlet (displacement) 휕Ω퐷 and a Neumann (traction) 휕Ω푁 component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' As shown in[6] the standard elastic–perfectly plastic response with von Mises yield criterion in the small strain regime can be described by the following system of equations posed on the space-time domain 푄 ∶= (0, 푇 ) × Ω: 휌⋆ ̇풗 − div τ = 휌⋆퐟 in (0, 푇 ) × Ω, (4a) 1 E ((1 + 휈) ̇τ − 휈(tr ̇τ)I) = ̇ε − 퐻(τ ∶ ̇ε)퐻(|τ훿|2 − 휅2 ⋆) ̇ε in (0, 푇 ) × Ω, (4b) plus initial conditions 풗(0, ⋅) = 풗0(⋅) and τ(0, ⋅) = τ0, and boundary conditions 풗|휕Ω퐷 = 풗푏 and τ풏|휕Ω푁 = 퐭푏, where (휕Ω퐷) ∪ 휕Ω푁 = 휕Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Here 풖 denotes the displacement, ε = ε(풖) ∶= 1 2(∇풖 + ∇풖⊤) denotes the linearised strain operator (infinitesimal strain tensor), τ denotes the stress tensor, and A훿 ∶= A − 1 푑 tr(A)I denotes the traceless part of the corresponding tensor A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The symbol AUTHOR ONE ET AL 3 (A ∶ B) ∶= tr ( ABT) denotes the matrix scalar product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The function 퐻 is the classical Heaviside function, defined as 퐻(푠) ∶= { 1, 푠 ≥ 0, 0, 푠 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (5) All the quantities of interest are functions of the position in the reference configuration 퐗 ∈ Ω and time 푡 ∈ (0, 푇 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the dot represents the time derivative ̇A ∶= 휕 휕푡A(푡, 퐗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The symbols E , 휈, 휅⋆ denote material parameters, namely Young modulus, Poisson ratio, and yield stress;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the density in the reference configuration is denoted by 휌⋆ and we assume that 휌⋆ ≥ 휌− ⋆, for some positive constant 휌− ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The first equation (4a) represents balance of momentum, and the second equation (4b) is the rate-type constitutive relation for the elastic–perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Since in the small strain regime we have ̇ε = ε(풗), we see that the system (4) is a system of evolution equations for the velocity field 풗 and the stress tensor τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The displacement 풖 and temperature 휃 can be computed post-hoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Once the stress τ and the velocity 풗 fields are known, it remains to solve ̇풖 = 풗 in (0, 푇 ) × Ω, (6a) 휌⋆푐푣 ̇휃 − div(휅th∇휃) = 퐻(τ ∶ ̇ε)퐻(|τ훿|2 − 휅2 ⋆)τ ∶ ̇ε in (0, 푇 ) × Ω, (6b) for 풖 and 휃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Here 푐푣 denotes the specific heat capacity at constant volume, and 휅th is the thermal conductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The boundary conditions for the displacement are chosen to be consistent with those of 풗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' if 풖|휕Ω퐷 = 풖푏 then 풗|휕Ω퐷 = 풗푏 ∶= ̇풖푏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' For the temperature we impose the no-flux boundary condition, that is ∇휃 ⋅ 풏|휕Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' One of the challenging aspects of system (4) is the presence of the Heaviside function, since then one has to deal with a differential equation with a discontinuous nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' To alleviate this difficulty, we will employ a non-sharp yield condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (In the terminology used in[17] this is tantamount to the “diffusive yielding behaviour”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') The non-sharp yield condition means that the last term in (4b) is substituted by 퐻(τ ∶ ̇ε)퐻휖(|τ훿|2 −휅2 ⋆) ̇ε, where 퐻휖 is a regularised version of the Heaviside function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We consider three different options in this work, namely 퐻(1) 휖 (푠) ∶= 1 2 + 1 2 푠 휖 √ 1 + ( 푠 휖)2 휖 > 0, 푠 ∈ R, (7a) 퐻(2) 휖 (푠) ∶= 1 2 + 1 2 tanh (푠 휖 ) 휖 > 0, 푠 ∈ R, (7b) 퐻(3) 휖 (푠) ∶= 1 2 + 1 휋 arctan (푠 휖 ) 휖 > 0, 푠 ∈ R, (7c) where 휖 is the regularisation parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The qualitative one-dimensional behaviour during loading and unloading, for the stress 휎 and strain 휖, that can be described by the non-sharp yield condition is depicted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (The magnitude of the regularisation parameter 휖 controls the “sharpness” of the corner on the loading curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') We reiterate that the regularisation is in some physically relevant cases not artificial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In fact many materials exhibit such non-sharp yield conditions, see[17] and the discussion therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The freedom to model such non-sharp/diffusive yield condition is an advantage of the approach presented here, in contrast with the more widely used rate-independent models, where modelling non-sharp yield conditions is more cumbersome, see again[17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 3 DISCRETE FORMULATION We employ the standard notation for Lebesgue spaces (퐿푝(Ω), ‖⋅‖퐿푝(Ω)) and Sobolev spaces (푊 1,푝(Ω), ‖⋅‖푊 1,푝(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Let {\ue240ℎ}ℎ>0 be a family of shape-regular triangulations of Ω associated to a sequence of mesh sizes ℎ → 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' we assume here that Ω is a Lipschitz domain with polyhedral boundary, and also for simplicity we assume that the mesh is quasi-uniform, which implies that following inverse inequalites are available[9], ‖∇풗‖퐿2(Ω) ≤ 푐invℎ−1‖풗‖퐿2(Ω) ∀풗 ∈ 푉 ℎ, (8a) ‖풗‖퐿2(휕Ω) ≤ 푐trℎ−1∕2‖풗‖퐿2(Ω) ∀풗 ∈ 푉 ℎ, (8b) 4 AUTHOR ONE ET AL 휀 휎 휅⋆ Figure 1 Non-sharp yield condition obtained as a consequence of a regularised Heaviside function 퐻휀.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' where 푐inv, 푐tr > 0 are positive constants independent of ℎ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' this quasi-uniformity assumption is not crucial, if desired one can apply instead local inverse inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The finite element spaces for the stress and velocity are chosen as Σℎ = {\ue1a8\ue1a8\ue1a8 ∈ 퐿∞(Ω)푑×푑 sym ∶ \ue1a8\ue1a8\ue1a8|퐾 ∈ P0(퐾)푑×푑 sym, ∀퐾 ∈ \ue240ℎ} = DG(0)푑×푑 sym, 푉 ℎ = {풗 ∈ 푊 1,∞(Ω)푑 ∶ 풗|퐾 ∈ P1(퐾)푑, ∀퐾 ∈ \ue240ℎ, 풗|휕Ω퐷 = ퟎ}, that is, piecewise-linear Lagrange elements for the velocity and piecewise-constant approximations for the stress;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' here P푞(퐾) denotes the set of polynomials of degree at most 푞 on an element 퐾 ∈ \ue240ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Since we are interested in approximating discontinuous terms, it is natural to employ lower order approximations, because higher degree polynomials could, in the absence of for example adaptivity, lead to unwanted oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' For later use it is convenient to define the compliance operator \ue22d∶ R푑×푑 sym → R푑×푑 sym as \ue22d(σ) ∶= 1 E ((1 + 휈)σ − 휈(tr σ)I), σ ∈ R푑×푑 sym.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (9) that is \ue22d = C−1, where C is the standard linear elasticity tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Since \ue22d is positive definite, we can use it to define a norm on the space of discrete stresses Σℎ: ‖σ‖2 \ue22d ∶= ∫ Ω \ue22dσ ∶ σ, σ ∈ Σℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (10) This norm is clearly equivalent to the 퐿2-norm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' namely, 퐴min‖σ‖2 퐿2(Ω) ≤ ‖σ‖2 \ue22d ≤ 퐴max‖σ‖2 퐿2(Ω), where 퐴min and 퐴max denote the minimum and maximum eigenvalues of \ue22d, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Similarly, we equip the velocity space 푉 ℎ with the weighted norm ‖풗‖2 휌⋆ ∶= ∫ Ω 휌⋆풗 ⋅ 풗, 풗 ∈ 푉 ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (11) The corresponding weighted spaces of square integrable functions at the continuous level will be denoted by 퐿2 휌⋆(Ω) and 퐿2 \ue22d(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Concerning the discretisation in time, we choose a time-step 휏 > 0, and we define a uniform time grid 푡푘 ∶= 푘휏, for 푘 ∈ {1, … , 푇 ∕휏}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (We can without loss of generality assume that 푇 ∕휏 ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') The system of governing equations is then discretised in time with the implicit Euler method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' given a family of functions {풗푘}푘∈{0,…,푇 ∕휏} we define the discrete time derivative operator (or temporal difference quotient) as d휏 푡 풗푘 ∶= 풗푘 − 풗푘−1 휏 , 푘 ∈ {1, … , 푇 ∕휏}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (12) Now we are in the position to formulate a time-stepping scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We assume that the boundary datum 풗푏 can be seen as the restriction of some CG(1) function on Ω, which we still denote by 풗푏, and we set τ0 ∶= τ0 and 풗0 ∶= 풗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the finite element formulation, assuming that approximations τ푘−1 ∈ Σℎ and 풗푘−1 ∈ 풗푏 + 푉 ℎ at time 푡푘−1 have already been found, we look for (τ푘 ℎ,휏,휖, 풗푘 ℎ,휏,휖) ∶= (τ푘, 풗푘) ∈ Σℎ × (풗푏 + 푉 ℎ) such that ∫ Ω \ue22d(d휏 푡 τ푘) ∶ σ − ∫ Ω ε(풗푘) ∶ σ + ∫ Ω 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)ε(풗푘) ∶ σ = 0 ∀σ ∈ Σℎ, ∫ Ω 휌⋆d휏 푡 풗푘 ⋅ 풘 + ∫ Ω τ푘 ∶ ε(풘) = ∫ Ω 휌⋆퐟푘 ⋅ 풘 + ∫ 휕Ω푁 퐭푘 푏 ⋅ 풘 ∀풘 ∈ 푉 ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (13) AUTHOR ONE ET AL 5 Here 퐟푘 and 퐭푘 푏 are approximations of 퐟 and 퐭푏 at time 푡 = 푡푘, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' if 퐟 and 퐭 continuous, we can set 퐟푘(⋅) ∶= 퐟(푡푘, ⋅) and 퐭푘 푏 (⋅) ∶= 퐭푏(푡푘, ⋅).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The displacement and temperature problems (6) are be discretised with piecewise linear Lagrange elements, that is the spaces of discrete displacements 푈 ℎ and discrete temperatures Θℎ are defined as 푈 ℎ = {풖 ∈ 푊 1,∞(Ω)푑 ∶ 풖|퐾 ∈ 푃1(퐾)푑, ∀퐾 ∈ \ue240ℎ, 풖|휕Ω퐷 = ퟎ}, Θℎ = {휃 ∈ 푊 1,∞(Ω) ∶ 휃|퐾 ∈ 푃1(퐾), ∀퐾 ∈ \ue240ℎ} = CG(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the discrete formulation we set 풖0 ∶= 풖0 and 휃0 ∶= 휃0, and for 푘 ∈ {1, … , 푇 ∕휏}, assuming that τ푘 ∈ Σℎ, 풗푘 ∈ 풗푏 + 푉 ℎ, 풖푘−1 ∈ 풖푏 + 푈 ℎ and 휃푘−1 ∈ Θℎ are known, we look for (풖푘, 휃푘) ∈ (풖푏 + 푈 ℎ) × Θℎ such that ∫ Ω d휏 푡 풖푘 ⋅ 풘 − ∫ Ω 풗푘 ⋅ 풘 = 0 ∀풘 ∈ 푈 ℎ, ∫ Ω 휌⋆푐푣d휏 푡 휃푘휙 + ∫ Ω 휅th∇휃푘 ⋅ ∇휙 = ∫ Ω 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)τ푘 ∶ ε(풗푘)휙 ∀휙 ∈ Θℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (14) Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Given the discontinuous nature of the stress space Σℎ, and noting that nonlinear functions of τ푘 remain piecewise constant, the equation for τ푘 in (13) holds pointwise, \ue22d(d휏 푡 τ푘) − ε(풗푘) + 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)ε(풗푘) = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This defines (implicitly) a mapping 풗푘 → ̃τ푘(풗푘), which could be used to define a velocity-only problem ∫ Ω 휌⋆d휏 푡 풗푘 ⋅ 풘 + ∫ Ω ̃τ푘(풗푘) ∶ ε(풘) = ∫ Ω 휌⋆퐟푘 ⋅ 풘 + ∫ 휕Ω푁 퐭푘 ⋅ 풘 ∀풘 ∈ 푉 ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Using tools from automatic differentiation this can be solved, resulting in a strategy similar to the one employed traditionally, in which consistent tangents are employed in the linearisation[29, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We do not pursue this further in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1 Existence of discrete solutions The goal in this section is to prove that numerical solutions to (13) exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' To help with this, we look first at the system in which both Heaviside functions are regularised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (The regularisation parameters are denoted as 휂 and 휖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') For simplicity we also assume that 풗푏 = ퟎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Define the function 퐹휂 ∶ Σℎ × 푉 ℎ → Σℎ × 푉 ℎ through the relation ⟨퐹휂(τ, 풗), (σ, 풘)⟩ ∶= ∫ Ω \ue22d(τ) ∶ σ − 휏 ∫ Ω ε(풗) ∶ σ + 휏 ∫ Ω 퐻휂(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 ⋆)ε(풗) ∶ σ + 휏 ∫ Ω τ ∶ ε(풘) + ∫ Ω 휌⋆풗 ⋅ 풘 − ∫ Ω \ue22d(τ푘−1) ∶ σ − ∫ Ω 휌⋆풗푘−1 ⋅ 풘 − 휏 ∫ Ω 휌⋆퐟푘 ⋅ 풘 − 휏 ∫ 휕Ω푁 퐭푘 푏 ⋅ 풘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Note that the (regularised) discrete formulation can be written simply as 퐹휂(τ, 풗) = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' note also that the function 퐹휂 is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' If we manage to find a positive number ̂푐, such that ⟨퐹휂(τ, 풗), (τ, 풗)⟩ ≥ 0, for all (τ, 풗) ∈ Σℎ × 푉 ℎ with ‖τ‖2 \ue22d + ‖풗‖2 휌⋆ = ̂푐, then a corollary of Brouwer’s fixed point theorem will guarantee the existence of a discrete solution[11, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 4, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' To this end, we take (σ, 풘) = (τ, 풗) in the definition of 퐹휂;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' this yields: ⟨퐹휂(τ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 풗),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 풘)⟩ ≥ ∫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d(τ) ∶ τ + ∫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆|풗|2 − ‖τ푘−1‖\ue22d‖τ‖\ue22d − ‖풗푘−1‖휌⋆‖풗‖휌⋆ − 휏‖퐟푘‖휌⋆‖풗‖휌⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휏푐tr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='(ℎ휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆)1∕2 ‖퐭푘 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푏 ‖퐿2(휕Ω푁)‖풗‖휌⋆ + 휏 ∫ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='Ω ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐻휂(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆)ε(풗) ∶ τ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='≥ ‖τ‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d + ‖풗‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖τ푘−1‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖τ‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d − ‖풗푘−1‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖풗‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖풗‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖퐟푘‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='AUTHOR ONE ET AL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푐2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='tr휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆ℎ‖풗‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖퐭푘 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푏 ‖퐿2(휕Ω푁) − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푐inv휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='ℎ(퐴min휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆)1∕2 ‖풗‖휌⋆‖τ‖\ue22d ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='≥ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1 − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푐inv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='(퐴min휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆)1∕2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='ℎ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='‖τ‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1 − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='(퐴min휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆)1∕2 + 퐴1∕2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='min푐2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='tr + 푐inv휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1∕2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐴1∕2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='min휌− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='ℎ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='‖풗‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖τ푘−1‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='\ue22d − ‖풗푘−1‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆ − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖퐟‖2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='휌⋆(푄) + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2‖퐭푏‖퐿2(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2(휕Ω푁)), where we employed Young’s inequality, the inverse inequalites (8), and the fact that 휏‖퐟푘‖2 휌⋆ ≤ ‖퐟‖2 퐿2 휌⋆(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Hence, the claim follows if we assume that 휏 ℎ < 퐴1∕2 min휌− ⋆ 푐inv휌− ⋆ 1∕2 + 푐2 tr퐴1∕2 min + 퐴1∕2 min휌− ⋆ 1∕2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (15) The same corollary to Brouwer’s fixed point theorem in addition implies that the solution is bounded, ‖τ푘 휂‖2 \ue22d + ‖풗푘 휂‖2 휌⋆ ≤ ̂푐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We remark that it is likely that existence of discrete solutions can be proved without assuming a condition like (15) by relying on the equivalence of norms in finite dimensions and the fact that 휏 and ℎ are fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' However, we choose to stick to the argument presented above, since the condition (15) will appear once again in the next section where we analyse the stability of the numerical scheme, for which uniform bounds are desirable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Now, since the bounds are independent of the regularisation parameter 휂 in the first Heaviside function 퐻휂, the Heine– Borel theorem implies that up to a subsequence, for every 푘 ∈ {1, … , 푇 ∕휏} the sequence of solutions τ푘 휂 (here we make the 휂-dependence explicit) converges as 휂 → 0, τ푘 휂 → τ푘 strongly in 퐿∞(Ω)푑×푑, 풗푘 휂 → 풗푘 strongly in 푊 1,∞(Ω)푑, for some τ푘 ∈ Σℎ and 풗푘 ∈ 푉 ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' At this point we have used the fact that weak and strong convergence are equivalent in finite- dimensional spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This implies in particular that 퐻휂(τ푘 휂 ∶ ε(풗푘 휂)) → 퐻(τ푘 ∶ ε(풗푘)) pointwise a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' in Ω, and so the limiting functions satisfy the system with the unregularised Heaviside function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In summary, numerical solutions are guaranteed to exist, assuming the ratio 휏 ℎ is small enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We note also that very similar arguments yield the existence of solutions for the displacement-temperature system (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We could also consider semi-implicit discretisation schemes such as ∫ Ω \ue22d(d휏 푡 τ푘) ∶ σ − ∫ Ω ε(풗푘) ∶ σ + ∫ Ω 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)ε(풗푘) ∶ σ = 0 ∀σ ∈ Σℎ, ∫ Ω 휌⋆d휏 푡 풗푘 ⋅ 풘 + ∫ Ω τ푘−1 ∶ ε(풘) = ∫ Ω 휌⋆퐟푘−1 ⋅ 풘 + ∫ 휕Ω푁 퐭푘−1 ⋅ 풘 ∀풘 ∈ 푉 ℎ, (16) and a similar analysis applies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The difference in this scheme compared to (13) is that here the velocity 풗푘 is computed first using the information at time 푡푘−1 and the equation for τ푘 is solved afterwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the absence of plastic behaviour this results in a symplectic scheme that conserves a (modified) energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A consequence of the fact that 햣햣햣(푉 ℎ) ⊂ Σℎ and that 푉 ℎ ⊂ 퐻1 휕Ω퐷(Ω)푑 is that the following discrete inf-sup condition holds: inf 풘∈푉 ℎ sup σ∈Σℎ ∫Ω σ ∶ ε(풘) ‖풘‖퐻1(Ω)‖σ‖2 퐿2(Ω) ≥ 훾⋆ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (17) where 훾⋆ > 0 is independent of ℎ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' note that the above is then simply a reformulation of Korn’s inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The validity of (17) is not essential for the analysis of the discrete problem (13), but it would be crucial if we were interested in solving the quasi-static problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' without the time derivative ̇풗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 Stability Now we take a more careful look at the stability of the scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Let us first look at the continuous system (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' First we assume that solutions are smooth enough so that all subsequent manipulations are well-defined in the classical sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The multiplication AUTHOR ONE ET AL 7 of the first equation in system (4) by 풗, the second by τ and integrating over Ω results in the energy balance in the form 1 2 d d푡 ⎛ ⎜ ⎜⎝∫ Ω \ue22d(τ) ∶ τ + 휌⋆|풗|2 ⎞ ⎟ ⎟⎠ + ∫ Ω 퐻(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 ⋆)τ ∶ ε(풗) = ∫ Ω 휌⋆퐟 ⋅ 풗 + ∫ 휕Ω푁 퐭푏 ⋅ 풗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (18) If we follow the terminology used in[29], thus, if we denote the kinetic energy by 퐸kin(풗) ∶= ∫Ω 1 2휌⋆|풗|2, the elastic potential energy by 퐸int(τ) ∶= ∫Ω 1 2\ue22d(τ) ∶ τ, and the potential energy associated with the applied loads by 퐸ext(풖) ∶= − ∫Ω 휌⋆퐟 ⋅ 풖 − ∫휕Ω푁 퐭푏 ⋅ 풖, then the energy balance can be rewritten as d d푡 [퐸kin(풗) + 퐸int(τ) + 퐸ext(풖)] = − ∫ Ω 퐻(τ ∶ ε(풗))퐻휖(|τ훿|2 − 휅2 ⋆)τ ∶ ε(풗) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (19) Inspecting (19), it is clear that there is mechanical dissipation only when the material is being loaded and the yield stress has been reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Moreover, if we define the thermal energy as 퐸th(휃) ∶= ∫Ω 휌⋆푐푣휃, then integrating the temperature equation (6b) and adding the result to (19), yields the total energy balance d d푡 [퐸kin(풗) + 퐸int(τ) + 퐸ext(풖) + 퐸th(휃)] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (20) The balance (20) highlights the fact that, as a consequence of the thermodynamically consistent derivation of the model, all various energy dissipation mechanisms are accounted for in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We now obtain an analogue of (19) at the discrete level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Choosing σ ∶= τ푘 and 풘 = 풗푘 in the numerical formulation (13), and using the elementary identity (푎 − 푏)푎 = 1 2푎2 − 1 2푏2 + 1 2|푎 − 푏|2 for two numbers 푎, 푏 ∈ R, yields for all 푘 ∈ {1, … , 푇 ∕휏} the equality 1 2휏 ‖풗푘‖2 휌⋆ − 1 2휏 ‖풗푘−1‖2 휌⋆ + 1 2휏 ‖τ푘‖2 \ue22d − 1 2휏 ‖τ푘−1‖2 \ue22d + 1 2휏 ‖풗푘 − 풗푘−1‖2 휌⋆ + 1 2휏 ‖τ푘 − τ푘−1‖2 \ue22d + ∫ Ω 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)ε(풗푘) ∶ τ푘 = ∫ Ω 휌⋆퐟 ⋅ 풗푘 + ∫ 휕Ω푁 퐭푏 ⋅ 풗푘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Hence, if we define the numerical dissipation \ue230푘 휏 ∶= 1 2휏 ‖풗푘 − 풗푘−1‖2 휌⋆ + 1 2휏 ‖τ푘 − τ푘−1‖2 \ue22d, then the equality just derived above can be rewritten as d휏 푡 [퐸kin(풗푘) + 퐸int(τ푘)] + 퐸ext(풗푘) = −\ue230푘 휏 − ∫ Ω 퐻(τ푘 ∶ ε(풗푘))퐻휖(|τ푘 훿|2 − 휅2 ⋆)ε(풗푘) ∶ τ푘 ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (21) This equality clearly mimics the continuous energy balance (19), except for the presence of the numerical dissipation term \ue230푘 휏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Moreover, testing the temperature equation (14) with 휙 = 1 we also obtain the discrete total energy balance: d휏 푡 [퐸kin(풗푘) + 퐸int(τ푘) + 퐸th(휃푘)] + 퐸ext(풗푘) = −\ue230푘 휏 ≤ 0, (22) which is analogous to the total energy balance (20), up to numerical dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' If we denote the piecewise-linear (in time) interpolant of the sequence {풗푘}푇 ∕휏 푘=0 by ̃풗ℎ,휏 ∈ 퐶([0, 푇 ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 푉 ℎ), then we see that 1 휏 ‖풗푘 − 풗푘−1‖2 퐿2(Ω) = 휏 ‖‖‖‖‖ 휕 ̃풗ℎ,휏(푡푘 −) 휕푡 ‖‖‖‖‖ 2 퐿2(Ω) , and so if the problem satisfies appropriate regularity properties so that the norm on the right-hand-side is bounded, then it is clear that the numerical dissipation term vanishes as 휏 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Similar arguments apply to the stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Now, let us denote the piecewise-constant (in time) interpolant associated to the sequence {풗푘}푇 ∕휏 푘=0 by 풗ℎ,휏 ∈ 퐿∞((0, 푇 );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 푉 ℎ), and define τℎ,휏 analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Then, multiplying the discrete energy balance (22) by 2휏, using a similar argument to the one employed in the previous section, and summing over 푘, we obtain the stability estimate ‖풗ℎ,휏‖2 퐿∞(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2 휌⋆(Ω)) + ‖τℎ,휏‖2 퐿∞(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2 \ue22d(Ω)) + 푇 ∕휏 ∑ 푘=1 휏\ue230푘 휏 ≤ ‖풗0‖2 휌⋆ + ‖τ0‖2 \ue22d + ‖퐟‖2 퐿2 휌⋆(푄) + ‖퐭푏‖2 퐿2(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2(휕Ω푁)), (23) where we assume that the condition (15) is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We remark here that analogous arguments apply to the displacement and the temperature system (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 8 AUTHOR ONE ET AL Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' From the inf-sup condition (17) we can also try to obtain a bound for the discrete velocities 휏‖풗푘‖퐻1(Ω) ≤ 휏 sup σ∈Σℎ ∫Ω ε(풗푘) ∶ σ ‖σ‖퐿2(Ω) ≤ 퐴−1 min(‖τ푘‖\ue22d + ‖τ푘−1‖\ue22d) + 휏‖ε(풗푘)‖퐿2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In the absence of plastic behaviour the last term is not present and this would imply, together with (23), that we can bound uniformly ‖풗ℎ,휏‖퐿2(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐻1(Ω)) in terms of the data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' this is what would be expected in the linear elasticity model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' However, in general this only yields a bound for 풗ℎ,휏 in 퐿2(푄)푑, which does not improve (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This lack of a priori boundedness of the velocity gradients is what results in the restriction on the ratio 휏 ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Note that 푇 ∕휏 ∑ 푘=1 휏\ue230푘 휏 = 푇 ∕휏 ∑ 푘=1 ‖풗푘 − 풗푘−1‖2 휌⋆ + ‖τ푘 − τ푘−1‖2 \ue22d = ‖휕푡풗ℎ,휏‖\ue239(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2 휌⋆(Ω)) + ‖휕푡τℎ,휏‖\ue239(0,푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='퐿2 \ue22d(Ω)), and so the discrete stability estimate (23) also yields a bound on the time derivatives of the approximate solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' here \ue239(0, 푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 퐿2 휌⋆(Ω)) denotes the space of Radon measures in time with values into 퐿2 휌⋆(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (The space \ue239(0, 푇 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 퐿2 \ue22d(Ω)) is defined analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') This is enough, for example by applying[26, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='9]), to prove that as 휏 → 0, the solutions (τℎ,휏, 풗ℎ,휏) converge to functions (τℎ, 풗ℎ) that solve the system 휌⋆ ̇풗ℎ − div τℎ = 휌⋆퐟 in 푉 ℎ, \ue22d( ̇τℎ) = ε(풗)ℎ − 퐻(τℎ ∶ ε(풗)ℎ)퐻휖(|(τℎ)훿|2 − 휅2 ⋆)ε(풗)ℎ in Σℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (24) Obtaining convergence as ℎ → 0 is a more delicate matter given the relatively weak bounds available to us (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Remark 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In fact, at this point we face the lack of analytical results for a system of partial differential equations of the rate-type (4)—it is not completely obvious what the proper notion of weak solution should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Conceivably, this problem could become more tractable by introducing hardening into the model, and then the solutions for the perfect plasticity model would be obtained in a vanishing hardening limit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' this will be the subject of future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 4 NUMERICAL EXPERIMENTS We now implement the discrete formulations (13) and (14) to illustrate that they indeed capture the behaviour expected from the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We first implement the problem in one spatial dimension, and we show that the mechanical response is as expected during one loading-unloading cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Subsequently we implement the problem describing a two dimensional plate with an elliptical hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The nonlinear systems for the stress and velocity at each time step are handled with Newton’s method supplemented with the error oriented line search NLEQERR from PETSc[2];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the absolute and relative tolerances for the nonlinear solver are set to 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The linear systems at each Newton step are solved using the LU factorisation algorithm from MUMPS[1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the linear systems for the displacement and the temperature are solved in turn using MUMPS as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Everything is implemented through the finite element software firedrake[24];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the code used to implement the computational experiments, including the exact components of firedrake that have been employed, has been archived in Zenodo (https://zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='org/record/7342357)[33] for reproducibility purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='1 One dimensional mechanical response We solve the problem on the unit interval Ω = (0, 1) and for times 푡 ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (If not stated otherwise all physical quantities are given in the SI base units or use combination thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') We impose boundary conditions on the displacement: 푢(푡, 0) = −푢(푡, 1) ∶= { − 1 10푒1+ 1 4푡(푡−1) 푡 ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (25) This describes loading for 푡 ∈ (1, 1 2) s and unloading otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Since the problem is one-dimensional, we denote the scalar displacement, stress and strain are denoted by 푢, 휎, and 휀, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We set the Young modulus to E = 104 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (The values of physical constants are in this example entirely artificial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') We employ a simple continuation algorithm with respect to 휖 to produce better initial guesses for Newton’s method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' for instance, the problem is solved with a larger (and thus easier) value for 휖 and the solution is used as an initial guess for the problem with regularisation parameter 휖 −훿휖 until the desired value is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' AUTHOR ONE ET AL 9 (a) Stress-strain response (b) Maximum stress Figure 2 Mechanical response at 푋 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 m for the problem with 휅⋆ = 107 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (a) Heaviside function 퐻(1) 휖 , 휖 = 10 (b) Heaviside function 퐻(1) 휖 , 휖 = 200 Figure 3 Stress-strain response at 푋 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 m for the problem with 휅⋆ = 80 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Figure 2 shows the stress-strain response at the point 푋 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 m with a very large yield-stress 휅⋆ = 107 Pa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the problem is solved with 482 spatial degrees of freedom and a time step 휏 = 5 × 10−4 s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' a plot of the maximum stress ‖휎‖퐿∞(Ω) with respect to time is also shown for reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This is simply a sanity check to verify that the solution of our proposed numerical scheme behaves as expected;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' namely, the solution exhibits solely elastic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The same problem is subsequently solved for the yield stress of 휅⋆ = 80 Pa with different values of 휖;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the stress-strain relations are shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The values of the maximum stress are plotted in Figure 4 for different values of 휖 and the different approximations/regularisations of the Heaviside function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We observe that the numerical solutions capture the expected elastic–perfectly plastic behaviour during one loading-unloading cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We also observe for large 휖 a non-sharp yield transition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' depending on which Heaviside approximation we employ, the computed stress can be allowed to go slightly beyond 휅⋆, but this effect disappears as 휖 decreases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' in this regard we observe that the regularisation 퐻(2) 휖 based on the hyperbolic tangent is the one that violates the constraint the least.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 200 160 120 b 80 40 loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='020 [3 ]200 160 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='120 )αT b 80 40 loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 40 20 b 0 20 40 60 loading 80 ×-- unloading 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='02080 60 40 20 b 0 20 40 60 loading 80 unloading 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='02010 AUTHOR ONE ET AL (a) Heaviside function 퐻(1) 휖 , 휖 = 10 (b) Heaviside function 퐻(1) 휖 , 휖 = 100 (c) Heaviside function 퐻(2) 휖 , 휖 = 10 (d) Heaviside function 퐻(2) 휖 , 휖 = 100 (e) Heaviside function 퐻(3) 휖 , 휖 = 10 (f) Heaviside function 퐻(3) 휖 , 휖 = 100 Figure 4 Maximum stress over time for the problem with 휅⋆ = 80 Pa, and various approximations of the Heaviside function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 80 60 ()T / 40 b 20 --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='-- loading 11×1 unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 (U)αT 40 b 20 --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='-- loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 ()T / 40 b 20 --o-- loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 (U)αT 40 b 20 --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='-- loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 (U)αT :40 b 20 --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='-- loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 t80 60 ()T / 40 b 20 --.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='-- loading unloading 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 tAUTHOR ONE ET AL 11 x l L 2a 2b P(t) P(t) y Figure 5 Square domain with an elliptical hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 2D plate with an elliptical hole The problem is solved on the two-dimensional domain (− 퐿 2 , 퐿 2 ) × ( −푙 2 , −푙 2 ), in which an elliptical hole is made, with semi-minor and semi-major axis of lengths 푎 and 푏, respectively (see Figure 5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' in the implementation we choose 퐿 = 푙 = 1 m, 푎 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3 m, and 푏 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We consider homogeneous Neumann boundary conditions for the temperature, while on the left and right boundaries and on the elliptical boundary we prescribe homogeneous natural boundary conditions for the mechanical problem, while on the top and bottom we apply a time-dependent traction 푃 (푡) in the vertical direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' This traction is meant to represent one loading-unloading cycle, and its magnitude taken to be a bump function 푃 (푡) ∶= { 20푒1+ 1 4푡(푡−1) 푡 ∈ (0, 1), 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Concerning the initial conditions we assume that the body of interest is initially in the stress-free state and that the initial displacement is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The initial temperature distribution is homogeneous in space, and in what follows we report only temperature changes with respect to this initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Concerning the material parameters we take the values E = 104 Pa, 휈 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3, 휅⋆ = 1 Pa, 휅th = 1W ⋅ m−1 ⋅ K−1, and 푐푣 = 1 J ⋅ kg−1 ⋅ K−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (These parameter values are again artificial, we do not aim at a particular set of parameter values for a real material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') The problem is solved with a time step of 휏 = 5 × 10−4 s, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='52 × 105 degrees of freedom for the stress-velocity problem (13) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 × 104 degrees of freedom for the displacement-temperature problem (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We employ the first Heaviside regularisation 퐻(1) 휖 with the regularisation parameter fixed as 휖 = 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Figure 6 shows plots of the magnitude of the deviatoric part of the stress τ훿, for the elastic problem and the problem with 휅⋆;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' the domain is deformed according to the solution for the displacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (The deformation is magnified 15 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') We observe stresses concentrating on the sides of the elliptical hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Note that the stress reaches much higher values in the elastic case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Figure 7 shows the solution at the final time 푡 = 1 s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' in the elastic case the strain is practically zero, while in the plastic case there is still a residual strain on the sides of the elliptical hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The evolution of the temperature difference 휃 with respect to the initial temperature is shown in Figure 8, along with plots of the function 퐻휖(|τ훿|2−휅2 ⋆), which allows us to track whether the yield criterion is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In Figure 8 we observe the behaviour expected from the model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' namely, the regions where the stress concentrates—and where the yield criterion is satisfied—act as a heat source for the temperature field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Note that without this heat source the temperature field would be otherwise identically zero, thanks to the boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Moreover, we also see in Figure 8 (F) that at time 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='54 s there is no longer a heat source for the temperature field, since at this time the loading criterion τ ∶ ε > 0 is not satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 12 AUTHOR ONE ET AL (a) 푡 = 0 s (b) 푡 = 0 s (c) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='25 s (d) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='25 s (e) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 s (f) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 s Figure 6 Magnitude of τ훿 for the elastic problem with 휅⋆ = 107 Pa (right) and the problem with 휅⋆ = 60 Pa (left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 65 60 55 50 45 40 35 30 25 20 15 10 5 0110 100 06 80 70 60 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 50 40 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='30 20 1065 60 55 50 45 40 一 35 一 30 一 25 20 15 10 5 0110 100 90 80 70 60 50 40 一 30 20 1065 60 55 50 45 40 一 35 一 30 25 20 15 10 5 0110 100 90 一 80 70 60 50 40 一 30 20 10AUTHOR ONE ET AL 13 (a) 휅⋆ = 60 Pa, 푡 = 1 s (b) 휅⋆ = 107 Pa, 푡 = 1 s Figure 7 Magnitude of ε at the final time near the interior hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 5 CONCLUDING REMARKS The family of models stemming from the simple rate-type equation (1) provides a novel approach to the modelling of inelastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Starting with the introduction of the simple rate-type equation (1) in[22], several variants and generalisation of (1) have been investigated, see, for example,[23], and a thermodynamical framework for some of these models have been successfully developed even in the finite deformations setting, see[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (For another treatment of rate-type models from a thermodynamic point of view see also[10] and the discussion in[15] based on the concept of internal variables, to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') Furthermore, the models in this class have also been employed in modelling the response of various materials, see[32],[20],[19] [28] and[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We have focused on a generalisation of (1) that describes the standard elastic–perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular, we have investigated numerical schemes for the solution of the corresponding governing equations (4) and (6) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Given the novelty of the model, the mathematical theory for the corresponding model is clearly underdeveloped compared to the mathematical theory for the classical models of elastic–perfectly plastic behaviour, see, for example,[8],[29] or[18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' From this perspective, it might seem useless to develop yet another variant of mathematical theory for the standard elastic– perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' However, our analysis serves a different purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' We focus on a prototypical example of a rate-type evolution equation for a rate-independent process, and our objective is to investigate the viability of the rate-type models based approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Naturally, the vision is to continue with numerical analysis of more involved models for inelastic responses that go beyond the standard elastic–perfectly plastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The considered model for elastic–perfectly plastic response is from the physical point of view conceptually very clean and simple, and this transfers to the numerical analysis as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The model is amenable to standard discretisation techniques, and we show that the “straightforward” finite element discretisation of the model inherits directly the energy stability properties of the continuous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Furthermore, since the model possesses a solid thermodynamical basis, we can also compute the evolution of the temperature field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' (Concerning the temperature evolution, our model is a simple one, the thermal response related to the plastic deformation can be more complicated, see[25] and subsequent works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=') Finally, we show that—up to numerical dissipation—all the energy budget of the system is accounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The numerical analysis is documented by an implementation of the proposed scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The analysis shows that the rate-type model under consideration is numerically tractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' From a broader perspective this suggests that the modelling of inelastic rate-independent phenomena via the rate-type models might be—from the theoretical numerical analysis point of view—feasible as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In particular numerical schemes for models describing complex inelastic phenomena such as Mullins effect, see[7] for a general discussion and[5] for a rate-type model, might be of interest in this regard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0114 AUTHOR ONE ET AL (a) 푡 = 0 s (b) 푡 = 0 s (c) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='375 s (d) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='375 s (e) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='54 s (f) 푡 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='54 s Figure 8 Plot of the temperature difference 휃 with respect to the initial state (right) and 퐻휖(|τ훿|2 − 휅2 ⋆) (left) for the problem with 휅⋆ = 60 Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='00051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0005 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='95 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0015 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='0005 0AUTHOR ONE ET AL 15 References [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Amestoy, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Duff, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Koster, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' L’Excellent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A fully asynchronous multifrontal solver using distributed dynamic scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Matrix Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 23(1):15–41, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Balay, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Abhyankar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Adams, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Brown, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Brune, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Buschelman, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Dalcin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Eijhout, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Gropp, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Kaushik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Knepley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' McInnes, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rupp, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Smith, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Zampini, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Zhang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' PETSc users manual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Report ANL–95/11–Revision 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='8, Argonne National Laboratory, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='mcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='anl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='gov/petsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [3] Otto T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Bruhns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' History of plasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' In Holm Altenbach and Andreas Öchsner, editors, Encyclopedia of Continuum Mechanics, pages 1–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, Berlin, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Bustamante and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rajagopal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A three-dimensional implicit constitutive relation for a body exhibiting stress softening: Part I – theoretical underpinnings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Acta Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 233(7):2541–2559, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Cichra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Gazca-Orozco, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Průša, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Tůma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A thermodynamic framework for non-isothermal phenomenolog- ical models of Mullins effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' ArXiv Preprint: 2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='09148, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Cichra and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Průša.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Solids, 25(12):2222–2230, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [7] Julie Diani, Bruno Fayolle, and Pierre Gilormini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A review on the Mullins effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Polym.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 45(3):601–612, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Duvaut and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Lions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Inequalities in Mechanics and Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ern and J-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Guermond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Finite Elements I: Approximation and Interpolation, volume 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer Nature, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Giorgi and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Morro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A thermodynamic approach to rate-type models of elastic-plastic materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Elast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 147:113–148, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Girault and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Raviart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer Verlag, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Hashiguchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Nonlinear continuum mechanics for finite elasticity–plasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Elsevier, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [13] Koichi Hashiguchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Elastoplasticity theory, volume 69 of Lecture Notes in Applied and Computational Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, Berlin, 2nd edition, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [14] Koichi Hashiguchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Foundations of elastoplasticity: subloading surface model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, 3rd edition, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Houlsby and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Puzrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Principles of hyperplasticity: An approach to plasticity theory based on thermodynamic principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, London, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ismail, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ikhouane, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rodellar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' The hysteresis Bouc–Wen model – A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Methods Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 16(2):161–188, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Jarecki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Iyyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rate-independent elasto-plastic materials—a brief history and some new developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 13(1):3–17, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [18] Martin Kružík and Tomáš Roubíček.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mathematical methods in continuum mechanics of solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Interaction of Mechanics and Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [19] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mozafari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Thamburaja, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Moslemi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Finite Elem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 187:103481, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [20] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mozafari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Thamburaja, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Moslemi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A rate independent inelasticity model with smooth transition for unifying low-cycle to high-cycle fatigue life prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 159:325–335, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' 16 AUTHOR ONE ET AL [21] Jin-Song Pei, François Gay-Balmaz, Darby J Luscher, James L Beck, Michael D Todd, Joseph P Wright, Yu Qiao, Marco B Quadrelli, Chuck R Farrar, and Nicholas AJ Lieven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Connecting mem-models with classical theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Nonlinear Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 103(2):1321–1344, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rajagopal and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Plast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 71:1–9, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [23] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rajagopal and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 67(4):86, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [24] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rathgeber, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ham, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mitchell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Lange, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Luporini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mcrae, G-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Bercea, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Markall, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Kelly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Firedrake: automating the finite element method by composing abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Softw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 43(3), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rosakis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rosakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Ravichandran, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Hodowany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Solids, 48(3):581–607, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Roubíček.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Nonlinear Partial Differential Equations with Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Birkhäuser, second edition, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [27] Souhayl Sadik and Arash Yavari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' On the origins of the idea of the multiplicative decomposition of the deformation gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Solids, 22(4):771–772, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [28] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Saravanan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rajagopal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Tom, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Bharadwaj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A model for a solid undergoing rate-independent dissipative mechanical processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Solids, 26(2):230–243, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Simo and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Hughes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Computational Inelasticity, volume 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer Science & Business Media, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [30] David J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Steigmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' A primer on plasticity, pages 125–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, Cham, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Visintin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Differential models of hysteresis, volume 111 of Applied Mathematical Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Springer, Berlin, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [32] Zhujiang Wang, Arun R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Srinivasa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Rajagopal, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Reddy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Simulation of inextensible elasto-plastic beams based on an implicit rate type model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' Non-Linear Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=', 99:165–172, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content=' [33] Software used in ‘Numerical approximation of a thermodynamically complete rate-type model for the elastic–perfectly plastic response’, https://zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} +page_content='org/record/7342357, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_9E1T4oBgHgl3EQfowSL/content/2301.03324v1.pdf'} diff --git a/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/2301.04438v1.pdf.txt b/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/2301.04438v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..253765ab15fdfbe66d5a4a0d4934f2cb42591294 --- /dev/null +++ b/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/2301.04438v1.pdf.txt @@ -0,0 +1,723 @@ +A 2D ferroelectric vortex lattice in twisted BaTiO3 freestanding layers + +G. Sánchez-Santolino*,& 1, V. Rouco*,& 1, S. Puebla2, H. Aramberri3, V. Zamora1, F. A. Cuellar1, +C. Munuera2,4, F. Mompean2,4, M. Garcia-Hernandez 2,4, A. Castellanos-Gomez2,4, J. Íñiguez 3,5, +C. Leon1,4, J. Santamaria1,4&. +1 GFMC. Dept. Fisica de Materiales. Facultad de Fisica. Universidad Complutense. 28040 +Madrid +2 Instituto de Ciencia de Materiales de Madrid ICMM-CSIC 28049 Cantoblanco. Spain + +3 Materials Research and Technology Department, Luxembourg Institute of Science and +Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg. +4 Unidad Asociada UCM/CSIC, “Laboratorio de Heteroestructuras con aplicación en spintrónica” + +5 Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, +L-4422 Belvaux, Luxembourg + +&Corresponding authors: G. Sanchez-Santolino: gsanchezsantolino@ucm.es, V. Rouco: vrouco@ucm.es, +SANTAMARIA Jacobo: jacsan@ucm.es + +* Equal contributors +The wealth of complex polar topologies [1- 6] recently found in nanoscale ferroelectrics result from a +delicate balance between the materials’ intrinsic tendency to develop a homogeneous polarization +and the electric and mechanic boundary conditions imposed upon them. Ferroelectric–dielectric +interfaces are model systems where polarization curling originates from open circuit-like electric +boundary conditions, to avoid the build-up of polarization charges through the formation of flux- +closure [7-10] domains that evolve into vortex-like structures at the nanoscale [11-13]. Interestingly, +while ferroelectricity is known to couple strongly to strain (both homogeneous [14] and +inhomogeneous [15, 16]), the effect of mechanical constraints [17] on thin film nanoscale +ferroelectrics has been comparatively less explored because of the relative paucity of strain patterns +that can be implemented experimentally. Here we show that the stacking of freestanding ferroelectric +perovskite layers with controlled twist angles opens an unprecedented opportunity to tailor these +topological nanostructures in a way determined by the lateral strain modulation associated to the +twisting. Interestingly, we find that a peculiar pattern of polarization vortices and antivortices +emerges from the flexoelectric coupling of polarization to strain gradients. This finding opens exciting + +opportunities to create two-dimensional high density vortex crystals that would allow us to explore +novel physical effects and functionalities. + +TEXT +The persistence of ferroelectricity at the nanoscale hinges on the compensation of the polarization +bound charges and depolarizing fields building up at surfaces or interfaces. In ferroelectric films with +metallic electrodes the depolarizing fields can be screened by (free) charge accumulation and by the +formation of domains [18]. The situation is even more dramatic in nanoscale ferroelectric samples with +dielectric boundaries (including vacuum or insulating non-polar surface layers) where the polarization +can undergo a transition into vortex [11-13] or more complex [1-6] topological states, with rotational +polar configurations persisting to small diameters where polarization departs from the high-symmetry +directions favored by the lattice anisotropy [19]. +Mechanical boundary conditions [17], as those imposed by interfacial strain, play a critical role in +determining the final polarization state, as they may combine with electric boundary conditions in non- +trivial ways. Importantly, the strong coupling of ferroelectricity to both homogeneous and +inhomogeneous strain is at the origin of the effectiveness of mechanical boundary conditions in +triggering unexpected effects, such as the enhanced ferroelectricity in epitaxially strained layers [14] or +the polarization switching under the strain gradients created by an AFM tip pressing on the sample +surface [20]. As it turns out, however, access to externally tunable strain patterns is in practice very +limited. + +In epitaxial thin films mechanical boundary conditions are to a large extent immovably and solely +determined by the atom-on-atom replication of the structure of the substrate by the growing film. +Hence, while the interface with the substrate is subject to in-plane strains imposed by the lattice + +mismatch, the sample surface is in a zero stress state, as there are no tractions acting on it. In epitaxial +uniformly strained single-domain layers, internal elastic fields are homogeneous and rigidly imposed by +these mixed boundary conditions. Inhomogeneous strain results typically from uncontrollable strain +relaxation, misfit dislocations or ferroelastic domain formation [15]. The structural constraints imposed +by epitaxy leave little or no room to modify mechanical boundary conditions. Moreover, controllable +shear or inhomogeneous strain patterns are commonly out of reach. This is the reason why, although on +general grounds exotic ferroelectric states can be expected to result from the manipulation of +mechanical boundary conditions, this scenario remains mostly unexplored. + +In this paper we demonstrate a new strategy to engineer mechanical boundary conditions based on the +strain modulation induced at the interface between two twisted freestanding oxide layers. In layered +materials such as graphite [21, 22] or transition metal dichalcogenides [23-25], twisted bilayers have led +to the emergence of unexpected collective states [26, 27]. Interestingly, the weak van der Waals +interlayer interaction in such twisted bilayers leads to inhomogeneous strain patterns with deformations +up to 2% [28]. Extending the exploration to artificial twisted stacks of ionically bonded transition metal +oxides, however, has been hampered by the difficulty to isolate these systems in freestanding form. The +recent reports on the fabrication of freestanding single crystalline oxide thin films [29-31], which can be +handled in a way similar to van der Waals 2D materials, open up the possibility of stacking freestanding +layers with arbitrary twist angles [32, 33] and thus design completely novel strain patterns. To our +knowledge, this approach to induce strain landscapes spatially varying at the nanoscale in complex +oxides has not been reported so far. Here we show that the lateral strain modulation caused by the +interface matching between two twisted freestanding ferroelectric BaTiO3 layers sets a mechanical +boundary condition not attainable by epitaxial strain, and to a large extent controllable by the relative +rotation angle. The nanoscale modulated distribution of symmetric and antisymmetric shear strains + +yields a surprising rotational polarization texture with alternating clockwise and counterclockwise +vortices and antivortices, whose distribution, spacing and size is controlled by the twist angle. First- +principles simulations show that this complex configuration of highly localized symmetric and +antisymmetric shears concomitant with the ferroelectric vortex 2D crystal constitutes in fact a stable +equilibrium state. The coupling between shear strain gradients and complex polarization texture is +discussed in terms of a direct flexoelectric effect. + +15 nm thick BaTiO3 (BTO) layers epitaxially grown on (001) SrTiO3 (STO) substrates were delaminated to +form twisted bilayer homojunctions with deterministic twist angles (see Figure 1a and Methods). +Bilayers were transferred onto holey Si3N4 membranes. To study the structural properties of individual +layers of the twisted bilayers we performed a depth sectioning high angle annular dark field (HAADF) +scanning transmission electron microscopy (STEM) experiment (see Methods). Focusing on the entrance +surface of the stack (defocus = 0 nm) we observe the typical structure of a BaTiO3 perovskite which +corresponds to the top layer. The Moiré contrast is revealed by changing the defocus to reach the +interface of the twisted bilayer (defocus = - 15 nm), as shown in Fig. 1b. A further increasing defocus +brings the bottom layer in focus, which appears rotated by the twist angle of the bilayer. Twisted +ferroelectric bilayers exhibit characteristic Moiré features determined by the atomic coincidence pattern +between the two layers (see Fig. 1c). The 10.4 º twist angle, determined from the fast Fourier transform +(FFT) image, is homogeneous along the fabricated sample and close to the nominal 10º rotation of the +films during the deterministic transfer process. The FFT shows the spots from both top and bottom +twisted BTO layers; for clarity we will denote the directions corresponding to the twisted layer forming +the Moiré pattern as (100)* and (010)*. The Moiré pattern shows two distinct (plateau-like) features at +the highly (atom-on-atom) coincidental regions of both layers, marked as AA and AB in Fig. 1b and on +the rigid atomic model shown in Fig. 1d. Around AA sites there is AA stacking (Ba on Ba, Ti on Ti and O + +on O) between the top and bottom layers, while AB sites show an AB stacking (Ba on Ti and Ti on Ba) for +the Ba and Ti cations of the twisted layers while preserving the AA stacking for the O anions. We studied +Moiré structures formed in α = 3, 6, 10.4 and 50º twisted BaTiO3 bilayers; in the main text we discuss +data taken on the samples with 10.4° and 3° twist angles. + +Intralayer strain was measured on the top layer using the entrance surface focused image (defocus = 0). +The emergence of a strongly spatially varying strain landscape with the same periodicity as the Moiré + +Figure 1: Fabrication of twisted freestanding BaTiO3 bilayers. a) Schematic of the deterministic two steps transfer +process. b) Depth sectioning STEM-HAADF experiment of a twisted BaTiO3 bilayer stack focusing on the entrance surface +of the stack (defocus = 0 nm) and the interface (defocus = -15 nm) c) Moiré structure formed at the interface between +the BaTiO3 layers. A network of two distinct AA and AB motives is formed due to the twist. The image on the right shows +the Fast Fourier Transform noting the reflections of both the top and bottom freestanding BaTiO3 films. The scale bar is +2 nm d) Model of the rigid atomic structure corresponding to two BaTiO3 lattices with a twist angle of 10.4° showing Ba +atoms in green, Ti in blue and O in red. AA and AB sites are marked in blue and red respectively. + +a) +1stTransfer +KI+HCI +80°℃ +2ndTransfer +PDMS +PPC +BTO +LSMO +80°℃ +STO +b) +(100) +(100)* +depth +d) +(100) +(100)*lattice - and determined at the top layer - clearly demonstrates the strong interaction between the two +twisted layers. The resultant strain map shows a periodically modulated pattern of symmetric shear +strains (𝜀𝑥𝑦 = +1 +2 ( +𝜕𝑢𝑥 +𝜕𝑦 + +𝜕𝑢𝑦 +𝜕𝑥 )) with alternating positive and negative shear strain cores (see Figs. 2b, e for +bilayers twisted 10.4 and 3 degrees, respectively). Strain analysis included the antisymmetric +components of the strain tensor (𝜔𝑥𝑦 = +1 +2 ( +𝜕𝑢𝑥 +𝜕𝑦 − +𝜕𝑢𝑦 +𝜕𝑥 )) associated to local rotations of the perovskite +lattice (See Extended Figure S1 a and b). Control experiments on single BTO freestanding layers show a +nearly homogeneous strain distribution, making it clear that the complex strain maps obtained in the +bilayers originate at the stacking of the twisted layers. Notice that at the AA and AB sites there is +maximal atom-on-atom coincidence between the twisted layers; we find very small shear strains in +those areas. In between the AA and AB sites of the Moiré pattern we find regions of maximum strain, +named S-sites hereafter, with nearly homogeneous positive and negative shears. The shear strain +modulation shows the same periodicity as the Moiré pattern, indicating that the strain results in fact +from a displacement field reconstruction in the top layer induced by the matching at the interface. An +important remark is that such a periodical shear strain landscape is unique, as it cannot be attained, to +the best of our knowledge, either by epitaxial strain or by any pattern of externally applied stresses. + +In order to investigate how the strain modulation observed on the top layer of the twisted BTO bilayers +affects the ferroelectric polarization we have measured the off-centering of the B-site cations in the +individual unit cells (relative displacement of the B-site Ti cation from the centrosymmetric position, +determined with the A-site Ba cations within the same unit cell). Twisted bilayers showed net in-plane +polarization in the [1,1] direction of the perovskite lattice (in the pseudo-cubic reference) with a +superimposed polar texture. Polar displacements were obtained to be in the range of 0.15 to 0.20 Å, +which is consistent with what is found in bulk BaTiO3. In BaTiO3, the magnitude of the spontaneous + +polarization is known to be approximately constant regardless of the orientation it may present in the +different ferroelectric phases this compound can adopt [34, 35]. This suggests that the polarization of +our layers must be largely confined to the plane, the (not measured) vertical component being very +small if present at all. Further, this in-plane polarization is most likely a consequence of the stacking in +our materials. The interfaces between layers will inevitably result in a discontinuity of the vertical +component of the electric displacement vector, with the concomitant occurrence of depolarizing fields. +In such conditions, an in-plane polarization is energetically favored, as it does not suffer from any +electrostatic penalty. The situation can be compared to that of layered perovskite crystals (e.g., +Ruddlesden-Popper phases), which typically present spontaneous polarizations perpendicular to the +stacking direction [36-38]. Note also that our free-standing layers are not subject to any global +mechanical constraints that might drive the occurrence of an in-plane polarization, further supporting its +electrostatic origin. +The net polarization pointing along the [1,1] in-plane direction indicates that our layers present the +orthorhombic ferroelectric phase that also occurs in the bulk material. BaTiO3 crystals present a +tetragonal structure at room temperature, which would suggest a polarization along [1,0] or [0,1] in our +layers; yet, single BTO freestanding layers (see Extended Figure S2) showed averaged polarization +vectors in the [1,1] direction. Given the proximity to the bulk tetragonal to orthorhombic transition +(which occurs at 278 K) and the fact that these two phases have very similar free energies at ambient +conditions, the observed orthorhombic-like state seems perfectly acceptable, as it may be stabilized by +any of many factors distinguishing our BaTiO3 layers from the bulk compound. +The complex polar texture of our layers can be better assessed by subtracting the average polarization +value in the image (See Extended Figure 3 for a comparison). The polarization maps in Figs. 2c, f show a +continuous curling of the polar displacements, forming a periodic network of non-trivial topological +structures with alternating polarization vortices (AA and AB sites) and antivortices (S sites of the Moiré + +pattern). We can describe the topological structure in terms of a non-zero toroidal moment [11- 13] +parallel to the z direction defined as 𝑄 = +1 +2𝑁 ∑ 𝑟𝑖𝑥𝑃𝑖 +𝑁 +1 +, where Pi is the local dipole moment located at ri +and N is the number of dipoles (cells). + +The toroidal moment alternates sign periodically in diagonal directions of the Moiré pattern (see Figures +2c and 2f) in a way determined by a periodic array of alternating clockwise and counterclockwise +vortices in AA and AB sites, respectively. Ferroelectric vortices are topological objects characterized by a + +Figure 2: Strain and polarization modulations at twisted BaTiO3 bilayers. a) STEM-HAADF image of a 10.4° twisted BaTiO3 bilayer stack +focusing on the interface of the bilayer (defocus = -15 nm). b) Shear strain (𝜀𝑥𝑦 component of the lattice strain tensor) depicting a periodic +strain modulation at the top BaTiO3 layer. c) Ti displacement map (black arrows) measured on the top BaTiO3 layer corresponding to the +same area superimposed to the toroidal moment (Q) of the ferroelectric polarization showing a network of clockwise (red) and +counterclockwise (blue) vortices. Ti displacements are amplified by a factor of 20 for clarity. d), e), f) show the same analysis for a 3° +twisted BaTiO3 bilayer. Red and blue octagons in all panels indicate sites with AA (AA-sites) and AB (AB-sites) stacking respectively. The +averaged polarization (modulus) is approximately 20 𝜇𝐶 𝑐𝑚−2, close to the bulk BaTiO3 value. +b) +a) +c) +e) +d) +f) + +4 +3 +2 +1 +A2) +0 +O +-2 +3 +44 +2 +2 +0 +-4nm0 +-2(%) +0 +-2nmwinding number 𝑛 =+1 (see Supplementary Note 1) regardless of their polarity (clockwise or +counterclockwise). Values of the toroidal moment at the vortex sites depend on the size of the vortex +and on the ferroelectric displacements (dipole moment). Interestingly, we obtain values similar to those +reported for flat epitaxial BTO nanoparticles [13]. In the Moiré pattern, vortices alternate with +antivortices (sitting at S-sites), which are topological structures with 𝑛 =-1 winding number and zero +toroidal moment. Crucially, there is a close correspondence between the vortex lattice with the +distribution of shear strains underlying the Moiré pattern. Clockwise or counterclockwise vortices are +located at AA- and AB-sites with nearly zero shear strain (albeit maximal rotational strain). On the other +hand, antivortices sit at the S sites with maximal shear strain (but nearly zero rotational strain). + +To get further confirmation of this topological polar pattern, we resort to density-functional theory, +considering simplified (computationally tractable) simulated systems that are nevertheless relevant to +our problem. More precisely, we work with a periodically repeated supercell composed of 6x6x1 +elemental BaTiO3 units and consider an initial configuration that mimics the inhomogeneous +polarization pattern measured in the 10 twisted layers. We then run a structural relaxation where all +variables can evolve to minimize the energy of the system. We obtain, as a stable solution, the +polarization and strain maps shown in Fig. 3, in qualitative agreement with the experimental results of +Fig. 2 and thus confirming the connection between the observed strain and dipole modulations. +According to our simulations, this topological state is 9 meV per formula unit above the homogeneous +orthorhombic phase with polarization along the [1,1] diagonal. This relatively small difference is in fact +an upper bound (see Methods) for the energy cost of deforming the trivial homogeneous state to + +acquire the topological features of Figs. 2 and 3. Hence, our calculations support the notion that +interlayer interactions may suffice to induce the experimentally observed strain and dipole patterns. + + +Let us finally tackle this critical question: what causes the peculiar inhomogeneous polarization textures +in our layers? These complex quasi-periodic orders are controlled by the twist angle, which indicates +they are the result of interlayer interactions. Further, it is apparent that the vortex- and antivortex-like +dipole arrangements in Figs. 2c and 2f are correlated with the measured strain patterns of Figs. 2b and +2e. This suggests that, to understand these polar textures, it is reasonable to ignore the microscopic +details of the couplings across the twisted interface and, instead, focus on how the observed elastic +modulation affects the polarization. Indeed, ferroelectric perovskites like BaTiO3 present strong +electromechanical couplings that are potential candidates to explain our observations. +Let us begin by considering the simplest strain-polarization couplings. From well-established models of +ferroelectric perovskites like BaTiO3 [39], we know that a shear strain 𝜀𝑥𝑦 > 0 typically favors a + +Figure 3: Density functional theory model of a ferroelectric vortex lattice in BaTiO3. a) DFT calculated model. b) Shear strain (𝜀𝑥𝑦 +component of the lattice strain tensor) obtained from the DFT model. c) Ti displacement map (black arrows) superimposed to the +toroidal moment (Q) of the ferroelectric polarization obtained from the DFT model. Ti displacements are amplified by a factor of 40 for +clarity. Red and blue marks in all panels indicate the AA and AB stacking regions, respectively. +b) +a) +c) + +1 +2 +-1% +-2polarization oriented along the [1,1] in-plane diagonal, while 𝜀𝑥𝑦 < 0 leads to polarizations along +[1, −1]; hence, we can expect 𝛿𝑃𝑥𝛿𝑃𝑦 ∝ 𝜀𝑥𝑦, where by (𝛿𝑃𝑥, 𝛿𝑃𝑦) we refer to the inhomogeneous part +of the measured polarization, as shown in Figs. 2c and 2f (and also Fig. 3c). However, it is clear from our +results that this relationship does not hold for the measured strains (Figs. 2b and 2e, and Fig. 3b) and +inhomogeneous polarizations (Figs. 2c and 2f, and also Fig. 3c), as one can e.g. find regions with 𝜀𝑥𝑦 > 0 +and an either positive or negative 𝛿𝑃𝑥𝛿𝑃𝑦 product. A strong piezoelectric effect would also lead to +𝛿𝑃𝑥𝛿𝑃𝑦 ∝ 𝜀𝑥𝑦, and is not supported by our observations either. Hence, these are not the dominant +couplings in our samples. +Next, we note that our measured strain maps feature large strain gradients with maximum values +reaching ±4 × 107 𝑚−1, which we explicitly show in Figure 4. By virtue of the direct flexoelectric +coupling [38], such gradients should yield a polarization change, the expected dominant effects being +𝛿𝑃𝑥 ≈ 𝜇𝑥𝑦𝑥𝑦 +eff +∂𝜖𝑥𝑦 +∂𝑦 +(1) +and +𝛿𝑃𝑦 ≈ 𝜇𝑥𝑦𝑥𝑦 +eff +∂𝜖𝑥𝑦 +∂𝑥 +(2) +where 𝜇𝑥𝑦𝑥𝑦 +eff + is the effective flexoelectric coefficient active in our samples. Notably, from the measured +strain gradients (Figs. 2b and 2e, and Fig. 3b) and inhomogeneous polarization (Figs. 2c and 2f, and also +Fig. 3c), we do see direct support for this coupling in our results. In fact, we find that the regions with + +∂𝜖𝑥𝑦 +∂𝑥 > 0, shown as red vertical fringes in Figure 4, feature positive 𝛿𝑃𝑦 > 0; conversely, the regions +with +∂𝜖𝑥𝑦 +∂𝑥 < 0, shown as blue vertical fringes in Figure 4, show 𝛿𝑃𝑦 < 0. A similar relation holds for +the +∂𝜖𝑥𝑦 +∂𝑦 gradients and the 𝛿𝑃𝑥 component of the polarization. + + + + +In fact, the relationship between strain and polarization patterns can be captured in a simple geometric +manner. As shown in Fig. 5, the symmetry breaking caused by the shear (and rotational) strain +modulation readily leads to the observed arrangement of polar vortices and antivortices. A local shear +strain 𝜖𝑥𝑦 ≠ 0 breaks the square symmetry of the cells of Fig. 5, yielding two large-angle corners and +two small-angle corners. In the figure, arrows (flexoelectric polarizations) are drawn assuming that the +cations displace towards the small-angle corners, which naturally yields an antivortex-like dipole + + +Figure 4: Shear strain gradients of twisted BaTiO3 bilayers. Derivative of the shear strain along the x axis of a 3° twisted BaTiO3 bilayer +(a) and a 10,4° twisted BaTiO3 bilayer (b) and a DFT calculated model corresponding to 10° twisted layers (c). Derivative of the shear +strain along the y axis of a 3° twisted BaTiO3 bilayer (d) and a 10.4° twisted BaTiO3 bilayer (e) and a DFT calculated model corresponding +to 10° twisted layers (f). Ti displacement map (black arrows) are superimposed to all images. Ti displacements are amplified for clarity +by a factor of 20 in (a, b, d, e) and 40 in (c, f). + + +a) +b) +c) +0.004 +0.004 +0.004 +0.002 +0.002 +0.002 +dExy/ax (A-1) +(t-) xe/4x3e +(A-1) +0.000 +0.000 +0.000 +aExy/ax +0.002 +0.002 +0.002 +0.004 +0.004 +0.004 +d) +e] +f) +0.004 +0.004 +0.004 +0.002 +0.002 +0.002 +(A-1) +(A-1) +0.000 +aExy/ay +0.000 +0.000 +ejn +30 +0.002 +0.002 +0.002 +0.004 +0.004 +0.004arrangement with zero curl of the polarization field centered at the cells with 𝜖𝑥𝑦 ≠ 0. Correspondingly, +polarization vortices (non-zero curl) form around the cells with 𝜖𝑥𝑦 = 0. + + +Our quantitative measurements allow us to compute strain gradients and polarization modulations and, +thus, estimate the effective flexoelectric coefficient 𝜇𝑥𝑦𝑥𝑦 +eff +. We approximately have + + +Figure 5: Pictorial view of the flexoelectric couplings. Sketch of the BaTiO3 layer, showing regions of approximately constant shear strain +as cells of a periodic lattice. We indicate the analogues of the AA and AB sites discussed in the text. The black arrows stand for the +polarization induced by the flexoelectric effect; these arrows are consistent with Eqs. (1) and (2) for 𝜇𝑥𝑦𝑥𝑦 +eff +> 0, and they present the +vortices and antivortices observed experimentally. Note that the flexoelectric polarization can be intuitively understood from the +symmetry breaking caused by the strain modulation. For example, at any given lattice point (shared by four cells, with four associated +cell angles), we always find an arrow pointing towards the cell with the smallest (< 90°) angle. + +AB + < + > + = + > + > + > +AB + = +AA + = +AA + = + +𝜇𝑥𝑦𝑥𝑦 +eff +≈ 𝛿𝑃𝑥 ( +Δ𝜖𝑥𝑦 +Δ𝑦 ) +−1 +≈ +20 𝜇𝐶 𝑐𝑚−2 +4 × 107 𝑚−1 ≈ 5 𝑛𝐶 𝑚−1, +which is significantly smaller than typical experimental results for bulk BaTiO3 at room temperature +(values between 0.15 and 3.3 𝜇𝐶 𝑚−1 have been reported [40-42]). A variety of reasons may explain +this difference. For example, our constrained BaTiO3 layers might be electrically stiffer than the bulk +material and thus present a smaller flexoelectric response. (The magnitude of the flexoelectric coupling +is known to be proportional to the magnitude of the dielectric response [17].) Probably most critical: a +linear approximation as that in Eqs. (1) and (2) may be inadequate to explain and quantify the effect of +the giant strain gradients in our samples. (To determine flexoelectric coefficients experimentally, the +considered strain gradients are intentionally small, of the order of 1 𝑚−1 [43]. Strain gradients of the +order of 8 × 105 𝑚−1 – as those associated to ferroelastic domains [15] – are considered to be very +large. The gradients in our samples are even larger, by almost two orders of magnitude.) Additionally, +we may have differences coming from surface contributions to the flexoelectric effect [44]; such surface +effects might be present in bulk measurements but seem unlikely to play a role in our case, since the +relevant shears and gradients do not involve any component normal to the layers. Having said this, let +us also note that there are theoretical predictions yielding 𝜇𝑥𝑦𝑥𝑦 values around 0.08 𝑛𝐶 𝑚−1 for BaTiO3 +[45], i.e., a smaller effect than the one we estimate. Shedding further light into these issues would be a +great challenge, for both experiment and theory, and falls beyond the scope of the present work. + +It is also interesting to note that the second derivatives of the shear strain can be used to compute the +expected curl of the polarization vector. In fact, from the flexoelectric coupling between strain gradients +and polarization (Eqs. (1) and (2)), the following relation holds: +𝜕𝑃𝑥 +𝜕𝑦 − 𝜕𝑃𝑦 +𝜕𝑥 = 𝜇𝑥𝑦𝑥𝑦 +eff +(𝜕2𝜖𝑥𝑦 +𝜕𝑦2 − 𝜕2𝜖𝑥𝑦 +𝜕𝑥2 ), + +closely captured by experimental results (see Extended Figures S4 showing the second derivatives of the +strain gradient and S5 showing the curl of the polarization). +In summary, we have found that the stacking of twisted free standing ferroelectric layers features a non- +trivial ferroelectric texture driven by the mechanical boundary conditions imposed by the interface of +twisted freestanding layers. The ferroelectric topology consists of a 2D vortex crystal with a lattice +periodicity determined by the twisting angle. This opens the door to new design possibilities enabled by +the unique modulations that are possible in Moiré bilayers. The highly correlated topological pattern +with vortices and antivortices is reminiscent of the square lattice of merons, objects with n= ½ +topological number only existing in lattices, observed in chiral magnets with magnetic anisotropy [46, +47]. At variance with previous ferroelectric textures found in ferroelectric films confined in the growth +direction, our polar landscape is 2D and highly tunable by controlling the twisting angle of the bilayer +and is, thus, more amenable for applications in high density ferroelectric memories. + +Materials and Methods: +Freestanding perovskite films fabrication: + +15 nm thick BTO layers were grown onto LSMO buffered (100) SrTiO3 (STO) substrates via pure oxygen +sputtering technique at high pressures (3.2 mbar) [48]. This technique produces highly epitaxial growth +with sharp interfaces and negligible stoichiometry deviations (see Extended Figure S6). The LSMO acts as +a sacrificial layer that allows the release of the BTO layer upon immersion in a selective KI+HCl etchant +[49]. Prior to immersion, a polypropylene carbonate (PPC, Sigma Aldrich) film was spin-coated onto the +strained heterostructure and adhered to a commercial polydimethylsiloxane (PDMS, Gel-Film WF 4x 6.0 + +mil by Gel-Pak®) support. This allows the release and transfer of the entire BTO freestanding layer onto +holey Si3N4 membrane grids for STEM observation. After the first and prior to the second BTO transfer, +the membranes are dipped in acetone and isopropyl alcohol to remove the remained PPC and clean the +final interface. The second BTO layer is transferred onto the first one with a twisted angle which is +deterministically controlled by using the edges of the two BTO layers (with defined crystallographic +orientation imposed by the (100) STO substrate) as a reference. See sketch in Fig. 1a. After the second +transfer the surface of the final twisted heterostructure is cleaned as described above. + +Scanning transmission electron microscopy (STEM): +STEM characterization was carried out using a JEOL JEM-ARM 200cF aberration corrected electron +microscope equipped with a cold field emission gun and a Gatan Quantum spectrometer, operated at +200 kV. Depth sectioning HAADF-STEM was performed by acquiring atomic-resolution HAADF-STEM +images as a function of defocus [50, 51], allowing us to probe different depths of the sample and +discriminate between the top and bottom layers of the stack. HAADF-STEM images were acquired using +a 30 mrad probe forming aperture semiangle and a HAADF detector collection semiangle of 70-200 +mrad. + +Determination of polarization and strain. +To determine the ferroelectric polarization, the atomic positions of both A-site Ba and B-site Ti cations +were measured on STEM-HAADF images of 3° and 10,4° twisted BaTiO3 bilayer stacks acquired focusing +on the entrance surface of the stack (defocus = 0 nm). In order to precisely determine the atomic +positions, we performed a two-dimensional gaussian fitting using Atomap [52] Polarization was + +calculated from the off centering of the B-site Ti cations in the individual unit cells (relative displacement +of the B-site Ti cation from the centrosymmetric position, determined with the A-site Ba cations within +the same unit cell) [53]. +Strain analysis was performed using the Peak Pairs Analysis (PPA) software package (HREM Research) for +Digital Micrograph [51]. The analysis was performed on STEM-HAADF images of 3° and 10,4° twisted +BaTiO3 bilayer stacks acquired focusing on the entrance surface of the stack (defocus = 0 nm). In order to +improve the precision of the analysis the scanning direction was rotated off the crystallographic axes of +BaTiO3. For the analysis we perform a Bragg filter selecting the two main reflections along the (100) and +(010) directions as base vectors for the analysis. The peak positions are then determined on the filtered +image and the relative displacements fields (𝑢𝑥, 𝑢𝑦) of the measured lattice with respect to a reference +lattice area are calculated. In this case we have use the whole image as reference. Finally, the +components of the strain tensor are calculated from the displacement fields as: 𝜀𝑥𝑥 = +𝜕𝑢𝑥 +𝜕𝑥 , 𝜀𝑦𝑦 = +𝜕𝑢𝑦 +𝜕𝑦 , +𝜀𝑥𝑦 = +1 +2 ( +𝜕𝑢𝑥 +𝜕𝑦 + +𝜕𝑢𝑦 +𝜕𝑥 ) and 𝜔𝑥𝑦 = +1 +2 ( +𝜕𝑢𝑦 +𝜕𝑥 − +𝜕𝑢𝑥 +𝜕𝑦 ) . + +First-principles calculations: + We performed density functional theory (DFT) calculations as implemented in the Vienna Ab initio +Simulation Package (VASP) [54, 55] . We used the Perdew-Burke-Ernzerhof formulation for solids +(PBEsol) [56] implementation of the generalized gradient approximation for the exchange-correlation +functional. The atomic cores are treated within the projector-augmented wave approach [57], +considering the following states explicitly: 5s, 5p and 6s for Ba; 3p, 4s and 3d for Ti; and 2s and 2p for O. +We employed a 500 eV energy cut-off for the plane-wave basis set. The simulation cells comprised +6x6x1 perovskite unit cells and were computed using a 1x1x4 Monkhorst-Pack [58] k-point grid. The + +structures were fully relaxed until residual forces fell below 0.01 eV/Å and residual stresses fell below +0.001 GPa. +Let us stress that our DFT simulations correspond to the limit of very low temperature (formally, 0 K). +Thus, the computed energy differences – i.e., the 9 meV per formula unit separating the monodomain +ferroelectric state from the vortex-antivortex structure – can be taken as an upper bound for the +relevant free energy difference at room temperature. (In essence, the calculated energy difference +comes from the ferroelectric domain walls – whose energy is known to decrease upon heating – and the +inhomogeneous strain modulation – which is imposed by the inter-layer couplings.) Note also that in our +simulations we treat the monodomain and vortex-antivortex configurations as two separate cases, while +in experiment the topological features are a relatively small modulation of the homogeneous state. For +this reason too, the computed energy difference is an upper bound for the actual energy cost of +inducing (relatively small) topological features superimposed to the homogeneous state. All in all, our +DFT results strongly suggest that the experimentally observed topological structure is easily accessible +and physically sound. Finally, let us remark that simulating directly the perturbed homogeneous state +would require DFT relaxations constrained to respect the experimentally observed inhomogeneous +strain pattern; such calculations would involve several non-trivial assumptions and technical +complications, and we did not pursue them here. + +REFERENCES +[1] Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016). +[2] Hsu, S.-L. et al. Emergence of the vortex state in confined ferroelectric heterostructures. Adv. Mater. +31, 1901014–1901022 (2019). + +[3] Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. +Natl Acad. Sci. USA 115, 915–920 (2018). +[4] Gruverman, A. et al. Vortex ferroelectric domains. J. Phys. Condens. Matter 20, 4 (2008). +[5] Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano +Lett. 11, 828–834 (2011) +[6] S. Das et al., Observation of room-temperature polar skyrmions, Nature 568, 369 (2019) +[7] C.-L. Jia, K. W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu, Science 331, 1420 (2011). +[8] J. Peters, G. Apachitei, R. Beanland, M. Alexe, and A. M. Sachez, Nat. Commun. 7, 13484 (2016). +[9] A. Schilling, D. Byrne, G. Catalan, K. G. Webber, Y. A. Genenko, G. S. Wu, J. F. Scott, and J. M. Gregg, +Nano Lett. 9, 3359–3364 (2009). +[10] Y. L. Tang, Y. L. Zhu, X. L. Ma, A. Y. Borisevich, A. N. Morozovska, E. A. Eliseev, W. Y. Wang, Y. J. +Wang, Y. B. Xu, Z. D. Zhang, and S. J. Pennycook, Science 348, 547 (2015). +[11] I. Naumov, L. Bellaiche, H. Fu, Nature 432, 737 (2004) +[12] I. Kornew, H. X. Fu, and L. Bellaiche, Phys. Rev. Lett. 93, 196104 (2004). +[13] I. Naumov, A. M. Bratkovsky, Phys. Rev. Lett. 101, 107601 (2008) +[14] Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005– +1009 (2004). +[15] Flexoelectric rotation of polarization in ferroelectric thin films G. Catalan, A. Lubk, A. H. G. +Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens , G. Rijnders , D. H. A. Blank and B. Noheda. Nat +Mater. 10, 963 (2011). + +[16] Pavlo Zubko, Gustau Catalan and Alexander K. Tagantsev Flexoelectric Effect in Solids. Annual +Review of Materials Research, 43, 387 (2013) +[17] Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on +phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998). +[18] Pablo Aguado-Puente and Javier Junquera Ferromagnetic like Closure Domains in Ferroelectric +Ultrathin Films: First-Principles Simulations. Phys Rev. Lett.100 177601 (2008) +[19] Jiawang Hong et al. Topology of the polarization field in ferroelectric nanowires from first principles. +Phys Rev B 81, 172101 (2010) +[20] H Lu, C-W Bark, D Esque de los Ojos, J Alcala, C B Eom, G Catalan, A Gruverman. Mechanical writing +of ferroelectric polarization. Science 336, 59 (2012) +[21] K S Novoselov , A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos, A A +Firsov Two-dimensional gas of massless Dirac fermions in graphene Nature 438, 197 (2005) +[22] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. The electronic +properties of graphene. Reviews of Modern Physics, 81, 109 (2009) +[23] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS, Electronics and optoelectronics of two- +dimensional transition metal dichalcogenides. Nat. Nanotechnology, 7, 699 (2012) +[24] B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis, Single-layer MoS2 transistors. Nat +Nanotechnol 6, 147 (2011) +[25] Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev & Andras Kis, 2D transition +metal dichalcogenides. Nature Reviews Materials 2, 17033 (2017) + +[26] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Pablo +Jarillo-Herrero Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 +(2018) +[27] Alexey I Berdyugin et al., Out-of-equilibrium criticalities in graphene superlattices Science 375, 430 +(2022) +[28] Pablo San-Jose, A. Gutiérrez-Rubio, Mauricio Sturla, and Francisco Guinea, Spontaneous strains and +gap in graphene on boron nitride. Phys. Rev. B 90, 075428 +[29] Lu, D., Baek, D. J., Hong, S. S., Kourkoutis, L. F., Hikita, Y., Hwang, H. Y Synthesis of freestanding +single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nature +Materials, 15, 1255 (2016) +[30] Hong, S. S., Gu, M., Verma, M., Harbola, V., Wang, B. Y., Lu, D., Vailionis, A., Hikita, Y., Pentcheva, R., +Rondinelli, J. M., Hwang, H. Y. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, +71–76 (2020) +[31] G. Dong et al., Super-elastic ferroelectric single-crystal membrane with continuous electric dipole +rotation, Science 366, 475 (2019). +[32] J. Shen, Z. Dong, M. Qi, Y. Zhang, C. Zhu, Z. Wu, and D. Li, Observation of Moiré Patterns in Twisted +Stacks of Bilayer Perovskite Oxide Nanomembranes with Various Lattice Symmetries, ACS Appl. Mater. +Interfaces 14, 50386 (2022). +[33] Y. Li, C. Xiang, F. M. Chiabrera, S. Yun, H. Zhang, D. J. Kelly, R. T. Dahm, C. K. R. Kirchert, T. E. L. +Cozannet, F. Trier, D. V. Christensen, T. J. Booth, S. B. Simonsen, S. Kadkhodazadeh, T. S. Jespersen, and +N. Pryds, Stacking and Twisting of Freestanding Complex Oxide Thin Films, Adv. Mater. 34, 2203187 +(2022). + +[34] A.F. Devonshire, Phil. Mag. 40, 1040 (1949); +[35] J. Íñiguez, S. Ivantchev, J.M. Pérez-Mato and A. García, Phys. Rev. B 63, 144103 (2001). +[36] A.T. Mulder, N.A. Benedek, J.M. Rondinelli and C.J. Fennie, Adv. Func. Mats. 23, 4810 (2013) +[37] C. Ederer and N.A. Spaldin, Phys. Rev. B 74, 024102 (2006); +[38] J. López-Pérez and J. Íñiguez , Phys. Rev. B 84 , 075121 (2011). +[39] R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994). + +[40] J. Harada, J.D. Axe and G. Shirane, Neutron-scattering study of soft modes in cubic BaTiO3, Phys. +Rev. B 4, 155 (1971). + + +[41] P.V. Yudin, R. Ahluwalia and A.K. Tagantsev, Upper bounds for flexoelectric coefficients in +ferroelectrics, Appl. Phys. Lett. 104, 2 (2014). + + +[42] B. Wang, Y. Gu, S. Zhang and L.-Q. Chen, Flexoelectricity in solids: Progress, challenges, and +perspectives, Prog. Mats. Sci. 106, 100570 (2019). + +[43] Ma, W. & Cross, L. E. Strain-gradient-induced electric polarization in lead zirconate titanate +ceramics. Appl. Phys. Lett. 82, 3293 3295 (2003). + +[44] M. Stengel, Phys. Rev. B 90, 201112(R) (2014). + +[45] Cyrus E. Dreyer, Massimiliano Stengel, and David Vanderbilt, Current-density implementation for +calculating flexoelectric coefficients. Phys. Rev. B 98, 075153 + + [46] X. Z. Yu et al., Transformation between meron and skyrmion topological spin textures in a chiral +magnet Nature 564, 95 (2018) + +[47] Yu-Tsun Shao et al. Emergent chirality in a polar meron to skyrmion phase transition. Microscopy +and Microanalysis, 27, Supplement S1, 348 – 350 (2021) +[48] Gabriel Sanchez-Santolino et al. Resonant electron tunnelling assisted by charged domain walls in +multiferroic tunnel junctions. Nature Nanotechnology volume 12, pages655–662 (2017) +[49] D. Pesquera et al Beyond substrates: strain engineering of ferroelectric membranes Advanced +Materials 32 (43), 2003780 +[50] A. Y. Borisevich, A. R. Lupini, and S. J. Pennycook, Depth sectioning with the aberration-corrected +scanning transmission electron microscope, Proc. Natl. Acad. Sci. U. S. A., 103, 3044 (2006) + [51] R. Ishikawa, A. R. Lupini, Y. Hinuma, and S. J. Pennycook, Large-angle illumination STEM: Toward +three-dimensional atom-by-atom imaging, Ultramicroscopy, vol. 151, pp. 122–129, 2015, doi: +10.1016/j.ultramic.2014.11.009. + [52] M. Nord, P. E. Vullum, I. MacLaren, T. Tybell, and R. Holmestad, “Atomap: a new software tool for +the automated analysis of atomic resolution images using two-dimensional Gaussian fitting,” Adv. +Struct. Chem. Imaging, vol. 3, no. 1, p. 9, Dec. 2017, doi: 10.1186/s40679-017-0042-5. + [53] Ghosez, P., Michenaud, J. & Gonze, X. Dynamical atomic charges: the case of ABO3 compounds. +Phys. Rev. B 58, 6224–6240 (1998) +[54] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a +plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). +[55] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. +Phys. Rev. B 59, 1758–1775 (1999). + +[56] Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. +Rev. Lett. 100, 136406 (2008). +[57] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). +[58] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188– +5192 (1976). + +Acknowledgments +Authors acknowledge received funding from the project To2Dox of FlagERA ERA-NET Cofund in +Quantum Technologies implemented within the European Union’s Horizon 2020 Program. Work (JS, CL, +FM , M G-H) supported by Spanish AEI through grants, PID2020-118078RB-I00 and by Regional +Government of Madrid CAM through SINERGICO project Y2020/NMT-6661 CAIRO-CM. G.S.-S. +acknowledges financial support from Spanish MCI Grant Nos. RTI2018-099054-J-I00 (MCI/AEI/FEDER, +UE) and IJC2018-038164-I. Work (VR) supported by the Madrid Government (Comunidad de Madrid- +Spain) under the Multiannual Agreement with Universidad Complutense de Madrid in the line Research +Incentive for Young PhDs, in the context of the V PRICIT (Regional Programme of Research and +Technological Innovation. European Union's Horizon 2020 research and innovation program (Grant +Agreement No. 755655 ERC-StG 2017 project 2D-TOPSENSE, Grant Agreement No. 785219 Graphene +Core2-Graphene-based disruptive technologies and Grant agreement No. 881603 Graphene Core3- +Graphene-based disruptive technologies), the EU FLAG-ERA project To2Dox (JTC-2019-009), the +Comunidad de Madrid through the CAIRO-CM project (Y2020/NMT-6661) and the Spanish Ministry of +Science and Innovation (grant PID2020-118078RB-I00 and fellowship PRE2018-084818). + +Electron microscopy observations were carried out at the Centro Nacional de Microscopia Electrónica, +CNME-UCM. Work at LIST was supported by the Luxembourg National Research Fund through grant +FNR/C18/MS/12705883/REFOX. + + +Data availability statement. The data used in this paper are available from the authors upon reasonable +request +Authors contributions. VR, VZ, SP, FAC prepared the samples with help and guidance of CM, FM, MGH +and ACG. GSS did the electron microscopy. GSS, VR, VZ, CL, JS analyzed the electron microscopy data. HA +and JI did the theory analysis. GSS, VR, HA, JI, CL and JS wrote the manuscript with inputs and help of all +authors. +Competing interests: The authors declare no competing interests. + + diff --git a/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/load_file.txt b/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e566ac85d7ce617d26aa07fd1c67690f79197546 --- /dev/null +++ b/_dE3T4oBgHgl3EQfTAmK/content/tmp_files/load_file.txt @@ -0,0 +1,740 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf,len=739 +page_content='A 2D ferroelectric vortex lattice in twisted BaTiO3 freestanding layers G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sánchez-Santolino*,& 1, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rouco*,& 1, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Puebla2, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Aramberri3, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zamora1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Cuellar1, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Munuera2,4, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mompean2,4, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Garcia-Hernandez 2,4, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Castellanos-Gomez2,4, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Íñiguez 3,5, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Leon1,4, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Santamaria1,4&.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1 GFMC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Fisica de Materiales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Facultad de Fisica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Universidad Complutense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 28040 Madrid 2 Instituto de Ciencia de Materiales de Madrid ICMM-CSIC 28049 Cantoblanco.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Spain 3 Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 4 Unidad Asociada UCM/CSIC, “Laboratorio de Heteroestructuras con aplicación en spintrónica” 5 Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422 Belvaux, Luxembourg &Corresponding authors: G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sanchez-Santolino: gsanchezsantolino@ucm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='es, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rouco: vrouco@ucm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='es, SANTAMARIA Jacobo: jacsan@ucm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='es Equal contributors The wealth of complex polar topologies [1 6] recently found in nanoscale ferroelectrics result from a delicate balance between the materials’ intrinsic tendency to develop a homogeneous polarization and the electric and mechanic boundary conditions imposed upon them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ferroelectric–dielectric interfaces are model systems where polarization curling originates from open circuit like electric boundary conditions, to avoid the build up of polarization charges through the formation of flux closure [7 10] domains that evolve into vortex like structures at the nanoscale [11 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Interestingly, while ferroelectricity is known to couple strongly to strain (both homogeneous [14] and inhomogeneous [15, 16]), the effect of mechanical constraints [17] on thin film nanoscale ferroelectrics has been comparatively less explored because of the relative paucity of strain patterns that can be implemented experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Here we show that the stacking of freestanding ferroelectric perovskite layers with controlled twist angles opens an unprecedented opportunity to tailor these topological nanostructures in a way determined by the lateral strain modulation associated to the twisting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Interestingly, we find that a peculiar pattern of polarization vortices and antivortices emerges from the flexoelectric coupling of polarization to strain gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This finding opens exciting opportunities to create two-dimensional high density vortex crystals that would allow us to explore novel physical effects and functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' TEXT The persistence of ferroelectricity at the nanoscale hinges on the compensation of the polarization bound charges and depolarizing fields building up at surfaces or interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In ferroelectric films with metallic electrodes the depolarizing fields can be screened by (free) charge accumulation and by the formation of domains [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The situation is even more dramatic in nanoscale ferroelectric samples with dielectric boundaries (including vacuum or insulating non-polar surface layers) where the polarization can undergo a transition into vortex [11-13] or more complex [1-6] topological states, with rotational polar configurations persisting to small diameters where polarization departs from the high-symmetry directions favored by the lattice anisotropy [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mechanical boundary conditions [17], as those imposed by interfacial strain, play a critical role in determining the final polarization state, as they may combine with electric boundary conditions in non- trivial ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Importantly, the strong coupling of ferroelectricity to both homogeneous and inhomogeneous strain is at the origin of the effectiveness of mechanical boundary conditions in triggering unexpected effects, such as the enhanced ferroelectricity in epitaxially strained layers [14] or the polarization switching under the strain gradients created by an AFM tip pressing on the sample surface [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' As it turns out, however, access to externally tunable strain patterns is in practice very limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In epitaxial thin films mechanical boundary conditions are to a large extent immovably and solely determined by the atom-on-atom replication of the structure of the substrate by the growing film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Hence, while the interface with the substrate is subject to in-plane strains imposed by the lattice mismatch, the sample surface is in a zero stress state, as there are no tractions acting on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In epitaxial uniformly strained single-domain layers, internal elastic fields are homogeneous and rigidly imposed by these mixed boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Inhomogeneous strain results typically from uncontrollable strain relaxation, misfit dislocations or ferroelastic domain formation [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The structural constraints imposed by epitaxy leave little or no room to modify mechanical boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Moreover, controllable shear or inhomogeneous strain patterns are commonly out of reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This is the reason why, although on general grounds exotic ferroelectric states can be expected to result from the manipulation of mechanical boundary conditions, this scenario remains mostly unexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In this paper we demonstrate a new strategy to engineer mechanical boundary conditions based on the strain modulation induced at the interface between two twisted freestanding oxide layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In layered materials such as graphite [21, 22] or transition metal dichalcogenides [23-25], twisted bilayers have led to the emergence of unexpected collective states [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Interestingly, the weak van der Waals interlayer interaction in such twisted bilayers leads to inhomogeneous strain patterns with deformations up to 2% [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Extending the exploration to artificial twisted stacks of ionically bonded transition metal oxides, however, has been hampered by the difficulty to isolate these systems in freestanding form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The recent reports on the fabrication of freestanding single crystalline oxide thin films [29-31], which can be handled in a way similar to van der Waals 2D materials, open up the possibility of stacking freestanding layers with arbitrary twist angles [32, 33] and thus design completely novel strain patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' To our knowledge, this approach to induce strain landscapes spatially varying at the nanoscale in complex oxides has not been reported so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Here we show that the lateral strain modulation caused by the interface matching between two twisted freestanding ferroelectric BaTiO3 layers sets a mechanical boundary condition not attainable by epitaxial strain, and to a large extent controllable by the relative rotation angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The nanoscale modulated distribution of symmetric and antisymmetric shear strains yields a surprising rotational polarization texture with alternating clockwise and counterclockwise vortices and antivortices, whose distribution, spacing and size is controlled by the twist angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' First- principles simulations show that this complex configuration of highly localized symmetric and antisymmetric shears concomitant with the ferroelectric vortex 2D crystal constitutes in fact a stable equilibrium state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The coupling between shear strain gradients and complex polarization texture is discussed in terms of a direct flexoelectric effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 15 nm thick BaTiO3 (BTO) layers epitaxially grown on (001) SrTiO3 (STO) substrates were delaminated to form twisted bilayer homojunctions with deterministic twist angles (see Figure 1a and Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Bilayers were transferred onto holey Si3N4 membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' To study the structural properties of individual layers of the twisted bilayers we performed a depth sectioning high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) experiment (see Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Focusing on the entrance surface of the stack (defocus = 0 nm) we observe the typical structure of a BaTiO3 perovskite which corresponds to the top layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The Moiré contrast is revealed by changing the defocus to reach the interface of the twisted bilayer (defocus = - 15 nm), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A further increasing defocus brings the bottom layer in focus, which appears rotated by the twist angle of the bilayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Twisted ferroelectric bilayers exhibit characteristic Moiré features determined by the atomic coincidence pattern between the two layers (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4 º twist angle, determined from the fast Fourier transform (FFT) image, is homogeneous along the fabricated sample and close to the nominal 10º rotation of the films during the deterministic transfer process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The FFT shows the spots from both top and bottom twisted BTO layers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' for clarity we will denote the directions corresponding to the twisted layer forming the Moiré pattern as (100)* and (010)*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The Moiré pattern shows two distinct (plateau-like) features at the highly (atom-on-atom) coincidental regions of both layers, marked as AA and AB in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1b and on the rigid atomic model shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Around AA sites there is AA stacking (Ba on Ba, Ti on Ti and O on O) between the top and bottom layers, while AB sites show an AB stacking (Ba on Ti and Ti on Ba) for the Ba and Ti cations of the twisted layers while preserving the AA stacking for the O anions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We studied Moiré structures formed in α = 3, 6, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4 and 50º twisted BaTiO3 bilayers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' in the main text we discuss data taken on the samples with 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4° and 3° twist angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Intralayer strain was measured on the top layer using the entrance surface focused image (defocus = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The emergence of a strongly spatially varying strain landscape with the same periodicity as the Moiré Figure 1: Fabrication of twisted freestanding BaTiO3 bilayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' a) Schematic of the deterministic two steps transfer process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' b) Depth sectioning STEM-HAADF experiment of a twisted BaTiO3 bilayer stack focusing on the entrance surface of the stack (defocus = 0 nm) and the interface (defocus = -15 nm) c) Moiré structure formed at the interface between the BaTiO3 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A network of two distinct AA and AB motives is formed due to the twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The image on the right shows the Fast Fourier Transform noting the reflections of both the top and bottom freestanding BaTiO3 films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The scale bar is 2 nm d) Model of the rigid atomic structure corresponding to two BaTiO3 lattices with a twist angle of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4° showing Ba atoms in green, Ti in blue and O in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' AA and AB sites are marked in blue and red respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' a) 1stTransfer KI+HCI 80°℃ 2ndTransfer PDMS PPC BTO LSMO 80°℃ STO b) (100) (100)* depth d) (100) (100)*lattice - and determined at the top layer - clearly demonstrates the strong interaction between the two twisted layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The resultant strain map shows a periodically modulated pattern of symmetric shear strains (𝜀𝑥𝑦 = 1 2 ( 𝜕𝑢𝑥 𝜕𝑦 + 𝜕𝑢𝑦 𝜕𝑥 )) with alternating positive and negative shear strain cores (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2b, e for bilayers twisted 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4 and 3 degrees, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Strain analysis included the antisymmetric components of the strain tensor (𝜔𝑥𝑦 = 1 2 ( 𝜕𝑢𝑥 𝜕𝑦 − 𝜕𝑢𝑦 𝜕𝑥 )) associated to local rotations of the perovskite lattice (See Extended Figure S1 a and b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Control experiments on single BTO freestanding layers show a nearly homogeneous strain distribution, making it clear that the complex strain maps obtained in the bilayers originate at the stacking of the twisted layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Notice that at the AA and AB sites there is maximal atom-on-atom coincidence between the twisted layers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' we find very small shear strains in those areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In between the AA and AB sites of the Moiré pattern we find regions of maximum strain, named S-sites hereafter, with nearly homogeneous positive and negative shears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The shear strain modulation shows the same periodicity as the Moiré pattern, indicating that the strain results in fact from a displacement field reconstruction in the top layer induced by the matching at the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' An important remark is that such a periodical shear strain landscape is unique, as it cannot be attained, to the best of our knowledge, either by epitaxial strain or by any pattern of externally applied stresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In order to investigate how the strain modulation observed on the top layer of the twisted BTO bilayers affects the ferroelectric polarization we have measured the off-centering of the B-site cations in the individual unit cells (relative displacement of the B-site Ti cation from the centrosymmetric position, determined with the A-site Ba cations within the same unit cell).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Twisted bilayers showed net in-plane polarization in the [1,1] direction of the perovskite lattice (in the pseudo-cubic reference) with a superimposed polar texture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Polar displacements were obtained to be in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='15 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='20 Å, which is consistent with what is found in bulk BaTiO3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In BaTiO3, the magnitude of the spontaneous polarization is known to be approximately constant regardless of the orientation it may present in the different ferroelectric phases this compound can adopt [34, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This suggests that the polarization of our layers must be largely confined to the plane, the (not measured) vertical component being very small if present at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Further, this in-plane polarization is most likely a consequence of the stacking in our materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The interfaces between layers will inevitably result in a discontinuity of the vertical component of the electric displacement vector, with the concomitant occurrence of depolarizing fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In such conditions, an in-plane polarization is energetically favored, as it does not suffer from any electrostatic penalty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The situation can be compared to that of layered perovskite crystals (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Ruddlesden-Popper phases), which typically present spontaneous polarizations perpendicular to the stacking direction [36-38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Note also that our free-standing layers are not subject to any global mechanical constraints that might drive the occurrence of an in-plane polarization, further supporting its electrostatic origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The net polarization pointing along the [1,1] in-plane direction indicates that our layers present the orthorhombic ferroelectric phase that also occurs in the bulk material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' BaTiO3 crystals present a tetragonal structure at room temperature, which would suggest a polarization along [1,0] or [0,1] in our layers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' yet, single BTO freestanding layers (see Extended Figure S2) showed averaged polarization vectors in the [1,1] direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Given the proximity to the bulk tetragonal to orthorhombic transition (which occurs at 278 K) and the fact that these two phases have very similar free energies at ambient conditions, the observed orthorhombic-like state seems perfectly acceptable, as it may be stabilized by any of many factors distinguishing our BaTiO3 layers from the bulk compound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The complex polar texture of our layers can be better assessed by subtracting the average polarization value in the image (See Extended Figure 3 for a comparison).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The polarization maps in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2c, f show a continuous curling of the polar displacements, forming a periodic network of non-trivial topological structures with alternating polarization vortices (AA and AB sites) and antivortices (S sites of the Moiré pattern).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We can describe the topological structure in terms of a non-zero toroidal moment [11- 13] parallel to the z direction defined as 𝑄 = 1 2𝑁 ∑ 𝑟𝑖𝑥𝑃𝑖 𝑁 1 , where Pi is the local dipole moment located at ri and N is the number of dipoles (cells).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The toroidal moment alternates sign periodically in diagonal directions of the Moiré pattern (see Figures 2c and 2f) in a way determined by a periodic array of alternating clockwise and counterclockwise vortices in AA and AB sites, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ferroelectric vortices are topological objects characterized by a Figure 2: Strain and polarization modulations at twisted BaTiO3 bilayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' a) STEM-HAADF image of a 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4° twisted BaTiO3 bilayer stack focusing on the interface of the bilayer (defocus = -15 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' b) Shear strain (𝜀𝑥𝑦 component of the lattice strain tensor) depicting a periodic strain modulation at the top BaTiO3 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' c) Ti displacement map (black arrows) measured on the top BaTiO3 layer corresponding to the same area superimposed to the toroidal moment (Q) of the ferroelectric polarization showing a network of clockwise (red) and counterclockwise (blue) vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ti displacements are amplified by a factor of 20 for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' d), e), f) show the same analysis for a 3° twisted BaTiO3 bilayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Red and blue octagons in all panels indicate sites with AA (AA-sites) and AB (AB-sites) stacking respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The averaged polarization (modulus) is approximately 20 𝜇𝐶 𝑐𝑚−2, close to the bulk BaTiO3 value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' b) a) c) e) d) f) 4 3 2 1 A2) 0 O -2 3 44 2 2 0 -4nm0 -2(%) 0 -2nmwinding number 𝑛 =+1 (see Supplementary Note 1) regardless of their polarity (clockwise or counterclockwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Values of the toroidal moment at the vortex sites depend on the size of the vortex and on the ferroelectric displacements (dipole moment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Interestingly, we obtain values similar to those reported for flat epitaxial BTO nanoparticles [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In the Moiré pattern, vortices alternate with antivortices (sitting at S-sites), which are topological structures with 𝑛 =-1 winding number and zero toroidal moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Crucially, there is a close correspondence between the vortex lattice with the distribution of shear strains underlying the Moiré pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Clockwise or counterclockwise vortices are located at AA- and AB-sites with nearly zero shear strain (albeit maximal rotational strain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' On the other hand, antivortices sit at the S sites with maximal shear strain (but nearly zero rotational strain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' To get further confirmation of this topological polar pattern, we resort to density-functional theory, considering simplified (computationally tractable) simulated systems that are nevertheless relevant to our problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' More precisely, we work with a periodically repeated supercell composed of 6x6x1 elemental BaTiO3 units and consider an initial configuration that mimics the inhomogeneous polarization pattern measured in the 10\uf0b0 twisted layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We then run a structural relaxation where all variables can evolve to minimize the energy of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We obtain, as a stable solution, the polarization and strain maps shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3, in qualitative agreement with the experimental results of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2 and thus confirming the connection between the observed strain and dipole modulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' According to our simulations, this topological state is 9 meV per formula unit above the homogeneous orthorhombic phase with polarization along the [1,1] diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This relatively small difference is in fact an upper bound (see Methods) for the energy cost of deforming the trivial homogeneous state to acquire the topological features of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Hence, our calculations support the notion that interlayer interactions may suffice to induce the experimentally observed strain and dipole patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Let us finally tackle this critical question: what causes the peculiar inhomogeneous polarization textures in our layers?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' These complex quasi-periodic orders are controlled by the twist angle, which indicates they are the result of interlayer interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Further, it is apparent that the vortex- and antivortex-like dipole arrangements in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2c and 2f are correlated with the measured strain patterns of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2b and 2e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This suggests that, to understand these polar textures, it is reasonable to ignore the microscopic details of the couplings across the twisted interface and, instead, focus on how the observed elastic modulation affects the polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Indeed, ferroelectric perovskites like BaTiO3 present strong electromechanical couplings that are potential candidates to explain our observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Let us begin by considering the simplest strain-polarization couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' From well-established models of ferroelectric perovskites like BaTiO3 [39], we know that a shear strain 𝜀𝑥𝑦 > 0 typically favors a Figure 3: Density functional theory model of a ferroelectric vortex lattice in BaTiO3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' a) DFT calculated model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' b) Shear strain (𝜀𝑥𝑦 component of the lattice strain tensor) obtained from the DFT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' c) Ti displacement map (black arrows) superimposed to the toroidal moment (Q) of the ferroelectric polarization obtained from the DFT model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ti displacements are amplified by a factor of 40 for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Red and blue marks in all panels indicate the AA and AB stacking regions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' b) a) c) 1 2 -1% -2polarization oriented along the [1,1] in-plane diagonal, while 𝜀𝑥𝑦 < 0 leads to polarizations along [1, −1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' hence, we can expect 𝛿𝑃𝑥𝛿𝑃𝑦 ∝ 𝜀𝑥𝑦, where by (𝛿𝑃𝑥, 𝛿𝑃𝑦) we refer to the inhomogeneous part of the measured polarization, as shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2c and 2f (and also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' However, it is clear from our results that this relationship does not hold for the measured strains (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2b and 2e, and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3b) and inhomogeneous polarizations (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2c and 2f, and also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3c), as one can e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' find regions with 𝜀𝑥𝑦 > 0 and an either positive or negative 𝛿𝑃𝑥𝛿𝑃𝑦 product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A strong piezoelectric effect would also lead to 𝛿𝑃𝑥𝛿𝑃𝑦 ∝ 𝜀𝑥𝑦, and is not supported by our observations either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Hence, these are not the dominant couplings in our samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Next, we note that our measured strain maps feature large strain gradients with maximum values reaching ±4 × 107 𝑚−1, which we explicitly show in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' By virtue of the direct flexoelectric coupling [38], such gradients should yield a polarization change, the expected dominant effects being 𝛿𝑃𝑥 ≈ 𝜇𝑥𝑦𝑥𝑦 eff ∂𝜖𝑥𝑦 ∂𝑦 (1) and 𝛿𝑃𝑦 ≈ 𝜇𝑥𝑦𝑥𝑦 eff ∂𝜖𝑥𝑦 ∂𝑥 (2) where 𝜇𝑥𝑦𝑥𝑦 eff is the effective flexoelectric coefficient active in our samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Notably, from the measured strain gradients (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2b and 2e, and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3b) and inhomogeneous polarization (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2c and 2f, and also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3c), we do see direct support for this coupling in our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In fact, we find that the regions with ∂𝜖𝑥𝑦 ∂𝑥 > 0, shown as red vertical fringes in Figure 4, feature positive 𝛿𝑃𝑦 > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' conversely, the regions with ∂𝜖𝑥𝑦 ∂𝑥 < 0, shown as blue vertical fringes in Figure 4, show 𝛿𝑃𝑦 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A similar relation holds for the ∂𝜖𝑥𝑦 ∂𝑦 gradients and the 𝛿𝑃𝑥 component of the polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In fact, the relationship between strain and polarization patterns can be captured in a simple geometric manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 5, the symmetry breaking caused by the shear (and rotational) strain modulation readily leads to the observed arrangement of polar vortices and antivortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A local shear strain 𝜖𝑥𝑦 ≠ 0 breaks the square symmetry of the cells of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 5, yielding two large-angle corners and two small-angle corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In the figure, arrows (flexoelectric polarizations) are drawn assuming that the cations displace towards the small-angle corners, which naturally yields an antivortex-like dipole Figure 4: Shear strain gradients of twisted BaTiO3 bilayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Derivative of the shear strain along the x axis of a 3° twisted BaTiO3 bilayer (a) and a 10,4° twisted BaTiO3 bilayer (b) and a DFT calculated model corresponding to 10° twisted layers (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Derivative of the shear strain along the y axis of a 3° twisted BaTiO3 bilayer (d) and a 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='4° twisted BaTiO3 bilayer (e) and a DFT calculated model corresponding to 10° twisted layers (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ti displacement map (black arrows) are superimposed to all images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ti displacements are amplified for clarity by a factor of 20 in (a, b, d, e) and 40 in (c, f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' a) b) c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 dExy/ax (A-1) (t-) xe/4x3e (A-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 aExy/ax 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 d) e] f) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 (A-1) (A-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 aExy/ay 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='000 ejn 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='004arrangement with zero curl of the polarization field centered at the cells with 𝜖𝑥𝑦 ≠ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Correspondingly, polarization vortices (non-zero curl) form around the cells with 𝜖𝑥𝑦 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Our quantitative measurements allow us to compute strain gradients and polarization modulations and, thus, estimate the effective flexoelectric coefficient 𝜇𝑥𝑦𝑥𝑦 eff .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We approximately have Figure 5: Pictorial view of the flexoelectric couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sketch of the BaTiO3 layer, showing regions of approximately constant shear strain as cells of a periodic lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We indicate the analogues of the AA and AB sites discussed in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The black arrows stand for the polarization induced by the flexoelectric effect;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' these arrows are consistent with Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (1) and (2) for 𝜇𝑥𝑦𝑥𝑦 eff > 0, and they present the vortices and antivortices observed experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Note that the flexoelectric polarization can be intuitively understood from the symmetry breaking caused by the strain modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' For example, at any given lattice point (shared by four cells, with four associated cell angles), we always find an arrow pointing towards the cell with the smallest (< 90°) angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' AB < > = > > > AB = AA = AA = 𝜇𝑥𝑦𝑥𝑦 eff ≈ 𝛿𝑃𝑥 ( Δ𝜖𝑥𝑦 Δ𝑦 ) −1 ≈ 20 𝜇𝐶 𝑐𝑚−2 4 × 107 𝑚−1 ≈ 5 𝑛𝐶 𝑚−1, which is significantly smaller than typical experimental results for bulk BaTiO3 at room temperature (values between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='15 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='3 𝜇𝐶 𝑚−1 have been reported [40-42]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A variety of reasons may explain this difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' For example, our constrained BaTiO3 layers might be electrically stiffer than the bulk material and thus present a smaller flexoelectric response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (The magnitude of the flexoelectric coupling is known to be proportional to the magnitude of the dielectric response [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=') Probably most critical: a linear approximation as that in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (1) and (2) may be inadequate to explain and quantify the effect of the giant strain gradients in our samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (To determine flexoelectric coefficients experimentally, the considered strain gradients are intentionally small, of the order of 1 𝑚−1 [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Strain gradients of the order of 8 × 105 𝑚−1 – as those associated to ferroelastic domains [15] – are considered to be very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The gradients in our samples are even larger, by almost two orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=') Additionally, we may have differences coming from surface contributions to the flexoelectric effect [44];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' such surface effects might be present in bulk measurements but seem unlikely to play a role in our case, since the relevant shears and gradients do not involve any component normal to the layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Having said this, let us also note that there are theoretical predictions yielding 𝜇𝑥𝑦𝑥𝑦 values around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='08 𝑛𝐶 𝑚−1 for BaTiO3 [45], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', a smaller effect than the one we estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Shedding further light into these issues would be a great challenge, for both experiment and theory, and falls beyond the scope of the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' It is also interesting to note that the second derivatives of the shear strain can be used to compute the expected curl of the polarization vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In fact, from the flexoelectric coupling between strain gradients and polarization (Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (1) and (2)), the following relation holds: 𝜕𝑃𝑥 𝜕𝑦 − 𝜕𝑃𝑦 𝜕𝑥 = 𝜇𝑥𝑦𝑥𝑦 eff (𝜕2𝜖𝑥𝑦 𝜕𝑦2 − 𝜕2𝜖𝑥𝑦 𝜕𝑥2 ), closely captured by experimental results (see Extended Figures S4 showing the second derivatives of the strain gradient and S5 showing the curl of the polarization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In summary, we have found that the stacking of twisted free standing ferroelectric layers features a non- trivial ferroelectric texture driven by the mechanical boundary conditions imposed by the interface of twisted freestanding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The ferroelectric topology consists of a 2D vortex crystal with a lattice periodicity determined by the twisting angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This opens the door to new design possibilities enabled by the unique modulations that are possible in Moiré bilayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The highly correlated topological pattern with vortices and antivortices is reminiscent of the square lattice of merons, objects with n= ½ topological number only existing in lattices, observed in chiral magnets with magnetic anisotropy [46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' At variance with previous ferroelectric textures found in ferroelectric films confined in the growth direction, our polar landscape is 2D and highly tunable by controlling the twisting angle of the bilayer and is, thus, more amenable for applications in high density ferroelectric memories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Materials and Methods: Freestanding perovskite films fabrication: 15 nm thick BTO layers were grown onto LSMO buffered (100) SrTiO3 (STO) substrates via pure oxygen sputtering technique at high pressures (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='2 mbar) [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This technique produces highly epitaxial growth with sharp interfaces and negligible stoichiometry deviations (see Extended Figure S6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The LSMO acts as a sacrificial layer that allows the release of the BTO layer upon immersion in a selective KI+HCl etchant [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Prior to immersion, a polypropylene carbonate (PPC, Sigma Aldrich) film was spin-coated onto the strained heterostructure and adhered to a commercial polydimethylsiloxane (PDMS, Gel-Film WF 4x 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='0 mil by Gel-Pak®) support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' This allows the release and transfer of the entire BTO freestanding layer onto holey Si3N4 membrane grids for STEM observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' After the first and prior to the second BTO transfer, the membranes are dipped in acetone and isopropyl alcohol to remove the remained PPC and clean the final interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The second BTO layer is transferred onto the first one with a twisted angle which is deterministically controlled by using the edges of the two BTO layers (with defined crystallographic orientation imposed by the (100) STO substrate) as a reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' See sketch in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' After the second transfer the surface of the final twisted heterostructure is cleaned as described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Scanning transmission electron microscopy (STEM): STEM characterization was carried out using a JEOL JEM-ARM 200cF aberration corrected electron microscope equipped with a cold field emission gun and a Gatan Quantum spectrometer, operated at 200 kV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Depth sectioning HAADF-STEM was performed by acquiring atomic-resolution HAADF-STEM images as a function of defocus [50, 51], allowing us to probe different depths of the sample and discriminate between the top and bottom layers of the stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' HAADF-STEM images were acquired using a 30 mrad probe forming aperture semiangle and a HAADF detector collection semiangle of 70-200 mrad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Determination of polarization and strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' To determine the ferroelectric polarization, the atomic positions of both A-site Ba and B-site Ti cations were measured on STEM-HAADF images of 3° and 10,4° twisted BaTiO3 bilayer stacks acquired focusing on the entrance surface of the stack (defocus = 0 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In order to precisely determine the atomic positions, we performed a two-dimensional gaussian fitting using Atomap [52] Polarization was calculated from the off centering of the B-site Ti cations in the individual unit cells (relative displacement of the B-site Ti cation from the centrosymmetric position, determined with the A-site Ba cations within the same unit cell) [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Strain analysis was performed using the Peak Pairs Analysis (PPA) software package (HREM Research) for Digital Micrograph [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The analysis was performed on STEM-HAADF images of 3° and 10,4° twisted BaTiO3 bilayer stacks acquired focusing on the entrance surface of the stack (defocus = 0 nm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In order to improve the precision of the analysis the scanning direction was rotated off the crystallographic axes of BaTiO3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' For the analysis we perform a Bragg filter selecting the two main reflections along the (100) and (010) directions as base vectors for the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The peak positions are then determined on the filtered image and the relative displacements fields (𝑢𝑥, 𝑢𝑦) of the measured lattice with respect to a reference lattice area are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' In this case we have use the whole image as reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Finally, the components of the strain tensor are calculated from the displacement fields as: 𝜀𝑥𝑥 = 𝜕𝑢𝑥 𝜕𝑥 , 𝜀𝑦𝑦 = 𝜕𝑢𝑦 𝜕𝑦 , 𝜀𝑥𝑦 = 1 2 ( 𝜕𝑢𝑥 𝜕𝑦 + 𝜕𝑢𝑦 𝜕𝑥 ) and 𝜔𝑥𝑦 = 1 2 ( 𝜕𝑢𝑦 𝜕𝑥 − 𝜕𝑢𝑥 𝜕𝑦 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' First-principles calculations: We performed density functional theory (DFT) calculations as implemented in the Vienna Ab initio Simulation Package (VASP) [54, 55] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We used the Perdew-Burke-Ernzerhof formulation for solids (PBEsol) [56] implementation of the generalized gradient approximation for the exchange-correlation functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The atomic cores are treated within the projector-augmented wave approach [57], considering the following states explicitly: 5s, 5p and 6s for Ba;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3p, 4s and 3d for Ti;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' and 2s and 2p for O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' We employed a 500 eV energy cut-off for the plane-wave basis set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The simulation cells comprised 6x6x1 perovskite unit cells and were computed using a 1x1x4 Monkhorst-Pack [58] k-point grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The structures were fully relaxed until residual forces fell below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='01 eV/Å and residual stresses fell below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='001 GPa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Let us stress that our DFT simulations correspond to the limit of very low temperature (formally, 0 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Thus, the computed energy differences – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', the 9 meV per formula unit separating the monodomain ferroelectric state from the vortex-antivortex structure – can be taken as an upper bound for the relevant free energy difference at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' (In essence, the calculated energy difference comes from the ferroelectric domain walls – whose energy is known to decrease upon heating – and the inhomogeneous strain modulation – which is imposed by the inter-layer couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=') Note also that in our simulations we treat the monodomain and vortex-antivortex configurations as two separate cases, while in experiment the topological features are a relatively small modulation of the homogeneous state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' For this reason too, the computed energy difference is an upper bound for the actual energy cost of inducing (relatively small) topological features superimposed to the homogeneous state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' All in all, our DFT results strongly suggest that the experimentally observed topological structure is easily accessible and physically sound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Finally, let us remark that simulating directly the perturbed homogeneous state would require DFT relaxations constrained to respect the experimentally observed inhomogeneous strain pattern;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' such calculations would involve several non-trivial assumptions and technical complications, and we did not pursue them here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' REFERENCES [1] Yadav, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Observation of polar vortices in oxide superlattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nature 530, 198–201 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [2] Hsu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Emergence of the vortex state in confined ferroelectric heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 31, 1901014–1901022 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [3] Shafer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Emergent chirality in the electric polarization texture of titanate superlattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Natl Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' USA 115, 915–920 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [4] Gruverman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Vortex ferroelectric domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Matter 20, 4 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [5] Nelson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 11, 828–834 (2011) [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Observation of room-temperature polar skyrmions, Nature 568, 369 (2019) [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Jia, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Urban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Alexe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Hesse, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Vrejoiu, Science 331, 1420 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Peters, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Apachitei, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Beanland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Alexe, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sachez, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 7, 13484 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Schilling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Byrne, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Catalan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Webber, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Genenko, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Scott, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Gregg, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 9, 3359–3364 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Tang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Borisevich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Morozovska, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Eliseev, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pennycook, Science 348, 547 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [11] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Naumov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Bellaiche, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Fu, Nature 432, 737 (2004) [12] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Kornew, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Fu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Bellaiche, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 93, 196104 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Naumov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Bratkovsky, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 101, 107601 (2008) [14] Choi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Enhancement of ferroelectricity in strained BaTiO3 thin films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Science 306, 1005– 1009 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [15] Flexoelectric rotation of polarization in ferroelectric thin films G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Catalan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lubk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Vlooswijk, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Snoeck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Magen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Janssens, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rispens , G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rijnders , D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Blank and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Noheda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nat Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 10, 963 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [16] Pavlo Zubko, Gustau Catalan and Alexander K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Tagantsev Flexoelectric Effect in Solids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Annual Review of Materials Research, 43, 387 (2013) [17] Pertsev, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Zembilgotov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Tagantsev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 80, 1988–1991 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [18] Pablo Aguado-Puente and Javier Junquera Ferromagnetic like Closure Domains in Ferroelectric Ultrathin Films: First-Principles Simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='100 177601 (2008) [19] Jiawang Hong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Topology of the polarization field in ferroelectric nanowires from first principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys Rev B 81, 172101 (2010) [20] H Lu, C-W Bark, D Esque de los Ojos, J Alcala, C B Eom, G Catalan, A Gruverman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mechanical writing of ferroelectric polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Science 336, 59 (2012) [21] K S Novoselov , A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos, A A Firsov Two-dimensional gas of massless Dirac fermions in graphene Nature 438, 197 (2005) [22] Castro Neto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Guinea, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Peres, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Novoselov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', & Geim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The electronic properties of graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Reviews of Modern Physics, 81, 109 (2009) [23] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS, Electronics and optoelectronics of two- dimensional transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nanotechnology, 7, 699 (2012) [24] B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis, Single-layer MoS2 transistors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nat Nanotechnol 6, 147 (2011) [25] Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Yazyev & Andras Kis, 2D transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nature Reviews Materials 2, 17033 (2017) [26] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Pablo Jarillo-Herrero Unconventional superconductivity in magic-angle graphene superlattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nature 556, 43 (2018) [27] Alexey I Berdyugin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Out-of-equilibrium criticalities in graphene superlattices Science 375, 430 (2022) [28] Pablo San-Jose, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Gutiérrez-Rubio, Mauricio Sturla, and Francisco Guinea, Spontaneous strains and gap in graphene on boron nitride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 90, 075428 [29] Lu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Baek, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Hong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Kourkoutis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Hikita, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Hwang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nature Materials, 15, 1255 (2016) [30] Hong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Gu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Verma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Harbola, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Lu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Vailionis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Hikita, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Pentcheva, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Rondinelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Hwang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Extreme tensile strain states in La0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='7Ca0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='3MnO3 membranes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Science 368, 71–76 (2020) [31] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation, Science 366, 475 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Qi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Wu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Li, Observation of Moiré Patterns in Twisted Stacks of Bilayer Perovskite Oxide Nanomembranes with Various Lattice Symmetries, ACS Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Interfaces 14, 50386 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [33] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Xiang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Chiabrera, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Yun, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Kelly, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dahm, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Kirchert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Cozannet, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Trier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Christensen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Booth, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Simonsen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Kadkhodazadeh, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Jespersen, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pryds, Stacking and Twisting of Freestanding Complex Oxide Thin Films, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 34, 2203187 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Devonshire, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 40, 1040 (1949);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Íñiguez, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ivantchev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pérez-Mato and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' García, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 63, 144103 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mulder, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Benedek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rondinelli and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Fennie, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Func.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 23, 4810 (2013) [37] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ederer and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Spaldin, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 74, 024102 (2006);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' López-Pérez and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Íñiguez , Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 84 , 075121 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [39] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' King-Smith and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Vanderbilt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 49, 5828 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Harada, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Axe and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Shirane, Neutron-scattering study of soft modes in cubic BaTiO3, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 4, 155 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Yudin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ahluwalia and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Tagantsev, Upper bounds for flexoelectric coefficients in ferroelectrics, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 104, 2 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [42] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Gu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Zhang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Chen, Flexoelectricity in solids: Progress, challenges, and perspectives, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Mats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 106, 100570 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [43] Ma, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Cross, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Strain-gradient-induced electric polarization in lead zirconate titanate ceramics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 82, 3293 3295 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Stengel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 90, 201112(R) (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [45] Cyrus E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dreyer, Massimiliano Stengel, and David Vanderbilt, Current-density implementation for calculating flexoelectric coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 98, 075153 [46] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Transformation between meron and skyrmion topological spin textures in a chiral magnet Nature 564, 95 (2018) [47] Yu-Tsun Shao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Emergent chirality in a polar meron to skyrmion phase transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Microscopy and Microanalysis, 27, Supplement S1, 348 – 350 (2021) [48] Gabriel Sanchez-Santolino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nature Nanotechnology volume 12, pages655–662 (2017) [49] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pesquera et al Beyond substrates: strain engineering of ferroelectric membranes Advanced Materials 32 (43), 2003780 [50] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Borisevich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lupini, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', 103, 3044 (2006) [51] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Ishikawa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lupini, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Hinuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Pennycook, Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging, Ultramicroscopy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 151, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 122–129, 2015, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='ultramic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [52] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Nord, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Vullum, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' MacLaren, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Tybell, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Holmestad, “Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Struct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Imaging, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 9, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='1186/s40679-017-0042-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [53] Ghosez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=', Michenaud, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Gonze, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Dynamical atomic charges: the case of ABO3 compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 58, 6224–6240 (1998) [54] Kresse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Furthmüller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 54, 11169–11186 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [55] Kresse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Joubert, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' From ultrasoft pseudopotentials to the projector augmented-wave method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 59, 1758–1775 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [56] Perdew, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Restoring the density-gradient expansion for exchange in solids and surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 100, 136406 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [57] Blöchl, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Projector augmented-wave method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 50, 17953–17979 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' [58] Monkhorst, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' & Pack, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Special points for Brillouin-zone integrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' B 13, 5188– 5192 (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Acknowledgments Authors acknowledge received funding from the project To2Dox of FlagERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Work (JS, CL, FM , M G-H) supported by Spanish AEI through grants, PID2020-118078RB-I00 and by Regional Government of Madrid CAM through SINERGICO project Y2020/NMT-6661 CAIRO-CM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' acknowledges financial support from Spanish MCI Grant Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' RTI2018-099054-J-I00 (MCI/AEI/FEDER, UE) and IJC2018-038164-I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Work (VR) supported by the Madrid Government (Comunidad de Madrid- Spain) under the Multiannual Agreement with Universidad Complutense de Madrid in the line Research Incentive for Young PhDs, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=" European Union's Horizon 2020 research and innovation program (Grant Agreement No." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 755655 ERC-StG 2017 project 2D-TOPSENSE, Grant Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 785219 Graphene Core2-Graphene-based disruptive technologies and Grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' 881603 Graphene Core3- Graphene-based disruptive technologies), the EU FLAG-ERA project To2Dox (JTC-2019-009), the Comunidad de Madrid through the CAIRO-CM project (Y2020/NMT-6661) and the Spanish Ministry of Science and Innovation (grant PID2020-118078RB-I00 and fellowship PRE2018-084818).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Electron microscopy observations were carried out at the Centro Nacional de Microscopia Electrónica, CNME-UCM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Work at LIST was supported by the Luxembourg National Research Fund through grant FNR/C18/MS/12705883/REFOX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Data availability statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' The data used in this paper are available from the authors upon reasonable request Authors contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' VR, VZ, SP, FAC prepared the samples with help and guidance of CM, FM, MGH and ACG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' GSS did the electron microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' GSS, VR, VZ, CL, JS analyzed the electron microscopy data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' HA and JI did the theory analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' GSS, VR, HA, JI, CL and JS wrote the manuscript with inputs and help of all authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} +page_content=' Competing interests: The authors declare no competing interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_dE3T4oBgHgl3EQfTAmK/content/2301.04438v1.pdf'} diff --git a/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/2301.03775v1.pdf.txt b/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/2301.03775v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4840c03adfcfbdfd97375e3c975960b5ac721ab7 --- /dev/null +++ b/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/2301.03775v1.pdf.txt @@ -0,0 +1,1095 @@ +arXiv:2301.03775v1 [cs.IT] 10 Jan 2023 +1 +Secure Communication for Spatially Correlated Massive +MIMO with Low-Resolution DACs +Dan Yang, Student Member, IEEE, Jindan Xu, Member, IEEE, Wei Xu, Senior Member, IEEE, +Ning Wang, Member, IEEE, Bin Sheng, Member, IEEE, and A. Lee Swindlehurst, Fellow, IEEE +Abstract—In this paper, the performance of a secure massive +multiple-input multiple-output (MIMO) system adopting low- +resolution digital-to-analog converters (DACs) is analyzed over +spatially correlated wireless channels. A tight lower bound for +the achievable secrecy rate is derived with artificial noise (AN) +transmitted in the null space of the user channels. Using the +analytical results, the impact of spatial correlation on the secrecy +rate is explicitly evaluated in the presence of low-resolution DACs. +The analytical observations reveal that using low-resolution DACs +can be beneficial to the secrecy performance compared with ideal +DACs, when the channels are strongly correlated and optimal +power allocation is not employed. +Index Terms—Physical layer security, massive MIMO, spatial +correlation, digital-to-analog converters (DACs) +I. INTRODUCTION +P +HYSICAL layer security (PLS) has become an emerging +technology for securing wireless communication without +relying upon traditional cryptographic mechanisms. Compared +to conventional upper-layer cryptographic schemes, PLS has +the advantages of low computational complexity and low +resource consumption [1]. Massive multiple-input multiple- +output (MIMO) systems provide another disruptive technol- +ogy for fifth generation (5G) cellular communications, and +have shown great potential in improving spectral and energy +efficiency. The use of large-scale antenna arrays in massive +MIMO provides a large excess of redundant spatial degrees +of freedom (DoF), which can be exploited to achieve secure +physical layer transmission. This idea has been attracting +increasing research interest in the past few years [2], [3]. +Massive MIMO transmission requires a very high power +consumption if high-resolution digital-to-analog converters +(DACs) are employed in the RF chains for each antenna. +At the transmitter, power expenditure is dominated by power +amplifiers (PAs), which are usually required to operate within +a high linearity regime to avoid distortion. A practical solution +to the above challenge is to use low-resolution DACs, which +relaxes the requirement of linearity and allows the amplifiers +to operate closer to saturation, thus increasing the efficiency of +PAs [4], [5]. In [6], both finite-bit DACs at base station (BS) +and finite-bit analog-to-digital converters (ADCs) at user side +D. Yang, J. Xu, W. Xu, and B. Sheng are with the National Mobile +Communications Research Laboratory, Southeast University, Nanjing 210096, +China (email: dyang@seu.edu.cn; jdxu@seu.edu.cn; wxu@seu.edu.cn; sb- +dtt@seu.edu.cn). +N. Wang is with the School of Information Engineering, Zhengzhou +University, Zhengzhou 450001, China. +A. Lee Swindlehurst is with the Center for Pervasive Communications and +Computing, University of California at Irvine, Irvine, CA 92697 USA (e-mail: +swindle@uci.edu). +were analyzed in the massive MIMO downlink. The work was +then extended in [7] by considering spatially correlated chan- +nels. Further in [8], a constant envelope precoding technique +was devised for the multiuser MIMO with one-bit DACs. +The effect of hardware impairments (HWIs) on spectral effi- +ciency of massive MIMO systems has been studied in [9]. Re- +garding the secrecy performance, the authors in [10] analyzed +the effects of HWIs on secrecy rate, where ideal converters +with infinite resolution were considered. Secure communica- +tion in a massive MIMO system with low-resolution DACs was +investigated in [11], which revealed that low-resolution DACs +can achieve superior secrecy rate under certain conditions, e.g., +at low SNR or with a large power allocation factor. +Most of the existing works on low-resolution DACs trans- +missions have focused on the assumption of independent +identically distributed (i.i.d.) channels for massive MIMO. +However, in practice, the limited space between the BS anten- +nas as well as the rich scattering propagation environment can +result in spatial correlation. The impact of correlated Rayleigh +fading channels on optimal multiuser loading was analyzed in +[6] by applying asymptotic random matrix theory. How spatial +correlation impacts secure massive MIMO communication +with low-resolution DACs is still an open problem. +In this paper, we focus on secure transmission in the massive +MIMO downlink when low-resolution DACs are employed. A +tight lower bound for the ergodic secrecy rate is derived that +explicitly characterizes the impact of channel correlation on +the secrecy rate for typical correlated channels. An optimal +power allocation strategy is proposed, which suggests that +more power should be allocated to AN when strong channel +correlation is present. It is revealed that using low-resolution +DACs can improve the secrecy performance for a fixed power +allocation factor under strong spatially correlated channels. +Notation: X∗, XT , XH and tr(X) represent the conju- +gate, transpose, conjugate transpose and trace of matrix X, +respectively. E{·} is the expectation operator. diag(·) denotes +a diagonal matrix that retains only the diagonal elements of +the input matrix, and � +diag(·) represents a diagonal matrix with +the input vector as its diagonal entries. +II. SYSTEM MODEL +The secure massive MIMO system under investigation +comprises one N-antenna BS, K single-antenna legitimate +users, and one M-antenna passive eavesdropper. The channel +matrices are modeled based on the Kronecker channel model +as shown in [12]. To make the problem more tractable, we con- +sider the system with a common correlation matrix at the BS. +Specifically, the channel between the BS and the users is mod- + +2 +eled as H = D +1 +2 �HR +1 +2 , where the elements of �H ∈ CK×N +are i.i.d. Gaussian random variables with zero mean and unit +variance, the diagonal matrix D ∈ CK×K characterizes the +large-scale fading with its kth diagonal element given by βk, +and R ∈ CN×N is the transmit covariance matrix satisfying +tr(R) = N. Similarly, the channel matrix between the BS and +the eavesdropper is He = D +1 +2e �HeR +1 +2 , where �He ∈ CM×N +contains i.i.d. Rayleigh fading channel coefficients following +CN(0, 1). The diagonal matrix De represents the large-scale +fading at the eavesdropper with identical diagonal entries βe. +The +BS +desires +to +transmit +the +symbols +s += +[s1, s2, ..., sK] +∈ +CK×1 +to +the +legitimate +users +with +E{ssH} = IK using a linear precoding matrix W ∈ CN×K. +The eavesdropper’s channel state information (CSI) is assumed +unknown to the BS, and AN is injected to ensure confidential +communication. The AN vector t +∼ +CN(0, IN−K) is +precoded by an AN shaping matrix V ∈ CN×(N−K). Denote +by P the total transmit power. The power allocation factor +ξ ∈ (0, 1] aims to strike a balance between the transmit signal +and the AN. The unquantized downlink transmit signal vector +x is then expressed as +x = √µWs + √νVt, +(1) +where µ ≜ ξP +K and ν ≜ (1−ξ)P +N−K . +The precoded signal is transmitted after DAC quantization, +which is denoted by Q(x). Establishing the non-linear quan- +tization model of a finite-bit DAC is challenging. We follow a +popular way of charactering the quantizer by a linear function +applying the simple additive quantization noise model. The +quantized signal vector can accordingly be decomposed as +z = Q(x) = +� +1 − ρx + q, +(2) +where the quantization noise q is assumed to be uncorrelated +with the input signal x, and +Cq = E{qqH} = ρE +� +diag(xxH) +� +. +(3) +The value of the distortion factor ρ depends on the DAC +resolution; for example, it can be chosen as in [5] for DAC +resolutions of less than 5 bits, or as ρ = +√ +3π +2 +· 2−2b for +scenarios with higher precision, where b represents the number +of quantization bits. From (1) and (3), the covariance matrix +of the quantization noise equals +Cq = ρ +� +µdiag(WWH) + νdiag(VVH) +� +. +(4) +Given the CSI of the legitimate channels, the matrix V is +designed to lie in the null space of the channel matrix H, i.e., +HV = 0, which (ideally) makes the AN “invisible” to the +legitimate users [13]. Using (1) and (2), the signals received +at the users and the eavesdropper are expressed as +y = +� +1 − ρ(√µHWs + √νHVt) + Hq + n +(5) +ye = +� +1 − ρ(√µHeWs + √νHeVt) + Heq + ne, +(6) +where n ∼ CN(0, σ2 +nIK) and ne ∼ CN(0, σ2 +eIM) respec- +tively represent the additive noise terms at the users and at +the eavesdropper. +III. ACHIEVABLE ERGODIC SECRECY RATE ANALYSIS +In this section, we derive a tight lower bound for the ergodic +secrecy rate of the secure multiuser massive MIMO downlink +and analyze the impact of spatial correlation on the secrecy +rate in the presence of low-resolution DACs. +A. Lower Bound on the Achievable Ergodic Secrecy Rate +We adopt linear matched filter (MF) precoding for data +transmission, i.e., W = H/∥ H ∥. The received signal at the +kth user according to (5) is expressed as +yk = +� +1 − ρ +�√µhT +k Ws + √νhT +k Vt +� ++ hT +k q + nk. +(7) +Then, under the assumption of Gaussian distributed interfer- +ence, a lower bound on the ergodic rate for the kth user can +be calculated as +Rk = E +� +log2(1 + γk) +� +, +(8) +γk = +(1 − ρ)µ +��hT +k wk +��2 +̺ + hT +k Cqh∗ +k + (1 − ρ)νhT +k VVHh∗ +k + σ2n +, +(9) +where ̺ = (1 − ρ)µ � +j̸=k +��hT +k wj +��2, hT +k denotes the kth row of +H, and wk is the kth column of W. Note that the numerator +of γk is the power of the desired signal component for the kth +user, and the denominator represents the power from inter- +user interference, quantization noise from the low-resolution +DACs, AN leakage, and thermal noise. +Lemma 1: A lower bound on the achievable rate (8) of user +k is given by +Rk = log2 +� +1 + (1 − ρ)β2 +kγ0ξN/ �K +i=1 βi +̺′ + ρβkγ0 + 1 +� +, +(10) +where ̺′ = (1 − ρ)ξγ0βktr(R2) � +j̸=k +βj/(N �K +i=1 βi), and γ0 = +P +σ2n is the average SNR. +Proof: Please refer to Appendix A. +■ +To guarantee secure communication in the worst case, we +assume that the eavesdropper has perfect CSI of all legitimate +users and can remove all the interference from the legitimate +users [2], [3], [10], [11]. According to (6), the ergodic rate of +the eavesdropper is expressed as +C = E +� +log2 +� +1 + (1 − ρ)µwH +k HH +e X−1Hewk +�� +, +(11) +where X is defined as +X = (1 − ρ)νHeVVHHH +e + HeCqHH +e . +(12) +Furthermore, we assume that σ2 +e is negligibly small corre- +sponding to the worst case, and consequently, C is independent +of the path-loss of the eavesdropper βe [2], [3], [10], [11]. A +tight upper bound for C is derived in the following lemma. +Lemma 2: For N → ∞, an upper bound on the eavesdrop- +ping rate is given by +C = log2 +� +1 + +φMξκβk/ �K +i=1 βi +φκ2� +N +tr(R2) − a +� +− ̟ +� +, +(13) +where a = M +N , b = K +N , ρ′ = +ρ +1−ρ, φ = 1 − b, κ = 1 − ξ + ρ′, and +̟ = ab(1 − ξ)2. +Proof: Please refer to Appendix B. +■ +Applying Lemma 1 and Lemma 2, a lower bound on the +ergodic secrecy rate of the kth user is obtained in Theorem 1. +Theorem 1: For N → ∞, the achievable ergodic secrecy +rate for the kth user is lower bounded by +Rsec ≜ [Rk − C]+, +(14) +where [x]+ = max{0, x}, and Rk and C are given in (10) +and (13), respectively. + +3 +If no spatial correlation is present, i.e., R = I, then (14) +reduces to +Rsec = +� +log2 +� +1 + +(1 − ρ)β2 +kγ0ξN/ �K +i=1 βi +(1 − ρ)γ0βkξ � +j̸=k +βj/ �K +i=1 βi + ρβkγ0 + 1 +� +− log2 +� +1 + φMξκβk/ �K +i=1 βi +φκ2(1 − a) − ̟ +��+ +. +(15) +As expected, Rsec increases with N and γ0. +B. Optimal Power Allocation Strategy for AN +Here we investigate the impact of the power allocation factor +on the ergodic secrecy rate in (14) under spatially correlated +channels. Assume ab ≪ 1 in (13), which is reasonable in +massive MIMO equipped with a large number of antennas. +The derivative of Rsec w.r.t. ξ is calculated as +∂Rsec +∂ξ += +L1L2 +ln2(L3ξ + L2)[L2 + ξ(L1 + L3)] +− +Mtr(R2)(1 + ρ′)βk +ln2 +� �K +i=1 βi +� +N − tr(R2)a +� +κ2 + Mξβktr(R2)κ +�, +(16) +where L1 = (1 − ρ)β2 +kγ0N/ �K +i=1 βi, L2 = ρβkγ0 + 1, and +L3 = (1 − ρ)γ0βktr(R2) � +j̸=k +βj/(N �K +i=1 βi). Since +∂Rsec +∂ξ +> 0 +for small ξ and +∂Rsec +∂ξ +< 0 for large ξ, the optimal power +allocation factor ξ∗ that achieves the highest secrecy rate is +obtained by setting +∂Rsec +∂ξ += 0. A closed-form expression for +ξ∗ can be founded as follows: +ξ∗ = −B − +√ +B2 − 4AC +2A +, +(17) +where the parameters A, B, and C are given by +A = L1L2G2 − L1L2G3 − G1L3(L1 + L3), +(18) +B = (1 + ρ′)L1L2(G3 − 2G2) − G1L2(L1 + 2L3), +(19) +C = G2L1L2(1 + ρ′)2 − G1L2 +2, +(20) +and G1 = Mtr(R2)(1 + ρ′)βk, G2 = �K +i=1 βi +� +N − tr(R2)a +�, +and G3 = Mβktr(R2). +Assuming βk = 1, 1 ≤ k ≤ K, we can simplify the above +expressions to evaluate the impact of spatial correlation on +ξ∗ for different DAC resolutions. Comparing the value of ξ∗ +for the special case of an i.i.d. channel, i.e.,tr(R2) = N +with a fully correlated channel, i.e., tr(R2) = N 2 for a +Hermitian Toeplitz correlation matrix, we can easily observe +that ξ∗ decreases when tr(R2) increases from N to N 2. The +relationship between ξ∗ and the design parameters, including +the DAC resolution and channel correlation coefficient, is +verified in Section IV through numerical results. +C. Impact of Spatial Correlation +We first analyze the impact of the antenna ratio a under +the correlated channel condition when AN is injected. In (14), +Rsec decreases with respect to a. Considering the special case +of βk = β, 1 ≤ k ≤ K, and ξ → 0, by setting Rsec = 0, the +maximum number of eavesdropper antennas that still allows +for a positive secrecy rate can be obtained from the following +proposition. +Proposition 1: If a positive secrecy rate can be achieved, +then the maximum antenna ratio a is obtained as +asec = +(1 − b)Nγ0 +tr(R2) +� +γ0ρb(ρ − β − 2) + γ0(1 + βρ) + 1 − b +�. +(21) +Remark 1: By direct inspection of (21), the maximum +number of eavesdropper antennas that can be tolerated for +secure transmission decreases with ρ and the spatial correlation +level because Eve can wiretap more information under strongly +correlated channels. For the special case of ρ → 0 and +tr(R2) = N 2, we have asec = +(1−b)γ0 +N(1−b+γ0), which indicates +that asec is independent of the large-scale fading factor with +infinite-resolution DACs. +To extract clear insights, we further consider a representative +exponential correlation model [14] +Rij = ζ|i−j|, +(22) +where ζ denotes the correlation coefficient. The exponential +model is widely adopted in literature and is applicable to +analysis for a massive MIMO system with uniform planar +array (UPA) scenarios [15]. +Proposition 2: The secrecy rate gap for different DAC +resolutions decreases with the correlation coefficient ζ. +Proof: lim +N→∞ +tr(R2) +N += 1+ζ2 +1−ζ2 exists under the exponential +correlation model in (22). From (14), we have ∂Rsec +∂ρ += ∂Rk +∂ρ − +∂C +∂ρ . The first term ∂Rk +∂ρ is given by +∂Rk +∂ρ = − +β2 +kγ0ξN(1 + βkγ0) �K +i=1 βi +ln2(Υβkγ0 + �K +i=1 βi)(Ψβkγ0 + �K +i=1 βi) +, +(23) +where Υ = (1 − ρ)(Nβk + �ζ � +j̸=k βj)ξ + ρ �K +i=1 βi, Ψ = +ρ �K +i=1 βi + (1 − ρ)ξ�ζ � +j̸=k βj, and �ζ = 1+ζ2 +1−ζ2 . The expression +of ∂C +∂ρ is shown in (24), on the top of the next page. Assuming +ab ≪ 1 for typical massive MIMO systems, (24) can be +simplified as +∂C +∂ρ = − +Mξφβk�ζ/ �K +i=1 βi +ln2(1 − ρ)2�� +κ − (Mξβk/ �K +i=1 βi − aκ)�ζ +� +κφ +�. (25) +Focusing on the impact of ζ, we observe that +∂C +∂ρ +< 0 +and decreases with ζ, while +∂Rk +∂ρ +< 0 and increases with +ζ. Therefore, +∂Rsec +∂ρ +is an increasing function of ζ, which +completes the proof. +■ +Remark 2: From (23) and (25), it shows that +∂Rsec +∂ρ +< 0 and +∂Rsec +∂ρ +is a monotonically increasing function in terms of the +level of spatial correlation ζ. It implies that the eavesdropper’s +capacity C degrades faster than Rk does at large ζ. Thus, we +conclude that there exists a threshold of correlation coefficient, +i.e., ζ, where lower-resolution DACs achieve a higher secrecy +rate for ζ ∈ (ζ, 1). The value of ζ is obtained from the solution +of +∂Rsec +∂ρ += 0 by focusing on the impact of spatial correlation. +Note that the higher the correlation the lower the effective +dimension (d.o.f.), in the extreme case of ζ = 1, the users and +Eve are separated only in the angle of arrival domain, which +only has dimension 1 instead of N. Therefore, quantization +noise from lower-resolution DACs could compensate for AN +to improve secrecy rate under spatially correlated channel. +IV. NUMERICAL RESULTS +In this section, the analytical results are validated through +Monte-Carlo simulation. We consider a system with N = 256, +K = 16, and M = 4 in all simulations. The large-scale fading +is modeled as βk = (dref/dk)η, where η = 3.8 denotes the +path loss exponent, dref = 300 (m) and dk ≤ 500 (m) are, +respectively, the reference distance and the distance between + +4 +∂C +∂ρ = − +Mξφβk�ζ[(1 − a�ζ)φκ2 + ̟�ζ]/ �K +i=1 βi +ln2(1 − ρ)2� +(a�ζ − )φκ2 + ̟�ζ +��� +(aκ2 − Mξκβk/ �K +i=1 βi)�ζ − κ2� +φ + ̟�ζ +� +(24) +the BS and the kth user. The expected values in (14) were +evaluated by averaging over 1000 random channel realizations. +-6 +-4 +-2 +0 +2 +4 +6 +8 +10 +12 +14 +16 +18 +20 +SNR (dB) +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +Ergodic secrecy rate (bit/s/Hz) +=0 +=0.7 +Simulation results (b=1) +Analytical results in (14) (b=1) +Simulation results (b=2) +Analytical results in (14) (b=2) +Simulation results (b= +) +Analytical results in (14) (b= +) +Fig. 1. +Ergodic secrecy rate and analytical lower bound versus SNR for +different spatial correlation coefficient ζ (ξ = 0.7) +Fig. 1 shows the ergodic secrecy rate versus the average +SNR γ0 under different DAC resolutions and spatial correla- +tions. The derived lower bound on the secrecy rate is fairly +accurate and tight for the entire range of SNR. In addition, it +is observed that the secrecy rate is decreasing as ζ increases. +Fig. 2 plots the ergodic secrecy rate as a function of the +power allocation factor ξ. The optimal power allocation factor +ξ∗ largely depends on ζ. Specifically, It is observed that ξ∗ +decreases with ζ. The information signal leakage grows when +the spatial correlation is strong. Thus, more power should be +allocated for AN to ensure secure communication. +In Fig. 3 (a) we show the ergodic secrecy rate versus ζ with +different DAC resolutions for γ0 = 10 dB. We choose a fixed +power allocation factor ξ due to the difficulties in optimizing +ξ theoretically. The secrecy rate loss due to low-resolution +DACs decreases with ζ as predicted in Remark 2. Interestingly, +although the channel correlation has a detrimental effect on the +secrecy rate, the use of 1-bit DACs can improve the secrecy +rate when the spatial correlation coefficient is large. This is +because the additional quantization noise serves to increase the +level of AN, which is beneficial for spatially colored channels +if the AN level has not already been optimized. Finally, Fig. +3 (b) presents the secrecy rate versus ζ assuming the optimal +power allocation ξ∗ in (17) is chosen. The secrecy rate gaps +are ∆Rsec = 0.697 bit/s/Hz at ζ = 0 and ∆Rsec = 0.434 +bit/s/Hz at ζ = 0.8, respectively. If optimal power allocation +is adopted, then using infinite-resolution DACs can always +achieve a higher secrecy rate. In this case, quantization noise +from lower-resolution DACs does not compensate for the AN +anymore. However, we observe that the secrecy rate loss due +to low-resolution DACs decreases with channel correlation +coefficient, regardless of the value of ξ. +For comparison, Fig. 4 plots the Monte-Carlo simulation by +using the spatial correlation model in [9], denoted by [R]s,m = +β +L +�L +l=1 ejπ(s−m) sin(ϕl)e− ∆2 +2 +� +π(s−m) cos(ϕl) +�2 +, where β is the +large scale fading coefficient, ϕ is the actual angle-of-arrival +and ∆ is the azimuth angular spread. We consider L = 10 +scattering clusters and ϕ ∼ [ −∆ +2 , +∆ +2 ]. It is observed that +transitioning from larger to smaller angular spread (∆ = 50o +to ∆ = 12o) significantly reduces the secrecy rate of the +kth user for different DAC resolutions. However, the lower +resolution DAC is always beneficial for secrecy rate with a +fixed ξ under highly correlated channels as expected. +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +Ergodic secrecy rate (bit/s/Hz) +=0 +=0.6 +Simulation results (b=1) +Analytical results in (14) (b=1) +Simulation results (b=2) +Analytical results in (14) (b=2) +Simulation results (b=3) +Analytical results in (14) (b=3) +The optimal in (17) +Fig. 2. Achievable ergodic secrecy rate versus the power allocation factor ξ +for different DAC resolutions (γ0 = 10 dB) +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +Ergodic secrecy rate (bit/s/Hz) +b=1, fixed =0.7 +b=2, fixed =0.7 +b=3, fixed =0.7 +b= +, fixed =0.7 +(a) with fixed ξ=0.7 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +1 +1.5 +2 +2.5 +3 +3.5 +4 +Ergodic secrecy rate (bit/s/Hz) +b=1 +b=2 +b=3 +b= +Rsec=0.434 bit/s/Hz +Rsec=0.697 bit/s/Hz +(b) with optimal ξ∗ in (17) +Fig. 3. Achievable ergodic secrecy rate versus ζ for different DAC resolutions +-6 +-4 +-2 +0 +2 +4 +6 +8 +10 +12 +14 +16 +18 +20 +SNR (dB) +0 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +Ergodic secrecy rate (bit/s/Hz) +=50 deg +=12 deg +b=1 +b=2 +b= +Fig. 4. Ergodic secrecy rate versus SNR (ξ = 0.7) +V. CONCLUSION +This paper has characterized the performance of AN-based +secure transmission in a massive MIMO downlink system with +low-resolution DACs under spatially correlated channels. In +particular, it is shown that optimal secrecy performance can +be obtained by increasing the amount of power dedicated +to artificial noise when the channel correlation increases. +Furthermore, the use of low-resolution DACs has been shown +to be beneficial to the secrecy performance for a fixed power +allocation factor when the channels possess strong spatial +correlation. Interesting future extension of this paper includes + +5 +studying the impact of different spatial correlation matrices at +both transmitter and the eavesdropper. +APPENDIX A +Consider MF precoding satisfying tr(WWH) = K, which +leads to W = +� +K +N �K +i=1 βi H. First, we directly obtain +��hT +k wk +��2 = +K +N �K +i=1 βi +��hT +k hk +��2 += +Kβ2 +k +N �K +i=1 βi +� +tr(R) +�2 +a.s. +−−→ KNβ2 +k +�K +i=1 βi +, +(26) +where we have used +1 +√ +N �hT +k R +1 +√ +N �h∗ +k − +1 +N tr(R) +a.s. +−−→ 0 in [16, +Lemma 4]. Then, the inter-user interference is calculated as +̺ = (1 − ρ)µ +� +j̸=k +K +N �K +i=1 βi +��hT +k hj +��2 +a.s. +−−→ (1 − ρ)µKβktr(R2) +� +j̸=k +βj +�� +N +K +� +i=1 +βi +� +. +(27) +For large N and K, Cq converges to +Cq +a.s. +−−→ ρ P +N IN, +(28) +where we use the definition of µ and ν, and the fact that +diag(WWH) +a.s. +−−→ +K +N IN and diag(VVH) +a.s. +−−→ +N−K +N +IN due +to the strong law of large numbers. Further, we obtain the +component of the quantization noise as +hT +k Cqh∗ +k +a.s. +−−→ ρ P +N βktr(R) = ρPβk. +(29) +Regarding the AN power, it follows that +hT +k VVHh∗ +k = 0, +(30) +since HV = 0. Finally, by substituting (26), (27), (29), (30) +and the definition of µ and ν into (8), and according to the +Continuous Mapping Theorem, we complete the proof. +APPENDIX B +By applying Jensen’s inequality, the capacity of the eaves- +dropper can be upper bounded as +C ≤ log2 +� +1 + (1 − ρ)µE +� +wH +k HH +e X−1Hewk +�� +. +(31) +Let us first focus on the term X and by substituting (28) into +(12) yields +X +a.s. +−−→ +� +(1 − ρ)ν + ρ P +N +� +X1 + ρ P +N X2, +(32) +where X1 = HeVVHHH +e +and X2 = HeV0VH +0 HH +e . It is +obvious that [V V0][V V0]H = IM, because [V V0] forms +a complete orthogonal basis. Eigendecompose R such that +R = UΛUH to decorrelate matrix He as Z = HeΛ− 1 +2 UH, +where Λ = +� +diag(λ1, ..., λN) is the diagonal matrix of the +eigenvalues of R and the columns of U consist of the +corresponding eigenvectors. Since U is unitary, the statistics +of ZU are identical to those of Z. Thereby, the distributions +of X1 and X2 are the same as +N +� +i=1 +N +� +j=1 +λ +1 +2 +i λ +1 +2 +j zivivH +j zH +j +(33) +and +N +� +i=1 +N +� +j=1 +λ +1 +2 +i λ +1 +2 +j ziv0,ivH +0,jzH +j , +(34) +where zi is the ith row of Z, vi and v0,i are ith column of +V and V0, respectively. Following the same approach in [17], +Y = +� +(1 − ρ)ν + ρ P +N +� +Y1 + ρ P +N Y2 may be accurately approx- +imated as a single scaled Wishart matrix Y ∼ WM(η, ϕIM), +where we define Y1 = �N +m=1 λmzmvmvH +mzH +m and Y2 = +�N +n=1 λnznv0,nvH +0,nzH +n . Equating the first two moments of +those matrices with Y1 ∼ �N +m=1 λmWM(N − K, 1 +N IM) and +Y2 ∼ �N +n=1 λnWM(K, 1 +N IM) leads to +ηϕ = +� +(1 − ρ)ν + ρ P +N +� +(N − K) + ρ P +N K +(35) +and +ηϕ2 = tr(R2) +N +�� +(1−ρ)ν +ρ P +N +�2 +(N −K)+ +� +ρ P +N +�2 +K +� +, (36) +where we use �N +i=1 λi = tr(R) and �N +i=1 λ2 +i = tr(R2). By +exploiting the independence of the elements in �He, we can +further obtain X−1 +a.s. +−−→ 1/(ϕ(η − M))IM with η > M, where +we use the property A−1 +a.s. +−−→ 1/(n − m)Im for a Wishart +matrix A ∼ Wm(n, Im) with n > m [4]. Substituting this result +and E +� +wH +k HH +e Hewk +� += +MKβk +N �K +i=1 βi tr(R2) into (31) completes +the proof. +REFERENCES +[1] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap +channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, Jul. +2011. +[2] J. Zhu, R. Schober, and V. K. Bhargava, “Secure transmission in +multicell massive MIMO systems,” IEEE Trans. Wireless Commun., vol. +13, no. 9, pp. 4766–4781, Sep. 2014. +[3] J. Zhu, R. Schober, and V. K. Bhargava, “Linear precoding of data and +artificial noise in secure massive MIMO systems,” IEEE Trans. Wireless +Commun., vol. 15, no. 3, pp. 2245–2261, Mar. 2016. +[4] A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, “Analysis of one-bit +quantized precoding for the multiuser massive MIMO downlink,” IEEE +Trans. Signal Process., vol. 65, no. 17, pp. 4624–4634, Sep. 2017. +[5] Y. Li, C. Tao, A. Lee Swindlehurst, A. Mezghani, and L. Liu, “Downlink +achievable rate analysis in massive MIMO systems with one-bit DACs,” +IEEE Commun. Lett., vol. 21, no. 7, pp. 1669–1672, Jul. 2017. +[6] J. Xu, W. Xu, and F. Gong, “On performance of quantized transceiver +in multiuser massive MIMO downlinks,” IEEE Wireless Commun. Lett., +vol. 6, no. 5, pp. 562–565, Jun. 2017. +[7] J. Xu, W. Xu, F. Gong, H. Zhang, and X. You, “Optimal multiuser +loading in quantized massive MIMO under spatially correlated chan- +nels,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1459–1471, Feb. +2019. +[8] H. Jedda, A. Mezghani, A. L. Swindlehurst, and J. A. Nossek, “Quan- +tized constant envelope precoding with PSK and QAM signaling,” IEEE +Trans. Wireless Commun., vol. 17, no. 12, pp. 8022–8034, Dec. 2018. +[9] E. Bj¨ornson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: +Spectral, energy, and hardware efficiency,” Found. Trends Signal Pro- +cess., vol. 11, nos. 3–4, pp. 154–655, 2017. +[10] J. Zhu, D. W. K. Ng, N. Wang, R. Schober, and V. K. Bhargava, +“Analysis and design of secure massive MIMO systems in the presence +of hardware impairments,” IEEE Trans. Wireless Commun., vol. 16, no. +3, pp. 2001–2016, Mar. 2017. +[11] J. Xu, W. Xu, J. Zhu, D. W. K. Ng, and A. Lee Swindlehurst, “Secure +massive MIMO communication with low-resolution DACs,” +IEEE +Trans. Commun., vol. 67, no. 5, pp. 3265–3278, May 2019. +[12] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading +correlation and its effect on the capacity of multielement antenna +systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000. +[13] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE +Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008. +[14] S. L. Loyka, “Channel capacity of MIMO architecture using the ex- +ponential correlation matrix,” +IEEE Commun. Lett., vol. 5, no. 9, pp. +369–371, Sep. 2001. +[15] H. Lim, Y. Jang, and D. Yoon, “Bounds for eigenvalues of spatial +correlation matrices with the exponential model in MIMO systems,” +IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1196–1204, Feb. +2017. +[16] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL +of cellular networks: How many antennas do we need?” IEEE J. Sel. +Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013. +[17] Q. T. Zhang and D. P. Liu, “A simple capacity formula for correlated +diversity Rician channels,” IEEE Commun. Lett., vol. 6, no. 11, pp. +481–483, Nov. 2002. + diff --git a/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/load_file.txt b/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4c9f7a6dfa62e3aaa0137e3d5836336244728033 --- /dev/null +++ b/_tE2T4oBgHgl3EQfQwb6/content/tmp_files/load_file.txt @@ -0,0 +1,499 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf,len=498 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='03775v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='IT] 10 Jan 2023 1 Secure Communication for Spatially Correlated Massive MIMO with Low-Resolution DACs Dan Yang, Student Member, IEEE, Jindan Xu, Member, IEEE, Wei Xu, Senior Member, IEEE, Ning Wang, Member, IEEE, Bin Sheng, Member, IEEE, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lee Swindlehurst, Fellow, IEEE Abstract—In this paper, the performance of a secure massive multiple-input multiple-output (MIMO) system adopting low- resolution digital-to-analog converters (DACs) is analyzed over spatially correlated wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A tight lower bound for the achievable secrecy rate is derived with artificial noise (AN) transmitted in the null space of the user channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Using the analytical results, the impact of spatial correlation on the secrecy rate is explicitly evaluated in the presence of low-resolution DACs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The analytical observations reveal that using low-resolution DACs can be beneficial to the secrecy performance compared with ideal DACs, when the channels are strongly correlated and optimal power allocation is not employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Index Terms—Physical layer security, massive MIMO, spatial correlation, digital-to-analog converters (DACs) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' INTRODUCTION P HYSICAL layer security (PLS) has become an emerging technology for securing wireless communication without relying upon traditional cryptographic mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Compared to conventional upper-layer cryptographic schemes, PLS has the advantages of low computational complexity and low resource consumption [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Massive multiple-input multiple- output (MIMO) systems provide another disruptive technol- ogy for fifth generation (5G) cellular communications, and have shown great potential in improving spectral and energy efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The use of large-scale antenna arrays in massive MIMO provides a large excess of redundant spatial degrees of freedom (DoF), which can be exploited to achieve secure physical layer transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' This idea has been attracting increasing research interest in the past few years [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Massive MIMO transmission requires a very high power consumption if high-resolution digital-to-analog converters (DACs) are employed in the RF chains for each antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' At the transmitter, power expenditure is dominated by power amplifiers (PAs), which are usually required to operate within a high linearity regime to avoid distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A practical solution to the above challenge is to use low-resolution DACs, which relaxes the requirement of linearity and allows the amplifiers to operate closer to saturation, thus increasing the efficiency of PAs [4], [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In [6], both finite-bit DACs at base station (BS) and finite-bit analog-to-digital converters (ADCs) at user side D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Sheng are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China (email: dyang@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' jdxu@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' wxu@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='cn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' sb- dtt@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wang is with the School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lee Swindlehurst is with the Center for Pervasive Communications and Computing, University of California at Irvine, Irvine, CA 92697 USA (e-mail: swindle@uci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' were analyzed in the massive MIMO downlink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The work was then extended in [7] by considering spatially correlated chan- nels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Further in [8], a constant envelope precoding technique was devised for the multiuser MIMO with one-bit DACs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The effect of hardware impairments (HWIs) on spectral effi- ciency of massive MIMO systems has been studied in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Re- garding the secrecy performance, the authors in [10] analyzed the effects of HWIs on secrecy rate, where ideal converters with infinite resolution were considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Secure communica- tion in a massive MIMO system with low-resolution DACs was investigated in [11], which revealed that low-resolution DACs can achieve superior secrecy rate under certain conditions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', at low SNR or with a large power allocation factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Most of the existing works on low-resolution DACs trans- missions have focused on the assumption of independent identically distributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=') channels for massive MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' However, in practice, the limited space between the BS anten- nas as well as the rich scattering propagation environment can result in spatial correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The impact of correlated Rayleigh fading channels on optimal multiuser loading was analyzed in [6] by applying asymptotic random matrix theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' How spatial correlation impacts secure massive MIMO communication with low-resolution DACs is still an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In this paper, we focus on secure transmission in the massive MIMO downlink when low-resolution DACs are employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A tight lower bound for the ergodic secrecy rate is derived that explicitly characterizes the impact of channel correlation on the secrecy rate for typical correlated channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' An optimal power allocation strategy is proposed, which suggests that more power should be allocated to AN when strong channel correlation is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' It is revealed that using low-resolution DACs can improve the secrecy performance for a fixed power allocation factor under strong spatially correlated channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Notation: X∗, XT , XH and tr(X) represent the conju- gate, transpose, conjugate transpose and trace of matrix X, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' E{·} is the expectation operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' diag(·) denotes a diagonal matrix that retains only the diagonal elements of the input matrix, and � diag(·) represents a diagonal matrix with the input vector as its diagonal entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' SYSTEM MODEL The secure massive MIMO system under investigation comprises one N-antenna BS, K single-antenna legitimate users, and one M-antenna passive eavesdropper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The channel matrices are modeled based on the Kronecker channel model as shown in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' To make the problem more tractable, we con- sider the system with a common correlation matrix at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Specifically, the channel between the BS and the users is mod- 2 eled as H = D 1 2 �HR 1 2 , where the elements of �H ∈ CK×N are i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Gaussian random variables with zero mean and unit variance, the diagonal matrix D ∈ CK×K characterizes the large-scale fading with its kth diagonal element given by βk, and R ∈ CN×N is the transmit covariance matrix satisfying tr(R) = N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Similarly, the channel matrix between the BS and the eavesdropper is He = D 1 2e �HeR 1 2 , where �He ∈ CM×N contains i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Rayleigh fading channel coefficients following CN(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The diagonal matrix De represents the large-scale fading at the eavesdropper with identical diagonal entries βe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The BS desires to transmit the symbols s = [s1, s2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', sK] ∈ CK×1 to the legitimate users with E{ssH} = IK using a linear precoding matrix W ∈ CN×K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The eavesdropper’s channel state information (CSI) is assumed unknown to the BS, and AN is injected to ensure confidential communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The AN vector t ∼ CN(0, IN−K) is precoded by an AN shaping matrix V ∈ CN×(N−K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Denote by P the total transmit power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The power allocation factor ξ ∈ (0, 1] aims to strike a balance between the transmit signal and the AN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The unquantized downlink transmit signal vector x is then expressed as x = √µWs + √νVt, (1) where µ ≜ ξP K and ν ≜ (1−ξ)P N−K .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The precoded signal is transmitted after DAC quantization, which is denoted by Q(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Establishing the non-linear quan- tization model of a finite-bit DAC is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' We follow a popular way of charactering the quantizer by a linear function applying the simple additive quantization noise model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The quantized signal vector can accordingly be decomposed as z = Q(x) = � 1 − ρx + q, (2) where the quantization noise q is assumed to be uncorrelated with the input signal x, and Cq = E{qqH} = ρE � diag(xxH) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (3) The value of the distortion factor ρ depends on the DAC resolution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' for example, it can be chosen as in [5] for DAC resolutions of less than 5 bits, or as ρ = √ 3π 2 2−2b for scenarios with higher precision, where b represents the number of quantization bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' From (1) and (3), the covariance matrix of the quantization noise equals Cq = ρ � µdiag(WWH) + νdiag(VVH) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (4) Given the CSI of the legitimate channels, the matrix V is designed to lie in the null space of the channel matrix H, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', HV = 0, which (ideally) makes the AN “invisible” to the legitimate users [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Using (1) and (2), the signals received at the users and the eavesdropper are expressed as y = � 1 − ρ(√µHWs + √νHVt) + Hq + n (5) ye = � 1 − ρ(√µHeWs + √νHeVt) + Heq + ne, (6) where n ∼ CN(0, σ2 nIK) and ne ∼ CN(0, σ2 eIM) respec- tively represent the additive noise terms at the users and at the eavesdropper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ACHIEVABLE ERGODIC SECRECY RATE ANALYSIS In this section, we derive a tight lower bound for the ergodic secrecy rate of the secure multiuser massive MIMO downlink and analyze the impact of spatial correlation on the secrecy rate in the presence of low-resolution DACs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lower Bound on the Achievable Ergodic Secrecy Rate We adopt linear matched filter (MF) precoding for data transmission, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', W = H/∥ H ∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The received signal at the kth user according to (5) is expressed as yk = � 1 − ρ �√µhT k Ws + √νhT k Vt � + hT k q + nk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (7) Then, under the assumption of Gaussian distributed interfer- ence, a lower bound on the ergodic rate for the kth user can be calculated as Rk = E � log2(1 + γk) � , (8) γk = (1 − ρ)µ ��hT k wk ��2 ̺ + hT k Cqh∗ k + (1 − ρ)νhT k VVHh∗ k + σ2n , (9) where ̺ = (1 − ρ)µ � j̸=k ��hT k wj ��2, hT k denotes the kth row of H, and wk is the kth column of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Note that the numerator of γk is the power of the desired signal component for the kth user, and the denominator represents the power from inter- user interference, quantization noise from the low-resolution DACs, AN leakage, and thermal noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lemma 1: A lower bound on the achievable rate (8) of user k is given by Rk = log2 � 1 + (1 − ρ)β2 kγ0ξN/ �K i=1 βi ̺′ + ρβkγ0 + 1 � , (10) where ̺′ = (1 − ρ)ξγ0βktr(R2) � j̸=k βj/(N �K i=1 βi), and γ0 = P σ2n is the average SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Proof: Please refer to Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ■ To guarantee secure communication in the worst case, we assume that the eavesdropper has perfect CSI of all legitimate users and can remove all the interference from the legitimate users [2], [3], [10], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' According to (6), the ergodic rate of the eavesdropper is expressed as C = E � log2 � 1 + (1 − ρ)µwH k HH e X−1Hewk �� , (11) where X is defined as X = (1 − ρ)νHeVVHHH e + HeCqHH e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (12) Furthermore, we assume that σ2 e is negligibly small corre- sponding to the worst case, and consequently, C is independent of the path-loss of the eavesdropper βe [2], [3], [10], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A tight upper bound for C is derived in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lemma 2: For N → ∞, an upper bound on the eavesdrop- ping rate is given by C = log2 � 1 + φMξκβk/ �K i=1 βi φκ2� N tr(R2) − a � − ̟ � , (13) where a = M N , b = K N , ρ′ = ρ 1−ρ, φ = 1 − b, κ = 1 − ξ + ρ′, and ̟ = ab(1 − ξ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Proof: Please refer to Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ■ Applying Lemma 1 and Lemma 2, a lower bound on the ergodic secrecy rate of the kth user is obtained in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Theorem 1: For N → ∞, the achievable ergodic secrecy rate for the kth user is lower bounded by Rsec ≜ [Rk − C]+, (14) where [x]+ = max{0, x}, and Rk and C are given in (10) and (13), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3 If no spatial correlation is present, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', R = I, then (14) reduces to Rsec = � log2 � 1 + (1 − ρ)β2 kγ0ξN/ �K i=1 βi (1 − ρ)γ0βkξ � j̸=k βj/ �K i=1 βi + ρβkγ0 + 1 � − log2 � 1 + φMξκβk/ �K i=1 βi φκ2(1 − a) − ̟ ��+ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (15) As expected, Rsec increases with N and γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Optimal Power Allocation Strategy for AN Here we investigate the impact of the power allocation factor on the ergodic secrecy rate in (14) under spatially correlated channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Assume ab ≪ 1 in (13), which is reasonable in massive MIMO equipped with a large number of antennas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The derivative of Rsec w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ξ is calculated as ∂Rsec ∂ξ = L1L2 ln2(L3ξ + L2)[L2 + ξ(L1 + L3)] − Mtr(R2)(1 + ρ′)βk ln2 � �K i=1 βi � N − tr(R2)a � κ2 + Mξβktr(R2)κ �, (16) where L1 = (1 − ρ)β2 kγ0N/ �K i=1 βi, L2 = ρβkγ0 + 1, and L3 = (1 − ρ)γ0βktr(R2) � j̸=k βj/(N �K i=1 βi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Since ∂Rsec ∂ξ > 0 for small ξ and ∂Rsec ∂ξ < 0 for large ξ, the optimal power allocation factor ξ∗ that achieves the highest secrecy rate is obtained by setting ∂Rsec ∂ξ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A closed-form expression for ξ∗ can be founded as follows: ξ∗ = −B − √ B2 − 4AC 2A , (17) where the parameters A, B, and C are given by A = L1L2G2 − L1L2G3 − G1L3(L1 + L3), (18) B = (1 + ρ′)L1L2(G3 − 2G2) − G1L2(L1 + 2L3), (19) C = G2L1L2(1 + ρ′)2 − G1L2 2, (20) and G1 = Mtr(R2)(1 + ρ′)βk, G2 = �K i=1 βi � N − tr(R2)a �, and G3 = Mβktr(R2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Assuming βk = 1, 1 ≤ k ≤ K, we can simplify the above expressions to evaluate the impact of spatial correlation on ξ∗ for different DAC resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Comparing the value of ξ∗ for the special case of an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' channel, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=',tr(R2) = N with a fully correlated channel, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', tr(R2) = N 2 for a Hermitian Toeplitz correlation matrix, we can easily observe that ξ∗ decreases when tr(R2) increases from N to N 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The relationship between ξ∗ and the design parameters, including the DAC resolution and channel correlation coefficient, is verified in Section IV through numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Impact of Spatial Correlation We first analyze the impact of the antenna ratio a under the correlated channel condition when AN is injected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In (14), Rsec decreases with respect to a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Considering the special case of βk = β, 1 ≤ k ≤ K, and ξ → 0, by setting Rsec = 0, the maximum number of eavesdropper antennas that still allows for a positive secrecy rate can be obtained from the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Proposition 1: If a positive secrecy rate can be achieved, then the maximum antenna ratio a is obtained as asec = (1 − b)Nγ0 tr(R2) � γ0ρb(ρ − β − 2) + γ0(1 + βρ) + 1 − b �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (21) Remark 1: By direct inspection of (21), the maximum number of eavesdropper antennas that can be tolerated for secure transmission decreases with ρ and the spatial correlation level because Eve can wiretap more information under strongly correlated channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' For the special case of ρ → 0 and tr(R2) = N 2, we have asec = (1−b)γ0 N(1−b+γ0), which indicates that asec is independent of the large-scale fading factor with infinite-resolution DACs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' To extract clear insights, we further consider a representative exponential correlation model [14] Rij = ζ|i−j|, (22) where ζ denotes the correlation coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The exponential model is widely adopted in literature and is applicable to analysis for a massive MIMO system with uniform planar array (UPA) scenarios [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Proposition 2: The secrecy rate gap for different DAC resolutions decreases with the correlation coefficient ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Proof: lim N→∞ tr(R2) N = 1+ζ2 1−ζ2 exists under the exponential correlation model in (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' From (14), we have ∂Rsec ∂ρ = ∂Rk ∂ρ − ∂C ∂ρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The first term ∂Rk ∂ρ is given by ∂Rk ∂ρ = − β2 kγ0ξN(1 + βkγ0) �K i=1 βi ln2(Υβkγ0 + �K i=1 βi)(Ψβkγ0 + �K i=1 βi) , (23) where Υ = (1 − ρ)(Nβk + �ζ � j̸=k βj)ξ + ρ �K i=1 βi, Ψ = ρ �K i=1 βi + (1 − ρ)ξ�ζ � j̸=k βj, and �ζ = 1+ζ2 1−ζ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The expression of ∂C ∂ρ is shown in (24), on the top of the next page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Assuming ab ≪ 1 for typical massive MIMO systems, (24) can be simplified as ∂C ∂ρ = − Mξφβk�ζ/ �K i=1 βi ln2(1 − ρ)2�� κ − (Mξβk/ �K i=1 βi − aκ)�ζ � κφ �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (25) Focusing on the impact of ζ, we observe that ∂C ∂ρ < 0 and decreases with ζ, while ∂Rk ∂ρ < 0 and increases with ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Therefore, ∂Rsec ∂ρ is an increasing function of ζ, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ■ Remark 2: From (23) and (25), it shows that ∂Rsec ∂ρ < 0 and ∂Rsec ∂ρ is a monotonically increasing function in terms of the level of spatial correlation ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' It implies that the eavesdropper’s capacity C degrades faster than Rk does at large ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Thus, we conclude that there exists a threshold of correlation coefficient, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', ζ, where lower-resolution DACs achieve a higher secrecy rate for ζ ∈ (ζ, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The value of ζ is obtained from the solution of ∂Rsec ∂ρ = 0 by focusing on the impact of spatial correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Note that the higher the correlation the lower the effective dimension (d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ), in the extreme case of ζ = 1, the users and Eve are separated only in the angle of arrival domain, which only has dimension 1 instead of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Therefore, quantization noise from lower-resolution DACs could compensate for AN to improve secrecy rate under spatially correlated channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' NUMERICAL RESULTS In this section, the analytical results are validated through Monte-Carlo simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' We consider a system with N = 256, K = 16, and M = 4 in all simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The large-scale fading is modeled as βk = (dref/dk)η, where η = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='8 denotes the path loss exponent, dref = 300 (m) and dk ≤ 500 (m) are, respectively, the reference distance and the distance between 4 ∂C ∂ρ = − Mξφβk�ζ[(1 − a�ζ)φκ2 + ̟�ζ]/ �K i=1 βi ln2(1 − ρ)2� (a�ζ − \uf731)φκ2 + ̟�ζ ��� (aκ2 − Mξκβk/ �K i=1 βi)�ζ − κ2� φ + ̟�ζ � (24) the BS and the kth user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The expected values in (14) were evaluated by averaging over 1000 random channel realizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 6 4 2 0 2 4 6 8 10 12 14 16 18 20 SNR (dB) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 4 Ergodic secrecy rate (bit/s/Hz) =0 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 Simulation results (b=1) Analytical results in (14) (b=1) Simulation results (b=2) Analytical results in (14) (b=2) Simulation results (b= ) Analytical results in (14) (b= ) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Ergodic secrecy rate and analytical lower bound versus SNR for different spatial correlation coefficient ζ (ξ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 1 shows the ergodic secrecy rate versus the average SNR γ0 under different DAC resolutions and spatial correla- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The derived lower bound on the secrecy rate is fairly accurate and tight for the entire range of SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In addition, it is observed that the secrecy rate is decreasing as ζ increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2 plots the ergodic secrecy rate as a function of the power allocation factor ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The optimal power allocation factor ξ∗ largely depends on ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Specifically, It is observed that ξ∗ decreases with ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The information signal leakage grows when the spatial correlation is strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Thus, more power should be allocated for AN to ensure secure communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3 (a) we show the ergodic secrecy rate versus ζ with different DAC resolutions for γ0 = 10 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' We choose a fixed power allocation factor ξ due to the difficulties in optimizing ξ theoretically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The secrecy rate loss due to low-resolution DACs decreases with ζ as predicted in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Interestingly, although the channel correlation has a detrimental effect on the secrecy rate, the use of 1-bit DACs can improve the secrecy rate when the spatial correlation coefficient is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' This is because the additional quantization noise serves to increase the level of AN, which is beneficial for spatially colored channels if the AN level has not already been optimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Finally, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3 (b) presents the secrecy rate versus ζ assuming the optimal power allocation ξ∗ in (17) is chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' The secrecy rate gaps are ∆Rsec = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='697 bit/s/Hz at ζ = 0 and ∆Rsec = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='434 bit/s/Hz at ζ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' If optimal power allocation is adopted, then using infinite-resolution DACs can always achieve a higher secrecy rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In this case, quantization noise from lower-resolution DACs does not compensate for the AN anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' However, we observe that the secrecy rate loss due to low-resolution DACs decreases with channel correlation coefficient, regardless of the value of ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' For comparison, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 4 plots the Monte-Carlo simulation by using the spatial correlation model in [9], denoted by [R]s,m = β L �L l=1 ejπ(s−m) sin(ϕl)e− ∆2 2 � π(s−m) cos(ϕl) �2 , where β is the large scale fading coefficient, ϕ is the actual angle-of-arrival and ∆ is the azimuth angular spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' We consider L = 10 scattering clusters and ϕ ∼ [ −∆ 2 , ∆ 2 ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' It is observed that transitioning from larger to smaller angular spread (∆ = 50o to ∆ = 12o) significantly reduces the secrecy rate of the kth user for different DAC resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' However, the lower resolution DAC is always beneficial for secrecy rate with a fixed ξ under highly correlated channels as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='9 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 4 Ergodic secrecy rate (bit/s/Hz) =0 =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='6 Simulation results (b=1) Analytical results in (14) (b=1) Simulation results (b=2) Analytical results in (14) (b=2) Simulation results (b=3) Analytical results in (14) (b=3) The optimal in (17) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Achievable ergodic secrecy rate versus the power allocation factor ξ for different DAC resolutions (γ0 = 10 dB) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 Ergodic secrecy rate (bit/s/Hz) b=1, fixed =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 b=2, fixed =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 b=3, fixed =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 b= , fixed =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 (a) with fixed ξ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 4 Ergodic secrecy rate (bit/s/Hz) b=1 b=2 b=3 b= Rsec=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='434 bit/s/Hz Rsec=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='697 bit/s/Hz (b) with optimal ξ∗ in (17) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Achievable ergodic secrecy rate versus ζ for different DAC resolutions 6 4 2 0 2 4 6 8 10 12 14 16 18 20 SNR (dB) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='5 4 Ergodic secrecy rate (bit/s/Hz) =50 deg =12 deg b=1 b=2 b= Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Ergodic secrecy rate versus SNR (ξ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='7) V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' CONCLUSION This paper has characterized the performance of AN-based secure transmission in a massive MIMO downlink system with low-resolution DACs under spatially correlated channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' In particular, it is shown that optimal secrecy performance can be obtained by increasing the amount of power dedicated to artificial noise when the channel correlation increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Furthermore, the use of low-resolution DACs has been shown to be beneficial to the secrecy performance for a fixed power allocation factor when the channels possess strong spatial correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Interesting future extension of this paper includes 5 studying the impact of different spatial correlation matrices at both transmitter and the eavesdropper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' APPENDIX A Consider MF precoding satisfying tr(WWH) = K, which leads to W = � K N �K i=1 βi H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' First, we directly obtain ��hT k wk ��2 = K N �K i=1 βi ��hT k hk ��2 = Kβ2 k N �K i=1 βi � tr(R) �2 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ KNβ2 k �K i=1 βi , (26) where we have used 1 √ N �hT k R 1 √ N �h∗ k − 1 N tr(R) a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ 0 in [16, Lemma 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Then, the inter-user interference is calculated as ̺ = (1 − ρ)µ � j̸=k K N �K i=1 βi ��hT k hj ��2 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ (1 − ρ)µKβktr(R2) � j̸=k βj �� N K � i=1 βi � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (27) For large N and K, Cq converges to Cq a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ ρ P N IN, (28) where we use the definition of µ and ν, and the fact that diag(WWH) a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ K N IN and diag(VVH) a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ N−K N IN due to the strong law of large numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Further, we obtain the component of the quantization noise as hT k Cqh∗ k a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ ρ P N βktr(R) = ρPβk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (29) Regarding the AN power, it follows that hT k VVHh∗ k = 0, (30) since HV = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Finally, by substituting (26), (27), (29), (30) and the definition of µ and ν into (8), and according to the Continuous Mapping Theorem, we complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' APPENDIX B By applying Jensen’s inequality, the capacity of the eaves- dropper can be upper bounded as C ≤ log2 � 1 + (1 − ρ)µE � wH k HH e X−1Hewk �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' (31) Let us first focus on the term X and by substituting (28) into (12) yields X a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ � (1 − ρ)ν + ρ P N � X1 + ρ P N X2, (32) where X1 = HeVVHHH e and X2 = HeV0VH 0 HH e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' It is obvious that [V V0][V V0]H = IM, because [V V0] forms a complete orthogonal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Eigendecompose R such that R = UΛUH to decorrelate matrix He as Z = HeΛ− 1 2 UH, where Λ = � diag(λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', λN) is the diagonal matrix of the eigenvalues of R and the columns of U consist of the corresponding eigenvectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Since U is unitary, the statistics of ZU are identical to those of Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Thereby, the distributions of X1 and X2 are the same as N � i=1 N � j=1 λ 1 2 i λ 1 2 j zivivH j zH j (33) and N � i=1 N � j=1 λ 1 2 i λ 1 2 j ziv0,ivH 0,jzH j , (34) where zi is the ith row of Z, vi and v0,i are ith column of V and V0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Following the same approach in [17], Y = � (1 − ρ)ν + ρ P N � Y1 + ρ P N Y2 may be accurately approx- imated as a single scaled Wishart matrix Y ∼ WM(η, ϕIM), where we define Y1 = �N m=1 λmzmvmvH mzH m and Y2 = �N n=1 λnznv0,nvH 0,nzH n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Equating the first two moments of those matrices with Y1 ∼ �N m=1 λmWM(N − K, 1 N IM) and Y2 ∼ �N n=1 λnWM(K, 1 N IM) leads to ηϕ = � (1 − ρ)ν + ρ P N � (N − K) + ρ P N K (35) and ηϕ2 = tr(R2) N �� (1−ρ)ν +ρ P N �2 (N −K)+ � ρ P N �2 K � , (36) where we use �N i=1 λi = tr(R) and �N i=1 λ2 i = tr(R2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' By exploiting the independence of the elements in �He, we can further obtain X−1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ 1/(ϕ(η − M))IM with η > M, where we use the property A−1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' −−→ 1/(n − m)Im for a Wishart matrix A ∼ Wm(n, Im) with n > m [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Substituting this result and E � wH k HH e Hewk � = MKβk N �K i=1 βi tr(R2) into (31) completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' REFERENCES [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Oggier and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 57, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 4961–4972, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Schober, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Bhargava, “Secure transmission in multicell massive MIMO systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 4766–4781, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Schober, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Bhargava, “Linear precoding of data and artificial noise in secure massive MIMO systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2245–2261, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Saxena, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Fijalkow, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Swindlehurst, “Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 4624–4634, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Tao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lee Swindlehurst, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Mezghani, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Liu, “Downlink achievable rate analysis in massive MIMO systems with one-bit DACs,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 1669–1672, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Gong, “On performance of quantized transceiver in multiuser massive MIMO downlinks,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 562–565, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Gong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' You, “Optimal multiuser loading in quantized massive MIMO under spatially correlated chan- nels,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 1459–1471, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Jedda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Mezghani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Swindlehurst, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Nossek, “Quan- tized constant envelope precoding with PSK and QAM signaling,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 8022–8034, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [9] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Bj¨ornson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Hoydis, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Trends Signal Pro- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 11, nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3–4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 154–655, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Ng, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Schober, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Bhargava, “Analysis and design of secure massive MIMO systems in the presence of hardware impairments,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2001–2016, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Ng, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lee Swindlehurst, “Secure massive MIMO communication with low-resolution DACs,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3265–3278, May 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Shiu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Foschini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Gans, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 502–513, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Goel and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2180–2189, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Loyka, “Channel capacity of MIMO architecture using the ex- ponential correlation matrix,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 369–371, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Jang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Yoon, “Bounds for eigenvalues of spatial correlation matrices with the exponential model in MIMO systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 1196–1204, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Hoydis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' ten Brink, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Debbah, “Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 160–171, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' [17] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Zhang and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Liu, “A simple capacity formula for correlated diversity Rician channels,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 481–483, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} +page_content=' 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tE2T4oBgHgl3EQfQwb6/content/2301.03775v1.pdf'} diff --git a/btA0T4oBgHgl3EQfGf-a/content/2301.02048v1.pdf b/btA0T4oBgHgl3EQfGf-a/content/2301.02048v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..17341dff63424952560e89dc6f5fa08c10badb9d --- /dev/null +++ b/btA0T4oBgHgl3EQfGf-a/content/2301.02048v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e3ccd5930f73a81011b2a8f5dd0e18905e52700574a68c4d49b2f372f96f4e7c +size 1266570 diff --git a/btA0T4oBgHgl3EQfGf-a/vector_store/index.faiss b/btA0T4oBgHgl3EQfGf-a/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..be9b9e2795b2adf5c4238d1ab2ecbbb1b8a8cbfb --- /dev/null +++ b/btA0T4oBgHgl3EQfGf-a/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47519734cfa2931fd3dba1973bbfcc4aca1248176c5d79076a7da0e446dabce6 +size 5046317 diff --git a/btA0T4oBgHgl3EQfGf-a/vector_store/index.pkl b/btA0T4oBgHgl3EQfGf-a/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..fed44d5bffebe5e571d4b0dd5cd7b97955c44ff1 --- /dev/null +++ b/btA0T4oBgHgl3EQfGf-a/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c85bb114caadfb3b19f839ac499e5ad53721700794af93a5fd8cb9e40ed75a8 +size 154638 diff --git a/btFIT4oBgHgl3EQfmivq/content/tmp_files/2301.11310v1.pdf.txt b/btFIT4oBgHgl3EQfmivq/content/tmp_files/2301.11310v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9b1d91deae72652f06fe54517030e989d10766f9 --- /dev/null +++ b/btFIT4oBgHgl3EQfmivq/content/tmp_files/2301.11310v1.pdf.txt @@ -0,0 +1,1900 @@ +1 +Learning Good Features to Transfer +Across Tasks and Domains +Pierluigi Zama Ramirez*1, Adriano Cardace*1, Luca De Luigi*1, +Alessio Tonioni2, Samuele Salti1, Luigi Di Stefano1 +1University of Bologna, Italy +2Google Inc. +{pierluigi.zama,adriano.cardace2,luca.deluigi4,samuele.salti,luigi.distefano}@unibo.it +alessiot@google.com +Abstract—Availability of labelled data is the major obstacle to the deployment of deep learning algorithms for computer vision tasks in +new domains. The fact that many frameworks adopted to solve different tasks share the same architecture suggests that there should +be a way of reusing the knowledge learned in a specific setting to solve novel tasks with limited or no additional supervision. In this +work, we first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a +given domain. Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen +domains. Besides, we propose a set of strategies to constrain the learned feature spaces, to ease learning and increase the +generalization capability of the mapping network, thereby considerably improving the final performance of our framework. Our proposal +obtains compelling results in challenging synthetic-to-real adaptation scenarios by transferring knowledge between monocular depth +estimation and semantic segmentation tasks. +Index Terms—Domain Adaptation, Task Transfer, Semantic Segmentation, Depth estimation +! +1 +INTRODUCTION +D +EEP learning has revolutionized computer vision by +providing an effective solution to address a wide range +of tasks (e.g., classification, depth estimation, semantic seg- +mentation, etc.). The rise of a common framework has +allowed incredible leaps forward for the whole research +community thanks to the ability to reuse architectural and +algorithmic improvements discovered to solve one task +across many others. However, the real knowledge of a neu- +ral network is stored inside its trained parameters and we +still have no simple way of sharing this knowledge across +different tasks and domains (i.e., datasets). As such, the first +step for every practitioner faced with a new problem or do- +main deals with acquisition and labeling of a new training +set, an extremely tedious, expensive and time consuming +operation. We argue that sharing the knowledge acquired +by a neural network to solve a specific task in a specific +domain across other tasks and domains could be a more +straightforward and cost-effective way to tackle them. +Indeed, this is demonstrated by the widespread use +and success of transfer learning. Transfer learning concerns +solving new tasks by initializing a network with pre-trained +weights, thereby providing a basic approach to knowledge +reuse. However, it still requires a new annotated dataset to +fine tune the pretrained network on the the task at hand. A +few works focused on the related task transfer (TT) problem +[1], [2], i.e., on exploiting supervised data to tackle multiple +tasks in a single domain more effectively by leveraging on +the relationships between the learned representations. As +unlabeled domains are not considered in TT problem for- +mulations, the proposed methodologies still rely on transfer +* Equal contribution. +Fig. 1. Our framework transfers knowledge across tasks and domains. +Given two tasks (1 and 2) and two domains (A and B), with supervision +for both tasks in A but only for one task in B, we learn the dependency +between the tasks in A and exploit this in B in order to solve task 2 +without the need of supervision. +learning and availability of a small annotated training set +in order to address new datasets. On the other hand, the +unsupervised domain adaptation literature (DA) [3] studies +how the need for annotated data can be removed when +leveraging on knowledge reuse to solve the same task across +different domains, but it does not consider different tasks. +Differently, we propose to merge DA and TT by ex- +plicitly addressing a cross domain and cross task problem +where on one source domain (e.g., synthetic data) we have +supervision for many tasks, while in another target one (e.g., +real data) annotations are available only for a specific task +while we wish to solve many. A schematic representation +of our problem formulation with two domains and two +tasks is shown in the right part of Figure 1. Following this +schematic representation we will consider a scenario with +arXiv:2301.11310v1 [cs.CV] 26 Jan 2023 + +Task 1 +Task 2 +Domain A +AIDT +Domain +Task +Transfer +Transfer +DomainB +? +Transfer Learning2 +two domains (a source one and a target one, namely A +and B) and two tasks (again a source one and a target one, +namely task 1 and 2), but nothing prevents our method to +be extended to more. In domain A we use the available +supervision to learn two models for the source and target +tasks, while in the target domain B we can do the same +for the source task only. In domain A we use the trained +task-specific models to learn a mapping function (G1→2 +in Figure 1) between deep features extracted to solve the +source task and those extracted to solve the target task. This +mapping function is then applied in domain B to solve the +target task by transforming the features extracted to solve +the source task. +The key component of our framework is the mapping +function between the two task-specific deep features. In [4] +we proposed a preliminary formulation of our framework +by modeling the mapping function as a deep convolutional +neural network and optimizing its parameters by standard +supervised learning in the source domain A. In this work, +we expand and improve upon our preliminary formula- +tion by proposing two features alignment strategies aimed +at learning the feature mapping function more effectively. +Firstly, we align feature representations across domains +using a novel norm discrepancy alignment (NDA) loss that +constraints the feature space by penalizing features with +very different norms in a spatially-aware manner. Secondly, +we align feature representations across tasks by using them +as inputs to solve a common auxiliary task. This pretext +problem acts as a bridge between the source and the target +tasks: in fact, if the deep features extracted to solve them in- +dependently can be used to address effectively an additional +common task, we are pushed to believe that those features +present the same semantic content and encode it in a similar +manner. +We test the effectiveness of our proposal in a challenging +autonomous driving scenario where we try to solve the two +related dense prediction tasks of monocular depth estima- +tion and semantic segmentation [5]. We select edge detection +as the auxiliary task since color edges provide oftentimes +detailed key information related to both the semantic as well +as the depth structure of the scene. Many edge detectors +have been proposed during the years, with recent deep +learning based approaches outperforming classical hand- +crafted methods even in the most challenging scenarios [6], +[7], [8]. Interestingly, such deep models present good gener- +alization capabilities, allowing us to use the state-of-the-art +approach [6] to generate proxy supervision for the auxiliary +task without extra labels. Thanks to our formulation, we +can use a fully supervised and completely synthetic domain +(i.e., the Carla simulator [9]) to improve the performance on +a partially labeled real domain (i.e., Cityscapes [10]). +The contributions of this paper can be summarized as +follow: +• +We propose for the first time to study a cross domain +and cross task problem where supervision for all +tasks is available in one domain whilst only for a +subset of them in the other. This is done by learning +a mapping between deep representations. +• +We demonstrate how constraining explicitly deep +features across domains with a novel norm discrep- +ancy alignment loss improves the learning of the +mapping function. +• +We further show how the learning of the mapping +function can be improved by deploying an auxiliary +task. +• +Considering the dense prediction tasks of monocular +depth estimation and semantic segmentation, we +achieve results close to the practical upper bound +when transferring knowledge between a synthetic +and a real domain. +2 +RELATED WORKS +2.1 +Transfer Learning and Task Transfer +Collecting training data is often expensive, time-consuming, +or even unrealistic in many scenarios. Many works have +tackled this problem by exploiting the existence of a rela- +tionship between the weights of CNNs trained for different +tasks [11]. In particular, [12] showed that this strategy, re- +ferred to as transfer learning, can lead to better results than +using random initialization even if applied on quite diverse +tasks. Transfer learning has become a common practice, for +instance, in object detection, where networks are usually +initialized with Imagenet [13] classification weights [14], +[15], [16], [17]. Additional insights on the transferability of +learned representations between different visual tasks were +provided in [1], where the authors present Taskonomy, a +computational approach to represent a taxonomy of rela- +tionships among visual tasks. Along similar lines, [18] pro- +posed to exploit the correlation between known supervised +tasks and novel target tasks, in order to predict the param- +eters of models deployed to solve the target tasks starting +from the parameters of networks trained on the known +tasks. While [1] and [18] study the correlation between tasks +in a given domain and assume either full or no supervision, +we explicitly address a multi-domain scenario assuming full +supervision in one domain and partial supervision in the +target one. +2.2 +Domain Adaptation +Domain adaptation techniques aim at reducing the perfor- +mance drop of a model deployed on a domain different from +the one the model was trained on [3]. Throughout the years, +adaptation has been performed at different levels. Early +approaches tried to model a shared feature space relying on +statistical metrics such as MMD [19], [20]. Later, some works +proposed to align domains by adversarial training [21], +[22], [23]. Recently [24] noticed that, for classification tasks, +aligning feature norms to an arbitrarily large value results in +better transferability across domains. Generative adversarial +networks [25] have also been employed to perform image- +to-image translation between different domains [26], [27], +[28], and, in particular, to render cheaply labelled syn- +thetic images similar to real images from a target domain. +However, when dealing with dense tasks such as semantic +segmentation, feature-based domain adaptation approaches +tend to fail as deeply discussed in [29] . Thus, several ap- +proaches to address domain adaptation for dense tasks, such +as semantic segmentation [5], [29], [30], [31], [32], [33], [34], +[35], [36], [37], [38], [39], [40] or depth estimation [41], [42], + +3 +[43] have been proposed recently. Among them, SPIGAN +[44] uses extra supervision coming from synthetic depth +of the source domain to improve the quality of an image- +to-image translation network and consequently achieving +better adaptation performances. Akin to DA methods, we +learn from a labeled source domain to perform well on a +different target domain. However, unlike the classical DA +setting, we assume the existence of an additional task where +supervision is available for both domains. +2.3 +Multi-task Learning +The goal of multi-task learning is to solve many tasks si- +multaneously. By pursuing this rather than solving the tasks +independently, a neural network may use more information +to obtain more robust and reliable predictions. Many works +try to tackle several tasks jointly [45], [46], [47], [48]. For +example, [47] showed that by learning to correctly weigh +each task loss, multi-task learning methods can outperform +separate models trained individually. [5], [48] show how +learning multiple perception tasks jointly while enforcing +geometrical consistency across them can lead to better per- +formances for almost all tasks. Recently, [2] proposes a +method to improve the performances of multiple single- +task networks by imposing consistency across them during +training. Finally, Taskonomy [1] investigates the relationship +between the deployed tasks to accomplish multi-task learn- +ing effectively. However, multi-task learning approaches +usually try to achieve the best balance between tasks in +a single-domain scenario. We instead tackle a multi-task +and multi-domain problem. Nevertheless, taking inspiration +from multi-task learning, we show how jointly learning an +auxiliary task while learning the two task networks helps +the alignment of features across tasks. +2.4 +Task Transfer and Domain Adaptation +Most existing approaches address independently either task +transfer or domain adaptation. Yet, a few works have pro- +posed to tackle these two problems jointly. [49] was the first +paper to propose a cross-tasks and cross-domains adapta- +tion approach, considering as tasks different image classifi- +cations problems. UM-Adapt [50], instead, learns a cross- +task distillation framework with full supervision on the +source domain and deploys such framework on the target +domain in a fully unsupervised manner, while minimizing +adversarially the discrepancy between the two domains. +Differently, in a preliminary version of this work [4], we in- +troduced AT/DT (Across Tasks and Domains Transfer) and +set forth a novel learning framework, where the relationship +between a set of tasks is learned on the source domain and it +is later deployed to solve a specific task on the target domain +without supervision thanks to the availability of ground- +truth for all the tasks except the target one. In this work we +will expand and improve this methodology. +3 +METHOD +We introduce the problem we are trying to solve with a +practical example. Imagine we aim to solve semantic seg- +mentation in a real domain but we only have labels for a +closely related task (e.g., depth estimation). Moreover, let +Fig. 2. AT/DT framework: here N1 and N2 are trained separately to solve +tasks T1 and T2. While N2 is trained only on images from domain A, +N1 is trained jointly on both domain A and domain B, to enable the +extraction of domain invariant features. Then, encoders from the two +networks are frozen and used to learn the transfer function G1→2, which +aims at transforming features extracted for T1 in features that are good +for T2. This step is performed only on domain A, since we have no +supervision for T2 on domain B. Finally, at inference time, features are +extracted from E1 starting from images of domain B, transformed with +the G1→2 and fed to D2 to produce the final predictions. +us suppose to have access to a synthetic domain, where +labels can be easily obtained for both tasks. Unsupervised +domain adaptation may be used in this synthetic to real +scenario. However, we wish to go one step further, trying to +answer this question: can we exploit the depth estimation +task to boost the performance of semantic segmentation in +the real domain? The answer is yes, thanks to our novel +framework AT/DT. In AT/DT we first learn a mapping +function in the synthetic domain between deep features of +two networks trained for depth estimation and semantic +segmentation. This mapping function captures the relation- +ship between the two tasks. Once learned, we use the map- +ping on depth features extracted from real samples to solve +semantic segmentation in the real domain without the need +of labels for it, thereby transferring knowledge across tasks +and domains. To further improve performance, we propose +two strategies aimed at increasing the transferability of the +learned features, namely leveraging on a norm discrepancy +alignment loss and an auxiliary task. + +A +A +L (A,YA) +E1 +D +B +L (V,P) +N1 +Training N1 +E2 +L, (V2, J2) +N2 +Training N2 +E1 +LTr +E2 +Training G1-2 +B +Ei +D +Inference4 +Fig. 3. Features alignment strategies across tasks and domains. We train jointly the networks N1, N2 and a shared auxiliary decoder Daux. We +train N1 to solve T1 on images from domains A and B using a supervised loss LT1 for T1 alongside a novel feature Norm Discrepancy Alignment +loss LNDA which helps better aligning the features computed by N1 across the two domains. We train N2 using a supervised loss LT2 for T2 on +images from B. Daux is trained to solve an auxiliary task Taux using the loss Laux and based on the features computed by E1 on images from A +and B as well as by E2 on images from B. +In the following sub-sections, we first describe the base +AT/DT framework and then delineate its improved formu- +lation which includes the norm discrepancy alignment loss +and auxiliary task. +3.1 +Notation +We consider two tasks, T1 and T2, as well as two domains, +A and B. We denote the images belonging to A and B as +xA and xB, respectively. We have labels for T1 in A and B, +denoted as yA +1 and yB +1 , respectively. On the other hand, we +have labels for T2 only in A, denoted as yA +2 . Our aim is to +solve T2 in B, where we do not have supervision. We assume +T1 and T2 to be both dense tasks, which can therefore be +addressed by an encoder-decoder architecture. We denote as +N1 and N2 two networks that solve T1 and T2, respectively. +Each network Nk, k ∈ {1, 2} consists of an encoder Ek and +a decoder Dk, such that Nk(x) = Dk(Ek(x)), x being the +input image. +3.2 +Across Tasks and Domains Transfer +In +our +AT/DT +framework +we +aim +at +learning +the +relationships between T1 and T2 through a neural network. +This is achieved by 3 steps, each represented as a block in +Figure 2: +Training N1 and N2. We train N1 and N2 to solve +T1 and T2. Since we assume supervision for T1 on both +domains, N1 is trained with images from A and B. This +enables N1 to learn a feature space shared across the two +domains. N2, instead, is trained only on A. Both networks +are trained with a specific supervised task loss LTk for Tk. +Training G1→2. Considering only domain A, where we +have supervision for both tasks, we then train a trans- +fer network G1→2 to map the features computed by N1, +f A +1 = E1(xA), into those computed by N2, f A +2 = E2(xA). +Denoting the transferred features as f A +1→2 = G1→2(f A +1 ), we +train the transfer network by minimizing the L2 loss: +LT r = ||f A +1→2 − f A +2 ||2 +(1) +Inference. Once G1→2 has been trained, we can ad- +dress T2 in B by computing the features to solve T1, +f B +1 = E1(xB), transform them into features amenable to T2, +f B +1→2 = G1→2(f B +1 ), and finally decode these features into +the required dense output by D2: +ˆyB +2 = D2(f B +1→2) +(2) +After presenting the base AT/DT framework, in the +next sub-sections we will describe two strategies deployed +to boost the feature alignment across domains and tasks. +Figure 3 provides a detailed view of these two strategies +which in our final proposed framework replace the initial +steps of the training protocol (i.e., Training N1 and N2). +3.3 +Feature Alignment Across Domains +For the effectiveness of the approach delineated in subsec- +tion 3.2, it is crucial that G1→2 can generalize well to the +target unseen domain B even if trained only with data from +the source domain A. +The DA literature presents us with several ways to +accomplish this. One may operate on the input space [27], on +the feature space [23] or on the output space of the network +[29]. In our setting, though, both input and output space of +G1→2 are high dimensional latent spaces and, as reported +in [29], unsupervised domain adaptation techniques tend to +fail when applied to such spaces while addressing dense +tasks. Yet, we can address the domain shift issue with a + +L (VA,JA) +E1 +D1 +-NDA +L (VB,JP) +xn +N1 +DB +aux +laux +aux +laux +X +y2 +xnp7 +aux +Zaux +L (V, J) +N2 +Training N1 e N25 +Fig. 4. Two task transfer scenarios: depth-to-semantic on the left, the opposite on the right. First row: ground-truth depth and semantic segmentation +maps; second row: corresponding edge maps. Red circles highlight information needed in the target task but missing in the source one. +direct approach in the input space of G1→2, i.e., the feature +space of N1, which is already shared between A and B +due to the network being trained supervisedly with images +from both domains. We leverage on the intuition that scene +spatial priors are typically domain invariant in many adap- +tation scenarios. We consider it as a reasonable assumption +for several domain adaptation settings, where we select the +source domain by considering visual similarities with the +target domain. For instance, in autonomous driving scenar- +ios we typically have cameras placed from a car viewpoint, +and scenes are urban scenarios in both synthetic [9], [51] +and real [10], [52], [53] datasets. Thus, if we consider the +task of semantic segmentation in all datasets (synthetic and +real) we typically find road pixels in the bottom part of the +images and instead sky pixels in the top part of the images. +To visualize this property we select a synthetic domain A +CARLA [9] and a real domain B Cityscapes [10]. Then, we +count for each pixel location the number of occurrences of +each class. We show the result of this experiment in Figure 5, +using a viridis colormap to display these occurrency maps +for each class and for both domains A and B. We can clearly +see that the maps have a structure similar across domains, +e.g., building are concentrated in the top image regions. +Leveraging this property, we propose to align more +closely the features computed by E1 on the images from +both domains, i.e., f A +1 +and f B +1 , by enforcing similarity of +the L2 norms across channels at the same spatial loca- +tion. Starting from features f A +1 +and f B +1 +of dimensionality +H × W × C, where H, W and C are the height, width +and number of channels of the feature maps, we calculate +the L2 norm along the C axis and minimize the absolute +difference at each spatial location i, j. Hence, our NDA +(Norm Discrepancy Alignment) Loss is defined as follows: +LNDA = +1 +W × H +H +� +i=1 +W +� +j=1 +���∥f A +1i,j∥2 − ∥f B +1i,j∥2 +��� +(3) +3.4 +Feature Alignment Across Tasks +While the NDA loss presented above aims at improving +the generalization across domains of the feature mapping +network G1→2, its effectiveness can be further improved by +aligning features also across tasks. Accordingly, we conjec- +ture that f1 features should capture as much information as +possible on the details of the scene, even though some of +this information may not be necessary to solve T1, because, +when transferred by G1→2, such a richer representation +could help to solve T2 more effectively. For this reason, while +training N1 for T1, we train jointly an additional decoder, +Daux, to solve an auxiliary task, Taux, aimed at enriching +the learnt representation f1 . However, though multi-task +learning of T1 and Taux could help to encode more detailed +information into f1 features, it does not guarantee that +the decoder D2, used at inference time on the features +f1→2 transferred from T1 to T2, may effectively deploy this +additional information if it has been trained only to solve +T2 in isolation. This leads us to reckon that Daux should +be trained jointly with N2 too, such that the additional +information required to solve Taux may be incorporated also +within the features f2 learnt by E2. +Therefore, given auxiliary task labels yA +aux and yB +aux for +A and B, we train N1 and N2 jointly with a single auxiliary +decoder Daux using an auxiliary loss Laux. Purposely, we +obtain auxiliary predictions from both encoders with the +shared decoder Daux as ˆykaux = Daux(Ek(x)), k ∈ {1, 2}. +Similarly to the simpler formulation of our framework pre- +sented in subsection 3.2, to compute the auxiliary loss we +feed images of both domains through E1, while we pass +only images from A through E2. We do not pass images +belonging to B through E2 while training Daux since this +would be the only kind of supervision for E2 in B and it +may skew E2 output to be more effective on Taux than on +T2. +3.5 +Overall N1 and N2 loss +When training simultaneously N1 and N2, the overall loss +is: + +6 +A +B +A +B +A +B +A +B +Road +Sidewalk +Wall +Fence +A +B +A +B +A +B +A +B +Person +Pole +Vegetation +Vehicle +A +B +A +B +A +B +Traffic Signs +Building +Sky +Fig. 5. Spatial Priors Similarities Across Domains. Considered the semantic segmentation task, we compute the number of occurrences of each +class at each pixel location for both domains. Domain A is CARLA, B is Cityscapes. We visualize the occurrence maps with a viridis colormap. +L = λT1LT1(yA +1 , ˆyA +1 ) + λT1LT1(yB +1 , ˆyB +1 ) ++λT2LT2(yA +2 , ˆyA +2 ) + λauxLaux(yA +1aux, ˆyA +1aux)+ +λauxLaux(yB +1aux, ˆyB +1aux) + λauxLaux(yA +2aux, ˆyA +2aux)+ +λNDALNDA(f A +1 , f B +1 ) +(4) +4 +EXPERIMENTAL SETTINGS +Tasks. We fix T1 and T2 to be monocular depth estimation +and semantic segmentation, or vice versa. These two visual +tasks can be addressed using the same encoder-decoder +architecture, with changes needed only in the final layer. +Semantic segmentation is solved by minimizing a pixel- +wise cross entropy loss, monocular depth estimation by +minimizing an L1 loss. We select edge detection as our +Taux since it seems particularly amenable to improve +the effectiveness of our framework in capturing and +transferring important structural information that might +otherwise be lost. Let us consider the case of T1 being depth +estimation and T2 semantic segmentation. The features +f1 needed to compute depth may ignore the boundaries +between semantically distinct regions showing up at the +same distance from the camera: in Figure 4 (left) this is +the case, e.g., of the boundaries between legs or tyres +and ground, as well as between street signs and poles. +Therefore, even if fed to a perfect G1→2, f1 may not +contain all the information needed to restore the semantic +structure of the image. By solving jointly edge detection +on the input image, instead, we force our N1 network to +extract additional information that would not need to be +captured should the learning objective be concerned with +depth estimation only. Similarly, Figure 4 (right) highlights +how depth discontinuities do not necessarily correspond +to semantic boundaries, such that a network N1 trained +in isolation to assign semantic labels to pixels may not +need to learn information relevant to estimate the depth +structure of the image. Besides, it is worth pointing out that +edge detection can be solved using again the same decoder +architecture as T1 and T2. Since the edge proxy-labels that +we adopt are gray-scale images [6], in our experiments we +implement the Laux loss introduced in subsection 3.4 as a +standard L2 loss. In all our experiments we set λaux to 0.5, +λNDA to 0.001, λT1 and λT2 to 1 to balance loss values. +Datasets. We test the effectiveness of our method in +an autonomous driving scenario. We set A and B to be +a synthetic and a real dataset, respectively. The former +consists of a collection of images generated with the Carla +simulator [9], while the latter is the popular Cityscapes +dataset [10]. We generated the Carla dataset mimicking +the camera settings of the real scenes. We render 3500, +500, and 1000 images for training, validation, and testing, +respectively. For each image, we store the associated +depth and semantic labels provided by the simulator. The +Cityscapes dataset is a collection of 2975 and 500 images to +be used for training and validation, respectively. As for our +evaluation, we use the 500 Cityscapes validation images +since test images are not equipped with labels. Moreover, +as in Cityscapes only the semantic labels are provided, +we use depth proxy-labels obtained with the SGM stereo +algorithm [54], by filtering the erroneous predictions in the +generated disparities with a left-right consistency check. +This can be considered as an added value because it shows +the ability to transfer knowledge when learning from noisy +labels. Finally, we use a pre-trained1 state-of-the-art neural +network [6] as an off-the-shelf edge detector to extract +from the images belonging to A and B the edges used as +proxy-labels to train Taux. +Architecture. To solve each task, we use two dilated +ResNet50 [55] as encoder and a stack of bilinear upsample +plus convolutional layers as decoder. The encoder shrinks +both input dimensions with a factor of 1/16, while the +decoder upsamples the feature map until a prediction with +the same spatial resolution as the input image is obtained. +The two networks for T1 and T2 are identical, but for the +final prediction layer, which is task dependent. The two +previously defined encoders are also used to capture good +features for edge detection, which is solved using Daux, +that shares the same architecture as the decoders used in +1. Neither A nor B belong to the training set of this network. + +7 +N1 and N2. G1→2 is a simple CNN made out of 6 pairs of +convolutional and batch normalization layers with kernel +size 3 × 3 which do not perform any downsampling or +upsampling operation. +Training and Evaluation Protocol. During the training +phase of the transfer network G1→2, the model is evaluated +on the validation set of Carla. Of course, it is possible that +optimality on Carla does not translate into optimal per- +formance on Cityscapes. Yet, we cannot use data from the +target domain neither for hyper-parameters tuning nor for +early stopping, because in our setting these data would not +be available in any real scenario. Therefore, the Cityscapes +validation set is only used at test time to measure the final +performances of our framework method. +Fig. 6. From left to right: RGB input image of domain A , depth prediction +from N1, edges from f1, semantic segmentation from N2 and edges +from f2. Task features f1 and f2 encode richer details than strictly +needed to solve either tasks as we can recover all edges from both of +them by Daux. +Metrics. To evaluate the performance on the semantic +segmentation task two metrics are used: pixel accuracy, +shortened Acc. (i.e the percentage of pixels with a cor- +rect predicted label) and Mean Intersection Over Union, +shortened mIoU, as defined in [10]. To render these metrics +comparable among the used datasets, we solve semantic +segmentation on the 10 shared classes (Road, Sidewalk, +Walls, Fence, Person, Poles, Vegetation, Vehicles, Traffic +Signs, Building) plus the Sky category, which is defined as +the set of points with infinite depth. Some of the Cityscapes +classes are collapsed into one class: car and bicycle into +vehicle, traffic signs and traffic light into traffic sign. The +remaining categories of Cityscapes are instead ignored. +When testing the depth estimation task, we report the +standard metrics described in [57]: Absolute Relative Error +(Abs Rel), Square Relative Error (Sq Rel), Root Mean Square +Error (RMSE), logarithmic RMSE and δ1, δ2 and δ3 accuracy +scores. Each δα is obtained by computing, for each pixel +of the input image, the maximum among ratio and inverse +ratio between the predicted value and the ground-truth. δα +represents the percentage of pixels whose such ratio is lower +than 1.25α. +5 +EXPERIMENTAL RESULTS +We provide results for two different settings: transferring +features from depth estimation to semantic segmentation +(subsection 5.1) as well as from semantic segmentation to +depth estimation (subsection 5.2). +In both scenarios, as already mentioned, we used edge +detection as auxiliary task, motivated by the idea that either +semantic segmentation and depth estimation can benefit +from edge information. Figure 6 shows that with our multi- +task learning protocol we are able to restore all the details +of the scene from both f1 and f2, proving that N1 and +N2 have indeed learned to encode into their features richer +information than that strictly needed to solve T1 and T2. +5.1 +Depth to Semantics +In this setup, denoted as Dep → Sem, the goal of our +framework is to transform depth features into semantic +segmentation features. This mapping is learned using Carla +as domain A and Cityscapes as domain B. We report results +in Table 1: the first row shows results obtained with no +adaptation (i.e., training N2 on Carla and testing it directly +on Cityscapes), while from the second row we can see that +our final framework yields 51.28% mIoU and 87.57% Acc +with an improvement of +12.48% and +8.99% wrt to the +baseline. +Even though AT/DT is the first work to address the +across tasks and domains scenario, we compare it against +a related work, ZDDA [56], which also leverage auxiliary +data from a different tasks to perform domain adaptation. +We apply it in our setup using as the ”Source” and ”Target” +domains Carla and Cityscapes respectively. We address +the Dep → Sem scenario using depth maps as ”task- +irrelevant” data. We skip the last sensor fusion step (Step +3) because it was not applicable in our scenario since we +do not have task-irrelevant data at test time, and thus we +stop training after the adaptation step (Step 2). We report +results of this alternative approach in the second row of +Table 1. As we can notice, ZDDA is effective in our scenario +and achieves better performance compared to the baseline. +However, AT/DT obtains much better results, surpassing +ZDDA in all metrics. This is not surprising since ZDDA +focus on extracting features only from task-irrelevant data, +which can be sub-optimal for the relevant task as these +data do not provide the same amount of information as the +task-relevant data, e.g., features extracted only from depth +images would not contain several useful information for +semantic segmentation such as colors or textures. +Furthermore, as we are transferring features from an- +other task, it is worth trying to investigate on the upper +bound in performance due to the inherent transferability +of the features between the two tasks. Purposely, we train +G1→2 using only Cityscapes to learn a mapping function in +a supervised fashion as explained in subsection 3.4 on B and +test on the validation set of B. These results are shown in the +third row of the table (denoted as Transfer Oracle): given a +transfer architecture, there seems to be an upper bound in +performance due to the nature of the two tasks, which in +the considered setting amounts to a 58.5% mIoU. Thus, our +proposal exhibit a gap wrt the Transfer Oracle that is only +about -7.2% mIoU. We also report the performance of N2 +trained on B and tested on B, i.e., the absolute upper bound +in performance (last row of the table, denoted as Oracle). +Some qualitative results dealing with the Dep → Sem +scenario are depicted in Figure 7. It is possible to appreciate +the overall improvement of our method wrt the baseline, +either in flat areas (e.g., roads, sidelwalks and walls), objects +shapes (e.g., cars and persons) and fine-grained details (e.g., +poles and traffic signs). + +.8 +TABLE 1 +Experimental results of Dep → Sem scenario. Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained +only on B, Oracle refers to N2 trained and tested on B. Best results highlighted in bold. +A +B +Method +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +Carla CS +Baseline +78.99 38.81 +1.34 +5.80 +24.02 24.47 71.98 52.23 +5.57 +65.17 59.10 +38.86 +78.58 +Carla CS +ZDDA [56] +85.93 41.28 +4.62 +8.63 +38.80 25.94 72.78 58.37 18.44 73.74 78.16 +46.06 +82.82 +Carla CS +AT/DT +90.57 48.46 +7.37 +12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 +51.28 +87.57 +CS +CS Transfer Oracle 89.69 48.05 11.46 29.58 59.68 35.84 85.83 85.57 34.03 78.17 85.54 +58.50 +88.84 +- +CS +Oracle +96.74 78.28 29.26 40.78 72.39 51.28 90.69 91.94 58.92 86.33 89.23 +71.44 +93.90 +Fig. 7. Qualitative results of the Dep → Sem scenario. From left to right: RGB image, ground-truth, baseline trained only on domain A, ours. +5.2 +Semantics to Depth +In this setup, which we define as Sem → Dep, the goal +of our framework is to transform semantic features into +depth features. This mapping is learned using Carla as +domain A and Cityscapes as domain B, as done for the +Dep → Sem scenario. Results are reported in Table 2. +Similarly to the Dep → Sem scenario, in the first row +we show results with no adaptation (i.e., our baseline), +while the third row presents the ones obtained with our +framework. Also for this setup we report performances of +ZDDA [56] (second row), in which we use semantic maps as +task-irrelevant data. We can see that ZDDA achieves slight +better performance of the baseline in 5 metrics out of 7, but +still inferior to our approach. Moreover, we report results +from the Transfer Oracle and the Oracle, implemented as +described for the Dep → Sem scenario. It is possible to +appreciate that our framework outperforms the baseline on +6 out of 7 metrics, closing remarkably the gap with the +practical upper bound of the Transfer Oracle. In Figure 8, we +show some qualitative results of the Sem → Dep scenario. +While predictions look quite noisy in the background, we +can see a good improvement in the foreground area thanks +to our method. Shapes are recovered almost perfectly, both +for big and small objects, even with difficult subjects like +the crowd in the bottom row. It is also worth pointing out +that the depth predictions yielded by our method turn out +much smoother than the ones produced by the baseline and +generally less noisy than the ground-truth that, as explained +in section 4, consists of proxy-labels computed with SGM +[54]. +6 +ABLATION STUDIES +In the following sections, we study the effectiveness of the +key design choices behind our proposal. +6.1 +Contribution of Taux and NDA Loss +We start by studying the effect of introducing in our +framework the auxiliary task and the NDA loss, analyzing +their contribution when used separately as well as when +combined together. The second and third row of Table 3 +report the results obtained in the Dep → Sem setting by +integrating in our method either the auxiliary task (i.e., edge +detection) or the NDA loss, respectively. We can see that +both design choices bring in an improvement of about +2% +in terms of mIoU with respect to the base AT/DT framework +(first row). Moreover, the last row of the table shows that +the auxiliary edge detection task and the NDA loss turn out +complementary because, when combined together, they can +provide an overall improvement of +3.34% mIoU. +Figure 9 presents some zoomed-in qualitative results: we +can see that, even if the base version of AT/DT already +produces satisfactory results at a coarse level, the complete +version of our framework can produce much more accurate +predictions, especially regarding small details, such as poles, +traffic signs and car outlines. + +9 +TABLE 2 +Experimental results of Sem → Dep scenario. Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained +only on B, Oracle refers to N2 trained and tested on B. Best results highlighted in bold. +Lower is better +Higher is better +A +B +Method +Abs Rel Sq Rel RMSE RMSE log +δ1 +δ2 +δ3 +Carla CS +Baseline +0.7398 +15.169 14.774 +0.641 +0.406 0.650 0.781 +Carla CS +ZDDA [56] +0.5206 +7.5491 13.347 +0.633 +0.345 0.638 0.858 +Carla CS +AT/DT +0.3928 +4.9094 12.363 +0.444 +0.372 0.757 0.923 +CS +CS Transfer Oracle +0.2210 +2.2962 +9.032 +0.275 +0.669 0.914 0.972 +- +CS +Oracle +0.1372 +1.6214 +8.566 +0.244 +0.816 0.938 0.976 +Fig. 8. Qualitative result of the Sem → Dep scenario. From left to right: RGB image, ground-truth, baseline network trained only on domain A, ours. +TABLE 3 +Ablation study in the Dep → Sem scenario. Best results highlighted in bold. Aux refers to the framework trained with the auxiliary task. NDA refers +to the framework trained with our NDA loss. +A +B +Aux +NDA +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +Carla CS +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90 +Carla CS ✓ +90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21 +Carla CS +✓ 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77 +Carla CS ✓ ✓ 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57 +Fig. 9. Zoomed results in a Dep → Sem scenario. From left to right: base AT/DT without edge and NDA, our proposed method, ground-truth. We +notice how, unlike base AT/DT, our method is able to recover the fine-grained details of the scene. + +10 +6.2 +Effectiveness of edge detection as auxiliary task +In this section, we show empirically that in our framework +the choice of the proper auxiliary task is key to performance. +In both the Dep → Sem and the Sem → Dep scenarios, +we propose to use edge detection as auxiliary task because +it captures information about the shapes of the objects in the +input images and allows for straightforward computation of +proxy-labels. To validate this design choice, we tested our +framework in the Dep → Sem setting, using Daux to recon- +struct the input images both from f1 and f2, i.e., the classical +autoencoder setting (results in Table 4). Interestingly, using +image reconstruction as auxiliary task results in an mIoU +score almost identical to the base AT/DT. We consider that +the autoencoder task is guided by a reconstruction loss +which makes no distinction between the pixels of the input +image: such supervision cannot guide effectively f1 and f2 +to encapsulate the high-frequency components of the image +that are needed to predict the fine-grained details of the +scene, which is instead obtained by adopting edge detection +as auxiliary task. +6.3 +Auxiliary tasks as source tasks +The main difference between a source and an auxiliary +task is that the auxiliary task alone cannot provide enough +information to solve T2, but it is useful to enrich T1 features +and align feature content across tasks. To better support +our claims, we investigated AT/DT behaviour when using +auxiliary tasks Taux as source tasks T1 and semantic seg- +mentation as target task T2. The results of these experiments +are reported in Table 5. All rows of the table show results of +the base AT/DT i.e., trained without Laux and LNDA losses. +As we can notice, using as source task T1 a standard image- +reconstruction (row 1, autoencoder) or an edge detection +(row 2) lead to much worse results than using depth esti- +mation (row 3). We argue that features extracted by N1 for +these tasks do not contain enough information to perform +semantic segmentation, which are yet contained in features +for depth estimation. Similar finding were also made by +Taskonomy [1], in which they show that edge detection and +image reconstruction (aka autoencoder) are less correlated +to semantic segmentation than depth estimation. On the +contrary, we have shown that Edge Detection can be a +good auxiliary task in the Dep → Sem scenario since it +can enrich depth features with missing edges useful for +semantic segmentation and it can increase transferability +aligning depth and semantic features. +6.4 +Importance of simultaneous training of N1, N2 and +Daux +In our experiments we use edge detection as auxiliary task +and train a shared decoder Daux to reconstruct the edges of +the input image from the features extracted by both E1 and +E2. In fact, we argue that this procedure should force E1 to +encode into the extracted features also edge information that +may be not necessary to solve T1 but that may be relevant for +T2. Besides, we believe that simultaneous training of N1, N2 +and Daux is crucial to encourage features coming from E1 +and E2 to represent edge information in a similar manner, +making it easier to learn G1→2. +In Table 6 we report the results concerning the ablation +study conducted to validate these intuitions. We consider +the Dep → Sem scenario using the Carla dataset as domain +A and Cityscapes as domain B. The four rows of the table +deal with the following training schemes: +1) +The base AT/DT (i.e., without Taux and NDA loss) +as baseline. +2) +We first train N1 and Daux on both A and B. Then, +we train N2 on A. Finally, we train G1→2 on features +extracted by E1 and E2 on domain A. +3) +We train N1 and a first D1 +aux on both A and B. Then, +we train N2 and a second D2 +aux on A. Finally, we +train G1→2 on features extracted by E1 and E2 on +domain A +4) +Our proposed method, which trains N1, N2 and a +shared Daux simultaneously. +The introduction of edge detection as auxiliary task helps +in every scenario. In fact, if we use Daux only while training +N1 (second row), we already see an increase of 0.6% in +the overall mIoU. We believe that this is explained by the +presence of edge details (not strictly necessary to solve +T1 but relevant for T2) in the features extracted by E1. +However, G1→2 may experience difficulties in adapting f1 +into f2 if edge information is not explicitly present in f2. +This is confirmed by the results in the third row of the table, +where an additional increase of 1.3% in the overall mIoU is +attained by using two different Daux (one during training of +N1 and one during training of N2). Finally, the best results +in terms of mIoU and Acc are achieved by our method, i.e., +when training N1, N2 and a shared Daux simultaneously. +This vouches for the benefit of encoding in a similar manner +the edge information in f1 and f2 in order to enforce feature +alignment across tasks. +6.5 +Alignment strategies for N1 +An alternative approach to align N1 features between do- +mains to ease the transfer process and favor the generaliza- +tion of G1→2 consists in leveraging on the widely adopted +adversarial training in feature space. In our setting, this +can be obtained by adding a critic that must discriminate +whether the features produced by E1 come from A or B. +Thus, the encoder E1 not only has to learn a good feature +space for its task, but it is also asked to fool the critic. After- +wards, we can proceed to learn a mapping function G1→2 +among tasks as usual. In Table 7 we compare this standard +DA methodology to our NDA loss. Adversarial training +(second row) does not introduce significant improvements +with respect to not performing DA for T1 (i.e., base AT/DT, +first row), while constraining the features extracted by E1 +in a norm aligned space (third row) significantly increases +both performance metrics with respect to the baseline. Our +intuition is that, although adversarial training can be useful +for domain alignment, it alters the learned feature space +with the goal of fooling the critic and this training objective +can lead to worse performances on the current task. Our +NDA loss, on the other hand, acts as a regularizer that +favors the learning of an homogeneous latent space across +the domains involved in our experiments, improving the +generalization capability of the transfer network without + +11 +TABLE 4 +Comparison between autoencoder and edge detection as auxiliary tasks in the Dep → Sem scenario. Best results highlighted in bold. +Taux +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +None +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +Autoencoder +90.68 50.12 7.45 +9.08 +31.40 29.43 78.72 68.51 12.95 74.67 75.68 +48.07 +86.31 +Edge detection 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 +50.16 +87.21 +TABLE 5 +Auxiliary tasks as source tasks in the Dep → Sem scenario. Best results highlighted in bold. +Taux as T1 +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +Autoencoder +60.24 19.33 1.67 +1.67 +4.12 +8.00 +33.15 10.49 +0.69 +17.89 62.66 +19.99 +52.91 +Edge Detection 63.82 16.60 0.67 +1.37 +6.55 +10.26 47.62 +4.42 +0.11 +33.90 38.87 +20.38 +58.33 +Depth +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +TABLE 6 +Ablation study on the importance of simultaneous training of the T1, T2, and the auxiliary task. Best results highlighted in bold. See text for a +detailed explanation of the training protocol used in each row. +method +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +base AT/DT +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +Separate (N1 + edge), N2 +87.24 43.30 3.08 10.17 41.77 29.04 81.81 72.35 16.58 77.10 73.10 +48.69 +85.89 +Separate (N1 + edge), (N2 + edge) 88.83 47.31 7.10 +8.59 +44.53 30.99 83.24 73.54 18.05 78.10 69.66 +49.99 +86.72 +Simultaneous (N1 + N2 + edge) +90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 +50.16 +87.21 +degrading the performances in the single tasks. Then, from +the third to the fifth row, we compare our NDA loss with +another strategy, LargerNorm [24], that also align features +across domains operating on the feature norms. They show +that features are more transferable across domains if we +constrain feature norms to be equal to an arbitrary large +number. We notice that the method is very sensible to the +norm value, and it could be hard to select without using +target labels. When using an appropriate norm value (25, +fourth row), the method achieves a slight improvement over +the baseline without alignment. However, since it just force +all features globally to be a large number, it is not well- +suited for tasks in which we have a spatial dimensions +such as semantic segmentation. Moreover, in the sixth row, +we experiment also with a more recent adversarial loss +formulation, Asymmetric Adv. [58], which preserve discrim- +inability while performing domain alignment by chang- +ing only target features instead of both source and target +ones. However, we notice that this method is achieving +the worst results among feature alignment strategies, even +worse than the baseline. Our motivation is that aligning +feature distribution in such a high dimensional feature space +with a spatial structure might be too difficult to achieve by +only changing target features. Finally, we notice that NDA +achieves the best performance probably because it only align +features norm rather than the whole marginal distribution, +which is an easier goal that can be achieved also in high- +dimensional space. Moreover, NDA operates at each spatial +location independently rather than globally, exploiting the +spatial priors similarity across domains, reaching better +performances. +6.6 +Aligning N2 features +We tried to perform feature alignment across domains also +on the features f2 extracted by E2, either by deploying +adversarial training or imposing our NDA loss. The idea +is to favor the generalization of G1→2 by making more +homogeneous not only its input space (i.e., the features +produced by E1, aligned with our NDA loss), but also its +output space, i.e., the features produced by E2. However, +the setting is not completely symmetric: when learning E2, +we do not have supervision available for B, and the only +loss shaping the feature space for its images would be the +alignment loss. We report results of this ablation study in +Table 8 and discuss them below. +In the first row, we report the results provided by the +base AT/DT (without LNDA and Laux). In the following +two rows, we show results obtained by an adversarial (row +2) and an asymmetric adversarial [58] (row 3) training + +12 +TABLE 7 +Comparison between NDA loss and other strategies to align E1 features. Best results highlighted in bold. +E1 Align. +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +None +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +Adv. +89.89 46.01 4.22 11.89 38.20 30.65 77.00 63.68 12.99 74.35 81.16 +48.19 +85.42 +LargerNorm [24] (1) +38.37 24.17 0.56 +3.66 +10.50 23.04 52.61 +9.41 +3.42 +52.64 10.54 +20.81 +51.49 +LargerNorm [24] (25) +86.82 42.23 1.94 +9.00 +34.92 29.02 76.39 70.97 23.38 74.97 80.00 +48.15 +84.62 +LargerNorm [24] (500) 78.94 31.25 2.53 +6.00 +22.08 20.55 68.18 26.21 +4.35 +62.28 63.53 +35.08 +76.53 +Asymmetric Adv. [58] +86.69 38.57 5.92 +5.72 +27.43 22.91 70.81 70.71 +7.86 +72.15 75.18 +44.00 +83.38 +NDA +91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 +50.30 +86.77 +TABLE 8 +Results of aligning output space of E2 in a Dep → Sem scenario. Best results highlighted in bold. +E2 Align. +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +None +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +Adv. +89.36 46.03 5.59 +8.22 +36.45 25.44 75.15 72.29 12.69 74.12 75.79 +47.38 +85.31 +Asymmetric Adversarial [58] 87.90 42.81 7.64 +8.44 +26.02 29.11 72.54 69.01 24.01 71.71 70.42 +46.33 +83.61 +NDA +44.94 23.82 3.81 +2.09 +30.74 24.21 42.08 68.84 11.69 35.67 11.10 +27.18 +56.17 +TABLE 9 +Results of aligning output space of D2 in a Dep → Sem scenario. Best results highlighted in bold. +D2 Align. +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +None +89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 +48.04 +85.90 +Adv. +87.48 45.73 0.63 +2.12 +26.22 26.39 61.40 66.92 12.97 66.39 74.77 +42.82 +81.87 +TABLE 10 +Results of aligning input and/or output space of G1→2 in a Dep → Sem scenario. Best results highlighted in bold. +Input Align. Output Align. +Road +Sidewalk +Walls +Fence +Person +Poles +Vegetation +Vehicles +Tr. Signs +Building +Sky +mIoU +Acc +- +NDA +42.97 19.60 2.31 +1.36 +4.21 +15.74 18.42 11.77 +7.19 +36.72 38.99 +18.12 +43.63 +- +Adv +90.80 48.91 6.16 11.84 35.32 30.29 78.78 71.17 18.51 75.66 75.03 +49.32 +86.43 +Asymmetric Adv. [58] 85.49 40.70 4.94 10.49 34.02 30.26 76.31 70.30 17.07 74.30 72.94 +46.99 +83.86 +- +NDA + Adv +91.03 48.93 6.14 12.24 35.91 31.05 77.93 70.28 16.65 75.50 74.47 +49.10 +86.28 +- +Adv D2 +90.20 47.54 5.92 11.76 37.03 29.52 77.98 72.42 19.28 75.82 77.03 +49.50 +86.28 +NDA +Adv +90.67 49.49 5.54 12.29 36.73 28.49 78.28 70.19 22.05 76.47 76.35 +49.69 +86.73 +NDA +- +91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 +50.30 +86.77 +on the features f2, using the same procedures described +in the previous sub-section for f1. We can observe that, +not only both adversarial trainings does not improve (like +adversarial training applied to E1), but they even decrease +the overall mIoU compared to the baseline. Finally, in the +fourth row, we report the results obtained by our NDA loss +on f2: the NDA loss destroys the feature space of T2 when +applied in this context, as vouched by the drop of 20% in +the overall mIoU wrt to base AT/DT. +During AT/DT inference, we use also D2 to yield the +final task predictions. Nevertheless, D2 has been trained +only on A, thus its performance may be harmed when +using B images. Thus, we ran an additional test reported in +Table 9. Following [29] we train N2 (i.e., E2 and D2) using +an adversarial loss on the D2 output space, thus making +D2 aware of B. Then, we train G1→2 to map features of +E1 into features of E2, and during inference we employ the +previously trained decoder D2 to produce the final outputs +reporting the results in row Adv.. We notice a clear drop +in performance w.r.t. base AT/DT (row None), i.e. AT/DT +trained without LNDA and Laux. +We formulate the following hypothesis to explain the + +13 +above results: all adversarial trainings and NDA loss try +to align f A +2 +and f B +2 . While f A +2 +are shaped also by the su- +pervision of T2, f B +2 evolve only according to the additional +loss we impose, as we do not have supervision for T2 on +B. However, E2 is shared across domains, and therefore +may be pushed to produce worse representations for both +domains while it tries to accomplish the adversarial objec- +tives or the NDA loss minimization for B. If this happens, +mappings learned by G1→2 from f A +1 to f A +2 will hallucinate +worse features for T2 on B. To understand why adversarial +trainings leads to small decreases in performances com- +pared to the use of NDA loss, we ought to consider that +adversarial training implies a discriminator that cannot be +easily fooled by totally degenerated features, while, without +any additional constrain from task supervision, the NDA +loss may yield totally collapsed representation. +6.7 +Aligning G1→2 features +Although feature alignment does not turn out beneficial +when training N2, one may still expect to obtain better +hallucinated features if the representations obtained when +transferring f A +1 and f B +1 are aligned. We empirically found +out that even though output space aligning strategies de- +ployed when training G1→2 can lead to improvements in +performance, input space alignment using our NDA loss +deployed when training N1 is more effective. Moreover, +combining input and output space alignment techniques +does not lead to further improvements. We performed this +ablation study in the Dep → Sem scenario using Carla as +A and Cityscapes as B. The results of these experiments are +reported in Table 10. +First, we applied our NDA loss to the output-space of +G1→2. Similarly to what discussed in the previous section, +we notice that, without supervision on B, the representa- +tions transformed from G1→2 while minimizing the NDA +loss yield a drastic drop in the framework performance +(row 1). We also tried to align the output space features by +training G1→2 alongside a discriminator in an adversarial +fashion. We wanted to fool the discriminator in order to +generate indistinguishable features from A or B. We notice +that this strategy allows us to reach good overall perfor- +mances with a 49.32 mIoU on Cityscapes (second row). +Moreover, we thought that, as adversarial training provides +a supervision on B, using the NDA loss in combination with +the adversarial loss could avoid producing degenerated +features for B while reaching a better overall alignment +between A and B. However, we notice that the combination +of the two losses leads us to slightly worse results than +adversarial training alone (rows 2 vs 3). Furthermore, since +using an adversarial loss on the output space of G1→2 lead +us to good overall performances, we tested it in combination +with the best input space alignment from Table 7, i.e. NDA +loss applied when training N1. However, the combination +of these two methods achieves worse performance than +using only the NDA loss on input space (rows 6 vs 7). +Finally, we also experimented a different alignment strategy +for the G1→2 output space. Instead of directly applying +adversarial loss in E2 feature space, we apply adversarial +loss in D2 output space while training G1→2. As discussed +in [29], output space is easier to align than feature space for +several reasons: i) the scene semantic structure is typically +similar across domains ii) the feature space encode many +information such as color, light, textures iii) the feature +space has higher dimensions. By aligning D2 output space +we indirectly influence also E2 features making them more +domain aligned. During training, we keep D2 frozen and +we update only G1→2 weights. Also in this case, if compare +this methodology with simply using LNDA alone (row 6 vs +row 7), it achieves worse results. +7 +CONCLUDING REMARKS +We have introduced a framework to transfer knowledge +between different tasks by learning an explicit mapping +function between deep features. This mapping function can +be parametrized by a neural network and show interesting +generalization capabilities across domains. To further ame- +liorate performance we have proposed two novel feature +alignment strategies. At a domain level, we showed that +the transfer function presented in our framework can be +boosted by making its input space more homogeneous +across domains with our simple yet effective NDA loss. +At a task level, instead, we reported how deep features +extracted for different tasks can be enriched and aligned +with the introduction of a shared auxiliary task, which +we implemented as edge detection in our experiments. We +reported good results in the challenging synthetic to real +scenario while transferring knowledge between the seman- +tic segmentation and monocular depth estimation tasks. +Our proposal is complementary to the whole domain +adaptation literature and might be integrated with it. While +DA directly applied to the learned feature space does not +seems effective (see Table 8) more modern techniques either +try to align the prediction in the final label space [29] or +rely on self-ensembling for pseudo labeling [59]. We plan to +incorporate these promising direction into our framework +as part of future developments. +REFERENCES +[1] +A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese, +“Taskonomy: Disentangling task transfer learning,” in Proceedings +of the IEEE Conference on Computer Vision and Pattern Recognition, +2018, pp. 3712–3722. +[2] +A. R. Zamir, A. Sax, N. Cheerla, R. Suri, Z. Cao, J. Malik, and +L. J. Guibas, “Robust learning through cross-task consistency,” +in Proceedings of the IEEE/CVF Conference on Computer Vision and +Pattern Recognition, 2020, pp. 11 197–11 206. +[3] +M. Wang and W. Deng, “Deep visual domain adaptation: A +survey,” Neurocomputing, vol. 312, p. 135–153, Oct 2018. [Online]. +Available: http://dx.doi.org/10.1016/j.neucom.2018.05.083 +[4] +P. Z. Ramirez, A. Tonioni, S. Salti, and L. D. Stefano, “Learning +across tasks and domains,” in Proceedings of the IEEE International +Conference on Computer Vision, 2019, pp. 8110–8119. +[5] +P. Z. Ramirez, A. Tonioni, and L. Di Stefano, “Exploiting semantics +in adversarial training for image-level domain adaptation,” in +2018 IEEE International Conference on Image Processing, Applications +and Systems (IPAS). +IEEE, 2018, pp. 49–54. +[6] +X. Soria, E. Riba, and A. Sappa, “Dense extreme inception network: +Towards a robust cnn model for edge detection,” in The IEEE +Winter Conference on Applications of Computer Vision (WACV ’20), +2020. +[7] +S. +Xie +and +Z. +Tu, +“Holistically-nested +edge +detection,” +CoRR, +vol. +abs/1504.06375, +2015. +[Online]. +Available: +http: +//arxiv.org/abs/1504.06375 + +14 +[8] +Y. Wang, X. Zhao, Y. Li, and K. Huang, “Deep crisp boundaries: +From boundaries to higher-level tasks,” IEEE Transactions on +Image Processing, vol. 28, no. 3, p. 1285–1298, Mar 2019. [Online]. +Available: http://dx.doi.org/10.1109/TIP.2018.2874279 +[9] +A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, +“CARLA: An open urban driving simulator,” in Proceedings of the +1st Annual Conference on Robot Learning, 2017, pp. 1–16. +[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be- +nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset +for semantic urban scene understanding,” in The IEEE Conference +on Computer Vision and Pattern Recognition (CVPR), June 2016. +[11] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, +and Q. He, “A comprehensive survey on transfer learning,” arXiv +preprint arXiv:1911.02685, 2019. +[12] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable +are features in deep neural networks?” in Advances in neural +information processing systems, 2014, pp. 3320–3328. +[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im- +agenet: A large-scale hierarchical image database,” in 2009 IEEE +conference on computer vision and pattern recognition. +Ieee, 2009, pp. +248–255. +[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look +once: Unified, real-time object detection,” in Proceedings of the IEEE +conference on computer vision and pattern recognition, 2016, pp. 779– +788. +[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards +real-time +object +detection +with +region +proposal +networks,” +IEEE Transactions on Pattern Analysis and Machine Intelligence, +vol. 39, no. 6, p. 1137–1149, Jun 2017. [Online]. Available: +http://dx.doi.org/10.1109/TPAMI.2016.2577031 +[16] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” 2017 +IEEE International Conference on Computer Vision (ICCV), Oct 2017. +[Online]. Available: http://dx.doi.org/10.1109/ICCV.2017.322 +[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, +and A. C. Berg, “Ssd: Single shot multibox detector,” in European +conference on computer vision. +Springer, 2016, pp. 21–37. +[18] A. Pal and V. N. Balasubramanian, “Zero-shot task transfer,” in The +IEEE Conference on Computer Vision and Pattern Recognition (CVPR), +June 2019. +[19] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for +unsupervised domain adaptation,” in Computer Vision and Pattern +Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2066– +2073. +[20] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable +features with deep adaptation networks,” in Proceedings of the 32nd +International Conference on Machine Learning, ser. Proceedings of +Machine Learning Research, vol. 37. +PMLR, 2015, pp. 97–105. +[21] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by +backpropagation,” in International Conference on Machine Learning, +2015, pp. 1180–1189. +[22] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, +F. +Laviolette, +M. +Marchand, +and +V. +Lempitsky, +“Domain- +adversarial training of neural networks,” The Journal of Machine +Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016. +[23] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial +discriminative domain adaptation,” in Computer Vision and Pattern +Recognition (CVPR), 2017. +[24] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable: +An adaptive feature norm approach for unsupervised domain +adaptation,” in Proceedings of the IEEE International Conference on +Computer Vision, 2019, pp. 1426–1435. +[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, +S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial +nets,” in Advances in neural information processing systems, 2014, pp. +2672–2680. +[26] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to- +image translation using cycle-consistent adversarial networks,” in +The IEEE International Conference on Computer Vision (ICCV), Oct +2017. +[27] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, +“Unsupervised pixel-level domain adaptation with generative +adversarial networks,” 2017 IEEE Conference on Computer Vision +and Pattern Recognition (CVPR), Jul 2017. [Online]. Available: +http://dx.doi.org/10.1109/CVPR.2017.18 +[28] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image +translation with conditional adversarial networks,” in The IEEE +Conference on Computer Vision and Pattern Recognition (CVPR), July +2017. +[29] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and +M. Chandraker, “Learning to adapt structured output space for +semantic segmentation,” 2018 IEEE/CVF Conference on Computer +Vision and Pattern Recognition, Jun 2018. [Online]. Available: +http://dx.doi.org/10.1109/CVPR.2018.00780 +[30] W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional gener- +ative adversarial network for structured domain adaptation,” in +Proceedings of the IEEE Conference on Computer Vision and Pattern +Recognition, 2018, pp. 1335–1344. +[31] F. Pizzati, R. d. Charette, M. Zaccaria, and P. Cerri, “Domain +bridge for unpaired image-to-image translation and unsupervised +domain adaptation,” in The IEEE Winter Conference on Applications +of Computer Vision, 2020, pp. 2990–2998. +[32] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “Fcns in the wild: Pixel- +level adversarial and constraint-based adaptation,” arXiv preprint +arXiv:1612.02649, 2016. +[33] Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation +for semantic segmentation of urban scenes,” in The IEEE Interna- +tional Conference on Computer Vision (ICCV), 2017. +[34] W.-L. Chang, H.-P. Wang, W.-H. Peng, and W.-C. Chiu, “All +about structure: Adapting structural information across domains +for boosting semantic segmentation,” in Proceedings of the IEEE +Conference on Computer Vision and Pattern Recognition, 2019, pp. +1900–1909. +[35] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, +A. Efros, and T. Darrell, “CyCADA: Cycle-consistent adversarial +domain adaptation,” in Proceedings of the 35th International Con- +ference on Machine Learning, ser. Proceedings of Machine Learning +Research, J. Dy and A. Krause, Eds., vol. 80. +Stockholmsm¨assan, +Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 1989–1998. +[36] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and +R. Webb, “Learning from simulated and unsupervised images +through adversarial training,” in The IEEE Conference on Computer +Vision and Pattern Recognition (CVPR), 2017. +[37] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei, “Fully convolutional +adaptation networks for semantic segmentation,” 2018 IEEE/CVF +Conference on Computer Vision and Pattern Recognition, Jun 2018. +[Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00712 +[38] S. +Sankaranarayanan, +Y. +Balaji, +A. +Jain, +S. +N. +Lim, +and +R. Chellappa, “Learning from synthetic data: Addressing domain +shift for semantic segmentation,” 2018 IEEE/CVF Conference on +Computer Vision and Pattern Recognition, Jun 2018. [Online]. +Available: http://dx.doi.org/10.1109/CVPR.2018.00395 +[39] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, “Unsupervised +intra-domain adaptation for semantic segmentation through self- +supervision,” in Proceedings of the IEEE/CVF Conference on Computer +Vision and Pattern Recognition, 2020, pp. 3764–3773. +[40] M. Kim and H. Byun, “Learning texture invariant representation +for domain adaptation of semantic segmentation,” in Proceedings of +the IEEE/CVF Conference on Computer Vision and Pattern Recognition, +2020, pp. 12 975–12 984. +[41] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsu- +pervised adaptation for deep stereo,” in The IEEE International +Conference on Computer Vision (ICCV), Oct 2017. +[42] C. Zheng, T.-J. Cham, and J. Cai, “T2net: Synthetic-to-realistic +translation for solving single-image depth estimation tasks,” in The +European Conference on Computer Vision (ECCV), September 2018. +[43] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. D. Stefano, “Real- +time self-adaptive deep stereo,” in The IEEE Conference on Computer +Vision and Pattern Recognition (CVPR), June 2019. +[44] K.-H. Lee, G. Ros, J. Li, and A. Gaidon, “SPIGAN: Privileged +adversarial learning from simulation,” in International Conference +on +Learning Representations, +2019. [Online]. +Available: +https: +//openreview.net/forum?id=rkxoNnC5FQ +[45] I. Kokkinos, “Ubernet: Training a universal convolutional neural +network for low-, mid-, and high-level vision using diverse +datasets and limited memory,” 2017 IEEE Conference on Computer +Vision and Pattern Recognition (CVPR), Jul 2017. [Online]. Available: +http://dx.doi.org/10.1109/CVPR.2017.579 +[46] P. Z. Ramirez, M. Poggi, F. Tosi, S. Mattoccia, and L. Di Stefano, +“Geometry meets semantics for semi-supervised monocular depth +estimation,” in Asian Conference on Computer Vision. +Springer, +2018, pp. 298–313. +[47] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using +uncertainty to weigh losses for scene geometry and semantics,” + +15 +2018 +IEEE/CVF +Conference +on +Computer +Vision +and +Pattern +Recognition, 2018. [Online]. Available: http://dx.doi.org/10.1109/ +CVPR.2018.00781 +[48] F. Tosi, F. Aleotti, P. Z. Ramirez, M. Poggi, S. Salti, L. Di Stefano, +and S. Mattoccia, “Distilled semantics for comprehensive scene +understanding from videos,” in Proceedings of the IEEE Conference +on Computer Vision and Pattern Recognition, 2020. +[49] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous +deep transfer across domains and tasks,” in Proceedings of the IEEE +International Conference on Computer Vision, 2015, pp. 4068–4076. +[50] J. N. Kundu, N. Lakkakula, and R. V. Babu, “Um-adapt: Unsuper- +vised multi-task adaptation using adversarial cross-task distilla- +tion,” in Proceedings of the IEEE International Conference on Computer +Vision, 2019, pp. 1436–1445. +[51] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for benchmarks,” +in IEEE International Conference on Computer Vision, ICCV 2017, +Venice, Italy, October 22-29, 2017, 2017, pp. 2232–2241. [Online]. +Available: https://doi.org/10.1109/ICCV.2017.243 +[52] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, +and T. Darrell, “Bdd100k: A diverse driving dataset for heteroge- +neous multitask learning,” in Proceedings of the IEEE/CVF conference +on computer vision and pattern recognition, 2020, pp. 2636–2645. +[53] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets +robotics: The kitti dataset,” International Journal of Robotics Research +(IJRR), 2013. +[54] H. Hirschmuller, “Accurate and efficient stereo processing by +semi-global matching and mutual information,” in Computer Vision +and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society +Conference on, vol. 2. +IEEE, 2005, pp. 807–814. +[55] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” +in Computer Vision and Pattern Recognition (CVPR), 2017. +[56] K.-C. Peng, Z. Wu, and J. Ernst, “Zero-shot deep domain adapta- +tion,” in Proceedings of the European Conference on Computer Vision +(ECCV), 2018, pp. 764–781. +[57] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from +a single image using a multi-scale deep network,” in Advances in +neural information processing systems, 2014, pp. 2366–2374. +[58] J. Yang, H. Zou, Y. Zhou, Z. Zeng, and L. Xie, “Mind the +discriminability: Asymmetric adversarial domain adaptation,” in +European Conference on Computer Vision. +Springer, 2020, pp. 589– +606. +[59] J. Choi, T. Kim, and C. Kim, “Self-ensembling with gan-based data +augmentation for domain adaptation in semantic segmentation,” +in Proceedings of the IEEE international conference on computer vision, +2019, pp. 6830–6840. +Pierluigi Zama Ramirez is a Post Doc at the +Computer Vision Laboratory (CVLab), University +of Bologna. His research interests include deep +learning, semantic segmentation, depth estima- +tion, optical flow and domain adaptation. He has +authored more than 10 papers on these sub- +jects. +Adriano Cardace is a PhD student at the Com- +puter Vision Laboratory (CVLab), University of +Bologna. His research interests include deep +learning for Computer Vision problems, espe- +cially semantic segmentation, domain adapta- +tion and self-supervised learning. +Luca De Luigi is a PhD student at the Computer +Vision Laboratory (CVLab) at the University of +Bologna. His research focuses on deep learning +for computer vision problems, especially dealing +with 3D geometry and implicit neural represen- +tations. +Alessio Tonioni received his PhD degree in +Computer Science and Engineering from Uni- +versity of Bologna in 2019. Currently, he is a +research scientist at Google Zurich. His research +interest concerns machine learning for depth es- +timation, domain adaptation and generalization. +He has authored more than 15 papers on these +subjects. +Samuele Salti is currently assistant professor +at the Department of Computer Science and +Engineering (DISI) of the University of Bologna, +Italy. Before joining the University of Bologna, +he was leading the Data Science team at Veri- +zon Connect, the world leading company in fleet +management products and connected vehicles +services. His main research interest is computer +vision, in particular 3D computer vision, and ma- +chine/deep learning applied to computer vision +problems. Dr. Salti has co-authored 42 publi- +cations in international conferences and journals and 8 international +patents. In 2020, he co-founded the start-up eyecan.ai. He was awarded +the best paper award runner-up at 3DIMPVT 2011, the top international +conference on 3D computer vision, and was nominated outstanding +reviewer at CVPR 2020 and NeurIPS 2020. +Luigi Di Stefano received the PhD degree in +electronic engineering and computer science +from the University of Bologna, in 1994. He is +currently a full professor with the Department of +Computer Science and Engineering, University +of Bologna, where he founded and leads the +Computer Vision Laboratory (CVLab). His re- +search interests include image processing, com- +puter vision and machine/deep learning. He is +the author of more than 150 papers and several +patents. He has been scientific consultant for +major companies in the fields of computer vision and machine learning. +He is a member of the IEEE Computer Society, IEEE, and the IAPR-IC. + diff --git a/btFIT4oBgHgl3EQfmivq/content/tmp_files/load_file.txt b/btFIT4oBgHgl3EQfmivq/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd809edb6693ceba20aad3efbcf03bf5dfd4ba57 --- /dev/null +++ b/btFIT4oBgHgl3EQfmivq/content/tmp_files/load_file.txt @@ -0,0 +1,1581 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf,len=1580 +page_content='1 Learning Good Features to Transfer Across Tasks and Domains Pierluigi Zama Ramirez*1, Adriano Cardace*1, Luca De Luigi*1, Alessio Tonioni2, Samuele Salti1, Luigi Di Stefano1 1University of Bologna, Italy 2Google Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' {pierluigi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='zama,adriano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='cardace2,luca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='deluigi4,samuele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='salti,luigi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='distefano}@unibo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='it alessiot@google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='com Abstract—Availability of labelled data is the major obstacle to the deployment of deep learning algorithms for computer vision tasks in new domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The fact that many frameworks adopted to solve different tasks share the same architecture suggests that there should be a way of reusing the knowledge learned in a specific setting to solve novel tasks with limited or no additional supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In this work, we first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a given domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, we show that this mapping function, implemented by a neural network, is able to generalize to novel unseen domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Besides, we propose a set of strategies to constrain the learned feature spaces, to ease learning and increase the generalization capability of the mapping network, thereby considerably improving the final performance of our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our proposal obtains compelling results in challenging synthetic-to-real adaptation scenarios by transferring knowledge between monocular depth estimation and semantic segmentation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Index Terms—Domain Adaptation, Task Transfer, Semantic Segmentation, Depth estimation !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1 INTRODUCTION D EEP learning has revolutionized computer vision by providing an effective solution to address a wide range of tasks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', classification, depth estimation, semantic seg- mentation, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The rise of a common framework has allowed incredible leaps forward for the whole research community thanks to the ability to reuse architectural and algorithmic improvements discovered to solve one task across many others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, the real knowledge of a neu- ral network is stored inside its trained parameters and we still have no simple way of sharing this knowledge across different tasks and domains (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', datasets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As such, the first step for every practitioner faced with a new problem or do- main deals with acquisition and labeling of a new training set, an extremely tedious, expensive and time consuming operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We argue that sharing the knowledge acquired by a neural network to solve a specific task in a specific domain across other tasks and domains could be a more straightforward and cost-effective way to tackle them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Indeed, this is demonstrated by the widespread use and success of transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Transfer learning concerns solving new tasks by initializing a network with pre-trained weights, thereby providing a basic approach to knowledge reuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, it still requires a new annotated dataset to fine tune the pretrained network on the the task at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A few works focused on the related task transfer (TT) problem [1], [2], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', on exploiting supervised data to tackle multiple tasks in a single domain more effectively by leveraging on the relationships between the learned representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As unlabeled domains are not considered in TT problem for- mulations, the proposed methodologies still rely on transfer Equal contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our framework transfers knowledge across tasks and domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Given two tasks (1 and 2) and two domains (A and B), with supervision for both tasks in A but only for one task in B, we learn the dependency between the tasks in A and exploit this in B in order to solve task 2 without the need of supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' learning and availability of a small annotated training set in order to address new datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' On the other hand, the unsupervised domain adaptation literature (DA) [3] studies how the need for annotated data can be removed when leveraging on knowledge reuse to solve the same task across different domains, but it does not consider different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Differently, we propose to merge DA and TT by ex- plicitly addressing a cross domain and cross task problem where on one source domain (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', synthetic data) we have supervision for many tasks, while in another target one (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', real data) annotations are available only for a specific task while we wish to solve many.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A schematic representation of our problem formulation with two domains and two tasks is shown in the right part of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Following this schematic representation we will consider a scenario with arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11310v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='CV] 26 Jan 2023 Task 1 Task 2 Domain A AIDT Domain Task Transfer Transfer DomainB ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Transfer Learning2 two domains (a source one and a target one, namely A and B) and two tasks (again a source one and a target one, namely task 1 and 2), but nothing prevents our method to be extended to more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In domain A we use the available supervision to learn two models for the source and target tasks, while in the target domain B we can do the same for the source task only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In domain A we use the trained task-specific models to learn a mapping function (G1→2 in Figure 1) between deep features extracted to solve the source task and those extracted to solve the target task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This mapping function is then applied in domain B to solve the target task by transforming the features extracted to solve the source task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The key component of our framework is the mapping function between the two task-specific deep features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In [4] we proposed a preliminary formulation of our framework by modeling the mapping function as a deep convolutional neural network and optimizing its parameters by standard supervised learning in the source domain A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In this work, we expand and improve upon our preliminary formula- tion by proposing two features alignment strategies aimed at learning the feature mapping function more effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Firstly, we align feature representations across domains using a novel norm discrepancy alignment (NDA) loss that constraints the feature space by penalizing features with very different norms in a spatially-aware manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Secondly, we align feature representations across tasks by using them as inputs to solve a common auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This pretext problem acts as a bridge between the source and the target tasks: in fact, if the deep features extracted to solve them in- dependently can be used to address effectively an additional common task, we are pushed to believe that those features present the same semantic content and encode it in a similar manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We test the effectiveness of our proposal in a challenging autonomous driving scenario where we try to solve the two related dense prediction tasks of monocular depth estima- tion and semantic segmentation [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We select edge detection as the auxiliary task since color edges provide oftentimes detailed key information related to both the semantic as well as the depth structure of the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Many edge detectors have been proposed during the years, with recent deep learning based approaches outperforming classical hand- crafted methods even in the most challenging scenarios [6], [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Interestingly, such deep models present good gener- alization capabilities, allowing us to use the state-of-the-art approach [6] to generate proxy supervision for the auxiliary task without extra labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thanks to our formulation, we can use a fully supervised and completely synthetic domain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the Carla simulator [9]) to improve the performance on a partially labeled real domain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', Cityscapes [10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The contributions of this paper can be summarized as follow: We propose for the first time to study a cross domain and cross task problem where supervision for all tasks is available in one domain whilst only for a subset of them in the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This is done by learning a mapping between deep representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We demonstrate how constraining explicitly deep features across domains with a novel norm discrep- ancy alignment loss improves the learning of the mapping function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We further show how the learning of the mapping function can be improved by deploying an auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Considering the dense prediction tasks of monocular depth estimation and semantic segmentation, we achieve results close to the practical upper bound when transferring knowledge between a synthetic and a real domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2 RELATED WORKS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1 Transfer Learning and Task Transfer Collecting training data is often expensive, time-consuming, or even unrealistic in many scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Many works have tackled this problem by exploiting the existence of a rela- tionship between the weights of CNNs trained for different tasks [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In particular, [12] showed that this strategy, re- ferred to as transfer learning, can lead to better results than using random initialization even if applied on quite diverse tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Transfer learning has become a common practice, for instance, in object detection, where networks are usually initialized with Imagenet [13] classification weights [14], [15], [16], [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Additional insights on the transferability of learned representations between different visual tasks were provided in [1], where the authors present Taskonomy, a computational approach to represent a taxonomy of rela- tionships among visual tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Along similar lines, [18] pro- posed to exploit the correlation between known supervised tasks and novel target tasks, in order to predict the param- eters of models deployed to solve the target tasks starting from the parameters of networks trained on the known tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' While [1] and [18] study the correlation between tasks in a given domain and assume either full or no supervision, we explicitly address a multi-domain scenario assuming full supervision in one domain and partial supervision in the target one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2 Domain Adaptation Domain adaptation techniques aim at reducing the perfor- mance drop of a model deployed on a domain different from the one the model was trained on [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Throughout the years, adaptation has been performed at different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Early approaches tried to model a shared feature space relying on statistical metrics such as MMD [19], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Later, some works proposed to align domains by adversarial training [21], [22], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Recently [24] noticed that, for classification tasks, aligning feature norms to an arbitrarily large value results in better transferability across domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Generative adversarial networks [25] have also been employed to perform image- to-image translation between different domains [26], [27], [28], and, in particular, to render cheaply labelled syn- thetic images similar to real images from a target domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, when dealing with dense tasks such as semantic segmentation, feature-based domain adaptation approaches tend to fail as deeply discussed in [29] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thus, several ap- proaches to address domain adaptation for dense tasks, such as semantic segmentation [5], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40] or depth estimation [41], [42], 3 [43] have been proposed recently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Among them, SPIGAN [44] uses extra supervision coming from synthetic depth of the source domain to improve the quality of an image- to-image translation network and consequently achieving better adaptation performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Akin to DA methods, we learn from a labeled source domain to perform well on a different target domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, unlike the classical DA setting, we assume the existence of an additional task where supervision is available for both domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='3 Multi-task Learning The goal of multi-task learning is to solve many tasks si- multaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' By pursuing this rather than solving the tasks independently, a neural network may use more information to obtain more robust and reliable predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Many works try to tackle several tasks jointly [45], [46], [47], [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' For example, [47] showed that by learning to correctly weigh each task loss, multi-task learning methods can outperform separate models trained individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [5], [48] show how learning multiple perception tasks jointly while enforcing geometrical consistency across them can lead to better per- formances for almost all tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Recently, [2] proposes a method to improve the performances of multiple single- task networks by imposing consistency across them during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, Taskonomy [1] investigates the relationship between the deployed tasks to accomplish multi-task learn- ing effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, multi-task learning approaches usually try to achieve the best balance between tasks in a single-domain scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We instead tackle a multi-task and multi-domain problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Nevertheless, taking inspiration from multi-task learning, we show how jointly learning an auxiliary task while learning the two task networks helps the alignment of features across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='4 Task Transfer and Domain Adaptation Most existing approaches address independently either task transfer or domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yet, a few works have pro- posed to tackle these two problems jointly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [49] was the first paper to propose a cross-tasks and cross-domains adapta- tion approach, considering as tasks different image classifi- cations problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' UM-Adapt [50], instead, learns a cross- task distillation framework with full supervision on the source domain and deploys such framework on the target domain in a fully unsupervised manner, while minimizing adversarially the discrepancy between the two domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Differently, in a preliminary version of this work [4], we in- troduced AT/DT (Across Tasks and Domains Transfer) and set forth a novel learning framework, where the relationship between a set of tasks is learned on the source domain and it is later deployed to solve a specific task on the target domain without supervision thanks to the availability of ground- truth for all the tasks except the target one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In this work we will expand and improve this methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3 METHOD We introduce the problem we are trying to solve with a practical example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Imagine we aim to solve semantic seg- mentation in a real domain but we only have labels for a closely related task (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', depth estimation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, let Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' AT/DT framework: here N1 and N2 are trained separately to solve tasks T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' While N2 is trained only on images from domain A, N1 is trained jointly on both domain A and domain B, to enable the extraction of domain invariant features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, encoders from the two networks are frozen and used to learn the transfer function G1→2, which aims at transforming features extracted for T1 in features that are good for T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This step is performed only on domain A, since we have no supervision for T2 on domain B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, at inference time, features are extracted from E1 starting from images of domain B, transformed with the G1→2 and fed to D2 to produce the final predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' us suppose to have access to a synthetic domain, where labels can be easily obtained for both tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Unsupervised domain adaptation may be used in this synthetic to real scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, we wish to go one step further, trying to answer this question: can we exploit the depth estimation task to boost the performance of semantic segmentation in the real domain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The answer is yes, thanks to our novel framework AT/DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In AT/DT we first learn a mapping function in the synthetic domain between deep features of two networks trained for depth estimation and semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This mapping function captures the relation- ship between the two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Once learned, we use the map- ping on depth features extracted from real samples to solve semantic segmentation in the real domain without the need of labels for it, thereby transferring knowledge across tasks and domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To further improve performance, we propose two strategies aimed at increasing the transferability of the learned features, namely leveraging on a norm discrepancy alignment loss and an auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A A L (A,YA) E1 D B L (V,P) N1 Training N1 E2 L, (V2, J2) N2 Training N2 E1 LTr E2 Training G1-2 B Ei D Inference4 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Features alignment strategies across tasks and domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We train jointly the networks N1, N2 and a shared auxiliary decoder Daux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We train N1 to solve T1 on images from domains A and B using a supervised loss LT1 for T1 alongside a novel feature Norm Discrepancy Alignment loss LNDA which helps better aligning the features computed by N1 across the two domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We train N2 using a supervised loss LT2 for T2 on images from B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Daux is trained to solve an auxiliary task Taux using the loss Laux and based on the features computed by E1 on images from A and B as well as by E2 on images from B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In the following sub-sections, we first describe the base AT/DT framework and then delineate its improved formu- lation which includes the norm discrepancy alignment loss and auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1 Notation We consider two tasks, T1 and T2, as well as two domains, A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We denote the images belonging to A and B as xA and xB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We have labels for T1 in A and B, denoted as yA 1 and yB 1 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' On the other hand, we have labels for T2 only in A, denoted as yA 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our aim is to solve T2 in B, where we do not have supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We assume T1 and T2 to be both dense tasks, which can therefore be addressed by an encoder-decoder architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We denote as N1 and N2 two networks that solve T1 and T2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Each network Nk, k ∈ {1, 2} consists of an encoder Ek and a decoder Dk, such that Nk(x) = Dk(Ek(x)), x being the input image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2 Across Tasks and Domains Transfer In our AT/DT framework we aim at learning the relationships between T1 and T2 through a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This is achieved by 3 steps, each represented as a block in Figure 2: Training N1 and N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We train N1 and N2 to solve T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Since we assume supervision for T1 on both domains, N1 is trained with images from A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This enables N1 to learn a feature space shared across the two domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' N2, instead, is trained only on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Both networks are trained with a specific supervised task loss LTk for Tk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Training G1→2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Considering only domain A, where we have supervision for both tasks, we then train a trans- fer network G1→2 to map the features computed by N1, f A 1 = E1(xA), into those computed by N2, f A 2 = E2(xA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Denoting the transferred features as f A 1→2 = G1→2(f A 1 ), we train the transfer network by minimizing the L2 loss: LT r = ||f A 1→2 − f A 2 ||2 (1) Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Once G1→2 has been trained, we can ad- dress T2 in B by computing the features to solve T1, f B 1 = E1(xB), transform them into features amenable to T2, f B 1→2 = G1→2(f B 1 ), and finally decode these features into the required dense output by D2: ˆyB 2 = D2(f B 1→2) (2) After presenting the base AT/DT framework, in the next sub-sections we will describe two strategies deployed to boost the feature alignment across domains and tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Figure 3 provides a detailed view of these two strategies which in our final proposed framework replace the initial steps of the training protocol (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', Training N1 and N2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='3 Feature Alignment Across Domains For the effectiveness of the approach delineated in subsec- tion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2, it is crucial that G1→2 can generalize well to the target unseen domain B even if trained only with data from the source domain A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The DA literature presents us with several ways to accomplish this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' One may operate on the input space [27], on the feature space [23] or on the output space of the network [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In our setting, though, both input and output space of G1→2 are high dimensional latent spaces and, as reported in [29], unsupervised domain adaptation techniques tend to fail when applied to such spaces while addressing dense tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yet, we can address the domain shift issue with a L (VA,JA) E1 D1 NDA L (VB,JP) xn N1 DB aux laux aux laux X y2 xnp7 aux Zaux L (V, J) N2 Training N1 e N25 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Two task transfer scenarios: depth-to-semantic on the left, the opposite on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' First row: ground-truth depth and semantic segmentation maps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' second row: corresponding edge maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Red circles highlight information needed in the target task but missing in the source one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' direct approach in the input space of G1→2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the feature space of N1, which is already shared between A and B due to the network being trained supervisedly with images from both domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We leverage on the intuition that scene spatial priors are typically domain invariant in many adap- tation scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We consider it as a reasonable assumption for several domain adaptation settings, where we select the source domain by considering visual similarities with the target domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' For instance, in autonomous driving scenar- ios we typically have cameras placed from a car viewpoint, and scenes are urban scenarios in both synthetic [9], [51] and real [10], [52], [53] datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thus, if we consider the task of semantic segmentation in all datasets (synthetic and real) we typically find road pixels in the bottom part of the images and instead sky pixels in the top part of the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To visualize this property we select a synthetic domain A CARLA [9] and a real domain B Cityscapes [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, we count for each pixel location the number of occurrences of each class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We show the result of this experiment in Figure 5, using a viridis colormap to display these occurrency maps for each class and for both domains A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We can clearly see that the maps have a structure similar across domains, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', building are concentrated in the top image regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Leveraging this property, we propose to align more closely the features computed by E1 on the images from both domains, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', f A 1 and f B 1 , by enforcing similarity of the L2 norms across channels at the same spatial loca- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Starting from features f A 1 and f B 1 of dimensionality H × W × C, where H, W and C are the height, width and number of channels of the feature maps, we calculate the L2 norm along the C axis and minimize the absolute difference at each spatial location i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hence, our NDA (Norm Discrepancy Alignment) Loss is defined as follows: LNDA = 1 W × H H � i=1 W � j=1 ���∥f A 1i,j∥2 − ∥f B 1i,j∥2 ��� (3) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='4 Feature Alignment Across Tasks While the NDA loss presented above aims at improving the generalization across domains of the feature mapping network G1→2, its effectiveness can be further improved by aligning features also across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Accordingly, we conjec- ture that f1 features should capture as much information as possible on the details of the scene, even though some of this information may not be necessary to solve T1, because, when transferred by G1→2, such a richer representation could help to solve T2 more effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' For this reason, while training N1 for T1, we train jointly an additional decoder, Daux, to solve an auxiliary task, Taux, aimed at enriching the learnt representation f1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, though multi-task learning of T1 and Taux could help to encode more detailed information into f1 features, it does not guarantee that the decoder D2, used at inference time on the features f1→2 transferred from T1 to T2, may effectively deploy this additional information if it has been trained only to solve T2 in isolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This leads us to reckon that Daux should be trained jointly with N2 too, such that the additional information required to solve Taux may be incorporated also within the features f2 learnt by E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Therefore, given auxiliary task labels yA aux and yB aux for A and B, we train N1 and N2 jointly with a single auxiliary decoder Daux using an auxiliary loss Laux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Purposely, we obtain auxiliary predictions from both encoders with the shared decoder Daux as ˆykaux = Daux(Ek(x)), k ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Similarly to the simpler formulation of our framework pre- sented in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2, to compute the auxiliary loss we feed images of both domains through E1, while we pass only images from A through E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We do not pass images belonging to B through E2 while training Daux since this would be the only kind of supervision for E2 in B and it may skew E2 output to be more effective on Taux than on T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5 Overall N1 and N2 loss When training simultaneously N1 and N2, the overall loss is: 6 A B A B A B A B Road Sidewalk Wall Fence A B A B A B A B Person Pole Vegetation Vehicle A B A B A B Traffic Signs Building Sky Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Spatial Priors Similarities Across Domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Considered the semantic segmentation task, we compute the number of occurrences of each class at each pixel location for both domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Domain A is CARLA, B is Cityscapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We visualize the occurrence maps with a viridis colormap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' L = λT1LT1(yA 1 , ˆyA 1 ) + λT1LT1(yB 1 , ˆyB 1 ) +λT2LT2(yA 2 , ˆyA 2 ) + λauxLaux(yA 1aux, ˆyA 1aux)+ λauxLaux(yB 1aux, ˆyB 1aux) + λauxLaux(yA 2aux, ˆyA 2aux)+ λNDALNDA(f A 1 , f B 1 ) (4) 4 EXPERIMENTAL SETTINGS Tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We fix T1 and T2 to be monocular depth estimation and semantic segmentation, or vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' These two visual tasks can be addressed using the same encoder-decoder architecture, with changes needed only in the final layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Semantic segmentation is solved by minimizing a pixel- wise cross entropy loss, monocular depth estimation by minimizing an L1 loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We select edge detection as our Taux since it seems particularly amenable to improve the effectiveness of our framework in capturing and transferring important structural information that might otherwise be lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Let us consider the case of T1 being depth estimation and T2 semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The features f1 needed to compute depth may ignore the boundaries between semantically distinct regions showing up at the same distance from the camera: in Figure 4 (left) this is the case, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', of the boundaries between legs or tyres and ground, as well as between street signs and poles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Therefore, even if fed to a perfect G1→2, f1 may not contain all the information needed to restore the semantic structure of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' By solving jointly edge detection on the input image, instead, we force our N1 network to extract additional information that would not need to be captured should the learning objective be concerned with depth estimation only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Similarly, Figure 4 (right) highlights how depth discontinuities do not necessarily correspond to semantic boundaries, such that a network N1 trained in isolation to assign semantic labels to pixels may not need to learn information relevant to estimate the depth structure of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Besides, it is worth pointing out that edge detection can be solved using again the same decoder architecture as T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Since the edge proxy-labels that we adopt are gray-scale images [6], in our experiments we implement the Laux loss introduced in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='4 as a standard L2 loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In all our experiments we set λaux to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5, λNDA to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='001, λT1 and λT2 to 1 to balance loss values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We test the effectiveness of our method in an autonomous driving scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We set A and B to be a synthetic and a real dataset, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The former consists of a collection of images generated with the Carla simulator [9], while the latter is the popular Cityscapes dataset [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We generated the Carla dataset mimicking the camera settings of the real scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We render 3500, 500, and 1000 images for training, validation, and testing, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' For each image, we store the associated depth and semantic labels provided by the simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The Cityscapes dataset is a collection of 2975 and 500 images to be used for training and validation, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As for our evaluation, we use the 500 Cityscapes validation images since test images are not equipped with labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, as in Cityscapes only the semantic labels are provided, we use depth proxy-labels obtained with the SGM stereo algorithm [54], by filtering the erroneous predictions in the generated disparities with a left-right consistency check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This can be considered as an added value because it shows the ability to transfer knowledge when learning from noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, we use a pre-trained1 state-of-the-art neural network [6] as an off-the-shelf edge detector to extract from the images belonging to A and B the edges used as proxy-labels to train Taux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To solve each task, we use two dilated ResNet50 [55] as encoder and a stack of bilinear upsample plus convolutional layers as decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The encoder shrinks both input dimensions with a factor of 1/16, while the decoder upsamples the feature map until a prediction with the same spatial resolution as the input image is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The two networks for T1 and T2 are identical, but for the final prediction layer, which is task dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The two previously defined encoders are also used to capture good features for edge detection, which is solved using Daux, that shares the same architecture as the decoders used in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Neither A nor B belong to the training set of this network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 7 N1 and N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' G1→2 is a simple CNN made out of 6 pairs of convolutional and batch normalization layers with kernel size 3 × 3 which do not perform any downsampling or upsampling operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Training and Evaluation Protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' During the training phase of the transfer network G1→2, the model is evaluated on the validation set of Carla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Of course, it is possible that optimality on Carla does not translate into optimal per- formance on Cityscapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yet, we cannot use data from the target domain neither for hyper-parameters tuning nor for early stopping, because in our setting these data would not be available in any real scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Therefore, the Cityscapes validation set is only used at test time to measure the final performances of our framework method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' From left to right: RGB input image of domain A , depth prediction from N1, edges from f1, semantic segmentation from N2 and edges from f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Task features f1 and f2 encode richer details than strictly needed to solve either tasks as we can recover all edges from both of them by Daux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To evaluate the performance on the semantic segmentation task two metrics are used: pixel accuracy, shortened Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e the percentage of pixels with a cor- rect predicted label) and Mean Intersection Over Union, shortened mIoU, as defined in [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To render these metrics comparable among the used datasets, we solve semantic segmentation on the 10 shared classes (Road, Sidewalk, Walls, Fence, Person, Poles, Vegetation, Vehicles, Traffic Signs, Building) plus the Sky category, which is defined as the set of points with infinite depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Some of the Cityscapes classes are collapsed into one class: car and bicycle into vehicle, traffic signs and traffic light into traffic sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The remaining categories of Cityscapes are instead ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' When testing the depth estimation task, we report the standard metrics described in [57]: Absolute Relative Error (Abs Rel), Square Relative Error (Sq Rel), Root Mean Square Error (RMSE), logarithmic RMSE and δ1, δ2 and δ3 accuracy scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Each δα is obtained by computing, for each pixel of the input image, the maximum among ratio and inverse ratio between the predicted value and the ground-truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' δα represents the percentage of pixels whose such ratio is lower than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='25α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 5 EXPERIMENTAL RESULTS We provide results for two different settings: transferring features from depth estimation to semantic segmentation (subsection 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1) as well as from semantic segmentation to depth estimation (subsection 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In both scenarios, as already mentioned, we used edge detection as auxiliary task, motivated by the idea that either semantic segmentation and depth estimation can benefit from edge information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Figure 6 shows that with our multi- task learning protocol we are able to restore all the details of the scene from both f1 and f2, proving that N1 and N2 have indeed learned to encode into their features richer information than that strictly needed to solve T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1 Depth to Semantics In this setup, denoted as Dep → Sem, the goal of our framework is to transform depth features into semantic segmentation features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This mapping is learned using Carla as domain A and Cityscapes as domain B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We report results in Table 1: the first row shows results obtained with no adaptation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', training N2 on Carla and testing it directly on Cityscapes), while from the second row we can see that our final framework yields 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28% mIoU and 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57% Acc with an improvement of +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='48% and +8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99% wrt to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Even though AT/DT is the first work to address the across tasks and domains scenario, we compare it against a related work, ZDDA [56], which also leverage auxiliary data from a different tasks to perform domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We apply it in our setup using as the ”Source” and ”Target” domains Carla and Cityscapes respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We address the Dep → Sem scenario using depth maps as ”task- irrelevant” data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We skip the last sensor fusion step (Step 3) because it was not applicable in our scenario since we do not have task-irrelevant data at test time, and thus we stop training after the adaptation step (Step 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We report results of this alternative approach in the second row of Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As we can notice, ZDDA is effective in our scenario and achieves better performance compared to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, AT/DT obtains much better results, surpassing ZDDA in all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This is not surprising since ZDDA focus on extracting features only from task-irrelevant data, which can be sub-optimal for the relevant task as these data do not provide the same amount of information as the task-relevant data, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', features extracted only from depth images would not contain several useful information for semantic segmentation such as colors or textures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Furthermore, as we are transferring features from an- other task, it is worth trying to investigate on the upper bound in performance due to the inherent transferability of the features between the two tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Purposely, we train G1→2 using only Cityscapes to learn a mapping function in a supervised fashion as explained in subsection 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='4 on B and test on the validation set of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' These results are shown in the third row of the table (denoted as Transfer Oracle): given a transfer architecture, there seems to be an upper bound in performance due to the nature of the two tasks, which in the considered setting amounts to a 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5% mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thus, our proposal exhibit a gap wrt the Transfer Oracle that is only about -7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2% mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We also report the performance of N2 trained on B and tested on B, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the absolute upper bound in performance (last row of the table, denoted as Oracle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Some qualitative results dealing with the Dep → Sem scenario are depicted in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' It is possible to appreciate the overall improvement of our method wrt the baseline, either in flat areas (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', roads, sidelwalks and walls), objects shapes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', cars and persons) and fine-grained details (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', poles and traffic signs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='8 TABLE 1 Experimental results of Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained only on B, Oracle refers to N2 trained and tested on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A B Method Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc Carla CS Baseline 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='80 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='98 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='23 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='86 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='58 Carla CS ZDDA [56] 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='62 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='80 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='74 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='06 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 Carla CS AT/DT 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='27 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='96 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='85 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 CS CS Transfer Oracle 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='05 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='46 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='58 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='68 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='84 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='83 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='84 CS Oracle 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='74 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='26 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='39 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='23 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Qualitative results of the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' From left to right: RGB image, ground-truth, baseline trained only on domain A, ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2 Semantics to Depth In this setup, which we define as Sem → Dep, the goal of our framework is to transform semantic features into depth features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This mapping is learned using Carla as domain A and Cityscapes as domain B, as done for the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Results are reported in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Similarly to the Dep → Sem scenario, in the first row we show results with no adaptation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', our baseline), while the third row presents the ones obtained with our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Also for this setup we report performances of ZDDA [56] (second row), in which we use semantic maps as task-irrelevant data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We can see that ZDDA achieves slight better performance of the baseline in 5 metrics out of 7, but still inferior to our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, we report results from the Transfer Oracle and the Oracle, implemented as described for the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' It is possible to appreciate that our framework outperforms the baseline on 6 out of 7 metrics, closing remarkably the gap with the practical upper bound of the Transfer Oracle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In Figure 8, we show some qualitative results of the Sem → Dep scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' While predictions look quite noisy in the background, we can see a good improvement in the foreground area thanks to our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Shapes are recovered almost perfectly, both for big and small objects, even with difficult subjects like the crowd in the bottom row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' It is also worth pointing out that the depth predictions yielded by our method turn out much smoother than the ones produced by the baseline and generally less noisy than the ground-truth that, as explained in section 4, consists of proxy-labels computed with SGM [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6 ABLATION STUDIES In the following sections, we study the effectiveness of the key design choices behind our proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1 Contribution of Taux and NDA Loss We start by studying the effect of introducing in our framework the auxiliary task and the NDA loss, analyzing their contribution when used separately as well as when combined together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The second and third row of Table 3 report the results obtained in the Dep → Sem setting by integrating in our method either the auxiliary task (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', edge detection) or the NDA loss, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We can see that both design choices bring in an improvement of about +2% in terms of mIoU with respect to the base AT/DT framework (first row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, the last row of the table shows that the auxiliary edge detection task and the NDA loss turn out complementary because, when combined together, they can provide an overall improvement of +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='34% mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Figure 9 presents some zoomed-in qualitative results: we can see that, even if the base version of AT/DT already produces satisfactory results at a coarse level, the complete version of our framework can produce much more accurate predictions, especially regarding small details, such as poles, traffic signs and car outlines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 9 TABLE 2 Experimental results of Sem → Dep scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Baseline stands for N2 trained on A and tested on B, Transfer Oracle represents G1→2 trained only on B, Oracle refers to N2 trained and tested on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lower is better Higher is better A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3 Carla CS Baseline 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='7398 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='169 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='406 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='781 Carla CS ZDDA [56] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5206 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5491 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='633 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='638 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='858 Carla CS AT/DT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='3928 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='9094 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='363 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='444 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='372 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='923 CS CS Transfer Oracle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2210 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2962 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='669 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='972 CS Oracle 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1372 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='6214 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='244 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='976 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Qualitative result of the Sem → Dep scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' From left to right: RGB image, ground-truth, baseline network trained only on domain A, ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' TABLE 3 Ablation study in the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Aux refers to the framework trained with the auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' NDA refers to the framework trained with our NDA loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A B Aux NDA Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc Carla CS 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Carla CS ✓ 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='40 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='98 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='34 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='61 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 Carla CS ✓ 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='14 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 Carla CS ✓ ✓ 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='27 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='96 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='85 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zoomed results in a Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' From left to right: base AT/DT without edge and NDA, our proposed method, ground-truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We notice how, unlike base AT/DT, our method is able to recover the fine-grained details of the scene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 10 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2 Effectiveness of edge detection as auxiliary task In this section, we show empirically that in our framework the choice of the proper auxiliary task is key to performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In both the Dep → Sem and the Sem → Dep scenarios, we propose to use edge detection as auxiliary task because it captures information about the shapes of the objects in the input images and allows for straightforward computation of proxy-labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To validate this design choice, we tested our framework in the Dep → Sem setting, using Daux to recon- struct the input images both from f1 and f2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the classical autoencoder setting (results in Table 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Interestingly, using image reconstruction as auxiliary task results in an mIoU score almost identical to the base AT/DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We consider that the autoencoder task is guided by a reconstruction loss which makes no distinction between the pixels of the input image: such supervision cannot guide effectively f1 and f2 to encapsulate the high-frequency components of the image that are needed to predict the fine-grained details of the scene, which is instead obtained by adopting edge detection as auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='3 Auxiliary tasks as source tasks The main difference between a source and an auxiliary task is that the auxiliary task alone cannot provide enough information to solve T2, but it is useful to enrich T1 features and align feature content across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To better support our claims, we investigated AT/DT behaviour when using auxiliary tasks Taux as source tasks T1 and semantic seg- mentation as target task T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The results of these experiments are reported in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' All rows of the table show results of the base AT/DT i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', trained without Laux and LNDA losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As we can notice, using as source task T1 a standard image- reconstruction (row 1, autoencoder) or an edge detection (row 2) lead to much worse results than using depth esti- mation (row 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We argue that features extracted by N1 for these tasks do not contain enough information to perform semantic segmentation, which are yet contained in features for depth estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Similar finding were also made by Taskonomy [1], in which they show that edge detection and image reconstruction (aka autoencoder) are less correlated to semantic segmentation than depth estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' On the contrary, we have shown that Edge Detection can be a good auxiliary task in the Dep → Sem scenario since it can enrich depth features with missing edges useful for semantic segmentation and it can increase transferability aligning depth and semantic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='4 Importance of simultaneous training of N1, N2 and Daux In our experiments we use edge detection as auxiliary task and train a shared decoder Daux to reconstruct the edges of the input image from the features extracted by both E1 and E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In fact, we argue that this procedure should force E1 to encode into the extracted features also edge information that may be not necessary to solve T1 but that may be relevant for T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Besides, we believe that simultaneous training of N1, N2 and Daux is crucial to encourage features coming from E1 and E2 to represent edge information in a similar manner, making it easier to learn G1→2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In Table 6 we report the results concerning the ablation study conducted to validate these intuitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We consider the Dep → Sem scenario using the Carla dataset as domain A and Cityscapes as domain B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The four rows of the table deal with the following training schemes: 1) The base AT/DT (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', without Taux and NDA loss) as baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2) We first train N1 and Daux on both A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, we train N2 on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, we train G1→2 on features extracted by E1 and E2 on domain A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3) We train N1 and a first D1 aux on both A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, we train N2 and a second D2 aux on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, we train G1→2 on features extracted by E1 and E2 on domain A 4) Our proposed method, which trains N1, N2 and a shared Daux simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The introduction of edge detection as auxiliary task helps in every scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In fact, if we use Daux only while training N1 (second row), we already see an increase of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='6% in the overall mIoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We believe that this is explained by the presence of edge details (not strictly necessary to solve T1 but relevant for T2) in the features extracted by E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, G1→2 may experience difficulties in adapting f1 into f2 if edge information is not explicitly present in f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This is confirmed by the results in the third row of the table, where an additional increase of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='3% in the overall mIoU is attained by using two different Daux (one during training of N1 and one during training of N2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, the best results in terms of mIoU and Acc are achieved by our method, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', when training N1, N2 and a shared Daux simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This vouches for the benefit of encoding in a similar manner the edge information in f1 and f2 in order to enforce feature alignment across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='5 Alignment strategies for N1 An alternative approach to align N1 features between do- mains to ease the transfer process and favor the generaliza- tion of G1→2 consists in leveraging on the widely adopted adversarial training in feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In our setting, this can be obtained by adding a critic that must discriminate whether the features produced by E1 come from A or B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thus, the encoder E1 not only has to learn a good feature space for its task, but it is also asked to fool the critic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' After- wards, we can proceed to learn a mapping function G1→2 among tasks as usual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In Table 7 we compare this standard DA methodology to our NDA loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Adversarial training (second row) does not introduce significant improvements with respect to not performing DA for T1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', base AT/DT, first row), while constraining the features extracted by E1 in a norm aligned space (third row) significantly increases both performance metrics with respect to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our intuition is that, although adversarial training can be useful for domain alignment, it alters the learned feature space with the goal of fooling the critic and this training objective can lead to worse performances on the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our NDA loss, on the other hand, acts as a regularizer that favors the learning of an homogeneous latent space across the domains involved in our experiments, improving the generalization capability of the transfer network without 11 TABLE 4 Comparison between autoencoder and edge detection as auxiliary tasks in the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Taux Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc None 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Autoencoder 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='68 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='45 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='08 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='40 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='43 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='51 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='68 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='07 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='31 Edge detection 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='40 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='98 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='34 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='61 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 TABLE 5 Auxiliary tasks as source tasks in the Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Taux as T1 Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc Autoencoder 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='15 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='89 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='66 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='91 Edge Detection 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='55 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='26 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='62 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='87 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 Depth 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 TABLE 6 Ablation study on the importance of simultaneous training of the T1, T2, and the auxiliary task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' See text for a detailed explanation of the training protocol used in each row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' method Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc base AT/DT 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Separate (N1 + edge), N2 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='08 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='35 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='58 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='89 Separate (N1 + edge), (N2 + edge) 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='83 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='31 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='59 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='53 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='05 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='66 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 Simultaneous (N1 + N2 + edge) 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='40 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='98 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='34 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='61 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 degrading the performances in the single tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, from the third to the fifth row, we compare our NDA loss with another strategy, LargerNorm [24], that also align features across domains operating on the feature norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' They show that features are more transferable across domains if we constrain feature norms to be equal to an arbitrary large number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We notice that the method is very sensible to the norm value, and it could be hard to select without using target labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' When using an appropriate norm value (25, fourth row), the method achieves a slight improvement over the baseline without alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, since it just force all features globally to be a large number, it is not well- suited for tasks in which we have a spatial dimensions such as semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, in the sixth row, we experiment also with a more recent adversarial loss formulation, Asymmetric Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [58], which preserve discrim- inability while performing domain alignment by chang- ing only target features instead of both source and target ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, we notice that this method is achieving the worst results among feature alignment strategies, even worse than the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our motivation is that aligning feature distribution in such a high dimensional feature space with a spatial structure might be too difficult to achieve by only changing target features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, we notice that NDA achieves the best performance probably because it only align features norm rather than the whole marginal distribution, which is an easier goal that can be achieved also in high- dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, NDA operates at each spatial location independently rather than globally, exploiting the spatial priors similarity across domains, reaching better performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='6 Aligning N2 features We tried to perform feature alignment across domains also on the features f2 extracted by E2, either by deploying adversarial training or imposing our NDA loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The idea is to favor the generalization of G1→2 by making more homogeneous not only its input space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the features produced by E1, aligned with our NDA loss), but also its output space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', the features produced by E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, the setting is not completely symmetric: when learning E2, we do not have supervision available for B, and the only loss shaping the feature space for its images would be the alignment loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We report results of this ablation study in Table 8 and discuss them below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In the first row, we report the results provided by the base AT/DT (without LNDA and Laux).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In the following two rows, we show results obtained by an adversarial (row 2) and an asymmetric adversarial [58] (row 3) training 12 TABLE 7 Comparison between NDA loss and other strategies to align E1 features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' E1 Align.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc None 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='89 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='01 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='22 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='89 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='20 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='65 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='68 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='35 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='19 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 LargerNorm [24] (1) 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='56 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='61 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='41 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 LargerNorm [24] (25) 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='23 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='39 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='97 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='97 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='15 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='62 LargerNorm [24] (500) 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='53 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='08 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='55 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='35 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='53 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='08 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='53 Asymmetric Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [58] 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='57 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='43 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='91 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='71 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='86 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='15 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 NDA 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='14 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 TABLE 8 Results of aligning output space of E2 in a Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' E2 Align.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc None 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='36 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='59 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='22 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='45 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='15 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='79 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='31 Asymmetric Adversarial [58] 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='64 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='44 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='11 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='01 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='01 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='71 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='33 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='61 NDA 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='81 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='09 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='74 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='08 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='84 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 TABLE 9 Results of aligning output space of D2 in a Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' D2 Align.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc None 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='95 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='37 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='04 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='90 Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='48 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='22 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='39 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='40 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='97 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='39 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='87 TABLE 10 Results of aligning input and/or output space of G1→2 in a Dep → Sem scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Best results highlighted in bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Input Align.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Output Align.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Road Sidewalk Walls Fence Person Poles Vegetation Vehicles Tr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Signs Building Sky mIoU Acc NDA 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='97 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='60 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='31 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='36 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='74 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='19 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='12 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='63 Adv 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='80 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='91 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='84 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='32 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='17 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='51 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='66 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='32 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='43 Asymmetric Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [58] 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='70 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='26 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='31 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='07 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='94 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='86 NDA + Adv 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='14 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='24 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='91 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='05 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='93 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='65 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 Adv D2 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='20 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='92 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='76 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='52 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='98 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='42 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='82 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='03 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='50 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 NDA Adv 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='54 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='29 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='73 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='49 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='28 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='19 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='05 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='35 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='69 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='73 NDA 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='21 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='14 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='78 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='99 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='10 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='72 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='38 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='47 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='67 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='30 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='77 on the features f2, using the same procedures described in the previous sub-section for f1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We can observe that, not only both adversarial trainings does not improve (like adversarial training applied to E1), but they even decrease the overall mIoU compared to the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, in the fourth row, we report the results obtained by our NDA loss on f2: the NDA loss destroys the feature space of T2 when applied in this context, as vouched by the drop of 20% in the overall mIoU wrt to base AT/DT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' During AT/DT inference, we use also D2 to yield the final task predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Nevertheless, D2 has been trained only on A, thus its performance may be harmed when using B images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Thus, we ran an additional test reported in Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Following [29] we train N2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', E2 and D2) using an adversarial loss on the D2 output space, thus making D2 aware of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Then, we train G1→2 to map features of E1 into features of E2, and during inference we employ the previously trained decoder D2 to produce the final outputs reporting the results in row Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='. We notice a clear drop in performance w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' base AT/DT (row None), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' AT/DT trained without LNDA and Laux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We formulate the following hypothesis to explain the 13 above results: all adversarial trainings and NDA loss try to align f A 2 and f B 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' While f A 2 are shaped also by the su- pervision of T2, f B 2 evolve only according to the additional loss we impose, as we do not have supervision for T2 on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, E2 is shared across domains, and therefore may be pushed to produce worse representations for both domains while it tries to accomplish the adversarial objec- tives or the NDA loss minimization for B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' If this happens, mappings learned by G1→2 from f A 1 to f A 2 will hallucinate worse features for T2 on B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To understand why adversarial trainings leads to small decreases in performances com- pared to the use of NDA loss, we ought to consider that adversarial training implies a discriminator that cannot be easily fooled by totally degenerated features, while, without any additional constrain from task supervision, the NDA loss may yield totally collapsed representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='7 Aligning G1→2 features Although feature alignment does not turn out beneficial when training N2, one may still expect to obtain better hallucinated features if the representations obtained when transferring f A 1 and f B 1 are aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We empirically found out that even though output space aligning strategies de- ployed when training G1→2 can lead to improvements in performance, input space alignment using our NDA loss deployed when training N1 is more effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, combining input and output space alignment techniques does not lead to further improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We performed this ablation study in the Dep → Sem scenario using Carla as A and Cityscapes as B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' The results of these experiments are reported in Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' First, we applied our NDA loss to the output-space of G1→2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Similarly to what discussed in the previous section, we notice that, without supervision on B, the representa- tions transformed from G1→2 while minimizing the NDA loss yield a drastic drop in the framework performance (row 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We also tried to align the output space features by training G1→2 alongside a discriminator in an adversarial fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We wanted to fool the discriminator in order to generate indistinguishable features from A or B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We notice that this strategy allows us to reach good overall perfor- mances with a 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='32 mIoU on Cityscapes (second row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Moreover, we thought that, as adversarial training provides a supervision on B, using the NDA loss in combination with the adversarial loss could avoid producing degenerated features for B while reaching a better overall alignment between A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, we notice that the combination of the two losses leads us to slightly worse results than adversarial training alone (rows 2 vs 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Furthermore, since using an adversarial loss on the output space of G1→2 lead us to good overall performances, we tested it in combination with the best input space alignment from Table 7, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' NDA loss applied when training N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' However, the combination of these two methods achieves worse performance than using only the NDA loss on input space (rows 6 vs 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Finally, we also experimented a different alignment strategy for the G1→2 output space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Instead of directly applying adversarial loss in E2 feature space, we apply adversarial loss in D2 output space while training G1→2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' As discussed in [29], output space is easier to align than feature space for several reasons: i) the scene semantic structure is typically similar across domains ii) the feature space encode many information such as color, light, textures iii) the feature space has higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' By aligning D2 output space we indirectly influence also E2 features making them more domain aligned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' During training, we keep D2 frozen and we update only G1→2 weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Also in this case, if compare this methodology with simply using LNDA alone (row 6 vs row 7), it achieves worse results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 7 CONCLUDING REMARKS We have introduced a framework to transfer knowledge between different tasks by learning an explicit mapping function between deep features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' This mapping function can be parametrized by a neural network and show interesting generalization capabilities across domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' To further ame- liorate performance we have proposed two novel feature alignment strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' At a domain level, we showed that the transfer function presented in our framework can be boosted by making its input space more homogeneous across domains with our simple yet effective NDA loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' At a task level, instead, we reported how deep features extracted for different tasks can be enriched and aligned with the introduction of a shared auxiliary task, which we implemented as edge detection in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We reported good results in the challenging synthetic to real scenario while transferring knowledge between the seman- tic segmentation and monocular depth estimation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Our proposal is complementary to the whole domain adaptation literature and might be integrated with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' While DA directly applied to the learned feature space does not seems effective (see Table 8) more modern techniques either try to align the prediction in the final label space [29] or rely on self-ensembling for pseudo labeling [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' We plan to incorporate these promising direction into our framework as part of future developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zamir, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sax, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Shen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Guibas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Malik, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Savarese, “Taskonomy: Disentangling task transfer learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3712–3722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zamir, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sax, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cheerla, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Suri, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Malik, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Guibas, “Robust learning through cross-task consistency,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 11 197–11 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 312, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 135–153, Oct 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='neucom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='083 [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ramirez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tonioni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Salti, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Stefano, “Learning across tasks and domains,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 8110–8119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ramirez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tonioni, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Di Stefano, “Exploiting semantics in adversarial training for image-level domain adaptation,” in 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 49–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [6] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Soria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Riba, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sappa, “Dense extreme inception network: Towards a robust cnn model for edge detection,” in The IEEE Winter Conference on Applications of Computer Vision (WACV ’20), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xie and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tu, “Holistically-nested edge detection,” CoRR, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' abs/1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='06375, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/abs/1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='06375 14 [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Li, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Huang, “Deep crisp boundaries: From boundaries to higher-level tasks,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1285–1298, Mar 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/TIP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2874279 [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dosovitskiy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ros, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Codevilla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lopez, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Koltun, “CARLA: An open urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cordts, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Omran, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ramos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Rehfeld, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Enzweiler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Be- nenson, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Franke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Roth, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Schiele, “The cityscapes dataset for semantic urban scene understanding,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhuang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Qi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Duan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xiong, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He, “A comprehensive survey on transfer learning,” arXiv preprint arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02685, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yosinski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Clune, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Bengio, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lipson, “How transferable are features in deep neural networks?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' in Advances in neural information processing systems, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3320–3328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Deng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Socher, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Li, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Fei-Fei, “Im- agenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ieee, 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 248–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Redmon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Divvala, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Girshick, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 779– 788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ren, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Girshick, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1137–1149, Jun 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/TPAMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2577031 [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Gkioxari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dollar, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Girshick, “Mask r-cnn,” 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/ICCV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='322 [17] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Anguelov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Erhan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Szegedy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Reed, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Fu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Berg, “Ssd: Single shot multibox detector,” in European conference on computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 21–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pal and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Balasubramanian, “Zero-shot task transfer,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [19] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Gong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Shi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sha, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Grauman, “Geodesic flow kernel for unsupervised domain adaptation,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' IEEE, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2066– 2073.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Long, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Jordan, “Learning transferable features with deep adaptation networks,” in Proceedings of the 32nd International Conference on Machine Learning, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Proceedings of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' PMLR, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 97–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ganin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lempitsky, “Unsupervised domain adaptation by backpropagation,” in International Conference on Machine Learning, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1180–1189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ganin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ustinova, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ajakan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Germain, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Larochelle, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Laviolette, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Marchand, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lempitsky, “Domain- adversarial training of neural networks,” The Journal of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2096–2030, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [23] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tzeng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hoffman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Saenko, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Darrell, “Adversarial discriminative domain adaptation,” in Computer Vision and Pattern Recognition (CVPR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lin, “Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1426–1435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [25] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Goodfellow, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pouget-Abadie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mirza, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Warde-Farley, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ozair, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Courville, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2672–2680.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Park, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Isola, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Efros, “Unpaired image-to- image translation using cycle-consistent adversarial networks,” in The IEEE International Conference on Computer Vision (ICCV), Oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [27] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Bousmalis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Silberman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dohan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Erhan, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Krishnan, “Unsupervised pixel-level domain adaptation with generative adversarial networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='18 [28] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Isola, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhou, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Efros, “Image-to-image translation with conditional adversarial networks,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [29] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tsai, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Schulter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sohn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chandraker, “Learning to adapt structured output space for semantic segmentation,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00780 [30] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yuan, “Conditional gener- ative adversarial network for structured domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1335–1344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [31] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pizzati, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Charette, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zaccaria, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cerri, “Domain bridge for unpaired image-to-image translation and unsupervised domain adaptation,” in The IEEE Winter Conference on Applications of Computer Vision, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2990–2998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hoffman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yu, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Darrell, “Fcns in the wild: Pixel- level adversarial and constraint-based adaptation,” arXiv preprint arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='02649, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [33] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' David, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Gong, “Curriculum domain adaptation for semantic segmentation of urban scenes,” in The IEEE Interna- tional Conference on Computer Vision (ICCV), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [34] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Peng, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chiu, “All about structure: Adapting structural information across domains for boosting semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1900–1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hoffman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tzeng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Isola, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Saenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Efros, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Darrell, “CyCADA: Cycle-consistent adversarial domain adaptation,” in Proceedings of the 35th International Con- ference on Machine Learning, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Proceedings of Machine Learning Research, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dy and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Krause, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Stockholmsm¨assan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1989–1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Shrivastava, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pfister, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tuzel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Susskind, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Webb, “Learning from simulated and unsupervised images through adversarial training,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [37] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Qiu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Liu, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mei, “Fully convolutional adaptation networks for semantic segmentation,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00712 [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Sankaranarayanan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Balaji, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Jain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lim, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chellappa, “Learning from synthetic data: Addressing domain shift for semantic segmentation,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00395 [39] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Shin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Rameau, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lee, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kweon, “Unsupervised intra-domain adaptation for semantic segmentation through self- supervision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 3764–3773.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kim and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Byun, “Learning texture invariant representation for domain adaptation of semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 12 975–12 984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tonioni, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Poggi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mattoccia, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Di Stefano, “Unsu- pervised adaptation for deep stereo,” in The IEEE International Conference on Computer Vision (ICCV), Oct 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [42] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zheng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cham, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cai, “T2net: Synthetic-to-realistic translation for solving single-image depth estimation tasks,” in The European Conference on Computer Vision (ECCV), September 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [43] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tonioni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tosi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Poggi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mattoccia, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Stefano, “Real- time self-adaptive deep stereo,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [44] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lee, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ros, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Li, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Gaidon, “SPIGAN: Privileged adversarial learning from simulation,” in International Conference on Learning Representations, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: https: //openreview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='net/forum?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='id=rkxoNnC5FQ [45] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kokkinos, “Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='579 [46] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ramirez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Poggi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tosi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mattoccia, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Di Stefano, “Geometry meets semantics for semi-supervised monocular depth estimation,” in Asian Conference on Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Springer, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 298–313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [47] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Cipolla, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Gal, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kendall, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” 15 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/ CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='00781 [48] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tosi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Aleotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ramirez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Poggi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Salti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Di Stefano, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Mattoccia, “Distilled semantics for comprehensive scene understanding from videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [49] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Tzeng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hoffman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Darrell, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Saenko, “Simultaneous deep transfer across domains and tasks,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 4068–4076.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kundu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lakkakula, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Babu, “Um-adapt: Unsuper- vised multi-task adaptation using adversarial cross-task distilla- tion,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 1436–1445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [51] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Richter, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hayder, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Koltun, “Playing for benchmarks,” in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2232–2241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='1109/ICCV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='243 [52] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Chen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Liu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Madhavan, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Darrell, “Bdd100k: A diverse driving dataset for heteroge- neous multitask learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2636–2645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [53] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Geiger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Lenz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Stiller, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Urtasun, “Vision meets robotics: The kitti dataset,” International Journal of Robotics Research (IJRR), 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [54] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in Computer Vision and Pattern Recognition, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' CVPR 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' IEEE Computer Society Conference on, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' IEEE, 2005, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 807–814.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [55] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Koltun, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Funkhouser, “Dilated residual networks,” in Computer Vision and Pattern Recognition (CVPR), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [56] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Peng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Wu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Ernst, “Zero-shot deep domain adapta- tion,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 764–781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [57] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Eigen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Puhrsch, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Fergus, “Depth map prediction from a single image using a multi-scale deep network,” in Advances in neural information processing systems, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 2366–2374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [58] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Zeng, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Xie, “Mind the discriminability: Asymmetric adversarial domain adaptation,” in European Conference on Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 589– 606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' [59] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Choi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kim, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Kim, “Self-ensembling with gan-based data augmentation for domain adaptation in semantic segmentation,” in Proceedings of the IEEE international conference on computer vision, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' 6830–6840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Pierluigi Zama Ramirez is a Post Doc at the Computer Vision Laboratory (CVLab), University of Bologna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His research interests include deep learning, semantic segmentation, depth estima- tion, optical flow and domain adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He has authored more than 10 papers on these sub- jects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Adriano Cardace is a PhD student at the Com- puter Vision Laboratory (CVLab), University of Bologna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His research interests include deep learning for Computer Vision problems, espe- cially semantic segmentation, domain adapta- tion and self-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Luca De Luigi is a PhD student at the Computer Vision Laboratory (CVLab) at the University of Bologna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His research focuses on deep learning for computer vision problems, especially dealing with 3D geometry and implicit neural represen- tations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Alessio Tonioni received his PhD degree in Computer Science and Engineering from Uni- versity of Bologna in 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Currently, he is a research scientist at Google Zurich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His research interest concerns machine learning for depth es- timation, domain adaptation and generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He has authored more than 15 papers on these subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Samuele Salti is currently assistant professor at the Department of Computer Science and Engineering (DISI) of the University of Bologna, Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Before joining the University of Bologna, he was leading the Data Science team at Veri- zon Connect, the world leading company in fleet management products and connected vehicles services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His main research interest is computer vision, in particular 3D computer vision, and ma- chine/deep learning applied to computer vision problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Salti has co-authored 42 publi- cations in international conferences and journals and 8 international patents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' In 2020, he co-founded the start-up eyecan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content='ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He was awarded the best paper award runner-up at 3DIMPVT 2011, the top international conference on 3D computer vision, and was nominated outstanding reviewer at CVPR 2020 and NeurIPS 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' Luigi Di Stefano received the PhD degree in electronic engineering and computer science from the University of Bologna, in 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He is currently a full professor with the Department of Computer Science and Engineering, University of Bologna, where he founded and leads the Computer Vision Laboratory (CVLab).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' His re- search interests include image processing, com- puter vision and machine/deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He is the author of more than 150 papers and several patents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He has been scientific consultant for major companies in the fields of computer vision and machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} +page_content=' He is a member of the IEEE Computer Society, IEEE, and the IAPR-IC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btFIT4oBgHgl3EQfmivq/content/2301.11310v1.pdf'} diff --git a/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/2301.02970v1.pdf.txt b/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/2301.02970v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c4abc0eb26e39b17c41e16b60873bb9a76b8595f --- /dev/null +++ b/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/2301.02970v1.pdf.txt @@ -0,0 +1,2352 @@ +MNRAS 000, 1–18 (2023) +Preprint 10th January 2023 +Compiled using MNRAS LATEX style file v3.0 +An emulator-based halo model in modified gravity – I. The halo +concentration-mass relation and density profile +Cheng-Zong Ruan1,2, Carolina Cuesta-Lazaro1,3, Alexander Eggemeier4⋆, Baojiu Li1†, +Carlton M. Baugh1,3, Christian Arnold1, Sownak Bose1, César Hernández-Aguayo5,6, +Pauline Zarrouk7 and Christopher T. Davies8 +1Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK +2Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway +3Institute for Data Science, Durham University, South Road, Durham DH1 3LE, UK +4Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany +5Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany +6Excellence Cluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany +7Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), +4 place Jussieu, F-75252, Paris Cedex 5, France +8Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany +Accepted XXX. Received YYY; in original form 10th January 2023 +ABSTRACT +In this series of papers we present an emulator-based halo model for the non-linear clustering +of galaxies in modified gravity cosmologies. In the first paper, we present emulators for the +following halo properties: the halo mass function, concentration-mass relation and halo-matter +cross-correlation function. The emulators are trained on data extracted from the FORGE +and BRIDGE suites of N-body simulations, respectively for two modified gravity (MG) +theories: f(R) gravity and the DGP model, varying three standard cosmological parameters +Ωm0, H0, σ8, and one MG parameter, either ¯fR0 or rc. Our halo property emulators achieve +an accuracy of ≲ 1% on independent test data sets. We demonstrate that the emulators can be +combined with a galaxy-halo connection prescription to accurately predict the galaxy-galaxy +and galaxy-matter correlation functions using the halo model framework. +Key words: dark energy – large-scale structure of Universe – cosmology: miscellaneous – +cosmology: theory. +1 +INTRODUCTION +Ongoing and upcoming galaxy surveys, such as those that will be +made with the Dark Energy Spectroscopic Instrument (DESI; DESI +Collaboration et al. 2016), the Vera Rubin Observatory (LSST Sci- +ence Collaboration et al. 2009) and Euclid (Laureijs et al. 2011; +Amendola et al. 2013; Troja et al. 2022) will map the large scale +structure (LSS) of the Universe with unprecedented statistical pre- +cision. Measurements of the large-scale structure can potentially be +used to unveil the nature of the dark matter and dark energy, and +to look for any deviation from the predictions of general relativ- +ity (GR). Theories of gravity beyond GR – modified gravity (MG) +models – can explain the observed accelerated expansion of the Uni- +verse without invoking a cosmological constant (e.g. Koyama 2018; +Ferreira 2019). Studies of such models will not only shed light on +⋆ Argelander Fellow +† E-mail: baojiu.li@durham.ac.uk +the nature of the cosmic acceleration, but also serve as useful tests +of GR on cosmic scales. +The impact of modifications to GR has been well studied in +terms of the cosmic expansion history and the large scale structure, +i.e., at the background and linear perturbation levels. In the late +universe, the growth of LSS eventually enters the non-linear regime +over a wide range of length scales, and linear theory predictions +cease to be valid. This point becomes even more acute in the context +of MG, given that such models have intrinsically non-linear features, +such as screening mechanisms and non-linear field equations for +new degrees of freedom, which cannot be captured by linear theories +(e.g. Li et al. 2013). Often a choice is made to exclude small scale +data, thereby losing a wealth of information from high signal-to- +noise ratio measurements. Such nonlinearities must be properly +incorporated into theoretical modelling if one wishes to make the +best use of the current and next generation cosmological surveys to +constrain cosmological parameters and test gravity theories. +A fully non-linear treatment – N-body simulations – is essen- +tial to accurately solve the non-linear dynamics of cosmic struc- +© 2023 The Authors +arXiv:2301.02970v1 [astro-ph.CO] 8 Jan 2023 + +2 +C. Ruan et al. +ture formation (see e.g. Kuhlen et al. 2012; Angulo & Hahn 2022, +for recent reivews). The main hurdle of N-body simulations is +their expensive computational cost. A Monte Carlo Markov chain +(MCMC) analysis, usually used to confront theoretical predictions +with data, requires sampling at least 104-105 models in the cosmo- +logical parameter space. Probing such a large number of models +using simulations is computationally prohibitive. The situation is +even worse for MG models, which usually involve partial differen- +tial equations governing the new physics. Current MG simulations +can take between 2 to O(10) times longer than standard ΛCDM +simulations with the same specifications (e.g. Li et al. 2012; Arnold +et al. 2019a). +There are several approaches to dealing with the non-linear +regime in addition to simulations. N-body simulation results can +be used to develop phenomenological or semi-analytical fitting for- +mulae to describe the statistical properties of matter and dark matter +haloes, such as the halo mass function calibrated by Tinker et al. +(2008), and the halofit prescription for the matter power spectrum +(Smith et al. 2003; Takahashi et al. 2012; Smith & Angulo 2019; +Mead et al. 2021) and bispectrum (Takahashi et al. 2020). The most +up-to-date version of halofit implemented by Mead et al. (2021) +achieves an accuracy of 5% down to deeply non-linear scales. How- +ever, such parametric fits may no longer be fit for purpose with the +advent of next-generation surveys that promise to reach measure- +ments with per cent level precision. +The halo model (Neyman & Scott 1952; Ma & Fry 2000; +Peacock & Smith 2000; Seljak 2000; Cooray & Sheth 2002; Schmidt +2016; Philcox et al. 2020) is a successful analytical description of +the LSS in the non-linear regime. In this framework, all matter, +including galaxies and any other tracers, is assumed to reside within +haloes. Then, the problem of predicting the clustering can be split +into the following steps: +• the abundance of haloes as a function of halo mass, i.e. the +halo mass function (HMF); +• the distribution of tracers around the halo centre, i.e. the +halo density profile, usually assumed to be a Navarro-Frenk-White +(NFW) profile (Navarro et al. 1996, 1997) specified by a halo mass- +concentration relation; and +• the clustering of the haloes themselves, e.g., the halo two-point +correlation function (TPCF) in configuration space and the halo auto +power spectrum in Fourier space. +These basic properties of dark matter haloes constitute the halo +model ingredients. The halo model provides a physically motivated +description of the clustering statistics and is flexible enough to +be extended to incorporate new physics such as massive neutrinos +and baryonic feedback (e.g. Massara et al. 2014; Bose et al. 2021; +Carrilho et al. 2022), as well as models beyond ΛCDM and GR (e.g. +Barreira et al. 2014; Lombriser et al. 2014; Hu et al. 2018; Cataneo +et al. 2019). +The halo model ingredients can be derived from analytic meth- +ods. For example, the HMF can be predicted using the spherical +collapse model of the linear matter density field (Press & Schechter +1974) and the excursion set formalism (Bond et al. 1991; Sheth et al. +2001), whereby the dependence of the HMF on redshift and cos- +mology is expressed in terms of the root-mean-square fluctuations +in the linear matter power spectrum. Jenkins et al. (2001) found +that this universality of the HMF holds at an approximate level. As +simulation predictions improved further, it was discovered that the +redshift evolution of the mass function, even for ΛCDM, deviates +from the universal prediction at the 5-10 per cent level, and several +new fitting formulae were proposed (e.g. Tinker et al. 2008; Courtin +et al. 2011). Moreover, the universality of the HMF is broken further +in extensions of ΛCDM (e.g. Bhattacharya et al. 2011, for wCDM) +and modified gravity models (e.g. Schmidt et al. 2010; Lam & Li +2012; Li & Efstathiou 2012; Lombriser et al. 2013; Cataneo et al. +2016; Gupta et al. 2022). In order to obtain even tighter constraints +on cosmological parameters and to test gravity theories, one there- +fore needs to proceed beyond the traditional approaches, given their +limitations in accuracy and coverage of parameter space. +In this series of papers, we develop simulation-based theoret- +ical templates called emulators, to obtain accurate predictions for +basic halo properties as a function of halo mass and (modified grav- +ity) cosmology, and to construct accurate predictions for clustering +observables in preparation for ongoing and future galaxy surveys. +There have been several previous works on the emulation of cos- +mological quantities in the ΛCDM model and its extensions, such +as Heitmann et al. (2006); Habib et al. (2007), the Coyote Universe +(Heitmann et al. 2010, 2009; Lawrence et al. 2010), PkANN (Agar- +wal et al. 2012, 2014), the Mira-Titan Universe (Heitmann et al. +2016; Lawrence et al. 2017; Bocquet et al. 2020), Kwan et al. (2013, +2015), Aemulus (DeRose et al. 2019; McClintock et al. 2019; Zhai +et al. 2019), Dark Quest (Nishimichi et al. 2019; Kobayashi et al. +2020; Miyatake et al. 2020; Cuesta-Lazaro et al. 2022), matry- +oshka (Donald-McCann et al. 2022) and AbacusSummit (Mak- +simova et al. 2021; Yuan et al. 2022), as well as in non-standard +cosmologies, such as Winther et al. (2019); Ramachandra et al. +(2021); Arnold et al. (2022); Brando et al. (2022); Harnois-Déraps +et al. (2022). +To build emulators we use the machine-learning interpolation +technique of neural networks, which allows us to predict halo proper- +ties for any given cosmology within the range of parameters covered +by the training data set. We use the FORGE (F-Of-R Gravity Emu- +lator) and BRIDGE (BRaneworld-Inspired Dgp Gravity Emulator) +modified gravity N-body simulations described in Arnold et al. +(2022), which together cover a very broad range of parameters in +two MG theories: f(R) gravity and the DGP model. The emulated +halo properties incorporate all the complicated effects on non-linear +scales, such as the non-linear halo bias, the halo exclusion effect and +the screening mechanism. +Following the spirit of the Dark Quest project (Nishimichi +et al. 2019; Cuesta-Lazaro et al. 2022), we do not perform an end- +to-end emulation of galaxy clustering statistics in the joint para- +meter space of cosmological and galaxy-halo connection models. +Instead, we develop emulators for each halo property separately, +and assemble these ingredients within the halo model framework +to construct analytical predictions of galaxy clustering statistics. +This emulator-based halo model gives us the flexibility to insert dif- +ferent prescriptions of galaxy-halo connection for different galaxy +samples. Moreover, emulators for basic halo properties themselves +are very useful. For example, calibrating the cosmology depend- +ence of the HMF is crucial to control the systematic uncertainty +in galaxy cluster abundance studies (e.g. McClintock et al. 2019; +Bocquet et al. 2020). +The layout of this paper is as follows. In Section 2, we present +a short description of the modified gravity theories studied here and +a brief overview of the FORGE and BRIDGE N-body simulation +suites. In Section 3, we outline the measurement and post-processing +of the halo properties from the simulations. Section 4 describes the +construction of the halo property emulators using neural networks, +and Section 5 shows their performance in reproducing the simula- +tion results. In Section 6, we demonstrate how these emulators can +be combined with a galaxy-halo connection prescription to predict +galaxy statistics. +MNRAS 000, 1–18 (2023) + +MG Emulator Halo Model I +3 +Throughout this paper, we use log to denote the base-10 logar- +ithm, log ≡ log10, and ln to indicate the natural logarithm. Unless +otherwise stated, we use a subscript 0 to denote the present-day +value of a physical quantity and an overbar for the background +value of a quantity. +2 +MODIFIED GRAVITY THEORIES AND SIMULATIONS +We briefly describe the two modified gravity models analysed in this +work, f(R) gravity (Hu & Sawicki 2007) and the Dvali-Gabadadze- +Porrati (DGP) brane-world models (Dvali et al. 2000a). These are +two of the most widely studied MG models and, as we discuss be- +low, are representative examples of the two main classes of screen- +ing mechanisms, which make them good test-beds for generic MG +models. For more detailed descriptions of these models, we refer +the reader to Sotiriou & Faraoni (2010) and De Felice & Tsujikawa +(2010) for f(R) gravity, and Sahni & Shtanov (2003) and Maartens +& Koyama (2010) for DGP models. +2.1 +f(R) gravity +The f(R) gravity is a generalisation of Einstein’s general relativity. +In f(R) gravity, the Einstein-Hilbert action in GR has an additional +term, which is a function of the Ricci scalar R, +S = +� +d4x√−g +�M 2 +Pl +2 [R + f(R)] + Lm +� +, +(1) +where MPl = (8πG)−1/2 is the reduced Planck mass, G is New- +ton’s constant, g is the determinant of the metric gµν and Lm is +the Lagrangian density for matter fields. Varying the action with +respect to the metric gµν gives the modified Einstein equation, +Gµν + fRRµν − +�1 +2f − □fR +� +gµν − ∇µ∇νfR = 8πGT m +µν, +(2) +where +Gµν ≡ Rµν − 1 +2gµνR, +(3) +is the Einstein tensor, fR ≡ df(R)/dR, ∇µ is the covariant deriv- +ative corresponding to the metric gµν, □ ≡ ∇α∇α and T m +µν is the +energy momentum tensor for matter. +Equation (2) is a fourth-order partial differential equation in +gµν. This equation can also be considered as the standard Einstein +equation in GR with a new dynamical degree of freedom, fR, which +is dubbed the scalaron (e.g., Zhao et al. 2011). The equation of +motion of fR can be obtained by taking the trace of Equation (2): +□fR = 1 +3(R − fRR + 2f + 8πGρm) , +(4) +where ρm is the matter density. +For cosmological simulations in standard gravity, the Newto- +nian limit is commonly adopted. This includes the approximations +that the gravitational and scalar fields are weak (such that their +higher-order terms can be neglected) and quasi-static (so that the +time derivatives of the fields can be neglected compared to their +spatial derivatives). Most modified gravity simulations (including +the ones used in this work) adopt this assumption. In the context +of f(R) gravity and the Newtonian limit, the modified Einstein +equation (2) becomes +∇2Φ ≈ 16πG +3 +a2(ρm − ¯ρm) + 1 +6a2� +R(fR) − ¯R +� +, +(5) +and the equation of motion of the scalaron reduces to +∇2fR ≈ −1 +3a2� +R(fR) − ¯R + 8πG(ρm − ¯ρm) +� +, +(6) +where Φ is the Newtonian potential, ∇ is the 3-dimensional gradient +operator, and an overbar denotes the cosmic mean of a quantity. +An f(R) gravity model is fully specified by the functional +form of f(R). Here, we adopt the well-studied Hu-Sawicki model +(Hu & Sawicki 2007), which is given by +f(R) = −m2 +c1(−R/m2)n +c2(−R/m2)n + 1 , +(7) +where m2 ≡ Ωm0H2 +0, and c1, c2 and n are free parameters. The +parameter n is a positive number, which is set to n = 1 in this +work as in most previous studies of this model (however see e.g., Li +& Hu 2011; Ramachandra et al. 2021; Ruan et al. 2022, for some +examples of n ̸= 1). With this functional form, we have +fR = − +�� ¯fR0 +�� +� ¯R0 +R +�n+1 +, +(8) +where ¯R0 and ¯fR0 are, respectively, the present-day values of +the background Ricci scalar and ¯fR. For brevity, we will ad- +opt the following nomenclature to label models: the model with +− log10 +� +| ¯fR0| +� += 5.5 will be called F5.5, and so on. +The remaining free parameter of the theory is the background +value of the scalar field fR at redshift z = 0, ¯fR0. With a suitable +choice of this parameter, f(R) gravity reverts to GR in high-density +regions – this is necessary to be consistent with solar system tests +through the associated chameleon mechanism (Khoury & Weltman +2004b,a). A larger value of | ¯fR0| means a stronger deviation from +standard gravity. The F5 model is in slight tension with small-scale +tests, see, e.g., Lombriser (2014) for a recent review of current +cosmological constraints on ¯fR0. But since we aim to test gravity +on cosmic scales, models with such strength of MG are neverthe- +less still valuable to study: given their stronger deviations from GR +compared to models with smaller | ¯fR0|, they can lead to import- +ant insights into how the deviations from GR can affect large-scale +cosmological observables such as weak lensing and galaxy cluster- +ing statistics. In order to fully explore the gravity testing capacities +of upcoming cosmological observations, it is important to gain a +detailed understanding of how these measures are influenced by +possible modifications to gravity. +2.2 +The Dvali-Gabadadze-Porrati (DGP) model +In the Dvali-Gabadadze-Porrati braneworld model (Dvali et al. +2000b), the universe is a four-dimensional brane embedded in a +five-dimensional space-time (called the bulk). The gravitational ac- +tion in this model is given by +S = +� +brane +d4x √−g +� +R +16πG +� ++ +� +bulk +d5x +� +−g(5) +� +R(5) +16πG(5) +� +, +(9) +where a superscript (5) denotes the quantity in the five-dimensional +bulk. This model has a self-accelerating branch of solution (sDGP), +which gives a natural explanation for the cosmic acceleration. How- +ever, the sDGP branch suffers from the ghost problems (Koyama +2007) and cannot be considered as a physical model. Moreover, its +predictions have been found to be inconsistent with observations +such as cosmic microwave background (CMB) and local measure- +ments of the Hubble parameter H0 (e.g., Song et al. 2007; Fang +et al. 2008). +MNRAS 000, 1–18 (2023) + +4 +C. Ruan et al. +The so-called normal branch DGP (nDGP) gravity (Koyama +2007) cannot accelerate cosmic expansion by itself, so in order to +explain the cosmological observations it has to introduce additional +dark energy components. This model is nevertheless still of interest +as a useful toy model that features the Vainshtein screening mechan- +ism (Vainshtein 1972). Here, we assume that there is an additional +non-clustering dark energy component in this model, which results +in its expansion history being identical to that of ΛCDM. The nDGP +model provides an explanation of why gravity is much weaker than +the other fundamental forces (Maartens & Koyama 2010): all matter +species are assumed to be confined to the brane, while gravity could +propagate through (leak into) the extra spatial dimensions. There is +one new free parameter in the nDGP model, which can be defined +as the ratio of G(5) and G, and is known as the crossover scale, +rc ≡ 1 +2 +G(5) +G +. +(10) +The modified Friedmann equation in the normal branch DGP +model is given by +H(a) +H0 += +� +Ωm0a−3 + ΩDE0(a) + Ωrc − +√ +Ωrc , +(11) +where Ωrc ≡ 1/(4H2 +0r2 +c), and ΩDE0 is the density parameter of +the additional dark energy component. The dimensionless quantity +H0rc is used to quantify departures from the standard gravity. If +H0rc → ∞ then Eqn. (11) returns to the ΛCDM case. A larger +value of H0rc means a weaker deviation from GR. Hereafter, an +nDGP model with H0rc = X will be referred to as NX. For +example, a model with H0rc = 1 is called N1. +The modified Poisson equation and the scalar field equation +are given by (Koyama 2007), +∇2Φ = 4πGa2δρm + 1 +2∇2ϕ , +(12) +and +∇2ϕ + +r2 +c +3β a2c2 +� +(∇2ϕ)2 − (∇i∇jϕ)2� += 8π G a2 +3β +δρm , +(13) +where ϕ is a new scalar degree of freedom, δρm = ρm − ¯ρm and +β(a) ≡ 1 + 2H rc +� +1 + +˙H +3H2 +� += 1 + +Ωm0a−3 + 2ΩΛ0 +2 +� +Ωrc(Ωm0a−3 + ΩΛ0) +. +(14) +2.3 +Modified gravity N-body simulations +To construct emulators for dark matter halo properties, we use the +FORGE and BRIDGE suites of N-body simulations (Arnold et al. +2022), covering 49 f(R) gravity and 49 DGP models, along with +49 ΛCDM counterparts. The simulations were performed using +10243 dark matter particles in a cube of side 500 h−1 Mpc (here- +after the high-resolution runs, denoted HR) or 1500 h−1 Mpc (low- +resolution runs, labelled LR), using the modified gravity version of +the Arepo cosmological simulation code (Springel 2010; Arnold +et al. 2019b; Weinberger et al. 2020). The mass resolutions of the +HR and LR runs are 9.1 × 109 and 1.5 × 1012(Ωm0/0.3) h−1 M⊙, +respectively. The gravitational softening lengths of simulations are +15 (HR) and 75 h−1kpc (LR). The initial conditions were generated +using second-order Lagrangian perturbation theory (2LPT, Crocce +et al. (2006)) at zinit = 127. Each cosmology (also called “node”) +has two independent realisations with the pairs of initial conditions +selected to minimise the sample variance on large scales over the +Figure 1. Visualisation of the cosmological parameters C (Equations (16)- +(18)) covered in the FORGE and BRIDGE simulations. The 44 training +cosmologies, 5 validation and 2 test cosmologies are shown as black dots, +purple triangles and red stars, respectively. ΛCDM models corresponding +to log | ¯fR0| = −∞ and log (H0rc) = ∞ are not shown in the last two +rows. (source code) +realisations. All nodes were initialised with the same (two) ran- +dom seeds. See Section 3.2 of Arnold et al. (2022) for a detailed +description. +The cosmological parameters were drawn from a Latin hy- +percube designed to efficiently sample a 4-dimensional parameter +space (or a 3-dimensional space in the case of ΛCDM), as shown +in Fig. 1, following a similar approach to that used in the cosmo- +SLICS project (Harnois-Déraps et al. 2019). Since FORGE and +BRIDGE were partly designed to emulate weak lensing statistics, +they sampled directly in the composite structure growth parameter +S8 ≡ σ8 +� +Ωm0 +0.3 , +(15) +instead of the physical matter fluctuation amplitude parameter σ8. +The use of S8 accounts better for the degeneracy between Ωm0 and +σ8 in the cosmic shear analysis. The 49 nodes form the training +data set for each gravity model. It is common practice to use a +small portion (called validation set) of the training set to determine +whether the process has finished. We choose the nodes 11, 13, 22, +34, 36 as the validation set. +The following three standard cosmological parameters and one +MG parameter are varied, +C = {Ωm0, h, S8}, +for ΛCDM, +(16) +C = +� +Ωm0, h, S8, log10 | ¯fR0| +� +, +for f(R), +(17) +C = {Ωm0, h, S8, log10(H0rc)}, +for DGP, +(18) +MNRAS 000, 1–18 (2023) + +training + validation +test +0.6 +0.9 +0.8 +0.7 +0.6 +R0 +-5.0 +5.5 +-6.0 +1.0 +0.5 +0.0 +-0.5 +0.7 +0.2 +0.4 +0.6 +0.8 0.6 +0.8 +h +moMG Emulator Halo Model I +5 +where h ≡ H0/(100 km s−1 Mpc−1) and H0 is the present day +Hubble constant. The range of the parameters explored is +0.11 < Ωm0 < 0.54 +0.61 < h < 0.81 +0.6 < S8 < 0.9 +−6.2 < log10 | ¯fR0| < −4.6 +−0.45 < log10(H0rc) < 1.0. +(19) +The density parameter of baryons was fixed to Ωb0 = 0.049199 +and massive neutrinos are ignored. The dark energy density is given +by +ΩΛ0 = 1 − Ωm0. +(20) +The remaining cosmological parameter is the slope of the primordial +curvature power spectrum normalised at 0.05 Mpc−1, which is +ns = 0.9652 (Arnold et al. 2022). +We also need test data set to assess the performance of the +emulators independently. In both cases, the test set consists of two +models. The MG test cases are F5 and F6 for f(R) gravity, and +for DGP they are N1 and N5, and they share the same cosmolo- +gical parameters, given by the fiducial Planck cosmology (Planck +Collaboration et al. 2020), +Ωm0 = 0.31315, +ΩΛ0 = 0.68685, +Ωb0 = 0.049199, +h = 0.6737, +σ8 = 0.82172, +ns = 0.9652. +(21) +Each test model has 8 realisations. +The dark matter halo catalogues were obtained using the +Subfind halo finder (Springel et al. 2001). The haloes were first +identified using a fast parallel friends-of-friends (FOF) algorithm +with link length set to b = 0.168 times the mean interparticle separ- +ation. Spherical overdensity halo catalogues are then built out from +the potential minimum of each FOF halo. The halo mass definition +adopted is +M200c ≡ 4π +3 (R200c)3 × 200ρcrit, +where ρcrit(z) ≡ 3H2(z)/(8πG) is the critical density of the +Universe, and R200c is the spherical halo radius within which the +spherically averaged mass density equals 200ρcrit. Only main ha- +loes with masses above 1012 h−1M⊙ from the HR simulations are +considered in this work. The halo catalogues at +z = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 +are available for all nodes. Besides these common redshifts, Arnold +et al. saved particle snapshots and halo catalogues at pre-selected +redshifts to construct past light-cones for weak-lensing analysis, +therefore enabling the emulation of halo properties as a function +of redshift. In the main text, we present the performance of the +emulators at redshift zero, since the measurement and emulation at +other redshifts are performed in the same way. +3 +DATA SET +In this section we describe the measurement and post-processing +of the halo properties from the simulations, including the halo +mass function, concentration-mass relation and halo-matter cross- +correlation function. +3.1 +Halo Mass Functions +The differential halo mass function (dHMF) quantifies the number +density of haloes as a function of halo mass for a given cosmology +C and redshift. It is denoted as +dn(M; z, C) +dM +or +dn(log M; z, C) +d log M +. +(22) +In the cumulative form, the cumulative HMF (cHMF) gives the +number density of haloes above a given mass threshold M, +n(> M; z, C) = +� ∞ +M +dm dn(m; z, C) +dm +. +(23) +The HMF is measured by creating a histogram of the halo mass, +which is affected by shot noise and sample variance, especially for +massive haloes. Also, HMFs span many orders of magnitude in +abundance, typically from 10−3 to 10−8 (h−1Mpc)−3. Taking the +logarithm of the HMF to reduce the dynamic range does not help +much, since the interpolation errors in the logarithmic quantity +would be exponentially amplified. To overcome these problems, +a commonly used approach (e.g. followed by McClintock et al. +2019; Nishimichi et al. 2019; Cuesta-Lazaro et al. 2022) is to fit +the measured HMF using fitting formulae like those proposed by +Jenkins et al. (2001); Tinker et al. (2008), and then to emulate the +mass and cosmology dependence of the fitting parameters. However, +the performance of such fitting functions in MG simulations is not +guaranteed (e.g. Schmidt et al. 2009; Gupta et al. 2022) and therefore +may cause systematic errors. +We adopt an alternative method to emulate the HMF. The +main ideas include: (1) Emulating the ratio between the simulation +result for the HMF and a realistic fitting formula to reduce the +dynamic range. (2) Considering the cumulative HMF instead of +the differential one to allow for smaller steps in halo mass, thereby +providing more training data. +Tinker et al. (2008) (hereafter T08) derived fitting functions +for the HMF applicable over a wide range of halo masses and halo +definitions, with a precision of ≲ 5%. We work with the ratio of the +cumulative HMFs between the simulation measurements and the +T08 fitting formulae1, +r(M; C, z) ≡ nsim +h +(> M; C, z) +nT08 +h +(> M; C, z). +(24) +The HMF ratios are then interpolated across parameter space using +neural networks to construct the emulator. To obtain the differential +HMF for any given cosmology Cany, one can calculate the ratio for +this cosmology using the trained emulator, multiply it with the T08 +HMF and take the derivative. The emulation process is sketched in +Fig. 2. +In each snapshot, we measure the number densities of haloes +more massive than a series of masses, beginning at 1012 h−1M⊙ +and increasing in steps with a bin width of ∆ log [M/(h−1M⊙)] = +0.02. The maximum mass varies across redshifts. Fig. 3 presents the +ratios of HMFs for 49 f(R) gravity simulations at z = 0. The ratios +are gently varying functions over a lower dynamic range than HMFs +themselves, therefore resulting in a higher emulation accuracy. +1 Numerically implemented in the Python module hmf (Murray et al. 2013, +2021). +MNRAS 000, 1–18 (2023) + +6 +C. Ruan et al. +Halo Catalogues +M200c +cumulative HMF +nh,sim(>M|Ctrain) +binning +Fitting Function +Tinker et al. (2008) +cumulative HMF +nh,T08(>M|Ctrain) +integrate +Emulated cHMF Ratio +remu(M|Cany) +cHMF Ratio +r(M|Ctrain)= +nh,sim(>M|Ctrain)/nh,T08(>M|Ctrain) +emulation +Emulated dHMF +dnemu/dM(>M|Cany) +differentiation +Emulated cHMF +nemu(>M|Cany)= +remu(M|Cany) × nh,T08(>M|Cany) +Figure 2. Flow chart illustrating the process of emulating halo mass func- +tions. We start from measuring the cumulative HMF from the simulations in +the training data set. For each simulation, we calculate the cHMF predicted +by the fitting formula of Tinker et al. (2008) for the same cosmology C. We +then interpolate the ratios between the two cHMFs across parameter space +using neural networks. To obtain the commonly used differential HMF for +any given cosmology Cany, we can calculate the ratio, multiply the ratio by +the Tinker et al. (2008) function and take the derivative. +Figure 3. Cumulative halo mass function (cHMF) ratios between simulation +measurements for 49 f(R) gravity models and the fitting formula calibrated +by Tinker et al. (2008) for the same cosmology (except for the MG parameter +¯fR0, which is set to zero), at redshift 0. The dynamic range of the ratios +are significantly decreased compared with cHMFs themselves, therefore +increasing the emulation accuracy. (source code) +3.2 +The individual halo density profile and the +concentration-mass relation +One of the most remarkable discoveries from cosmological N-body +simulations was that dark matter haloes display a universal density +profile (Navarro et al. 1996, 1997; Wang et al. 2020), from the host +haloes of dwarf galaxies to those of massive galaxy clusters. Spe- +cifically, it was shown that the spherically averaged density profile of +individual relaxed haloes can be described by the well-known Nav- +arro, Frenk & White (NFW) profile. The NFW profile is described +by two parameters, the characteristic density and scale radius of a +halo, or equivalently the halo mass and concentration, +ρNFW(r|r−2, ρ−2) = +4ρ−2 +� r +r−2 +�� +1 + +r +r−2 +�2 , +(25) +where r−2 is the characteristic radius (also denoted as rs) of a halo +at which the logarithmic slope of the density profile equal to −2, +d log [ρNFW(r)] +d log r +���� +r=r−2 += −2, +(26) +and ρ−2 ≡ ρNFW(r = r−2). The halo concentration c is defined +as the ratio between the halo radius (which is adopted as R200c in +this work) and r−2, +c ≡ R200c +r−2 . +(27) +The other NFW parameter ρ−2 is related to the concentration as +ρ−2 = ρcrit(a) +4 +200 +3Ωm(a) +c3 +f(c), +(28) +where Ωm(a) ≡ ¯ρm(a)/ρcrit(a) is the matter density parameter at +a given scale factor a; f(c) ≡ ln(1 + c) − c/(1 + c). +Previously, attention was focused on measuring halo concen- +trations for the best-fitting WMAP or Planck cosmologies, or similar +models close by in parameter space (e.g. Gao et al. 2008; Prada +et al. 2012; Diemer & Kravtsov 2015; Klypin et al. 2016; Child +et al. 2018). Such calibrated fitting functions cannot be simply ex- +tended beyond the cosmological and gravity models for which they +have been tested. In order to overcome potential problems associ- +ated with the extrapolation of fitting functions to a wider range of +cosmologies, we build emulators for the halo concentration-mass +relation and halo density profiles. +We study the concentration-mass relation for haloes in the cos- +mologies covered by the FORGE and BRIDGE simulation suites. +We consider only the haloes containing more than 1 000 particles, +corresponding to a mass of 1013 h−1M⊙ for the fiducial Planck +cosmology. For several reasons set out below we do not exclude +unrelaxed haloes that contain a large amount of substructure as was +done in some previous work (e.g. Neto et al. 2007; Prada et al. 2012; +Klypin et al. 2016). First, our aim is to predict the halo profile as +an ingredient of the halo model, instead of studying the formation +and evolution of relaxed haloes. Galaxies are expected to reside +in all haloes, regardless of their dynamic state. Second, excluding +unrelaxed haloes would bias the concentration high because haloes +in the rapid mass accretion stage tend to have low concentrations +(Child et al. 2018). Third, such a cut removes typically 30-50% +haloes, which would make the measurement of halo properties less +reliable, by introducing larger statistical errors. +To measure halo concentrations, we follow the approach taken +by Mitchell et al. (2019) and briefly review the main aspects below. +As mentioned in Section 2.3, we use M200c and R200c as the defin- +itions of the halo mass and radius, respectively. The halo centre is +MNRAS 000, 1–18 (2023) + +4 +3 +2 +sim +u +0 +1012 +1013 +1014 +M200c/ (h-1 MoMG Emulator Halo Model I +7 +adopted as the gravitational potential minimum. The halo particles +are split into 20 logarithmically spaced radial bins from the halo +centre, covering the range [0.05, 1.00]R200c. We then fit the NFW +profile (Eqn. (25)) to the density in the radial bins of each halo, treat- +ing the characteristic density and concentration as free variables, by +minimising an unweighted χ2, +χ2 = +� +i +[log ρsim(ri) − log ρNFW(ri|c, ρ−2)]2. +(29) +We have checked that weighting the χ2 function by the number of +particles in each radial bin has a negligible impact on the best-fitting +concentration values recovered. +The mean value of the best-fitting concentration depends on +technical details such as the halo finder used, and the number and +range of the radial bins, which would have a non-negligible impact +if the NFW profile is not a good fit to the halo profile (Meneghetti +& Rasia 2013; Dooley et al. 2014). It has been argued that using the +median instead of the mean concentration would avoid such non- +convergence (Diemer & Kravtsov 2015). Neto et al. (2007) found +that the median of the concentration depends only weakly on the +radial range used in the fit, provided that the unrelaxed haloes are +removed and rmin ≥ 0.05Rvir in the fitting. +To test the robustness of the halo concentration measurement, +we use three N-body simulations from Mitchell et al. (2021) with +the same cosmology and particle number, Np = 10243, and dif- +ferent box sizes, L = 200, 500 and 1000 h−1Mpc. We then bin +the halo particles, fit the NFW profile and calculate the mean and +median values of the concentrations in each mass bin, keeping the +maximum radius fixed at R200c and checking the results for four +different rmin values: (0.05, 0.07, 0.10 and 0.13)R200c. The results +are shown in Fig. 4. All concentration-mass relations are well fitted +by a power law, +c(M) = c0M α, +(30) +with c0 the amplitude and α the index, as represented by the coloured +bands in the figure. The median concentrations (as well as the mean) +and the best-fitting amplitude are still sensitive to the minimum +radius, with a relative difference of up to 10 per cent. However, the +power indices are practically the same for different fitting ranges. +The convergence test also confirms our choice of the min- +imum particle-number cut applied to define the halo sample used. +The concentrations from the lower resolution simulations start de- +viating from those of the higher resolution runs around the halo +mass corresponding to ∼ 800 times the particle mass. This pivot +mass also depends weakly on the radial range used to fit the density +profile, with smaller minimum scales having larger pivot masses. +3.3 +The averaged halo profile estimated from the halo-mass +correlation function +The normalised halo density profile, u(r|M), that appears in the +halo model can be estimated by measuring the halo-mass cross- +correlation functions from an N-body simulation. As mentioned +in Section 1, the halo model assumes that the matter density field +consists of a superposition of haloes at locations xi with masses +11.5 +12.0 +12.5 +13.0 +13.5 +14.0 +14.5 +log10 +� +M200c/(h−1M⊙)� +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +0.85 +0.90 +log10 cmedian +200c +800 × mL200 +particle +800 × mL500 +particle 800 × mL1000 +particle +rmin = 0.05R200c +rmin = 0.07R200c +rmin = 0.10R200c +rmin = 0.13R200c +fit : c = 2.02M −0.097 +fit : c = 2.03M −0.099 +fit : c = 1.98M −0.097 +fit : c = 1.94M −0.095 +Figure 4. Convergence test of halo concentration measurements. We fit +the NFW profile and measure the halo concentration from three N-body +simulations with the same particle number and different box sizes, L200 +(the highest resolution run, thick solid lines), L500 (the medium run, thin +dashed lines) and L1000 (the low resolution run, thin solid lines). Colours +represent results obtained for different minimum radial ranges in the fitting, +as shown by the key, with the maximum radial range fixed at R200c in +each case. The vertical lines present the critical mass scales lower than +which the concentration measurements are unreliable due to insufficient +resolution, which are ∼ 800 times the mass resolutions mparticle, as long +as rmin > 0.05R200c. The colour-shaded bands show the power fitting +(c(M) = c0Mα) to the measured c(M) relations. (source code) +Mi, so that the matter field can be written as +ρm(x) = +� +i +Mi u +� +|x − xi| +���Mi +� +(31) += +� +d3x′ +� +dM +� � +i +δ(D)(M − Mi) δ(D)(x′ − xi) +M u +� +|x − x′| +���M +�� +, +(32) +where +• The summation is for all haloes; the same results can be derived +by taking the summation over all microcells which are made to be +so small that each cell contains no more than one halo centre (e.g. +Peebles 1980); +• δ(D)(· · · ) is the Dirac delta function; +• +� +i +δ(D)(M − Mi) δ(D)(x′ − xi) ≡ dn(x′; M) +dM +is the local +HMF, whose integral over the halo mass gives the halo number +density field at the field point x′: +� +dM dn(x′; M) +dM += nh(x′), +(33) +MNRAS 000, 1–18 (2023) + +8 +C. Ruan et al. +and its ensemble average gives the common dHMF, +�dn(x′; M) +dM +� += +�� +i +δ(D)(M − Mi) δ(D)(x′ − xi) +� += dn(M) +dM +; +(34) +• u +� +|x − xi| +���Mi +� +≡ +ρh +� +|x − xi| +���Mi +� +Mi +denotes the density +profile of a halo centred at xi, which is also assumed to be spheric- +ally symmetric and depends only on its mass, +u +� +|x − xi| +��Mi +� += +� +ρh +� +|x − xi| +���Mi +� +/Mi, +|x − xi| ≤ Rhalo; +0, +|x − xi| > Rhalo; +(35) +and u is normalised: +� +d3x u +� +|x − xi| +��Mi +� += 1. +(36) +For two different populations of objects with overdensity fields +δa(x) and δb(x), the two-point cross-correlation function is defined +as +ξab(r) ≡ ⟨δa(x) δb(x + r)⟩ , +(37) +where ⟨· · ·⟩ denotes ensemble averaging. Assuming statistical iso- +tropy reduces ξab(r) to a function of separation only. In the case of +the cross-correlation between halo centres and the matter field, the +cross-correlation function is given by +ξhm(r) ≡ ⟨δh(x) δm(x + r)⟩ +(38) += +1 +¯nh¯ρm +� +nh(x) ρm(x′) +� +− 1, +(39) +where x′ ≡ x + r, and the halo number density fluctuation field is +defined as +δh(x) ≡ nh(x) − ¯nh +¯nh +. +(40) +Now we derive the expressions for the halo and matter fields +in Eqn. (39) within the halo model framework. In realistic N-body +simulations, halo catalogues always have a finite halo mass range, +limited by the simulation force/mass resolution and the box size. +We can define the halo selection function for a given mass range +(MR) as +φ(m|MR) ≡ +� +1, +if m ∈ MR, +0, +otherwise. +(41) +In practice, MR can be a narrow mass interval, [M, M + dM) ≈ +[M, M + ∆M), or a mass threshold interval, [M, ∞). For a given +halo sample, the corresponding halo number density field can be +expressed as +nh(x) = +� +i +δ(D)(x − xi) φ(mi|MR). +(42) +To obtain the expression for ⟨nh(x) ρm(x′)⟩ in the halo model, we +can plug the expressions for the halo and mass fields, Eqns. (32) and +(42), into Eqn. (39). The full expression can be found in Eqns. (7) and +(8) of García et al. (2021). We focus only on the internal structure +of the halo and, therefore, on the 1-halo term, which reads +� +nh(x) ρm(x′) +� +1h = +� +dm dn +dmm φ(m|MR) u(r|m) +(43) += +� +� +� +dn(M) M u(r|M), +MR = [M, M + dM), +� ∞ +M +dm dn +dm m u(r|m), +MR = [M, ∞), +(44) +where dn(M) is the number density of halos in the mass range +[M, M + dM). The 1-halo term of the halo-mass correlation func- +tion is +ξ1h +hm(r|M) = M u(r|M) +¯ρm +− 1 = ρh(r|M) +¯ρm +− 1, +(45) +ξ1h +hm(r|>M) = +1 +¯ρm ¯nh(>M) +� ∞ +M +dm dn +dm m u(r|m) − 1. +(46) +We are interested in the average density profile of haloes in a +narrow mass interval [M, M +dM). However, the noise level of the +simulation measurements for such halo properties and statistics is +high because of the low number density. We bypass this problem by +measuring ξ1h +hm(r| > M) (which involves more haloes and therefore +is a smoother function) and taking the partial derivative with respect +to mass, +u(r|M) = − ¯ρm +M +�dn(M) +dM +�−1 +× +∂ +∂M +� +¯nh(> M) +� +1 + ξ1h +hm(r| > M) +�� +. +(47) +4 +USING NEURAL NETWORKS FOR REGRESSION +PROBLEMS +Given a data set comprised of independent variables (also called +features) and dependent variables (labels), there exists an unknown +underlying function mapping the inputs to the outputs. We can use +supervised learning algorithms to approximate this function, which +falls in the category of a regression problem. In the context of +structure formation, the features consist of cosmologies C, redshifts +z, halo masses M or number densities nh, etc. The labels of interest +include basic properties of haloes such as halo mass functions, +concentration-mass relations and correlation functions. In the case +of structure formation, the “functions” between the features and +labels are known but expensive: we can run N-body simulations +given a set of cosmological parameters C, save the snapshot at +a given redshift z, identify haloes and measure the properties of +haloes. But it is computationally intractable to perform ≳ O(104) +cosmological simulations to explore the parameter space in a typical +MCMC analysis. +As shown in previous works on cosmic emulation, such as +Nishimichi et al. (2019); DeRose et al. (2019); Cuesta-Lazaro et al. +(2022), and as we will report in the following sections, it is possible +to construct emulators for halo properties by running affordable +numbers (e.g., 50-100) of simulations and interpolating in a high- +dimensional parameter space. Emulators can give accurate predic- +tions for halo properties for new models without running additional +simulations. Thanks to the development of algorithms and comput- +ing power, statistics and machine learning provide us with a wealth +of tools to solve such regression problems. +In a regression analysis, the typical progress of approximating +a function can be summarised as: +• Define a functional form y = f(x|θ) with adjustable or train- +able parameters θ. For example, in the simplest and most common +form — linear regression — the labels are assumed to be linear +combinations of the features and the coefficients are the trainable +parameters. +• Define a loss function on the training data set D to quantify +the difference between the real and predicted values of the target, +e.g., the sum of the absolute differences (which reduces the weight +MNRAS 000, 1–18 (2023) + +MG Emulator Halo Model I +9 +of outliers), +L(θ|D) ≡ +� +(xi,yi)∈D +��yi − f(xi|θ) +��. +• Find the optimal parameters θ⋆ to minimise the loss function +(train the model). +Gaussian process (GP) regression (e.g. Williams & Rasmussen +2006) has been widely adopted in cosmological emulation projects, +such as Dark Quest (Nishimichi et al. 2019), Aemulus (DeRose +et al. 2019), the Coyote Universe (Heitmann et al. 2010), the Mira- +Titan Universe (Bocquet et al. 2020), Cosmic Emulators (Kwan +et al. 2013) and FORGE (Arnold et al. 2022). GP regression is non- +parametric, i.e., no specific functional form is assumed. However, +GPs are not easy to apply to large data sets because of their O(N 3) +scaling where N is the size of the training data. Therefore, the +aforementioned projects usually emulate matter, halo and/or galaxy +properties using a combination of principal component analysis, +to reduce the dimensionality of the data vector, and GP, to fit the +dependence of the principal component coefficients on cosmology. +The machine learning algorithm we adopt is a fully connected +neural network (e.g. Bishop et al. 1995; Alom et al. 2019; Zhang +et al. 2021). This is a type of artificial neural network in which +all neurons in one layer are connected to the neurons in the next +layer. The neural network algorithm has been widely applied to +cosmology (e.g., Agarwal et al. 2012, 2014; Jennings et al. 2019; +Kobayashi et al. 2020; Cuesta-Lazaro et al. 2022), and its perform- +ance has been shown to be competitive or sometimes better than +other methods. Neural networks have a strong fitting ability, as re- +flected by the universal approximation theorem (Cybenko 1989; +Hornik et al. 1989; Goodfellow et al. 2016). However, this theorem +does not provide a means to construct optimised neural networks, +but merely guarantees their existence. Also, this strong fitting abil- +ity also makes neural networks more susceptible to the overfitting +problem compared to GPs. Therefore, we need to carefully check +the emulator performance using independent test data sets and tune +the network architecture so that the generalisation error is success- +fully suppressed. Moreover, we show dimensionality reduction is +not necessary when using neural networks, which also improves the +accuracy of the emulator predictions. +A neural network is an interconnection of neurons arranged in +a series of layers, with each neuron in a layer connected to all other +neurons in adjacent layers with different weightings. One can impart +values on to the neurons of the first layer (called the input layer), have +a number of hidden layers and finally obtain the output from the last +layer. For example, in this work, the neural networks emulating the +halo mass function at fixed redshift have five nodes in the input layer, +corresponding to the halo mass and four cosmological parameters, +and one node in the last layer outputting the HMF, +n +� +> M|Ωm0, h, S8, log10 | ¯fR0| or log10 |H0rc| +� +. +(48) +Neural networks use activation functions to impart non- +linearities into the fitting. Rectified Linear Unit (ReLU) (Agarap +2018) is the most commonly used activation function in current +neural networks used to add non-linearities in the mapping between +inputs and outputs, which is defined as +ReLU(x) = max(0, x), +(49) +where x is the output of the previous layer of the neural network. +Note that the activations of ReLU are not differentiable at x = 0. +Here, however, we are interested in functions that are differenti- +able with respect to their inputs and, in particular, with respect to +the cosmological parameters. Therefore, throughout, we use Gaus- +sian error linear unit (GELU) (Hendrycks & Gimpel 2016) as the +activation function instead, +GELU(x) = 0.5x +� +1 + erf +� x +√ +2 +�� +. +(50) +To find the optimal parameters θ⋆ that reproduce the halo +properties measured in the N-body simulations, we minimise the +L1-norm loss function, +L = 1 +N +N +� +i=0 +|yi +true − yi +predicted| +(51) +using the Adam optimiser (Kingma & Ba 2014). Compared to the +mean squared error, the loss of L1 reduces the importance given +to outlier errors. To avoid fine-tuning the learning rate, we adopt a +learning rate scheduler that reduces the learning rate by a factor of +10 every time the validation loss does not improve after 30 epochs. +We also stop the training process when the validation loss does not +improve after 100 epochs. This iterative reduction of the learning +rate allows the model to quickly learn the broad characteristics of +the data and later reduce the errors with a smaller learning rate. The +initial learning rate is always set to 0.01. +4.1 +Ideal emulation tests +To gain a preliminary impression of the emulation process, and to +guide the design of emulators in the future, we perform emulation +tests under ideal conditions. The halo properties are generated for a +limited number of randomly selected cosmologies using analytical +methods or fitting formulae, which are noise-free mappings from +cosmologies to halo properties. Then we use these data to train +neural networks and emulate the “true” model. To evaluate the +performance of the emulator, we compare the true values with the +emulator predictions using independent test data sets. +The cosmologies of the training set cover 50 flat geometry +(w0-wa) CDM models (Linder 2003), where the equation-of-state +parameter for dark energy is parameterised in terms of the expansion +factor, a, as +w(a) = w0 + wa(1 − a). +(52) +A key aspect of building emulators is an efficient sampling scheme. +As the training dataset, the 50 cosmologies were sampled using +optimal minimax distance sliced Latin hypercube designs (Ba et al. +2015) in a seven-dimensional cosmological parameter space, +C = +� +Ωm0, Ωb0, h, σ8, ns, w0, wa +� +, +(53) +as shown by the grey dots in Fig. 5. The range of parameters is +0.1 < Ωm0 < 0.7, +0.02 < Ωb0 < 0.06, +0.5 < h < 0.9, +0.5 < σ8 < 1.2, +0.92 < ns < 0.99, +−1.3 < w0 < −0.7, +−0.1 < wa < 0.1, +(54) +while the upper and lower parameter limits depart significantly from +the current best-fitting ΛCDM background cosmology from the +Planck satellite (Planck Collaboration et al. 2020). We also generate +two test data sets that were not used in the training: both consist of +500 random cosmologies; one set covers the same parameter range +as that of the training set, and the other one covers the inner half- +region (in terms of the length per dimension, instead of volume) +of the parameter space. The cosmologies in the full- and half-range +test data sets are shown in green and blue dots in Fig. 5, respectively. +MNRAS 000, 1–18 (2023) + +10 +C. Ruan et al. +Figure 5. Visualisation of the seven-parameter (w0-wa)CDM cosmologies +studied in the ideal emulation tests. Grey dots show the training set including +50 nodes. Green dots represent full-range test set consisting of 500 nodes +covering the same range as that of the training set. Blue dots show the half- +range test set including 500 nodes in the inner half region of the parameter +space. (source code) +We choose to emulate two basic properties of haloes in the +tests: the concentration-mass relation c(M), and the cumulative +HMF ¯nh(> M). For given cosmologies, we generate the c(M) +relation calibrated in Prada et al. (2012), using the publicly available +Python toolkit COLOSSUS (Diemer 2018), and compute the Tinker +et al. (2008) HMF with the Python package hmf (Murray et al. 2013, +2021). As described in Section 3.1 and Fig. 2, we train the emulators +directly on the ratio of the cumulative HMF between the target HMF +and a fitting formula to reduce the dynamic range and improve the +interpolation accuracy. We choose the HMF calibrated in Jenkins +et al. (2001) as the reference. +The upper panels of Fig. 6 show the halo properties calculated +using the fitting formulae and emulators. The fractional errors are +shown in the lower sub-panels. The results show that the emulator +reproduces the analytical halo c(M) relation with a sub-percent +error in the 7D parameter space with only 50 training models. The +performance of the HMF emulator is even better than that of the +concentration emulator, although the HMF data span ∼ 20 orders of +magnitude. The median absolute error of the emulator predictions +is lower than 1 per cent for halo masses M ≲ 1016 h−1M⊙. +We also note that the emulator precision is generally different +at the edge and centre of the parameter space, as revealed by the +green and blue lines in the bottom panels of Fig. 6. This suggests that +we should design the parameter space to be wider than the existing +cosmological constraints. The parameter space in our ideal tests is +designed to be wide enough that covers some extreme cosmologies, +such as Ωm0 = 0.7 and h = 0.5. +In general, ideal emulation tests show that under noise-free +conditions, neural network emulators can provide accurate inter- +polations in high-dimensional parameter space, using 50 efficiently +sampled models as the training set. In the next section, we will +present the cosmic emulation in the real situation: the data are +measured from simulations and, therefore, are influenced by sample +variance and noise. +5 +RESULTS +In this section we demonstrate the ability of a fully connected neural +network to reproduce the halo properties measured from FORGE +and BRIDGE simulations. We train different emulators for each +gravity theory: ΛCDM, f(R) gravity and DGP. The configurations +of the neural networks for emulating three halo properties are sum- +marised in Table 1. +5.1 +The emulator for the halo mass function +As discussed in Section 3.1, we train the neural network emulators +directly on the ratio of the cumulative HMF between simulation +measurements and the fitting formula calibrated in Tinker et al. +(2008) to reduce the dynamic range and improve the emulation +accuracy. Fig. 7 compares the cumulative and the differential HMFs +from simulations and emulators at z = 0, for the ΛCDM, f(R) +gravity and DGP models. The differential HMF of a given mass bin +centred on log Mi is obtained by +dn(M) +d log M +���� +log Mi +≈ n(> log Mi − bw +2 ) − n(> log Mi + bw +2 ) +bw +, +(55) +where bw ≡ log Mi+1 − log Mi is the bin width. The lower sub- +panels show the fractional difference between the emulator predic- +tion and the measured HMFs in a given mass bin, +HMFemu − HMFsim +HMFsim +. +(56) +The performance of the emulator on the training data set is shown +by the thin lines of Fig. 7. The emulator achieves sub-percent ac- +curacy in reproducing most of the cumulative HMF for halo masses +between 1012 and 1014 h−1M⊙. The residuals of the differential +HMF obtained using Eqn. (55) are slightly larger but still show ≲ 2 +per cent scatter around zero, with a mean consistent with zero. The +thick lines in Fig. 7 show the emulator predictions for three test mod- +els which are not used in the training, as described in Section 2.3. +We again find percent-level agreement between the emulator pre- +dictions and simulation results. Furthermore, the fluctuations of the +residuals in the test set are much smaller than those of the training +models, since each test cosmology has 8 realisations and the sample +variance of the measured dHMFs is suppressed. This confirms that +the errors of the emulator predictions are mainly random instead of +systematic. +5.2 +The emulator for the concentration-mass relation +As shown in Section 5.2 and Fig. 4, the halo concentrations meas- +ured from simulations are sensitive to the radial range used in the +fitting, which indicates that this is not the optimal way to describe +the halo density profiles. However, the power law index is not sens- +itive to the range adopted, which indicates that we can treat the +amplitude of the concentration-mass relation as a free parameter +to take into account this variation. We build an emulator for the +c(M) relation taking rmin = 0.10R200c as a representative value. +The performance of the emulator at z = 0 is shown in Fig. 8. The +fractional errors are sub-percent for most of the cosmologies in the +training and test data sets. +MNRAS 000, 1–18 (2023) + +0.06 +0.0 +0.02 +1.25 +1.00 +-0.75 +Wo +0.8 +0.6 +1.2 +1.0 +8 +0 +0.6 +0.98 +s 0.96 +n +0.94 +0.92 +0.25 +0.50 +0.025 +0.050 +0.75 +0.5 +0.50 +1.0 +hMG Emulator Halo Model I +11 +Figure 6. Ideal emulation tests. Top panels: The halo concentration-mass relation (left) and halo mass function (right) of the training (grey), full-range test +(green) and half-range test (blue) sets, from the analytical methods (dots) and emulators (lines). Bottom panels: The absolute value of the relative difference +between the models and emulators. The solid and dashed lines present the median and 90-th percentile of the emulation fractional errors among the training +(black), test (green) and half-range test (blue) sets, which include 50, 500 and 500 cosmologies, respectively. (source code 1, 2) +Table 1. Summary of the neural network configurations for emulating the halo properties. The architecture of a neural network is specified from the input to +output layer as (Ninput, Nhidden1, Nhidden2, · · · , Noutput) with N the number of neurons in each layer. +Halo +Property +Feature +Label +Neural Network +Architecture +Activation +HMF +C, M200c +Equation (24) +(5, 64, 32, 1) +GELU +Concentration +C, M200c +c200c +(5, 32, 16, 1) +GELU +ξhm +C, nh +{r2 +i ξhm(ri)}N=30 +i=1 +(5, 128, 32, 30) +GELU +5.3 +The emulator for the halo-mass cross-correlation +function +As discussed in Section 3.3, the average halo profile can be es- +timated from the halo-mass cross-correlation function. The halo +profile u(r|M) is directly related to the matter density field +cross-correlated with the halo sample in a narrow mass range +[M, M+∆M]. However, such correlation functions measured from +simulations would be rather noisy because of the low halo number +density. To feed the neural networks with smoother data, we meas- +ure the cross-correlation functions between the matter field and the +halo samples with fixed number densities, ξhm(r|C, ¯nh). We then +use the HMF emulator to translate ξhm(r|C, ¯nh) as a function of +number density into ξhm(r|C, M) as a function of mass, according +to Equation (47). +We measure ξhm(r|C, ¯nh) using the high-performance code +Corrfunc (Sinha & Garrison 2020) for the halo number densities +in logarithmically spaced bins over the range +log10 +� +¯nh +(h−1Mpc)−3 +� += [−5.1, −2.9], +(57) +using a bin width of ∆ log10 ¯nh = 0.05. The separation r is split +into 30 logarithmically-spaced bins from 0.05 h−1Mpc (three times +the force resolution) to 3 h−1Mpc. Furthermore, to reduce the +dynamic range of the data vector, we opt to emulate r2ξhm(r) +instead of ξhm(r) itself. The upper-left panel of Fig. 9 shows +ξhm +� +r|¯nh = 10−3.5 (h−1 Mpc)−3� +at z = 0 for the 49 ΛCDM +gravity cosmologies along with the test models. +The average halo profile is only related to the 1-halo term of +ξhm. The halo-mass correlation enters the transition between 1- and +2-halo terms as the scale increases. To estimate the range of the +one-halo term, we only consider the scales below R200c, which is +related to the adopted mass definition M200c as +M200c(z) = 4π +3 (R200c)3200ρcrit(z). +(58) +We then build emulators for ξhm(r|C, ¯nh) at each redshift, +to reduce the number of features and minimise emulation errors. +The lower left sub-panel of Fig. 9 shows the fractional difference +between the simulation measurements and the emulator predictions, +in the training set along with the test models. The emulator achieves +sub-percent accuracy for the both the training and the test models. +The average halo density profile can be estimated from ξhm +using Eqn. (47). In the right panel of Fig. 9, we compare this type of +profile with the NFW profiles combined with three concentration- +mass relations from this work, Klypin et al. (2016) and Diemer +& Joyce (2019), in five halo mass bins. We also fit the average +profile with an NFW form, using the the data over the range of +[0.1, 1.0]R200c. +In the right sub-panel of Fig. 9, we check the relative difference +between the average profiles measured from the simulations and the +NFW fits. There is a ∼ 5% discrepancy between the two types of +profiles, regardless of the concentration-mass relation, which shows +that the differences between the NFW profiles with different c(M) +relations are small. This level of difference is consistent with the +results discovered in Section 5.1.2 of Nishimichi et al. (2019). +MNRAS 000, 1–18 (2023) + +training,true +20 +training, emulation +test +test, inner 50% +15 +10 +5 +training, median +test +training, 90-th percentile +test,inner 50% +rue +10 +10-3 +1012 +1013 +1014 +1015 +1016 +M /(h-Mo3 +10-4 +1 +(odWi-)/(W<)u +10-8 +10-12 +training, simulation +10-16 +training, emulation +10-20 +test +10-24 +test, inner 50% +training, median +test +training, 90-th percentile +test, inner 50% +true +△nhl /ni +10-3 +1013 +1014 +1015 +1016 +1012 +M /(h-1M。)12 +C. Ruan et al. +Figure 7. Cumulative (the first row) and differential (the second row) halo mass functions from simulation measurements and emulator predictions at z = 0, +for ΛCDM (left), f(R) gravity (middle) and DGP (right). In each panel, the thin lines show the results of the 49 cosmologies in the training data set, and +the thick lines represent those of the test models which were not used in the construction of the emulators. In the lower sub-panel, we compare the relative +differences between simulations and emulators. The dark and light grey bands denote ±1%- and ±2%-level errors, respectively. The differential halo mass +functions are obtained by finite difference of the cumulative HMFs according to Eqn. (55). (source code 1, 2) +6 +EMULATOR APPLICATIONS +With the emulators for the halo mass function and density profile as +ingredients, we are able to predict galaxy clustering statistics using +the halo model framework (Cooray & Sheth 2002), and therefore +fit galaxy clustering measurements in the joint parameter space of +cosmology and a galaxy-halo connection model. In this section, +we demonstrate that the emulator-based halo model reproduces the +signals measured from the mock HOD catalogues generated with +the same specifications, such as the cosmology, HOD prescription, +satellite profile and/or concentration-mass relation. +MNRAS 000, 1–18 (2023) + +3 +ACDM +f(R) gravity +DGP +10 +10 +training, simulation +training, simulation +training, simulation +training, emulation +training, emulation +Nh( +training, emulation +test, F5 +test, Nl +test, GR +test, N5 +test, F6 +0.05 +rel.diff. +0.00 +0.05 +1014 1012 +1013 +1013 +1014 1012 +1012 +1013 +1014 +/(h-1Mo) +/(h-1Mo) +/(h-1Mo) +M200c/ +M200c/ +M200c/-2 +10~ +ACDM +f(R) gravity +DGP +10 +dnh +training, simulation +training, simulation +10 +training, simulation +training, emulation +training, emulation +training, emulation +test, F5 +test, N1 +test, GR +test, N5 +test, F6 +rel.diff. +0.00 +0.05 +1012 +10140 +101410 +10 +/(h-1M。) +/(h-1 Mo) +M200c/ (h-1 Mo) +M200c/ +M200c/MG Emulator Halo Model I +13 +Figure 8. Comparison between the halo concentration-mass relations from +simulations (points) and emulators (lines), for the 49 f(R) gravity cosmo- +logies in the training set (grey) and test models F5 (green), F6 (orange), N1 +(blue), N5 (purple) and the fiducial Planck cosmology (denoted as GR, in +red). The results for the ΛCDM and DGP training sets are similar to those +for f(R) gravity and are therefore not shown here. The lower sub-panel +shows the relative difference of the halo concentration between simulations +and emulators. The sub-percent differences between the emulator and sim- +ulation results are much smaller than the differences between the results for +different cosmologies. (source code) +6.1 +Galaxy two-point correlation function +We adopt the halo occupation distribution (HOD) (e.g. Zheng et al. +2005) prescription to model the average number of galaxies in a halo +as a function of halo mass. The occupation of central galaxies is +parameterised as a Bernoulli distribution, whereas that of satellites +is a Poisson distribution (Zheng et al. 2005). Both distributions are +described by their mean occupation number, +⟨Ng⟩ (M) = ⟨Nc⟩(M) + ⟨Ns⟩(M). +(59) +The galaxy number density ¯ng can then be obtained by integrating +the HMF weighted by the mean occupation, +¯ng = +� +dM dn(M) +dM +� +⟨Nc⟩(M) + ⟨Ns⟩(M) +� +. +(60) +Following Cuesta-Lazaro et al. (2022), we adopt the HOD +model in Zheng et al. (2007) by introducing the following HOD +parameters, +G = +� +Mmin, σlog M +� +�� +� +Gcen +, M1, κ, α +� +�� +� +Gsat +� +. +(61) +The mean occupation number for central galaxies is given by +⟨Nc⟩(M|G) = 1 +2 +� +1 + erf +�log M − log Mmin +σlog M +�� +. +(62) +The mean central HOD, ⟨Nc⟩(M) , can be interpreted as the prob- +ability that a halo with mass M hosts a central galaxy. The mean +central HOD considered here has the asymptotic behaviour that +⟨Nc⟩ → 0 for haloes with M ≪ Mmin, while ⟨Nc⟩ → 1 for haloes +with M ≫ Mmin. +The mean satellite HOD is parameterised as +⟨Ns⟩(M|G) = ⟨Nc⟩(M|G)λs(M), +(63) +where +λs(M) = +�M − κMmin +M1 +�α +. +(64) +Following the commonly-used prescription, we assume that satel- +lite galaxies reside only in a halo that already hosts a central galaxy. +Hence, in the above equation, satellite galaxies can only reside in +haloes with ⟨Nc⟩ = 1. Then we assume that the number distribu- +tion of satellite galaxies in a given host halo follows the Poisson +distribution with mean λs(M): +P(Ns|Nc = 1) = [λs(M)]Nse−λs(M) +Ns! +, +(65) +and +P(Ns|Nc = 0) = δKr +Ns,0, +(66) +where δKr +ij stands for the Kronecker delta. +Given the HOD model, we populate dark matter haloes in 8 +test simulations of the fiducial Planck cosmology with mock galax- +ies and measure the galaxy clustering signals, using the following +randomly selected HOD parameters: +log [Mmin/(h−1M⊙)] = 12.5, σlog M = 0.6915, +κ = 0.51, log [M1/(h−1M⊙)] = 12.9, and α = 0.9168. +(67) +We can also express the galaxy two-point correlation func- +tion (TPCF) in terms of dark matter halo properties in the halo +model framework. First, we split the one- and two-halo terms into +correlations of central and satellite galaxies as +ξgg(r) = ξ1h +cs (r) + ξ1h +ss (r) ++ ξ2h +cc (r) + ξ2h +cs (r) + ξ2h +ss (r). +(68) +The terms involving both centrals and satellites lead to a con- +volution of the halo profiles and/or the halo TPCF, following +� +d3x u(x|M) u +� +|x + r| +���M +� +. It is therefore more convenient to +compute these terms in Fourier space, where convolutions in co- +ordinate space become simple products of the Fourier modes. Here, +we focus on the one-halo term only. The two-halo term involving +the emulation of halo clustering will be the topic of the subsequent +papers in this series. The expressions for the 1-halo term of the +galaxy TPCF after the central-satellite split are given by +ξ(r) = +� ∞ +0 +dk +(2π)3 4πk2 sin(kr) +kr +P(k), +(69) +P 1h +cs (k) = 1 +¯n2g +� +dM dn(M) +dM +⟨Nc⟩(M) λs(M) us(k|M), +(70) +P 1h +ss (k) = 1 +¯n2g +� +dM dn(M) +dM +⟨Nc⟩(M) +� +λs(M) +�2 � +us(k|M) +�2, +(71) +where us(k|M) is (the Fourier transformation of) the radial distri- +bution of satellite galaxies within a halo, and we have highlighted +the emulated quantities in blue. In this section, we assume that the +MNRAS 000, 1–18 (2023) + +concentration +6 +4 +training, simulation +training,emulation +3 +test, F5 +test, N1 +0.01 +test, F6 +test, N5 +test, GR +0.00 +emu +C +-0.01 +13.0 +13.2 +13.4 +13.6 +13.8 +14.0 +log10[M200c/(h-1Mo)]14 +C. Ruan et al. +2 × 10−1 +3 × 10−1 +4 × 10−1 +r2ρ(r|M)/M +from ξhm(r|M) +from ξhm(r|M), NFW fitting +NFW, conc = this work +NFW, conc = Diemer19 +NFW, conc = Klypin16 +M = 1013.00 +M = 1013.50 +M = 1014.00 +10−1 +100 +r/(h−1Mpc) +−0.10 +−0.05 +0.00 +0.05 +0.10 +ρfrom ξhm/ρNFW − 1 +Figure 9. Left panel: Halo-mass cross-correlation functions from simulations and emulators at z = 0, for the 49 ΛCDM gravity cosmologies in the training +set (grey), five test models F5 (cyan), F6 (orange), N1 (blue), N5 (purple) and the fiducial Planck ΛCDM model (red). In the lower sub-panel, we compare +the relative difference between the simulations and emulators. Right panel: Comparison of the normalised halo density profiles, ρ(r|M)/M, truncated at +r = R200c, for the fiducial Planck ΛCDM model (node 0) at z = 0. The average halo profiles estimated from ξhm(r) according to Equation (47) are +represented by points. The solid lines show the fits to an NFW profile. The dashed, dotted and dash-dotted lines show the NFW profiles with three different +concentration-mass relations: this work, Diemer & Joyce (2019) and Klypin et al. (2016). Colours denote different halo masses. The lower sub-panel shows the +relative difference between the NFW profiles (lines) and the average profiles (points). (source code) +distribution is given by an NFW profile with the concentration-mass +relation from Diemer & Joyce (2019). +The left panel of Fig. 10 compares the model predictions and +the galaxy TPCF measured from mock HOD catalogues at z = 0. +On the scales where the 1-halo term dominates (r ≲ 1 h−1Mpc), +the fractional difference is within 1%. The colours in the plot rep- +resent different contributions: the correlations of central-central, +central-satellite and satellite-satellite galaxy pairs. +As shown in Section 3.2 and Fig. 4, the halo concentrations +measured from simulations are sensitive to the minimum radius in +the fitting, with a relative difference of up to 10 per cent. To test +the impact on galaxy clustering, we calculate the one-halo terms +of ξgg (Eqns. (70) and (71)), adopting the NFW profile with the +concentration-mass relations measured from this work and increas- +ing or decreasing them by 10 per cent. Fig. 11 shows that a 10 per +cent change in the concentration-mass relation will change the one- +halo term by 5 per cent. The impact on the two-halo term and the +degeneracy between the concentration amplitude and galaxy-halo +connection model parameters will be left for future work. +6.2 +Galaxy-matter cross-correlation function +In the galaxy-galaxy weak lensing observations, the excess surface +mass density profile around lensing galaxies, ∆Σgm(R) is meas- +ured, which can be expressed in terms of the galaxy-matter cross- +power spectrum as (e.g., Murata et al. 2018; Nishimichi et al. 2019) +∆Σgm(R) = ¯ρm0 +� ∞ +0 +dk +2π kPgm(k)J2(kR), +(72) +where J2(x) is the second-order Bessel function. +In the halo model framework, we can accurately predict Pgm(k) +with the emulators providing the model ingredients. Under the same +configurations as in the last sub-section, Pgm(k) is related to the halo +properties as +Pgm(k) = 1 +¯ng +� +dM dn(M) +dM +⟨Nc⟩(M)× +� +1 + λs(M) us(k|M) +� +Phm(k|M). +(73) +Phm(k|M) is the cross-correlation between the matter overdensity +field with the halo sample in a narrow mass bin [M, M + dM]. +The quantity that our halo-mass cross-correlation emulators output +is Phm(k|nh(> M)), which can be converted as +Phm(k|M) = − +�dnh(M) +dM +�−1 ∂ +∂M +� +nh(> M)Phm +� +k +��nh(> M) +�� +. +(74) +We use the publicly available, open-source Python toolkit +nbodykit (Hand et al. 2018) to measure the cross power spectra +between the mock galaxy catalogues and the matter field, in linear k +bins from 0.3 to 6 h Mpc−1 with a width of ∆k = 0.02 h Mpc−1. +These measurements are compared with the halo model predictions +MNRAS 000, 1–18 (2023) + +training, simulation +training,emulation +80 +test,GR +60 +40 +20 +0.02 +test,F5 +test, N1 +test, F6 +test.N5 +0.00 +emu +-0.02 +10-1 +100 +r/(h-1Mpc)MG Emulator Halo Model I +15 +100 +101 +102 +r2ξgg(r) +ξsimulation +gg +ξsimulation +cc +ξsimulation +cs +ξsimulation +ss +→ 2-halo term +1-halo term ← +10−1 +100 +101 +r/(h−1Mpc) +−0.02 +0.00 +0.02 +∆ξ/ξsim +theory, ξ1h +gg +theory, ξ1h +ss +theory, ξ1h +cs +0 +100 +200 +300 +400 +500 +600 +700 +800 +900 +kPgm(k) +simulation, Pgm +simulation, Pcm +simulation, Psm +1 +2 +3 +4 +5 +6 +k/(h Mpc−1) +−0.01 +0.00 +0.01 +rel. diff. +theory, Pcm +theory, Psm +theory, Pgm +Figure 10. Emulator-based halo model predictions of galaxy clustering statistics. Left panel: Galaxy two-point correlation functions from simulations (marks) +and emulator-based halo model predictions (solid lines), for the fiducial Planck cosmology of FORGE at z = 0. Colours represent different terms of galaxy +correlations after the central/satellite split: galaxy-galaxy (black), central-central (red), central-satellite (orange) and satellite-satellite (green). Only the one-halo +terms of theory predictions are shown. In the lower sub-panel, we show the relative difference between the 1-halo term and the full correlation function measured +from simulations. Right panel: Similar to the left panel but for the galaxy-matter cross power spectrum for the same cosmology and HOD prescription. (source +code) +in the right panel of Fig. 10. The relative difference shown in the +lower sub-panel is below 1 per cent except at low-k bins, where the +cosmic variance dominates the error budget. +7 +DISCUSSIONS AND CONCLUSIONS +We present accurate emulators for the halo mass function, +concentration-mass relation and halo-matter cross-correlation func- +tion, for ΛCDM and two representative modified gravity theories, +f(R) gravity and DGP, using the FORGE and BRIDGE suites of +N-body simulations (Arnold et al. 2022). The cosmological para- +meter space spans three non-MG parameters, Ωm0, h, S8, and one +MG parameter, either ¯fR0 or H0rc, depending on which modified +gravity model we are using. +We construct emulators using fully connected neural net- +works implemented using the open-source Python library PyTorch +Lightning. We show the capabilities of neural networks under +noise-free conditions by emulating the existing fitting formulae of +halo properties, such as the fitting function for HMFs in Tinker et al. +(2008). The emulators mimic analytical models in a 7-D parameter +space with sub-percent accuracy, using only 50 training cosmolo- +gies. +For realistic cases where the data come from N-body simu- +lations and therefore have noise, the accuracy of our halo property +emulators is summarised in Figs. 7-9. The emulation error is less +than 1% for most cosmologies in both the training and the test data +sets, in the halo mass range of 1012 ≤ M200c/(h−1M⊙) ≤ 1014. +The primary purpose of this series of papers is to extend the +modelling of galaxy clustering to non-linear scales. We employ the +halo model framework (Cooray & Sheth 2002) combined with an +adopted galaxy-halo connection model to predict galaxy cluster- +ing and other cosmological observables, following the spirit of the +Dark Quest project (Nishimichi et al. 2019; Kobayashi et al. 2020; +Cuesta-Lazaro et al. 2022). We demonstrate that the emulators can +be applied to the halo model framework combined with the HOD +prescription to predict the one-halo term of the galaxy clustering +signal, achieving sub-percent accuracy. The main advantages of this +emulator-based halo model approach can be summarised as follows. +• Accuracy. The model ingredients provided by emulators in- +corporate the major complicated effects in the non-linear regime +of structure formation, such as non-linear halo bias and the halo +exclusion effect. +• Versatility. The halo model approach enables a joint modelling +of cosmological observables, such as galaxy-galaxy and galaxy- +matter correlation functions, for a single population of galaxies. +The combination of different probes can mitigate the uncertainty of +MNRAS 000, 1–18 (2023) + +16 +C. Ruan et al. +10−1 +100 +0 +25 +50 +75 +100 +125 +r2ξ1h +gg(r), halo model +fiducial +0.9 c(M) +1.1 c(M) +10−1 +100 +r/(h−1Mpc) +−0.05 +0.00 +0.05 +ξ/ξfid − 1 +Figure 11. One-halo terms of the galaxy two-point correlation functions +with the NFW profiles combined with different concentration-mass relations. +The black line shows the fiducial case corresponding to the c(M) relation +measured from this work. The other two coloured lines present the results +for increasing and decreasing the concentration by 10 per cent. In the lower +sub-panel, we show the relative difference with respect to the fiducial result. +(source code) +galaxy formation and evolution on cosmological parameter infer- +ence. +• Flexibility. Instead of making an end-to-end mapping between +the cosmological and HOD parameters to the final clustering statist- +ics with the emulation process, this “numerical” version of the halo +model allows the flexibility of combining with any specific HOD +prescription for different types of galaxies, without retraining the +emulators. +To perform cosmological parameter inference by confronting +the emulator-based halo model prediction with galaxy survey ob- +servations, we plan to implement the following improvements and +extensions in the subsequent papers of this series. +• The excellent performance of the emulators is partly due to the +smaller number of parameters varied in the FORGE and BRIDGE +simulations compared with other emulation projects, as well as the +limited halo mass range due to the relatively small box size of the +simulations. However, as indicated by the ideal emulation tests, +neural networks are capable of emulating halo properties up to the +halo masses of 1015.5 h−1M⊙ in a higher-dimensional parameter +space with sub-percent accuracy. To extend the mass range of the +emulators, we plan to run additional simulations with different spe- +cifications, such as box size and number of particles, to obtain halo +properties robustly and at low cost. +• Galaxy clustering statistics are typically measured in redshift +space from surveys, which involves not only the information about +galaxy positions but also their peculiar velocities. We will build +emulators for the halo peculiar velocity statistics, such as pairwise +velocity moments, and combine them using a galaxy-halo connec- +tion model (e.g. Kobayashi et al. 2020; Cuesta-Lazaro et al. 2022). +• To resemble actual samples of galaxies, we need more realistic +HOD prescriptions and check the accuracy of the emulator-based +halo model. +In the future, we plan to use the neural network emulators on the +upcoming data from DESI and Euclid to constrain the cosmological +and modified gravity parameters. This requires that the models be +trained on simulations with higher resolution to meet the demand +of the cutting-edge observational data with unprecedented volume +and much better controlled systematic errors. +ACKNOWLEDGEMENTS +C-ZR thanks the Research Council of Norway for their support. +C-ZR and BL are supported by the European Research Council +(ERC) through a starting Grant (ERC-StG-716532 PUNCA). AE +is supported at the AIfA by an Argelander Fellowship. CMB ac- +knowledges support from the Science Technology Facilities Coun- +cil through ST/T000244/1. BL and CMB are further supported by +the UK Science and Technology Funding Council (STFC) Consol- +idated Grant No. ST/I00162X/1 and ST/P000541/1. CTD is funded +by the Deutsche Forschungsgemeinschaft (DFG, German Research +Foundation) under Germany’s Excellence Strategy – EXC-2094 – +390783311. +This work used the DiRAC@Durham facility managed by +the Institute for Computational Cosmology on behalf of the +STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment +was funded by BEIS capital funding via STFC capital grants +ST/K00042X/1, ST/P002293/1, ST/R002371/1 and ST/S002502/1, +Durham University and STFC operations grant ST/R000832/1. +DiRAC is part of the National e-Infrastructure. +DATA AVAILABILITY +The data underlying this article will be shared on reasonable request +to the corresponding author. The source code and data to generate +the figures in this manuscript are available at this GitHub repository. +References +Agarap A. F., 2018, arXiv preprint arXiv:1803.08375 +Agarwal S., Abdalla F. B., Feldman H. A., Lahav O., Thomas S. A., 2012, +MNRAS, 424, 1409 +Agarwal S., Abdalla F. B., Feldman H. A., Lahav O., Thomas S. A., 2014, +MNRAS, 439, 2102 +Alom M. Z., et al., 2019, Electronics, 8 +Amendola L., et al., 2013, Living Reviews in Relativity, 16, 6 +Angulo R. E., Hahn O., 2022, Living Reviews in Computational Astrophys- +ics, 8, 1 +Arnold C., Leo M., Li B., 2019a, Nature Astronomy, 3, 945 +Arnold C., Leo M., Li B., 2019b, Nature Astron., 3, 945 +Arnold C., Li B., Giblin B., Harnois-Déraps J., Cai Y.-C., 2022, MNRAS, +515, 4161 +Ba S., Myers W. R., Brenneman W. A., 2015, Technometrics, 57, 479 +Barreira A., Li B., Hellwing W. A., Lombriser L., Baugh C. M., Pascoli S., +2014, J. Cosmology Astropart. Phys., 2014, 029 +Bhattacharya S., Heitmann K., White M., Lukić Z., Wagner C., Habib S., +2011, ApJ, 732, 122 +Bishop C. M., et al., 1995, Neural networks for pattern recognition. Oxford +university press +Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., +Pope A., Finkel H., 2020, ApJ, 901, 5 +Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440 +MNRAS 000, 1–18 (2023) + +MG Emulator Halo Model I +17 +Bose B., et al., 2021, MNRAS, 508, 2479 +Brando G., Fiorini B., Koyama K., Winther H. A., 2022, J. Cosmology +Astropart. Phys., 2022, 051 +Carrilho P., Carrion K., Bose B., Pourtsidou A., Hidalgo J. C., Lombriser +L., Baldi M., 2022, MNRAS, 512, 3691 +Cataneo M., Rapetti D., Lombriser L., Li B., 2016, J. Cosmology Astropart. +Phys., 2016, 024 +Cataneo M., Lombriser L., Heymans C., Mead A. J., Barreira A., Bose S., +Li B., 2019, MNRAS, 488, 2121 +Child H. L., Habib S., Heitmann K., Frontiere N., Finkel H., Pope A., +Morozov V., 2018, ApJ, 859, 55 +Cooray A., Sheth R., 2002, Phys. Rep., 372, 1 +Courtin J., Rasera Y., Alimi J. M., Corasaniti P. S., Boucher V., Füzfa A., +2011, MNRAS, 410, 1911 +Crocce M., Pueblas S., Scoccimarro R., 2006, MNRAS, 373, 369 +Cuesta-Lazaro C., et al., 2022, arXiv e-prints, p. arXiv:2208.05218 +Cybenko G., 1989, Mathematics of control, signals and systems, 2, 303 +DESI Collaboration et al., 2016, arXiv e-prints, p. arXiv:1611.00036 +De Felice A., Tsujikawa S., 2010, Living Reviews in Relativity, 13, 3 +DeRose J., et al., 2019, ApJ, 875, 69 +Diemer B., 2018, ApJS, 239, 35 +Diemer B., Joyce M., 2019, ApJ, 871, 168 +Diemer B., Kravtsov A. V., 2015, ApJ, 799, 108 +Donald-McCann J., Beutler F., Koyama K., Karamanis M., 2022, MNRAS, +511, 3768 +Dooley G. A., Griffen B. F., Zukin P., Ji A. P., Vogelsberger M., Hernquist +L. E., Frebel A., 2014, ApJ, 786, 50 +Dvali G., Gabadadze G., Porrati M., 2000a, Physics Letters B, 485, 208 +Dvali G., Gabadadze G., Porrati M., 2000b, Physics Letters B, 485, 208 +Fang W., Wang S., Hu W., Haiman Z., Hui L., May M., 2008, Phys. Rev. D, +78, 103509 +Ferreira P. G., 2019, ARA&A, 57, 335 +Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V., +Jenkins A., Neto A. F., 2008, MNRAS, 387, 536 +García R., Rozo E., Becker M. R., More S., 2021, MNRAS, 505, 1195 +Goodfellow I., Bengio Y., Courville A., 2016, Deep learning. MIT press +Gupta S., Hellwing W. A., Bilicki M., García-Farieta J. E., 2022, Phys. +Rev. D, 105, 043538 +Habib S., Heitmann K., Higdon D., Nakhleh C., Williams B., 2007, Phys. +Rev. D, 76, 083503 +Hand N., Feng Y., Beutler F., Li Y., Modi C., Seljak U., Slepian Z., 2018, +AJ, 156, 160 +Harnois-Déraps J., Giblin B., Joachimi B., 2019, A&A, 631, A160 +Harnois-Déraps J., Hernandez-Aguayo C., Cuesta-Lazaro C., Arnold C., Li +B., Davies C. T., Cai Y.-C., 2022, arXiv e-prints, p. arXiv:2211.05779 +Heitmann K., Higdon D., Nakhleh C., Habib S., 2006, ApJ, 646, L1 +Heitmann K., Higdon D., White M., Habib S., Williams B. J., Lawrence E., +Wagner C., 2009, ApJ, 705, 156 +Heitmann K., White M., Wagner C., Habib S., Higdon D., 2010, ApJ, 715, +104 +Heitmann K., et al., 2016, ApJ, 820, 108 +Hendrycks D., Gimpel K., 2016, arXiv e-prints, p. arXiv:1606.08415 +Hornik K., Stinchcombe M., White H., 1989, Neural networks, 2, 359 +Hu W., Sawicki I., 2007, Phys. Rev. D, 76, 064004 +Hu B., Liu X.-W., Cai R.-G., 2018, MNRAS, 476, L65 +Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard +A. E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372 +Jennings W. D., Watkinson C. A., Abdalla F. B., McEwen J. D., 2019, +MNRAS, 483, 2907 +Khoury J., Weltman A., 2004a, Phys. Rev. D, 69, 044026 +Khoury J., Weltman A., 2004b, Phys. Rev. Lett., 93, 171104 +Kingma D. P., Ba J., 2014, arXiv e-prints, p. arXiv:1412.6980 +Klypin A., Yepes G., Gottlöber S., Prada F., Heß S., 2016, MNRAS, 457, +4340 +Kobayashi Y., Nishimichi T., Takada M., Takahashi R., Osato K., 2020, +Phys. Rev. D, 102, 063504 +Koyama K., 2007, Classical and Quantum Gravity, 24, R231 +Koyama K., 2018, International Journal of Modern Physics D, 27, 1848001 +Kuhlen M., Vogelsberger M., Angulo R., 2012, Physics of the Dark Universe, +1, 50 +Kwan J., Bhattacharya S., Heitmann K., Habib S., 2013, ApJ, 768, 123 +Kwan J., Heitmann K., Habib S., Padmanabhan N., Lawrence E., Finkel H., +Frontiere N., Pope A., 2015, ApJ, 810, 35 +LSST Science Collaboration et al., 2009, arXiv e-prints, p. arXiv:0912.0201 +Lam T. Y., Li B., 2012, MNRAS, 426, 3260 +Laureijs R., et al., 2011, arXiv e-prints, p. arXiv:1110.3193 +Lawrence E., Heitmann K., White M., Higdon D., Wagner C., Habib S., +Williams B., 2010, ApJ, 713, 1322 +Lawrence E., et al., 2017, ApJ, 847, 50 +Li B., Efstathiou G., 2012, MNRAS, 421, 1431 +Li Y., Hu W., 2011, Phys. Rev. D, 84, 084033 +Li B., Zhao G.-B., Teyssier R., Koyama K., 2012, J. Cosmology Astropart. +Phys., 2012, 051 +Li B., Hellwing W. A., Koyama K., Zhao G.-B., Jennings E., Baugh C. M., +2013, MNRAS, 428, 743 +Linder E. V., 2003, Phys. Rev. Lett., 90, 091301 +Lombriser L., 2014, Annalen der Physik, 264, 259 +Lombriser L., Li B., Koyama K., Zhao G.-B., 2013, Phys. Rev. D, 87, 123511 +Lombriser L., Koyama K., Li B., 2014, J. Cosmology Astropart. Phys., 2014, +021 +Ma C.-P., Fry J. N., 2000, ApJ, 543, 503 +Maartens R., Koyama K., 2010, Living Reviews in Relativity, 13, 5 +Maksimova N. A., Garrison L. H., Eisenstein D. J., Hadzhiyska B., Bose S., +Satterthwaite T. P., 2021, MNRAS, 508, 4017 +Massara E., Villaescusa-Navarro F., Viel M., 2014, J. Cosmology Astropart. +Phys., 2014, 053 +McClintock T., et al., 2019, ApJ, 872, 53 +Mead A. J., Brieden S., Tröster T., Heymans C., 2021, MNRAS, 502, 1401 +Meneghetti M., Rasia E., 2013, arXiv e-prints, p. arXiv:1303.6158 +Mitchell M. A., Arnold C., He J.-h., Li B., 2019, MNRAS, 487, 1410 +Mitchell M. A., Hernández-Aguayo C., Arnold C., Li B., 2021, MNRAS, +508, 4140 +Miyatake H., et al., 2020, arXiv e-prints, p. arXiv:2101.00113 +Murata R., Nishimichi T., Takada M., Miyatake H., Shirasaki M., More S., +Takahashi R., Osato K., 2018, ApJ, 854, 120 +Murray S. G., Power C., Robotham A. S. G., 2013, Astronomy and Com- +puting, 3, 23 +Murray S. G., Diemer B., Chen Z., Neuhold A. G., Schnapp M. A., Peruzzi +T., Blevins D., Engelman T., 2021, Astronomy and Computing, 36, +100487 +Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563 +Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493 +Neto A. F., et al., 2007, MNRAS, 381, 1450 +Neyman J., Scott E. L., 1952, ApJ, 116, 144 +Nishimichi T., et al., 2019, ApJ, 884, 29 +Peacock J. A., Smith R. E., 2000, MNRAS, 318, 1144 +Peebles P. J. E., 1980, The large-scale structure of the universe +Philcox O. H. E., Spergel D. N., Villaescusa-Navarro F., 2020, Phys. Rev. D, +101, 123520 +Planck Collaboration et al., 2020, A&A, 641, A6 +Prada F., Klypin A. A., Cuesta A. J., Betancort-Rijo J. E., Primack J., 2012, +MNRAS, 423, 3018 +Press W. H., Schechter P., 1974, ApJ, 187, 425 +Ramachandra N., Valogiannis G., Ishak M., Heitmann K., LSST Dark En- +ergy Science Collaboration 2021, Phys. Rev. D, 103, 123525 +Ruan C.-Z., Hernández-Aguayo C., Li B., Arnold C., Baugh C. M., Klypin +A., Prada F., 2022, J. Cosmology Astropart. Phys., 2022, 018 +Sahni V., Shtanov Y., 2003, J. Cosmology Astropart. Phys., 2003, 014 +Schmidt F., 2016, Phys. Rev. D, 93, 063512 +Schmidt F., Lima M., Oyaizu H., Hu W., 2009, Phys. Rev. D, 79, 083518 +Schmidt F., Hu W., Lima M., 2010, Phys. Rev. D, 81, 063005 +Seljak U., 2000, MNRAS, 318, 203 +Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1 +Sinha M., Garrison L. H., 2020, MNRAS, 491, 3022 +Smith R. E., Angulo R. E., 2019, MNRAS, 486, 1448 +Smith R. E., et al., 2003, MNRAS, 341, 1311 +MNRAS 000, 1–18 (2023) + +18 +C. Ruan et al. +Song Y.-S., Sawicki I., Hu W., 2007, Phys. Rev. D, 75, 064003 +Sotiriou T. P., Faraoni V., 2010, Reviews of Modern Physics, 82, 451 +Springel V., 2010, MNRAS, 401, 791 +Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, +328, 726 +Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761, +152 +Takahashi R., Nishimichi T., Namikawa T., Taruya A., Kayo I., Osato K., +Kobayashi Y., Shirasaki M., 2020, ApJ, 895, 113 +Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., +Gottlöber S., Holz D. E., 2008, ApJ, 688, 709 +Troja A., Tutusaus I., Sorce J. G., 2022, arXiv e-prints, p. arXiv:2211.09668 +Vainshtein A. I., 1972, Physics Letters B, 39, 393 +Wang J., Bose S., Frenk C. S., Gao L., Jenkins A., Springel V., White +S. D. M., 2020, Nature, 585, 39 +Weinberger R., Springel V., Pakmor R., 2020, ApJS, 248, 32 +Williams C. K., Rasmussen C. E., 2006, Gaussian processes for machine +learning. MIT press Cambridge, MA +Winther H. A., Casas S., Baldi M., Koyama K., Li B., Lombriser L., Zhao +G.-B., 2019, Phys. Rev. D, 100, 123540 +Yuan S., Garrison L. H., Eisenstein D. J., Wechsler R. H., 2022, MNRAS, +515, 871 +Zhai Z., et al., 2019, ApJ, 874, 95 +Zhang A., Lipton Z. C., Li M., Smola A. J., 2021, arXiv e-prints, p. +arXiv:2106.11342 +Zhao G.-B., Li B., Koyama K., 2011, Phys. Rev. D, 83, 044007 +Zheng Z., et al., 2005, ApJ, 633, 791 +Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760 +This paper has been typeset from a TEX/LATEX file prepared by the author. +MNRAS 000, 1–18 (2023) + diff --git a/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/load_file.txt b/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e64bb2f76f541d2386efa594b7a189b808e621b2 --- /dev/null +++ b/cNE1T4oBgHgl3EQfLAMX/content/tmp_files/load_file.txt @@ -0,0 +1,1747 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf,len=1746 +page_content='MNRAS 000, 1–18 (2023) Preprint 10th January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 An emulator-based halo model in modified gravity – I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo concentration-mass relation and density profile Cheng-Zong Ruan1,2, Carolina Cuesta-Lazaro1,3, Alexander Eggemeier4⋆, Baojiu Li1†, Carlton M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Baugh1,3, Christian Arnold1, Sownak Bose1, César Hernández-Aguayo5,6, Pauline Zarrouk7 and Christopher T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Davies8 1Institute for Computational Cosmology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Durham University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' South Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Durham DH1 3LE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' UK 2Institute of Theoretical Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' University of Oslo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 0315 Oslo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Norway 3Institute for Data Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Durham University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' South Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Durham DH1 3LE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' UK 4Argelander-Institut für Astronomie,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Auf dem Hügel 71,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D-53121 Bonn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Germany 5Max-Planck-Institut fur Astrophysik,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Karl-Schwarzschild-Str 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D-85748 Garching,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Germany 6Excellence Cluster ORIGINS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Boltzmannstrasse 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D-85748 Garching,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Germany 7Sorbonne Université,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Université Paris Diderot,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Sorbonne Paris Cité,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' CNRS/IN2P3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 4 place Jussieu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F-75252,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Paris Cedex 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' France 8Faculty of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ludwig-Maximilians-Universität,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Scheinerstr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1, 81679 Munich, Germany Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' in original form 10th January 2023 ABSTRACT In this series of papers we present an emulator-based halo model for the non-linear clustering of galaxies in modified gravity cosmologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the first paper, we present emulators for the following halo properties: the halo mass function, concentration-mass relation and halo-matter cross-correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulators are trained on data extracted from the FORGE and BRIDGE suites of N-body simulations, respectively for two modified gravity (MG) theories: f(R) gravity and the DGP model, varying three standard cosmological parameters Ωm0, H0, σ8, and one MG parameter, either ¯fR0 or rc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Our halo property emulators achieve an accuracy of ≲ 1% on independent test data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We demonstrate that the emulators can be combined with a galaxy-halo connection prescription to accurately predict the galaxy-galaxy and galaxy-matter correlation functions using the halo model framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Key words: dark energy – large-scale structure of Universe – cosmology: miscellaneous – cosmology: theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1 INTRODUCTION Ongoing and upcoming galaxy surveys, such as those that will be made with the Dark Energy Spectroscopic Instrument (DESI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' DESI Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016), the Vera Rubin Observatory (LSST Sci- ence Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2009) and Euclid (Laureijs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Amendola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Troja et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022) will map the large scale structure (LSS) of the Universe with unprecedented statistical pre- cision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Measurements of the large-scale structure can potentially be used to unveil the nature of the dark matter and dark energy, and to look for any deviation from the predictions of general relativ- ity (GR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Theories of gravity beyond GR – modified gravity (MG) models – can explain the observed accelerated expansion of the Uni- verse without invoking a cosmological constant (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Koyama 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ferreira 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Studies of such models will not only shed light on ⋆ Argelander Fellow † E-mail: baojiu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='li@durham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='uk the nature of the cosmic acceleration, but also serve as useful tests of GR on cosmic scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The impact of modifications to GR has been well studied in terms of the cosmic expansion history and the large scale structure, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', at the background and linear perturbation levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the late universe, the growth of LSS eventually enters the non-linear regime over a wide range of length scales, and linear theory predictions cease to be valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This point becomes even more acute in the context of MG, given that such models have intrinsically non-linear features, such as screening mechanisms and non-linear field equations for new degrees of freedom, which cannot be captured by linear theories (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Often a choice is made to exclude small scale data, thereby losing a wealth of information from high signal-to- noise ratio measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Such nonlinearities must be properly incorporated into theoretical modelling if one wishes to make the best use of the current and next generation cosmological surveys to constrain cosmological parameters and test gravity theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A fully non-linear treatment – N-body simulations – is essen- tial to accurately solve the non-linear dynamics of cosmic struc- © 2023 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02970v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='CO] 8 Jan 2023 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' ture formation (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Kuhlen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Angulo & Hahn 2022, for recent reivews).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The main hurdle of N-body simulations is their expensive computational cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A Monte Carlo Markov chain (MCMC) analysis, usually used to confront theoretical predictions with data, requires sampling at least 104-105 models in the cosmo- logical parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Probing such a large number of models using simulations is computationally prohibitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The situation is even worse for MG models, which usually involve partial differen- tial equations governing the new physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Current MG simulations can take between 2 to O(10) times longer than standard ΛCDM simulations with the same specifications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' There are several approaches to dealing with the non-linear regime in addition to simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' N-body simulation results can be used to develop phenomenological or semi-analytical fitting for- mulae to describe the statistical properties of matter and dark matter haloes, such as the halo mass function calibrated by Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008), and the halofit prescription for the matter power spectrum (Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Takahashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Smith & Angulo 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Mead et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2021) and bispectrum (Takahashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The most up-to-date version of halofit implemented by Mead et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2021) achieves an accuracy of 5% down to deeply non-linear scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' How- ever, such parametric fits may no longer be fit for purpose with the advent of next-generation surveys that promise to reach measure- ments with per cent level precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo model (Neyman & Scott 1952;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ma & Fry 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Peacock & Smith 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Seljak 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cooray & Sheth 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Schmidt 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Philcox et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020) is a successful analytical description of the LSS in the non-linear regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In this framework, all matter, including galaxies and any other tracers, is assumed to reside within haloes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Then, the problem of predicting the clustering can be split into the following steps: the abundance of haloes as a function of halo mass, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' the halo mass function (HMF);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' the distribution of tracers around the halo centre, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' the halo density profile, usually assumed to be a Navarro-Frenk-White (NFW) profile (Navarro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1996, 1997) specified by a halo mass- concentration relation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' and the clustering of the haloes themselves, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', the halo two-point correlation function (TPCF) in configuration space and the halo auto power spectrum in Fourier space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' These basic properties of dark matter haloes constitute the halo model ingredients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo model provides a physically motivated description of the clustering statistics and is flexible enough to be extended to incorporate new physics such as massive neutrinos and baryonic feedback (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Massara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Carrilho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), as well as models beyond ΛCDM and GR (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Barreira et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lombriser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cataneo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo model ingredients can be derived from analytic meth- ods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For example, the HMF can be predicted using the spherical collapse model of the linear matter density field (Press & Schechter 1974) and the excursion set formalism (Bond et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1991;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Sheth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2001), whereby the dependence of the HMF on redshift and cos- mology is expressed in terms of the root-mean-square fluctuations in the linear matter power spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Jenkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2001) found that this universality of the HMF holds at an approximate level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As simulation predictions improved further, it was discovered that the redshift evolution of the mass function, even for ΛCDM, deviates from the universal prediction at the 5-10 per cent level, and several new fitting formulae were proposed (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Courtin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Moreover, the universality of the HMF is broken further in extensions of ΛCDM (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bhattacharya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2011, for wCDM) and modified gravity models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Schmidt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lam & Li 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Li & Efstathiou 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lombriser et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cataneo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In order to obtain even tighter constraints on cosmological parameters and to test gravity theories, one there- fore needs to proceed beyond the traditional approaches, given their limitations in accuracy and coverage of parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In this series of papers, we develop simulation-based theoret- ical templates called emulators, to obtain accurate predictions for basic halo properties as a function of halo mass and (modified grav- ity) cosmology, and to construct accurate predictions for clustering observables in preparation for ongoing and future galaxy surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' There have been several previous works on the emulation of cos- mological quantities in the ΛCDM model and its extensions, such as Heitmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2006);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Habib et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2007), the Coyote Universe (Heitmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2010, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lawrence et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2010), PkANN (Agar- wal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012, 2014), the Mira-Titan Universe (Heitmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lawrence et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bocquet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020), Kwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2013, 2015), Aemulus (DeRose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' McClintock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Zhai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019), Dark Quest (Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Kobayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Miyatake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), matry- oshka (Donald-McCann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022) and AbacusSummit (Mak- simova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Yuan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), as well as in non-standard cosmologies, such as Winther et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ramachandra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2021);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Brando et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Harnois-Déraps et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To build emulators we use the machine-learning interpolation technique of neural networks, which allows us to predict halo proper- ties for any given cosmology within the range of parameters covered by the training data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We use the FORGE (F-Of-R Gravity Emu- lator) and BRIDGE (BRaneworld-Inspired Dgp Gravity Emulator) modified gravity N-body simulations described in Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022), which together cover a very broad range of parameters in two MG theories: f(R) gravity and the DGP model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulated halo properties incorporate all the complicated effects on non-linear scales, such as the non-linear halo bias, the halo exclusion effect and the screening mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Following the spirit of the Dark Quest project (Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), we do not perform an end- to-end emulation of galaxy clustering statistics in the joint para- meter space of cosmological and galaxy-halo connection models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Instead, we develop emulators for each halo property separately, and assemble these ingredients within the halo model framework to construct analytical predictions of galaxy clustering statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This emulator-based halo model gives us the flexibility to insert dif- ferent prescriptions of galaxy-halo connection for different galaxy samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Moreover, emulators for basic halo properties themselves are very useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For example, calibrating the cosmology depend- ence of the HMF is crucial to control the systematic uncertainty in galaxy cluster abundance studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' McClintock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bocquet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The layout of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In Section 2, we present a short description of the modified gravity theories studied here and a brief overview of the FORGE and BRIDGE N-body simulation suites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In Section 3, we outline the measurement and post-processing of the halo properties from the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Section 4 describes the construction of the halo property emulators using neural networks, and Section 5 shows their performance in reproducing the simula- tion results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In Section 6, we demonstrate how these emulators can be combined with a galaxy-halo connection prescription to predict galaxy statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) MG Emulator Halo Model I 3 Throughout this paper, we use log to denote the base-10 logar- ithm, log ≡ log10, and ln to indicate the natural logarithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Unless otherwise stated, we use a subscript 0 to denote the present-day value of a physical quantity and an overbar for the background value of a quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2 MODIFIED GRAVITY THEORIES AND SIMULATIONS We briefly describe the two modified gravity models analysed in this work, f(R) gravity (Hu & Sawicki 2007) and the Dvali-Gabadadze- Porrati (DGP) brane-world models (Dvali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2000a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' These are two of the most widely studied MG models and, as we discuss be- low, are representative examples of the two main classes of screen- ing mechanisms, which make them good test-beds for generic MG models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For more detailed descriptions of these models, we refer the reader to Sotiriou & Faraoni (2010) and De Felice & Tsujikawa (2010) for f(R) gravity, and Sahni & Shtanov (2003) and Maartens & Koyama (2010) for DGP models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 f(R) gravity The f(R) gravity is a generalisation of Einstein’s general relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In f(R) gravity, the Einstein-Hilbert action in GR has an additional term, which is a function of the Ricci scalar R, S = � d4x√−g �M 2 Pl 2 [R + f(R)] + Lm � , (1) where MPl = (8πG)−1/2 is the reduced Planck mass, G is New- ton’s constant, g is the determinant of the metric gµν and Lm is the Lagrangian density for matter fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Varying the action with respect to the metric gµν gives the modified Einstein equation, Gµν + fRRµν − �1 2f − □fR � gµν − ∇µ∇νfR = 8πGT m µν, (2) where Gµν ≡ Rµν − 1 2gµνR, (3) is the Einstein tensor, fR ≡ df(R)/dR, ∇µ is the covariant deriv- ative corresponding to the metric gµν, □ ≡ ∇α∇α and T m µν is the energy momentum tensor for matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Equation (2) is a fourth-order partial differential equation in gµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This equation can also be considered as the standard Einstein equation in GR with a new dynamical degree of freedom, fR, which is dubbed the scalaron (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zhao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The equation of motion of fR can be obtained by taking the trace of Equation (2): □fR = 1 3(R − fRR + 2f + 8πGρm) , (4) where ρm is the matter density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For cosmological simulations in standard gravity, the Newto- nian limit is commonly adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This includes the approximations that the gravitational and scalar fields are weak (such that their higher-order terms can be neglected) and quasi-static (so that the time derivatives of the fields can be neglected compared to their spatial derivatives).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Most modified gravity simulations (including the ones used in this work) adopt this assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the context of f(R) gravity and the Newtonian limit, the modified Einstein equation (2) becomes ∇2Φ ≈ 16πG 3 a2(ρm − ¯ρm) + 1 6a2� R(fR) − ¯R � , (5) and the equation of motion of the scalaron reduces to ∇2fR ≈ −1 3a2� R(fR) − ¯R + 8πG(ρm − ¯ρm) � , (6) where Φ is the Newtonian potential, ∇ is the 3-dimensional gradient operator, and an overbar denotes the cosmic mean of a quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' An f(R) gravity model is fully specified by the functional form of f(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Here, we adopt the well-studied Hu-Sawicki model (Hu & Sawicki 2007), which is given by f(R) = −m2 c1(−R/m2)n c2(−R/m2)n + 1 , (7) where m2 ≡ Ωm0H2 0, and c1, c2 and n are free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The parameter n is a positive number, which is set to n = 1 in this work as in most previous studies of this model (however see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li & Hu 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ramachandra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022, for some examples of n ̸= 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' With this functional form, we have fR = − �� ¯fR0 �� � ¯R0 R �n+1 , (8) where ¯R0 and ¯fR0 are, respectively, the present-day values of the background Ricci scalar and ¯fR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For brevity, we will ad- opt the following nomenclature to label models: the model with − log10 � | ¯fR0| � = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 will be called F5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The remaining free parameter of the theory is the background value of the scalar field fR at redshift z = 0, ¯fR0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' With a suitable choice of this parameter, f(R) gravity reverts to GR in high-density regions – this is necessary to be consistent with solar system tests through the associated chameleon mechanism (Khoury & Weltman 2004b,a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A larger value of | ¯fR0| means a stronger deviation from standard gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The F5 model is in slight tension with small-scale tests, see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser (2014) for a recent review of current cosmological constraints on ¯fR0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' But since we aim to test gravity on cosmic scales, models with such strength of MG are neverthe- less still valuable to study: given their stronger deviations from GR compared to models with smaller | ¯fR0|, they can lead to import- ant insights into how the deviations from GR can affect large-scale cosmological observables such as weak lensing and galaxy cluster- ing statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In order to fully explore the gravity testing capacities of upcoming cosmological observations, it is important to gain a detailed understanding of how these measures are influenced by possible modifications to gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 The Dvali-Gabadadze-Porrati (DGP) model In the Dvali-Gabadadze-Porrati braneworld model (Dvali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2000b), the universe is a four-dimensional brane embedded in a five-dimensional space-time (called the bulk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The gravitational ac- tion in this model is given by S = � brane d4x √−g � R 16πG � + � bulk d5x � −g(5) � R(5) 16πG(5) � , (9) where a superscript (5) denotes the quantity in the five-dimensional bulk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This model has a self-accelerating branch of solution (sDGP), which gives a natural explanation for the cosmic acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' How- ever, the sDGP branch suffers from the ghost problems (Koyama 2007) and cannot be considered as a physical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Moreover, its predictions have been found to be inconsistent with observations such as cosmic microwave background (CMB) and local measure- ments of the Hubble parameter H0 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Song et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The so-called normal branch DGP (nDGP) gravity (Koyama 2007) cannot accelerate cosmic expansion by itself, so in order to explain the cosmological observations it has to introduce additional dark energy components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This model is nevertheless still of interest as a useful toy model that features the Vainshtein screening mechan- ism (Vainshtein 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Here, we assume that there is an additional non-clustering dark energy component in this model, which results in its expansion history being identical to that of ΛCDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The nDGP model provides an explanation of why gravity is much weaker than the other fundamental forces (Maartens & Koyama 2010): all matter species are assumed to be confined to the brane, while gravity could propagate through (leak into) the extra spatial dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' There is one new free parameter in the nDGP model, which can be defined as the ratio of G(5) and G, and is known as the crossover scale, rc ≡ 1 2 G(5) G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (10) The modified Friedmann equation in the normal branch DGP model is given by H(a) H0 = � Ωm0a−3 + ΩDE0(a) + Ωrc − √ Ωrc , (11) where Ωrc ≡ 1/(4H2 0r2 c), and ΩDE0 is the density parameter of the additional dark energy component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dimensionless quantity H0rc is used to quantify departures from the standard gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' If H0rc → ∞ then Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (11) returns to the ΛCDM case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A larger value of H0rc means a weaker deviation from GR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Hereafter, an nDGP model with H0rc = X will be referred to as NX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For example, a model with H0rc = 1 is called N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The modified Poisson equation and the scalar field equation are given by (Koyama 2007), ∇2Φ = 4πGa2δρm + 1 2∇2ϕ , (12) and ∇2ϕ + r2 c 3β a2c2 � (∇2ϕ)2 − (∇i∇jϕ)2� = 8π G a2 3β δρm , (13) where ϕ is a new scalar degree of freedom, δρm = ρm − ¯ρm and β(a) ≡ 1 + 2H rc � 1 + ˙H 3H2 � = 1 + Ωm0a−3 + 2ΩΛ0 2 � Ωrc(Ωm0a−3 + ΩΛ0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (14) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 Modified gravity N-body simulations To construct emulators for dark matter halo properties, we use the FORGE and BRIDGE suites of N-body simulations (Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), covering 49 f(R) gravity and 49 DGP models, along with 49 ΛCDM counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The simulations were performed using 10243 dark matter particles in a cube of side 500 h−1 Mpc (here- after the high-resolution runs, denoted HR) or 1500 h−1 Mpc (low- resolution runs, labelled LR), using the modified gravity version of the Arepo cosmological simulation code (Springel 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Weinberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The mass resolutions of the HR and LR runs are 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 × 109 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 × 1012(Ωm0/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3) h−1 M⊙, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The gravitational softening lengths of simulations are 15 (HR) and 75 h−1kpc (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The initial conditions were generated using second-order Lagrangian perturbation theory (2LPT, Crocce et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2006)) at zinit = 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Each cosmology (also called “node”) has two independent realisations with the pairs of initial conditions selected to minimise the sample variance on large scales over the Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Visualisation of the cosmological parameters C (Equations (16)- (18)) covered in the FORGE and BRIDGE simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The 44 training cosmologies, 5 validation and 2 test cosmologies are shown as black dots, purple triangles and red stars, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' ΛCDM models corresponding to log | ¯fR0| = −∞ and log (H0rc) = ∞ are not shown in the last two rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) realisations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' All nodes were initialised with the same (two) ran- dom seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' See Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 of Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022) for a detailed description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The cosmological parameters were drawn from a Latin hy- percube designed to efficiently sample a 4-dimensional parameter space (or a 3-dimensional space in the case of ΛCDM), as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1, following a similar approach to that used in the cosmo- SLICS project (Harnois-Déraps et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Since FORGE and BRIDGE were partly designed to emulate weak lensing statistics, they sampled directly in the composite structure growth parameter S8 ≡ σ8 � Ωm0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 , (15) instead of the physical matter fluctuation amplitude parameter σ8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The use of S8 accounts better for the degeneracy between Ωm0 and σ8 in the cosmic shear analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The 49 nodes form the training data set for each gravity model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' It is common practice to use a small portion (called validation set) of the training set to determine whether the process has finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We choose the nodes 11, 13, 22, 34, 36 as the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The following three standard cosmological parameters and one MG parameter are varied, C = {Ωm0, h, S8}, for ΛCDM, (16) C = � Ωm0, h, S8, log10 | ¯fR0| � , for f(R), (17) C = {Ωm0, h, S8, log10(H0rc)}, for DGP, (18) MNRAS 000, 1–18 (2023) training validation test 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 R0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='8 h moMG Emulator Halo Model I 5 where h ≡ H0/(100 km s−1 Mpc−1) and H0 is the present day Hubble constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The range of the parameters explored is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='11 < Ωm0 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='61 < h < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 < S8 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9 −6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 < log10 | ¯fR0| < −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='45 < log10(H0rc) < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (19) The density parameter of baryons was fixed to Ωb0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='049199 and massive neutrinos are ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dark energy density is given by ΩΛ0 = 1 − Ωm0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (20) The remaining cosmological parameter is the slope of the primordial curvature power spectrum normalised at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 Mpc−1, which is ns = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9652 (Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We also need test data set to assess the performance of the emulators independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In both cases, the test set consists of two models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The MG test cases are F5 and F6 for f(R) gravity, and for DGP they are N1 and N5, and they share the same cosmolo- gical parameters, given by the fiducial Planck cosmology (Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020), Ωm0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='31315, ΩΛ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='68685, Ωb0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='049199, h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6737, σ8 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='82172, ns = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (21) Each test model has 8 realisations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dark matter halo catalogues were obtained using the Subfind halo finder (Springel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The haloes were first identified using a fast parallel friends-of-friends (FOF) algorithm with link length set to b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='168 times the mean interparticle separ- ation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Spherical overdensity halo catalogues are then built out from the potential minimum of each FOF halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo mass definition adopted is M200c ≡ 4π 3 (R200c)3 × 200ρcrit, where ρcrit(z) ≡ 3H2(z)/(8πG) is the critical density of the Universe, and R200c is the spherical halo radius within which the spherically averaged mass density equals 200ρcrit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Only main ha- loes with masses above 1012 h−1M⊙ from the HR simulations are considered in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo catalogues at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='25, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='50, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='75, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='50, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='75 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 are available for all nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Besides these common redshifts, Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' saved particle snapshots and halo catalogues at pre-selected redshifts to construct past light-cones for weak-lensing analysis, therefore enabling the emulation of halo properties as a function of redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the main text, we present the performance of the emulators at redshift zero, since the measurement and emulation at other redshifts are performed in the same way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 3 DATA SET In this section we describe the measurement and post-processing of the halo properties from the simulations, including the halo mass function, concentration-mass relation and halo-matter cross- correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 Halo Mass Functions The differential halo mass function (dHMF) quantifies the number density of haloes as a function of halo mass for a given cosmology C and redshift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' It is denoted as dn(M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' z, C) dM or dn(log M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' z, C) d log M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (22) In the cumulative form, the cumulative HMF (cHMF) gives the number density of haloes above a given mass threshold M, n(> M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' z, C) = � ∞ M dm dn(m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' z, C) dm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (23) The HMF is measured by creating a histogram of the halo mass, which is affected by shot noise and sample variance, especially for massive haloes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Also, HMFs span many orders of magnitude in abundance, typically from 10−3 to 10−8 (h−1Mpc)−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Taking the logarithm of the HMF to reduce the dynamic range does not help much, since the interpolation errors in the logarithmic quantity would be exponentially amplified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To overcome these problems, a commonly used approach (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' followed by McClintock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022) is to fit the measured HMF using fitting formulae like those proposed by Jenkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2001);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008), and then to emulate the mass and cosmology dependence of the fitting parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, the performance of such fitting functions in MG simulations is not guaranteed (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Schmidt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Gupta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022) and therefore may cause systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We adopt an alternative method to emulate the HMF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The main ideas include: (1) Emulating the ratio between the simulation result for the HMF and a realistic fitting formula to reduce the dynamic range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2) Considering the cumulative HMF instead of the differential one to allow for smaller steps in halo mass, thereby providing more training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) (hereafter T08) derived fitting functions for the HMF applicable over a wide range of halo masses and halo definitions, with a precision of ≲ 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We work with the ratio of the cumulative HMFs between the simulation measurements and the T08 fitting formulae1, r(M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C, z) ≡ nsim h (> M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C, z) nT08 h (> M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (24) The HMF ratios are then interpolated across parameter space using neural networks to construct the emulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To obtain the differential HMF for any given cosmology Cany, one can calculate the ratio for this cosmology using the trained emulator, multiply it with the T08 HMF and take the derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulation process is sketched in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In each snapshot, we measure the number densities of haloes more massive than a series of masses, beginning at 1012 h−1M⊙ and increasing in steps with a bin width of ∆ log [M/(h−1M⊙)] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The maximum mass varies across redshifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 3 presents the ratios of HMFs for 49 f(R) gravity simulations at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The ratios are gently varying functions over a lower dynamic range than HMFs themselves, therefore resulting in a higher emulation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1 Numerically implemented in the Python module hmf (Murray et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) 6 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Halo Catalogues M200c cumulative HMF nh,sim(>M|Ctrain) binning Fitting Function Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) cumulative HMF nh,T08(>M|Ctrain) integrate Emulated cHMF Ratio remu(M|Cany) cHMF Ratio r(M|Ctrain)= nh,sim(>M|Ctrain)/nh,T08(>M|Ctrain) emulation Emulated dHMF dnemu/dM(>M|Cany) differentiation Emulated cHMF nemu(>M|Cany)= remu(M|Cany) × nh,T08(>M|Cany) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Flow chart illustrating the process of emulating halo mass func- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We start from measuring the cumulative HMF from the simulations in the training data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For each simulation, we calculate the cHMF predicted by the fitting formula of Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) for the same cosmology C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We then interpolate the ratios between the two cHMFs across parameter space using neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To obtain the commonly used differential HMF for any given cosmology Cany, we can calculate the ratio, multiply the ratio by the Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) function and take the derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cumulative halo mass function (cHMF) ratios between simulation measurements for 49 f(R) gravity models and the fitting formula calibrated by Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) for the same cosmology (except for the MG parameter ¯fR0, which is set to zero), at redshift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dynamic range of the ratios are significantly decreased compared with cHMFs themselves, therefore increasing the emulation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 The individual halo density profile and the concentration-mass relation One of the most remarkable discoveries from cosmological N-body simulations was that dark matter haloes display a universal density profile (Navarro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1996, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020), from the host haloes of dwarf galaxies to those of massive galaxy clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Spe- cifically, it was shown that the spherically averaged density profile of individual relaxed haloes can be described by the well-known Nav- arro, Frenk & White (NFW) profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The NFW profile is described by two parameters, the characteristic density and scale radius of a halo, or equivalently the halo mass and concentration, ρNFW(r|r−2, ρ−2) = 4ρ−2 � r r−2 �� 1 + r r−2 �2 , (25) where r−2 is the characteristic radius (also denoted as rs) of a halo at which the logarithmic slope of the density profile equal to −2, d log [ρNFW(r)] d log r ���� r=r−2 = −2, (26) and ρ−2 ≡ ρNFW(r = r−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo concentration c is defined as the ratio between the halo radius (which is adopted as R200c in this work) and r−2, c ≡ R200c r−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (27) The other NFW parameter ρ−2 is related to the concentration as ρ−2 = ρcrit(a) 4 200 3Ωm(a) c3 f(c), (28) where Ωm(a) ≡ ¯ρm(a)/ρcrit(a) is the matter density parameter at a given scale factor a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' f(c) ≡ ln(1 + c) − c/(1 + c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Previously, attention was focused on measuring halo concen- trations for the best-fitting WMAP or Planck cosmologies, or similar models close by in parameter space (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Prada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Diemer & Kravtsov 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Klypin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Child et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Such calibrated fitting functions cannot be simply ex- tended beyond the cosmological and gravity models for which they have been tested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In order to overcome potential problems associ- ated with the extrapolation of fitting functions to a wider range of cosmologies, we build emulators for the halo concentration-mass relation and halo density profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We study the concentration-mass relation for haloes in the cos- mologies covered by the FORGE and BRIDGE simulation suites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We consider only the haloes containing more than 1 000 particles, corresponding to a mass of 1013 h−1M⊙ for the fiducial Planck cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For several reasons set out below we do not exclude unrelaxed haloes that contain a large amount of substructure as was done in some previous work (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Neto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Prada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Klypin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' First, our aim is to predict the halo profile as an ingredient of the halo model, instead of studying the formation and evolution of relaxed haloes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Galaxies are expected to reside in all haloes, regardless of their dynamic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Second, excluding unrelaxed haloes would bias the concentration high because haloes in the rapid mass accretion stage tend to have low concentrations (Child et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Third, such a cut removes typically 30-50% haloes, which would make the measurement of halo properties less reliable, by introducing larger statistical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To measure halo concentrations, we follow the approach taken by Mitchell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2019) and briefly review the main aspects below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As mentioned in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3, we use M200c and R200c as the defin- itions of the halo mass and radius, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo centre is MNRAS 000, 1–18 (2023) 4 3 2 sim u 0 1012 1013 1014 M200c/ (h-1 MoMG Emulator Halo Model I 7 adopted as the gravitational potential minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo particles are split into 20 logarithmically spaced radial bins from the halo centre, covering the range [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00]R200c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We then fit the NFW profile (Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (25)) to the density in the radial bins of each halo, treat- ing the characteristic density and concentration as free variables, by minimising an unweighted χ2, χ2 = � i [log ρsim(ri) − log ρNFW(ri|c, ρ−2)]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (29) We have checked that weighting the χ2 function by the number of particles in each radial bin has a negligible impact on the best-fitting concentration values recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The mean value of the best-fitting concentration depends on technical details such as the halo finder used, and the number and range of the radial bins, which would have a non-negligible impact if the NFW profile is not a good fit to the halo profile (Meneghetti & Rasia 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Dooley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' It has been argued that using the median instead of the mean concentration would avoid such non- convergence (Diemer & Kravtsov 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Neto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2007) found that the median of the concentration depends only weakly on the radial range used in the fit, provided that the unrelaxed haloes are removed and rmin ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05Rvir in the fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To test the robustness of the halo concentration measurement, we use three N-body simulations from Mitchell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2021) with the same cosmology and particle number, Np = 10243, and dif- ferent box sizes, L = 200, 500 and 1000 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We then bin the halo particles, fit the NFW profile and calculate the mean and median values of the concentrations in each mass bin, keeping the maximum radius fixed at R200c and checking the results for four different rmin values: (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='07, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='10 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='13)R200c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' All concentration-mass relations are well fitted by a power law, c(M) = c0M α, (30) with c0 the amplitude and α the index, as represented by the coloured bands in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The median concentrations (as well as the mean) and the best-fitting amplitude are still sensitive to the minimum radius, with a relative difference of up to 10 per cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, the power indices are practically the same for different fitting ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The convergence test also confirms our choice of the min- imum particle-number cut applied to define the halo sample used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The concentrations from the lower resolution simulations start de- viating from those of the higher resolution runs around the halo mass corresponding to ∼ 800 times the particle mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This pivot mass also depends weakly on the radial range used to fit the density profile, with smaller minimum scales having larger pivot masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 The averaged halo profile estimated from the halo-mass correlation function The normalised halo density profile, u(r|M), that appears in the halo model can be estimated by measuring the halo-mass cross- correlation functions from an N-body simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As mentioned in Section 1, the halo model assumes that the matter density field consists of a superposition of haloes at locations xi with masses 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 log10 � M200c/(h−1M⊙)� 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='90 log10 cmedian 200c 800 × mL200 particle 800 × mL500 particle 800 × mL1000 particle rmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05R200c rmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='07R200c rmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='10R200c rmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='13R200c fit : c = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02M −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='097 fit : c = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='03M −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='099 fit : c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='98M −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='097 fit : c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='94M −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='095 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Convergence test of halo concentration measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We fit the NFW profile and measure the halo concentration from three N-body simulations with the same particle number and different box sizes, L200 (the highest resolution run, thick solid lines), L500 (the medium run, thin dashed lines) and L1000 (the low resolution run, thin solid lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Colours represent results obtained for different minimum radial ranges in the fitting, as shown by the key, with the maximum radial range fixed at R200c in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The vertical lines present the critical mass scales lower than which the concentration measurements are unreliable due to insufficient resolution, which are ∼ 800 times the mass resolutions mparticle, as long as rmin > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05R200c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The colour-shaded bands show the power fitting (c(M) = c0Mα) to the measured c(M) relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) Mi, so that the matter field can be written as ρm(x) = � i Mi u � |x − xi| ���Mi � (31) = � d3x′ � dM � � i δ(D)(M − Mi) δ(D)(x′ − xi) M u � |x − x′| ���M �� , (32) where The summation is for all haloes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' the same results can be derived by taking the summation over all microcells which are made to be so small that each cell contains no more than one halo centre (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Peebles 1980);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' δ(D)(· · · ) is the Dirac delta function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' � i δ(D)(M − Mi) δ(D)(x′ − xi) ≡ dn(x′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M) dM is the local HMF, whose integral over the halo mass gives the halo number density field at the field point x′: � dM dn(x′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M) dM = nh(x′), (33) MNRAS 000, 1–18 (2023) 8 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' and its ensemble average gives the common dHMF, �dn(x′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M) dM � = �� i δ(D)(M − Mi) δ(D)(x′ − xi) � = dn(M) dM ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (34) u � |x − xi| ���Mi � ≡ ρh � |x − xi| ���Mi � Mi denotes the density profile of a halo centred at xi, which is also assumed to be spheric- ally symmetric and depends only on its mass, u � |x − xi| ��Mi � = � ρh � |x − xi| ���Mi � /Mi, |x − xi| ≤ Rhalo;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 0, |x − xi| > Rhalo;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (35) and u is normalised: � d3x u � |x − xi| ��Mi � = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (36) For two different populations of objects with overdensity fields δa(x) and δb(x), the two-point cross-correlation function is defined as ξab(r) ≡ ⟨δa(x) δb(x + r)⟩ , (37) where ⟨· · ·⟩ denotes ensemble averaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Assuming statistical iso- tropy reduces ξab(r) to a function of separation only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the case of the cross-correlation between halo centres and the matter field, the cross-correlation function is given by ξhm(r) ≡ ⟨δh(x) δm(x + r)⟩ (38) = 1 ¯nh¯ρm � nh(x) ρm(x′) � − 1, (39) where x′ ≡ x + r, and the halo number density fluctuation field is defined as δh(x) ≡ nh(x) − ¯nh ¯nh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (40) Now we derive the expressions for the halo and matter fields in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (39) within the halo model framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In realistic N-body simulations, halo catalogues always have a finite halo mass range, limited by the simulation force/mass resolution and the box size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We can define the halo selection function for a given mass range (MR) as φ(m|MR) ≡ � 1, if m ∈ MR, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (41) In practice, MR can be a narrow mass interval, [M, M + dM) ≈ [M, M + ∆M), or a mass threshold interval, [M, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For a given halo sample, the corresponding halo number density field can be expressed as nh(x) = � i δ(D)(x − xi) φ(mi|MR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (42) To obtain the expression for ⟨nh(x) ρm(x′)⟩ in the halo model, we can plug the expressions for the halo and mass fields, Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (32) and (42), into Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The full expression can be found in Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (7) and (8) of García et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We focus only on the internal structure of the halo and, therefore, on the 1-halo term, which reads � nh(x) ρm(x′) � 1h = � dm dn dmm φ(m|MR) u(r|m) (43) = � � � dn(M) M u(r|M), MR = [M, M + dM), � ∞ M dm dn dm m u(r|m), MR = [M, ∞), (44) where dn(M) is the number density of halos in the mass range [M, M + dM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The 1-halo term of the halo-mass correlation func- tion is ξ1h hm(r|M) = M u(r|M) ¯ρm − 1 = ρh(r|M) ¯ρm − 1, (45) ξ1h hm(r|>M) = 1 ¯ρm ¯nh(>M) � ∞ M dm dn dm m u(r|m) − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (46) We are interested in the average density profile of haloes in a narrow mass interval [M, M +dM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, the noise level of the simulation measurements for such halo properties and statistics is high because of the low number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We bypass this problem by measuring ξ1h hm(r| > M) (which involves more haloes and therefore is a smoother function) and taking the partial derivative with respect to mass, u(r|M) = − ¯ρm M �dn(M) dM �−1 × ∂ ∂M � ¯nh(> M) � 1 + ξ1h hm(r| > M) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (47) 4 USING NEURAL NETWORKS FOR REGRESSION PROBLEMS Given a data set comprised of independent variables (also called features) and dependent variables (labels), there exists an unknown underlying function mapping the inputs to the outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We can use supervised learning algorithms to approximate this function, which falls in the category of a regression problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the context of structure formation, the features consist of cosmologies C, redshifts z, halo masses M or number densities nh, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The labels of interest include basic properties of haloes such as halo mass functions, concentration-mass relations and correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the case of structure formation, the “functions” between the features and labels are known but expensive: we can run N-body simulations given a set of cosmological parameters C, save the snapshot at a given redshift z, identify haloes and measure the properties of haloes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' But it is computationally intractable to perform ≳ O(104) cosmological simulations to explore the parameter space in a typical MCMC analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As shown in previous works on cosmic emulation, such as Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' DeRose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022), and as we will report in the following sections, it is possible to construct emulators for halo properties by running affordable numbers (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 50-100) of simulations and interpolating in a high- dimensional parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Emulators can give accurate predic- tions for halo properties for new models without running additional simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Thanks to the development of algorithms and comput- ing power, statistics and machine learning provide us with a wealth of tools to solve such regression problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In a regression analysis, the typical progress of approximating a function can be summarised as: Define a functional form y = f(x|θ) with adjustable or train- able parameters θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For example, in the simplest and most common form — linear regression — the labels are assumed to be linear combinations of the features and the coefficients are the trainable parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Define a loss function on the training data set D to quantify the difference between the real and predicted values of the target, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', the sum of the absolute differences (which reduces the weight MNRAS 000, 1–18 (2023) MG Emulator Halo Model I 9 of outliers), L(θ|D) ≡ � (xi,yi)∈D ��yi − f(xi|θ) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Find the optimal parameters θ⋆ to minimise the loss function (train the model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Gaussian process (GP) regression (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Williams & Rasmussen 2006) has been widely adopted in cosmological emulation projects, such as Dark Quest (Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019), Aemulus (DeRose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019), the Coyote Universe (Heitmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2010), the Mira- Titan Universe (Bocquet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020), Cosmic Emulators (Kwan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013) and FORGE (Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' GP regression is non- parametric, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', no specific functional form is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, GPs are not easy to apply to large data sets because of their O(N 3) scaling where N is the size of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Therefore, the aforementioned projects usually emulate matter, halo and/or galaxy properties using a combination of principal component analysis, to reduce the dimensionality of the data vector, and GP, to fit the dependence of the principal component coefficients on cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The machine learning algorithm we adopt is a fully connected neural network (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bishop et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Alom et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This is a type of artificial neural network in which all neurons in one layer are connected to the neurons in the next layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The neural network algorithm has been widely applied to cosmology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Agarwal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2012, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Jennings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Kobayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022), and its perform- ance has been shown to be competitive or sometimes better than other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Neural networks have a strong fitting ability, as re- flected by the universal approximation theorem (Cybenko 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Hornik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Goodfellow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, this theorem does not provide a means to construct optimised neural networks, but merely guarantees their existence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Also, this strong fitting abil- ity also makes neural networks more susceptible to the overfitting problem compared to GPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Therefore, we need to carefully check the emulator performance using independent test data sets and tune the network architecture so that the generalisation error is success- fully suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Moreover, we show dimensionality reduction is not necessary when using neural networks, which also improves the accuracy of the emulator predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A neural network is an interconnection of neurons arranged in a series of layers, with each neuron in a layer connected to all other neurons in adjacent layers with different weightings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' One can impart values on to the neurons of the first layer (called the input layer), have a number of hidden layers and finally obtain the output from the last layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For example, in this work, the neural networks emulating the halo mass function at fixed redshift have five nodes in the input layer, corresponding to the halo mass and four cosmological parameters, and one node in the last layer outputting the HMF, n � > M|Ωm0, h, S8, log10 | ¯fR0| or log10 |H0rc| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (48) Neural networks use activation functions to impart non- linearities into the fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rectified Linear Unit (ReLU) (Agarap 2018) is the most commonly used activation function in current neural networks used to add non-linearities in the mapping between inputs and outputs, which is defined as ReLU(x) = max(0, x), (49) where x is the output of the previous layer of the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Note that the activations of ReLU are not differentiable at x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Here, however, we are interested in functions that are differenti- able with respect to their inputs and, in particular, with respect to the cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Therefore, throughout, we use Gaus- sian error linear unit (GELU) (Hendrycks & Gimpel 2016) as the activation function instead, GELU(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5x � 1 + erf � x √ 2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (50) To find the optimal parameters θ⋆ that reproduce the halo properties measured in the N-body simulations, we minimise the L1-norm loss function, L = 1 N N � i=0 |yi true − yi predicted| (51) using the Adam optimiser (Kingma & Ba 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Compared to the mean squared error, the loss of L1 reduces the importance given to outlier errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To avoid fine-tuning the learning rate, we adopt a learning rate scheduler that reduces the learning rate by a factor of 10 every time the validation loss does not improve after 30 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We also stop the training process when the validation loss does not improve after 100 epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This iterative reduction of the learning rate allows the model to quickly learn the broad characteristics of the data and later reduce the errors with a smaller learning rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The initial learning rate is always set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 Ideal emulation tests To gain a preliminary impression of the emulation process, and to guide the design of emulators in the future, we perform emulation tests under ideal conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo properties are generated for a limited number of randomly selected cosmologies using analytical methods or fitting formulae, which are noise-free mappings from cosmologies to halo properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Then we use these data to train neural networks and emulate the “true” model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To evaluate the performance of the emulator, we compare the true values with the emulator predictions using independent test data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The cosmologies of the training set cover 50 flat geometry (w0-wa) CDM models (Linder 2003), where the equation-of-state parameter for dark energy is parameterised in terms of the expansion factor, a, as w(a) = w0 + wa(1 − a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (52) A key aspect of building emulators is an efficient sampling scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As the training dataset, the 50 cosmologies were sampled using optimal minimax distance sliced Latin hypercube designs (Ba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2015) in a seven-dimensional cosmological parameter space, C = � Ωm0, Ωb0, h, σ8, ns, w0, wa � , (53) as shown by the grey dots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The range of parameters is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 < Ωm0 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='7, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 < Ωb0 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='06, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 < h < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 < σ8 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='92 < ns < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='99, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 < w0 < −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='7, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 < wa < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1, (54) while the upper and lower parameter limits depart significantly from the current best-fitting ΛCDM background cosmology from the Planck satellite (Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We also generate two test data sets that were not used in the training: both consist of 500 random cosmologies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' one set covers the same parameter range as that of the training set, and the other one covers the inner half- region (in terms of the length per dimension, instead of volume) of the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The cosmologies in the full- and half-range test data sets are shown in green and blue dots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 5, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Visualisation of the seven-parameter (w0-wa)CDM cosmologies studied in the ideal emulation tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Grey dots show the training set including 50 nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Green dots represent full-range test set consisting of 500 nodes covering the same range as that of the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Blue dots show the half- range test set including 500 nodes in the inner half region of the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) We choose to emulate two basic properties of haloes in the tests: the concentration-mass relation c(M), and the cumulative HMF ¯nh(> M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For given cosmologies, we generate the c(M) relation calibrated in Prada et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2012), using the publicly available Python toolkit COLOSSUS (Diemer 2018), and compute the Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) HMF with the Python package hmf (Murray et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2013, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2, we train the emulators directly on the ratio of the cumulative HMF between the target HMF and a fitting formula to reduce the dynamic range and improve the interpolation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We choose the HMF calibrated in Jenkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2001) as the reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The upper panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 6 show the halo properties calculated using the fitting formulae and emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The fractional errors are shown in the lower sub-panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The results show that the emulator reproduces the analytical halo c(M) relation with a sub-percent error in the 7D parameter space with only 50 training models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The performance of the HMF emulator is even better than that of the concentration emulator, although the HMF data span ∼ 20 orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The median absolute error of the emulator predictions is lower than 1 per cent for halo masses M ≲ 1016 h−1M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We also note that the emulator precision is generally different at the edge and centre of the parameter space, as revealed by the green and blue lines in the bottom panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This suggests that we should design the parameter space to be wider than the existing cosmological constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The parameter space in our ideal tests is designed to be wide enough that covers some extreme cosmologies, such as Ωm0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='7 and h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In general, ideal emulation tests show that under noise-free conditions, neural network emulators can provide accurate inter- polations in high-dimensional parameter space, using 50 efficiently sampled models as the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the next section, we will present the cosmic emulation in the real situation: the data are measured from simulations and, therefore, are influenced by sample variance and noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 5 RESULTS In this section we demonstrate the ability of a fully connected neural network to reproduce the halo properties measured from FORGE and BRIDGE simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We train different emulators for each gravity theory: ΛCDM, f(R) gravity and DGP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The configurations of the neural networks for emulating three halo properties are sum- marised in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 The emulator for the halo mass function As discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1, we train the neural network emulators directly on the ratio of the cumulative HMF between simulation measurements and the fitting formula calibrated in Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008) to reduce the dynamic range and improve the emulation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 7 compares the cumulative and the differential HMFs from simulations and emulators at z = 0, for the ΛCDM, f(R) gravity and DGP models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The differential HMF of a given mass bin centred on log Mi is obtained by dn(M) d log M ���� log Mi ≈ n(> log Mi − bw 2 ) − n(> log Mi + bw 2 ) bw , (55) where bw ≡ log Mi+1 − log Mi is the bin width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The lower sub- panels show the fractional difference between the emulator predic- tion and the measured HMFs in a given mass bin, HMFemu − HMFsim HMFsim .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (56) The performance of the emulator on the training data set is shown by the thin lines of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulator achieves sub-percent ac- curacy in reproducing most of the cumulative HMF for halo masses between 1012 and 1014 h−1M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The residuals of the differential HMF obtained using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (55) are slightly larger but still show ≲ 2 per cent scatter around zero, with a mean consistent with zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The thick lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 7 show the emulator predictions for three test mod- els which are not used in the training, as described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We again find percent-level agreement between the emulator pre- dictions and simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Furthermore, the fluctuations of the residuals in the test set are much smaller than those of the training models, since each test cosmology has 8 realisations and the sample variance of the measured dHMFs is suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This confirms that the errors of the emulator predictions are mainly random instead of systematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 The emulator for the concentration-mass relation As shown in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 4, the halo concentrations meas- ured from simulations are sensitive to the radial range used in the fitting, which indicates that this is not the optimal way to describe the halo density profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, the power law index is not sens- itive to the range adopted, which indicates that we can treat the amplitude of the concentration-mass relation as a free parameter to take into account this variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We build an emulator for the c(M) relation taking rmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='10R200c as a representative value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The performance of the emulator at z = 0 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The fractional errors are sub-percent for most of the cosmologies in the training and test data sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='75 Wo 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='98 s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='96 n 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 hMG Emulator Halo Model I 11 Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ideal emulation tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Top panels: The halo concentration-mass relation (left) and halo mass function (right) of the training (grey), full-range test (green) and half-range test (blue) sets, from the analytical methods (dots) and emulators (lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Bottom panels: The absolute value of the relative difference between the models and emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The solid and dashed lines present the median and 90-th percentile of the emulation fractional errors among the training (black), test (green) and half-range test (blue) sets, which include 50, 500 and 500 cosmologies, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code 1, 2) Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Summary of the neural network configurations for emulating the halo properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The architecture of a neural network is specified from the input to output layer as (Ninput, Nhidden1, Nhidden2, · · · , Noutput) with N the number of neurons in each layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Halo Property Feature Label Neural Network Architecture Activation HMF C, M200c Equation (24) (5, 64, 32, 1) GELU Concentration C, M200c c200c (5, 32, 16, 1) GELU ξhm C, nh {r2 i ξhm(ri)}N=30 i=1 (5, 128, 32, 30) GELU 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 The emulator for the halo-mass cross-correlation function As discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3, the average halo profile can be es- timated from the halo-mass cross-correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo profile u(r|M) is directly related to the matter density field cross-correlated with the halo sample in a narrow mass range [M, M+∆M].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, such correlation functions measured from simulations would be rather noisy because of the low halo number density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To feed the neural networks with smoother data, we meas- ure the cross-correlation functions between the matter field and the halo samples with fixed number densities, ξhm(r|C, ¯nh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We then use the HMF emulator to translate ξhm(r|C, ¯nh) as a function of number density into ξhm(r|C, M) as a function of mass, according to Equation (47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We measure ξhm(r|C, ¯nh) using the high-performance code Corrfunc (Sinha & Garrison 2020) for the halo number densities in logarithmically spaced bins over the range log10 � ¯nh (h−1Mpc)−3 � = [−5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1, −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9], (57) using a bin width of ∆ log10 ¯nh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The separation r is split into 30 logarithmically-spaced bins from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 h−1Mpc (three times the force resolution) to 3 h−1Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Furthermore, to reduce the dynamic range of the data vector, we opt to emulate r2ξhm(r) instead of ξhm(r) itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The upper-left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 9 shows ξhm � r|¯nh = 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 (h−1 Mpc)−3� at z = 0 for the 49 ΛCDM gravity cosmologies along with the test models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The average halo profile is only related to the 1-halo term of ξhm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo-mass correlation enters the transition between 1- and 2-halo terms as the scale increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To estimate the range of the one-halo term, we only consider the scales below R200c, which is related to the adopted mass definition M200c as M200c(z) = 4π 3 (R200c)3200ρcrit(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (58) We then build emulators for ξhm(r|C, ¯nh) at each redshift, to reduce the number of features and minimise emulation errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The lower left sub-panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 9 shows the fractional difference between the simulation measurements and the emulator predictions, in the training set along with the test models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulator achieves sub-percent accuracy for the both the training and the test models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The average halo density profile can be estimated from ξhm using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 9, we compare this type of profile with the NFW profiles combined with three concentration- mass relations from this work, Klypin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2016) and Diemer & Joyce (2019), in five halo mass bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We also fit the average profile with an NFW form, using the the data over the range of [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0]R200c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the right sub-panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 9, we check the relative difference between the average profiles measured from the simulations and the NFW fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' There is a ∼ 5% discrepancy between the two types of profiles, regardless of the concentration-mass relation, which shows that the differences between the NFW profiles with different c(M) relations are small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This level of difference is consistent with the results discovered in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 of Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) training,true 20 training, emulation test test, inner 50% 15 10 5 training, median test training, 90-th percentile test,inner 50% rue 10 10-3 1012 1013 1014 1015 1016 M /(h-Mo3 10-4 1 (odWi-)/(W<)u 10-8 10-12 training, simulation 10-16 training, emulation 10-20 test 10-24 test, inner 50% training, median test training, 90-th percentile test, inner 50% true △nhl /ni 10-3 1013 1014 1015 1016 1012 M /(h-1M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=')12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cumulative (the first row) and differential (the second row) halo mass functions from simulation measurements and emulator predictions at z = 0, for ΛCDM (left), f(R) gravity (middle) and DGP (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In each panel, the thin lines show the results of the 49 cosmologies in the training data set, and the thick lines represent those of the test models which were not used in the construction of the emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the lower sub-panel, we compare the relative differences between simulations and emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dark and light grey bands denote ±1%- and ±2%-level errors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The differential halo mass functions are obtained by finite difference of the cumulative HMFs according to Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (55).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code 1, 2) 6 EMULATOR APPLICATIONS With the emulators for the halo mass function and density profile as ingredients, we are able to predict galaxy clustering statistics using the halo model framework (Cooray & Sheth 2002), and therefore fit galaxy clustering measurements in the joint parameter space of cosmology and a galaxy-halo connection model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In this section, we demonstrate that the emulator-based halo model reproduces the signals measured from the mock HOD catalogues generated with the same specifications, such as the cosmology, HOD prescription, satellite profile and/or concentration-mass relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023) 3 ACDM f(R) gravity DGP 10 10 training, simulation training, simulation training, simulation training, emulation training, emulation Nh( training, emulation test, F5 test, Nl test, GR test, N5 test, F6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 1014 1012 1013 1013 1014 1012 1012 1013 1014 /(h-1Mo) /(h-1Mo) /(h-1Mo) M200c/ M200c/ M200c/-2 10~ ACDM f(R) gravity DGP 10 dnh training, simulation training, simulation 10 training, simulation training, emulation training, emulation training, emulation test, F5 test, N1 test, GR test, N5 test, F6 rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 1012 10140 101410 10 /(h-1M。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=') /(h-1 Mo) M200c/ (h-1 Mo) M200c/ M200c/MG Emulator Halo Model I 13 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Comparison between the halo concentration-mass relations from simulations (points) and emulators (lines), for the 49 f(R) gravity cosmo- logies in the training set (grey) and test models F5 (green), F6 (orange), N1 (blue), N5 (purple) and the fiducial Planck cosmology (denoted as GR, in red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The results for the ΛCDM and DGP training sets are similar to those for f(R) gravity and are therefore not shown here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The lower sub-panel shows the relative difference of the halo concentration between simulations and emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The sub-percent differences between the emulator and sim- ulation results are much smaller than the differences between the results for different cosmologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 Galaxy two-point correlation function We adopt the halo occupation distribution (HOD) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2005) prescription to model the average number of galaxies in a halo as a function of halo mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The occupation of central galaxies is parameterised as a Bernoulli distribution, whereas that of satellites is a Poisson distribution (Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Both distributions are described by their mean occupation number, ⟨Ng⟩ (M) = ⟨Nc⟩(M) + ⟨Ns⟩(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (59) The galaxy number density ¯ng can then be obtained by integrating the HMF weighted by the mean occupation, ¯ng = � dM dn(M) dM � ⟨Nc⟩(M) + ⟨Ns⟩(M) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (60) Following Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2022), we adopt the HOD model in Zheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2007) by introducing the following HOD parameters, G = � Mmin, σlog M � �� � Gcen , M1, κ, α � �� � Gsat � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (61) The mean occupation number for central galaxies is given by ⟨Nc⟩(M|G) = 1 2 � 1 + erf �log M − log Mmin σlog M �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (62) The mean central HOD, ⟨Nc⟩(M) , can be interpreted as the prob- ability that a halo with mass M hosts a central galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The mean central HOD considered here has the asymptotic behaviour that ⟨Nc⟩ → 0 for haloes with M ≪ Mmin, while ⟨Nc⟩ → 1 for haloes with M ≫ Mmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The mean satellite HOD is parameterised as ⟨Ns⟩(M|G) = ⟨Nc⟩(M|G)λs(M), (63) where λs(M) = �M − κMmin M1 �α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (64) Following the commonly-used prescription, we assume that satel- lite galaxies reside only in a halo that already hosts a central galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Hence, in the above equation, satellite galaxies can only reside in haloes with ⟨Nc⟩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Then we assume that the number distribu- tion of satellite galaxies in a given host halo follows the Poisson distribution with mean λs(M): P(Ns|Nc = 1) = [λs(M)]Nse−λs(M) Ns!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' , (65) and P(Ns|Nc = 0) = δKr Ns,0, (66) where δKr ij stands for the Kronecker delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Given the HOD model, we populate dark matter haloes in 8 test simulations of the fiducial Planck cosmology with mock galax- ies and measure the galaxy clustering signals, using the following randomly selected HOD parameters: log [Mmin/(h−1M⊙)] = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5, σlog M = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6915, κ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='51, log [M1/(h−1M⊙)] = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9, and α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (67) We can also express the galaxy two-point correlation func- tion (TPCF) in terms of dark matter halo properties in the halo model framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' First, we split the one- and two-halo terms into correlations of central and satellite galaxies as ξgg(r) = ξ1h cs (r) + ξ1h ss (r) + ξ2h cc (r) + ξ2h cs (r) + ξ2h ss (r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (68) The terms involving both centrals and satellites lead to a con- volution of the halo profiles and/or the halo TPCF, following � d3x u(x|M) u � |x + r| ���M � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' It is therefore more convenient to compute these terms in Fourier space, where convolutions in co- ordinate space become simple products of the Fourier modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Here, we focus on the one-halo term only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The two-halo term involving the emulation of halo clustering will be the topic of the subsequent papers in this series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The expressions for the 1-halo term of the galaxy TPCF after the central-satellite split are given by ξ(r) = � ∞ 0 dk (2π)3 4πk2 sin(kr) kr P(k), (69) P 1h cs (k) = 1 ¯n2g � dM dn(M) dM ⟨Nc⟩(M) λs(M) us(k|M), (70) P 1h ss (k) = 1 ¯n2g � dM dn(M) dM ⟨Nc⟩(M) � λs(M) �2 � us(k|M) �2, (71) where us(k|M) is (the Fourier transformation of) the radial distri- bution of satellite galaxies within a halo, and we have highlighted the emulated quantities in blue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In this section, we assume that the MNRAS 000, 1–18 (2023) concentration 6 4 training, simulation training,emulation 3 test, F5 test, N1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='01 test, F6 test, N5 test, GR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 emu C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='01 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0 log10[M200c/(h-1Mo)]14 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2 × 10−1 3 × 10−1 4 × 10−1 r2ρ(r|M)/M from ξhm(r|M) from ξhm(r|M), NFW fitting NFW, conc = this work NFW, conc = Diemer19 NFW, conc = Klypin16 M = 1013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 M = 1013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='50 M = 1014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 10−1 100 r/(h−1Mpc) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='10 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='10 ρfrom ξhm/ρNFW − 1 Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Left panel: Halo-mass cross-correlation functions from simulations and emulators at z = 0, for the 49 ΛCDM gravity cosmologies in the training set (grey), five test models F5 (cyan), F6 (orange), N1 (blue), N5 (purple) and the fiducial Planck ΛCDM model (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the lower sub-panel, we compare the relative difference between the simulations and emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Right panel: Comparison of the normalised halo density profiles, ρ(r|M)/M, truncated at r = R200c, for the fiducial Planck ΛCDM model (node 0) at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The average halo profiles estimated from ξhm(r) according to Equation (47) are represented by points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The solid lines show the fits to an NFW profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The dashed, dotted and dash-dotted lines show the NFW profiles with three different concentration-mass relations: this work, Diemer & Joyce (2019) and Klypin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Colours denote different halo masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The lower sub-panel shows the relative difference between the NFW profiles (lines) and the average profiles (points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) distribution is given by an NFW profile with the concentration-mass relation from Diemer & Joyce (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 10 compares the model predictions and the galaxy TPCF measured from mock HOD catalogues at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' On the scales where the 1-halo term dominates (r ≲ 1 h−1Mpc), the fractional difference is within 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The colours in the plot rep- resent different contributions: the correlations of central-central, central-satellite and satellite-satellite galaxy pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' As shown in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 4, the halo concentrations measured from simulations are sensitive to the minimum radius in the fitting, with a relative difference of up to 10 per cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To test the impact on galaxy clustering, we calculate the one-halo terms of ξgg (Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (70) and (71)), adopting the NFW profile with the concentration-mass relations measured from this work and increas- ing or decreasing them by 10 per cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 11 shows that a 10 per cent change in the concentration-mass relation will change the one- halo term by 5 per cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The impact on the two-halo term and the degeneracy between the concentration amplitude and galaxy-halo connection model parameters will be left for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='2 Galaxy-matter cross-correlation function In the galaxy-galaxy weak lensing observations, the excess surface mass density profile around lensing galaxies, ∆Σgm(R) is meas- ured, which can be expressed in terms of the galaxy-matter cross- power spectrum as (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Murata et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019) ∆Σgm(R) = ¯ρm0 � ∞ 0 dk 2π kPgm(k)J2(kR), (72) where J2(x) is the second-order Bessel function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the halo model framework, we can accurately predict Pgm(k) with the emulators providing the model ingredients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Under the same configurations as in the last sub-section, Pgm(k) is related to the halo properties as Pgm(k) = 1 ¯ng � dM dn(M) dM ⟨Nc⟩(M)× � 1 + λs(M) us(k|M) � Phm(k|M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (73) Phm(k|M) is the cross-correlation between the matter overdensity field with the halo sample in a narrow mass bin [M, M + dM].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The quantity that our halo-mass cross-correlation emulators output is Phm(k|nh(> M)), which can be converted as Phm(k|M) = − �dnh(M) dM �−1 ∂ ∂M � nh(> M)Phm � k ��nh(> M) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (74) We use the publicly available, open-source Python toolkit nbodykit (Hand et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2018) to measure the cross power spectra between the mock galaxy catalogues and the matter field, in linear k bins from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3 to 6 h Mpc−1 with a width of ∆k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 h Mpc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' These measurements are compared with the halo model predictions MNRAS 000, 1–18 (2023) training, simulation training,emulation 80 test,GR 60 40 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 test,F5 test, N1 test, F6 test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='N5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 emu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 10-1 100 r/(h-1Mpc)MG Emulator Halo Model I 15 100 101 102 r2ξgg(r) ξsimulation gg ξsimulation cc ξsimulation cs ξsimulation ss → 2-halo term 1-halo term ← 10−1 100 101 r/(h−1Mpc) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='02 ∆ξ/ξsim theory, ξ1h gg theory, ξ1h ss theory, ξ1h cs 0 100 200 300 400 500 600 700 800 900 kPgm(k) simulation, Pgm simulation, Pcm simulation, Psm 1 2 3 4 5 6 k/(h Mpc−1) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='01 rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' theory, Pcm theory, Psm theory, Pgm Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Emulator-based halo model predictions of galaxy clustering statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Left panel: Galaxy two-point correlation functions from simulations (marks) and emulator-based halo model predictions (solid lines), for the fiducial Planck cosmology of FORGE at z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Colours represent different terms of galaxy correlations after the central/satellite split: galaxy-galaxy (black), central-central (red), central-satellite (orange) and satellite-satellite (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Only the one-halo terms of theory predictions are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the lower sub-panel, we show the relative difference between the 1-halo term and the full correlation function measured from simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Right panel: Similar to the left panel but for the galaxy-matter cross power spectrum for the same cosmology and HOD prescription.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The relative difference shown in the lower sub-panel is below 1 per cent except at low-k bins, where the cosmic variance dominates the error budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 7 DISCUSSIONS AND CONCLUSIONS We present accurate emulators for the halo mass function, concentration-mass relation and halo-matter cross-correlation func- tion, for ΛCDM and two representative modified gravity theories, f(R) gravity and DGP, using the FORGE and BRIDGE suites of N-body simulations (Arnold et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The cosmological para- meter space spans three non-MG parameters, Ωm0, h, S8, and one MG parameter, either ¯fR0 or H0rc, depending on which modified gravity model we are using.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We construct emulators using fully connected neural net- works implemented using the open-source Python library PyTorch Lightning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We show the capabilities of neural networks under noise-free conditions by emulating the existing fitting formulae of halo properties, such as the fitting function for HMFs in Tinker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulators mimic analytical models in a 7-D parameter space with sub-percent accuracy, using only 50 training cosmolo- gies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' For realistic cases where the data come from N-body simu- lations and therefore have noise, the accuracy of our halo property emulators is summarised in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 7-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The emulation error is less than 1% for most cosmologies in both the training and the test data sets, in the halo mass range of 1012 ≤ M200c/(h−1M⊙) ≤ 1014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The primary purpose of this series of papers is to extend the modelling of galaxy clustering to non-linear scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We employ the halo model framework (Cooray & Sheth 2002) combined with an adopted galaxy-halo connection model to predict galaxy cluster- ing and other cosmological observables, following the spirit of the Dark Quest project (Nishimichi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Kobayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We demonstrate that the emulators can be applied to the halo model framework combined with the HOD prescription to predict the one-halo term of the galaxy clustering signal, achieving sub-percent accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The main advantages of this emulator-based halo model approach can be summarised as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The model ingredients provided by emulators in- corporate the major complicated effects in the non-linear regime of structure formation, such as non-linear halo bias and the halo exclusion effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Versatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The halo model approach enables a joint modelling of cosmological observables, such as galaxy-galaxy and galaxy- matter correlation functions, for a single population of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The combination of different probes can mitigate the uncertainty of MNRAS 000, 1–18 (2023) 16 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 10−1 100 0 25 50 75 100 125 r2ξ1h gg(r), halo model fiducial 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='9 c(M) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='1 c(M) 10−1 100 r/(h−1Mpc) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05 ξ/ξfid − 1 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' One-halo terms of the galaxy two-point correlation functions with the NFW profiles combined with different concentration-mass relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The black line shows the fiducial case corresponding to the c(M) relation measured from this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The other two coloured lines present the results for increasing and decreasing the concentration by 10 per cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the lower sub-panel, we show the relative difference with respect to the fiducial result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' (source code) galaxy formation and evolution on cosmological parameter infer- ence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Flexibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Instead of making an end-to-end mapping between the cosmological and HOD parameters to the final clustering statist- ics with the emulation process, this “numerical” version of the halo model allows the flexibility of combining with any specific HOD prescription for different types of galaxies, without retraining the emulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To perform cosmological parameter inference by confronting the emulator-based halo model prediction with galaxy survey ob- servations, we plan to implement the following improvements and extensions in the subsequent papers of this series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The excellent performance of the emulators is partly due to the smaller number of parameters varied in the FORGE and BRIDGE simulations compared with other emulation projects, as well as the limited halo mass range due to the relatively small box size of the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' However, as indicated by the ideal emulation tests, neural networks are capable of emulating halo properties up to the halo masses of 1015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='5 h−1M⊙ in a higher-dimensional parameter space with sub-percent accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To extend the mass range of the emulators, we plan to run additional simulations with different spe- cifications, such as box size and number of particles, to obtain halo properties robustly and at low cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Galaxy clustering statistics are typically measured in redshift space from surveys, which involves not only the information about galaxy positions but also their peculiar velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' We will build emulators for the halo peculiar velocity statistics, such as pairwise velocity moments, and combine them using a galaxy-halo connec- tion model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Kobayashi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cuesta-Lazaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' To resemble actual samples of galaxies, we need more realistic HOD prescriptions and check the accuracy of the emulator-based halo model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' In the future, we plan to use the neural network emulators on the upcoming data from DESI and Euclid to constrain the cosmological and modified gravity parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This requires that the models be trained on simulations with higher resolution to meet the demand of the cutting-edge observational data with unprecedented volume and much better controlled systematic errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' ACKNOWLEDGEMENTS C-ZR thanks the Research Council of Norway for their support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C-ZR and BL are supported by the European Research Council (ERC) through a starting Grant (ERC-StG-716532 PUNCA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' AE is supported at the AIfA by an Argelander Fellowship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' CMB ac- knowledges support from the Science Technology Facilities Coun- cil through ST/T000244/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' BL and CMB are further supported by the UK Science and Technology Funding Council (STFC) Consol- idated Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' ST/I00162X/1 and ST/P000541/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' CTD is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094 – 390783311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' This work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='dirac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The equipment was funded by BEIS capital funding via STFC capital grants ST/K00042X/1, ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' DiRAC is part of the National e-Infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' DATA AVAILABILITY The data underlying this article will be shared on reasonable request to the corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' The source code and data to generate the figures in this manuscript are available at this GitHub repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' References Agarap A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='08375 Agarwal S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Abdalla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Feldman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lahav O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Thomas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, MNRAS, 424, 1409 Agarwal S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Abdalla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Feldman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lahav O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Thomas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, MNRAS, 439, 2102 Alom M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, Electronics, 8 Amendola L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, Living Reviews in Relativity, 16, 6 Angulo R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hahn O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, Living Reviews in Computational Astrophys- ics, 8, 1 Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Leo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019a, Nature Astronomy, 3, 945 Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Leo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019b, Nature Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 3, 945 Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Giblin B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Harnois-Déraps J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cai Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, MNRAS, 515, 4161 Ba S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Myers W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Brenneman W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2015, Technometrics, 57, 479 Barreira A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hellwing W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Baugh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pascoli S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, 029 Bhattacharya S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lukić Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wagner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2011, ApJ, 732, 122 Bishop C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1995, Neural networks for pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Oxford university press Bocquet S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lawrence E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Uram T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frontiere N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pope A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Finkel H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, ApJ, 901, 5 Bond J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cole S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Efstathiou G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kaiser N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1991, ApJ, 379, 440 MNRAS 000, 1–18 (2023) MG Emulator Halo Model I 17 Bose B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, MNRAS, 508, 2479 Brando G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Fiorini B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Winther H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, 051 Carrilho P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Carrion K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bose B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pourtsidou A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hidalgo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Baldi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, MNRAS, 512, 3691 Cataneo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Rapetti D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, 024 Cataneo M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heymans C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Mead A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Barreira A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bose S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, MNRAS, 488, 2121 Child H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frontiere N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Finkel H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pope A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Morozov V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, ApJ, 859, 55 Cooray A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Sheth R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2002, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 372, 1 Courtin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Rasera Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Alimi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Corasaniti P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Boucher V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Füzfa A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2011, MNRAS, 410, 1911 Crocce M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pueblas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Scoccimarro R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2006, MNRAS, 373, 369 Cuesta-Lazaro C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05218 Cybenko G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1989, Mathematics of control, signals and systems, 2, 303 DESI Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:1611.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00036 De Felice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Tsujikawa S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, Living Reviews in Relativity, 13, 3 DeRose J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ApJ, 875, 69 Diemer B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, ApJS, 239, 35 Diemer B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Joyce M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ApJ, 871, 168 Diemer B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kravtsov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2015, ApJ, 799, 108 Donald-McCann J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Beutler F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Karamanis M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, MNRAS, 511, 3768 Dooley G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Griffen B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zukin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Ji A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Vogelsberger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hernquist L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frebel A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, ApJ, 786, 50 Dvali G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gabadadze G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Porrati M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2000a, Physics Letters B, 485, 208 Dvali G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gabadadze G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Porrati M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2000b, Physics Letters B, 485, 208 Fang W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Haiman Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hui L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', May M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2008, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 78, 103509 Ferreira P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ARA&A, 57, 335 Gao L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Navarro J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cole S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Jenkins A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Neto A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2008, MNRAS, 387, 536 García R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Rozo E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Becker M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', More S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, MNRAS, 505, 1195 Goodfellow I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bengio Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Courville A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, Deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MIT press Gupta S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hellwing W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bilicki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', García-Farieta J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 105, 043538 Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Higdon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nakhleh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Williams B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 76, 083503 Hand N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Feng Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Beutler F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Modi C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Seljak U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Slepian Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, AJ, 156, 160 Harnois-Déraps J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Giblin B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Joachimi B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, A&A, 631, A160 Harnois-Déraps J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hernandez-Aguayo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cuesta-Lazaro C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Davies C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cai Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='05779 Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Higdon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nakhleh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2006, ApJ, 646, L1 Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Higdon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Williams B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lawrence E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wagner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2009, ApJ, 705, 156 Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wagner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Higdon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, ApJ, 715, 104 Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, ApJ, 820, 108 Hendrycks D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gimpel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='08415 Hornik K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Stinchcombe M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1989, Neural networks, 2, 359 Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Sawicki I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 76, 064004 Hu B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Liu X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cai R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, MNRAS, 476, L65 Jenkins A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Colberg J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cole S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Evrard A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Couchman H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Yoshida N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2001, MNRAS, 321, 372 Jennings W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Watkinson C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Abdalla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', McEwen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, MNRAS, 483, 2907 Khoury J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Weltman A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2004a, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 69, 044026 Khoury J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Weltman A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2004b, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 93, 171104 Kingma D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Ba J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6980 Klypin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Yepes G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gottlöber S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Prada F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heß S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, MNRAS, 457, 4340 Kobayashi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nishimichi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Takada M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Takahashi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Osato K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 102, 063504 Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, Classical and Quantum Gravity, 24, R231 Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, International Journal of Modern Physics D, 27, 1848001 Kuhlen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Vogelsberger M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Angulo R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, Physics of the Dark Universe, 1, 50 Kwan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bhattacharya S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, ApJ, 768, 123 Kwan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Padmanabhan N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lawrence E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Finkel H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frontiere N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pope A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2015, ApJ, 810, 35 LSST Science Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2009, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:0912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='0201 Lam T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, MNRAS, 426, 3260 Laureijs R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2011, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='3193 Lawrence E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Higdon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wagner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Habib S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Williams B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, ApJ, 713, 1322 Lawrence E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2017, ApJ, 847, 50 Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Efstathiou G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, MNRAS, 421, 1431 Li Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2011, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 84, 084033 Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zhao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Teyssier R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, 051 Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hellwing W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zhao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Jennings E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Baugh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, MNRAS, 428, 743 Linder E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2003, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 90, 091301 Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, Annalen der Physik, 264, 259 Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zhao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 87, 123511 Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, 021 Ma C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Fry J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2000, ApJ, 543, 503 Maartens R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, Living Reviews in Relativity, 13, 5 Maksimova N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Garrison L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Eisenstein D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hadzhiyska B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bose S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Satterthwaite T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, MNRAS, 508, 4017 Massara E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Villaescusa-Navarro F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Viel M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2014, 053 McClintock T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ApJ, 872, 53 Mead A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Brieden S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Tröster T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heymans C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, MNRAS, 502, 1401 Meneghetti M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Rasia E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='6158 Mitchell M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', He J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, MNRAS, 487, 1410 Mitchell M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hernández-Aguayo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, MNRAS, 508, 4140 Miyatake H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='00113 Murata R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nishimichi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Takada M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Miyatake H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Shirasaki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', More S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Takahashi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Osato K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2018, ApJ, 854, 120 Murray S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Power C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Robotham A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2013, Astronomy and Com- puting, 3, 23 Murray S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Diemer B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Chen Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Neuhold A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Schnapp M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Peruzzi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Blevins D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Engelman T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, Astronomy and Computing, 36, 100487 Navarro J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1996, ApJ, 462, 563 Navarro J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1997, ApJ, 490, 493 Neto A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, MNRAS, 381, 1450 Neyman J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Scott E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1952, ApJ, 116, 144 Nishimichi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ApJ, 884, 29 Peacock J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2000, MNRAS, 318, 1144 Peebles P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1980, The large-scale structure of the universe Philcox O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Spergel D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Villaescusa-Navarro F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 101, 123520 Planck Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, A&A, 641, A6 Prada F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Klypin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Cuesta A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Betancort-Rijo J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Primack J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, MNRAS, 423, 3018 Press W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Schechter P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1974, ApJ, 187, 425 Ramachandra N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Valogiannis G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Ishak M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Heitmann K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', LSST Dark En- ergy Science Collaboration 2021, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 103, 123525 Ruan C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hernández-Aguayo C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Arnold C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Baugh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Klypin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Prada F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, 018 Sahni V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Shtanov Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2003, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Cosmology Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2003, 014 Schmidt F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2016, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 93, 063512 Schmidt F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lima M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Oyaizu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2009, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 79, 083518 Schmidt F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lima M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 81, 063005 Seljak U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2000, MNRAS, 318, 203 Sheth R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Mo H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Tormen G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2001, MNRAS, 323, 1 Sinha M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Garrison L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, MNRAS, 491, 3022 Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Angulo R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, MNRAS, 486, 1448 Smith R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2003, MNRAS, 341, 1311 MNRAS 000, 1–18 (2023) 18 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Ruan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Song Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Sawicki I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 75, 064003 Sotiriou T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Faraoni V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, Reviews of Modern Physics, 82, 451 Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2010, MNRAS, 401, 791 Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Tormen G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kauffmann G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2001, MNRAS, 328, 726 Takahashi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Sato M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nishimichi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Taruya A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Oguri M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2012, ApJ, 761, 152 Takahashi R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Nishimichi T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Namikawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Taruya A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kayo I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Osato K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kobayashi Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Shirasaki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, ApJ, 895, 113 Tinker J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Kravtsov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Klypin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Abazajian K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Warren M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Yepes G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gottlöber S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Holz D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2008, ApJ, 688, 709 Troja A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Tutusaus I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Sorce J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='09668 Vainshtein A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 1972, Physics Letters B, 39, 393 Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Bose S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Frenk C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Gao L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Jenkins A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', White S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, Nature, 585, 39 Weinberger R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Springel V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Pakmor R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2020, ApJS, 248, 32 Williams C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Rasmussen C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2006, Gaussian processes for machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MIT press Cambridge, MA Winther H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Casas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Baldi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lombriser L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zhao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 100, 123540 Yuan S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Garrison L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Eisenstein D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Wechsler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2022, MNRAS, 515, 871 Zhai Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2019, ApJ, 874, 95 Zhang A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Lipton Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Smola A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2021, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='11342 Zhao G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Li B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Koyama K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2011, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' D, 83, 044007 Zheng Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2005, ApJ, 633, 791 Zheng Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Coil A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', Zehavi I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=', 2007, ApJ, 667, 760 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} +page_content=' MNRAS 000, 1–18 (2023)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE1T4oBgHgl3EQfLAMX/content/2301.02970v1.pdf'} diff --git a/ddAzT4oBgHgl3EQfn_0r/content/2301.01588v1.pdf b/ddAzT4oBgHgl3EQfn_0r/content/2301.01588v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..fcb95bee687fecbce1c226b92cd45dddc21ff4fb --- /dev/null +++ b/ddAzT4oBgHgl3EQfn_0r/content/2301.01588v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1126c53f7cebb5cdb77f5d6c6131d930c82e10993f650c93e75e721afaef4e16 +size 1157376 diff --git a/h9AzT4oBgHgl3EQfbPwA/vector_store/index.faiss b/h9AzT4oBgHgl3EQfbPwA/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..3b0d5072f423d4a6cff9ce926430b4460bb337df --- /dev/null +++ b/h9AzT4oBgHgl3EQfbPwA/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:74a67dd929f9c92f4bfcad417a290c08e50bde92c0ce67f7b9ee93de79813df3 +size 4063277 diff --git a/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf b/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4346487579c1b2c9806c61ce2e0b650d530f8d8b Binary files /dev/null and b/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf differ diff --git a/htE3T4oBgHgl3EQfIgkt/content/tmp_files/2301.04334v1.pdf.txt b/htE3T4oBgHgl3EQfIgkt/content/tmp_files/2301.04334v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f6be3dc008e550ca8f04a4d1ed7115b9584d0ae2 --- /dev/null +++ b/htE3T4oBgHgl3EQfIgkt/content/tmp_files/2301.04334v1.pdf.txt @@ -0,0 +1,281 @@ +arXiv:2301.04334v1 [gr-qc] 11 Jan 2023 +Fixing cosmological constant on the event horizon +Merab Gogberashvili1,2 +1Javakhishvili State University, 3 Chavchavadze Ave., Tbilisi 0179, Georgia +2Andronikashvili Institute of Physics, 6 Tamarashvili St., Tbilisi 0177, Georgia +January 12, 2023 +Abstract +Standard cosmological equations are written for the Hubble volume, while the real boundary of +space-time is the event horizon. Within the unimodular and thermodynamic approaches to gravity, the +dark energy term in cosmological equations appears as an integration constant, which we fix at the event +horizon and obtain the observed value for the cosmological constant. +PACS numbers: 98.80.Es; 04.50.Kd; 98.80.Bp, +Keywords: Dark Energy; Thermodynamic gravity; Cosmological horizons +Numerous observations imply that the late universe is in accelerated expansion [1, 2]. +Within the +framework of the standard cosmological model, an accelerated expansion can be accounted for by a positive +cosmological constant Λ, which presents in the system of equations for a homogeneous, isotropic and flat +universe (k = 0), +H2 += +8πG +3 +ρ + Λ +3 , +(1) +¨a +a ≡ ˙H + H2 += +−4πG +3 (ρ + 3p) + Λ +3 . +(2) +Here overdots denote derivatives with respect to the cosmic time, H ≡ ˙a/a is the Hubble parameter, G is +the gravitational constant, and ρ and p are the mass and pressure densities of cosmological fluids (we use +the system of units where c = ℏ = kB = 1). +In (1) and (2) the cosmological constant Λ is a free parameter and is fixed only from observations, +which for the value of dark energy density gives [3], +ΩΛ = +Λ +3H2 +0 +≈ 0.692 , +(3) +where H0 denotes the present value of the Hubble parameter. +One of the main problems of standard +cosmology is that the measured value of Λ is much smaller than theoretical estimations obtained from the +standard quantum field theory. In order to resolve this discrepancy, various models have been proposed +(see the reviews [4,5]). +It is known that, using the Friedmann equation (1), the acceleration equation (2) can be expressed +without Λ, +˙H = −4πG(ρ + p) . +(4) +Also, combining (1) and (2), one can obtain the matter energy-momentum conservation equation, +˙ρ = −3H(ρ + p) , +(5) +1 + +where the cosmological constant Λ does not appear as well. If instead of (1) and (2), one will choose (4) +and (5) as the independent system of cosmological equations, Λ obtains the role of integration constant. +Indeed, excluding (ρ + p) from (4) and (5), +4πG +3 +˙ρ = H ˙H , +(6) +and integrating this relation over the time, we obtain the Friedmann equation (1), +H2 = 8πG +3 +ρ + C , +(7) +but with an integration constant C instead of Λ/3. So, in a cosmological models where the system (4) – (5) +is primary, and the Friedmann equation (1) represents its first integral, the value of Λ can be obtained from +boundary conditions of the model. The examples of scenarios where Λ arises as an integration constant +are unimodular relativity [6–9] and thermodynamic approach to gravity [10–16]. +Key ingredient in thermodynamic model of gravity is entropy, which allows us to study different aspects +of various physical systems using a similar mathematical framework (see the recent review [17]). Most +thermodynamic cosmological scenarios are based on the holographic principle (see the review [18]) and for +an associated entropy of a volume usually is used the Bekenstein–Hawking formula for black holes [19,20], +SBH = A +4G = πR2 +G +, +(8) +where R denotes the radius and A = 4πR2 is the surface area. In thermodynamic cosmology, to the Hubble +sphere of radius +RH = 1 +H , +(9) +having the surface and volume +AH = 4π +H2 , +VH = 4π +3H3 , +(10) +can be associated the temperature [21], +TH = H +2π , +(11) +and the black hole type entropy (8), +SH = AH +4G = +π +GH2 > 0 . +(12) +In thermodynamic approach, the Friedmann equation (7) has the natural interpretation as the balance of +gravitational and matter heat densities in the spirit of the first law of thermodynamics [15,16], while the +acceleration equation (4) can be obtained by equating the entropy input in the Hubble volume to the sum +of entropy flux (entropy received per unit surface) transferred through the horizon and the entropy supplied +by internal sources (entropy generated per unit volume). Indeed, if we neglect the entropy supplied by +internal sources, the time derivative of the entropy contained within the Hubble volume, SH, should be +equal to the flux of the matter entropy density, Sm, through the boundary AH, +˙SH = SmAH . +(13) +Using the classical Gibbs–Duhem relation, +ρ + p = THSm , +(14) +the equation (13) takes the form: +˙AH = 4G(ρ + p) AH +TH +, +(15) +2 + +which, using (10) and (11), reduces to the standard acceleration equation (4). Note that in thermodynamic +picture the Universe cannot export the entropy to any external universes and it seems that its total entropy +is conserved [22–25]. +Thus, in various scenarios, the Friedmann equation (7) contains the integration constant C (the dark +energy term). This change of the role of Λ from a parameter of the matter action to a property of states +does not solve the cosmological constant problem, but it does change it from a question of fine-tuning to +a question of boundary conditions [26, 27]. To find proper boundary conditions, note that cosmological +equations are written for the Hubble volume, since as a proper causal boundary of the classical space-time +(for the flat universe, k = 0) usually the Hubble horizon is considered [28,29]. Then the metric fluctuations +are bounded by RH and thermodynamic laws also are satisfied on this boundary [30,31]. +On the other hand, the quantum fluctuations of matter fields should be limited not by the Hubble +horizon RH, but by the event horizon Re ≥ RH, which represents a real boundary of space-time [32, 33]. +Then, cosmological equations should also contain the energy density corresponding to entanglements of +quantum particles across the Hubble horizon [34] and can be taken into account by introducing a surface +term at RH. It was found that the perfect fluid of entanglement has a negative pressure [35] and can be +interpreted as the origin of dark energy [13]. +The value of the event horizon at the current cosmic time can be estimated as (see, for example, [36]): +Re = 1 +H0 +� 0 +−1 +dy +� +Ωm(1 + y)3 + ΩΛ +≈ 0.96 RH +√ΩΛ +, +(16) +where Ωm denotes the matter density. While particle entanglements can be effective up to Re, in the +context of cosmology (as well as in the context of black holes), (16) is always defined globally (see more +discussions in [37]) and at the event horizon we can assume absence of matter, +Ωm|R→Re → 0 . +(17) +Using this assumption, we can fix the integration constant in (7): +C = H2|R→Re = 1 +R2e +. +(18) +Therefore, for the dark energy density we obtain the value +C +H2 +0 += R2 +H +R2e +≈ 1.08 ΩΛ , +(19) +which almost coincides with the observed density of the dark energy (3), within the uncertainties in +measurements of Ωm and ΩΛ in (16). +To summarize, in this paper we have noted that within the unimodular or thermodynamic approaches +to gravity, in the Friedmann equation (7) the cosmological term appears as an integration constant, i.e. +is not associated with the large vacuum expectation values and can be fixed from boundary conditions. +Since the real boundary of space-time is the event horizon and not the Hubble sphere, we assume that +cosmological equations should contain the terms corresponding to the entanglements of quantum particles +across the apparent horizon. Using the fact that in a region enclosed by an event horizon, like a black hole, +interior matter density should tend to zero at the horizon (17), in the Friedmann equation (7) we fix the +integration constant (18) and obtain the value for the dark energy density (19) that almost coincides with +the observations (3). +References +[1] S. Perlmutter et al. [Supernova Cosmology Project], “Measurements of Ω and Λ from 42 high redshift +supernovae,” Astrophys. J. 517 (1999) 565, doi: 10.1086/307221 [arXiv: astro-ph/9812133]. +3 + +[2] A. G. Riess et al. [Supernova Search Team], “Observational evidence from supernovae for an acceler- +ating universe and a cosmological constant,” Astron. J. 116 (1998) 1009, doi: 10.1086/300499 [arXiv: +astro-ph/9805201]. +[3] P. A. R. Ade et al. [Planck], “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. +594 (2016) A13, doi: 10.1051/0004-6361/201525830 [arXiv: 1502.01589 [astro-ph.CO]]. +[4] T. Padmanabhan, “Cosmological constant: The weight of the vacuum,” Phys. Rept. 380 (2003) 235, +doi: 10.1016/S0370-1573(03)00120-0 [arXiv: hep-th/0212290]. +[5] K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, “Dark energy cosmology: the equivalent +description via different theoretical models and cosmography tests,” Astrophys. Space Sci. 342 (2012) +155, doi: 10.1007/s10509-012-1181-8 [arXiv: 1205.3421 [gr-qc]]. +[6] Y. J. Ng and H. van Dam, “Unimodular theory of gravity and the cosmological constant,” J. Math. +Phys. 32 (1991) 1337, doi: 10.1063/1.529283. +[7] D. R. Finkelstein, A. A. Galiautdinov and J. E. Baugh, “Unimodular relativity and cosmological +constant,” J. Math. Phys. 42 (2001) 340, doi: 10.1063/1.1328077 [arXiv: gr-qc/0009099 [gr-qc]]. +[8] A. Padilla and I. D. Saltas, “A note on classical and quantum unimodular gravity,” Eur. Phys. J. C +75 (2015) 561, doi: 10.1140/epjc/s10052-015-3767-0 [arXiv: 1409.3573 [gr-qc]]. +[9] R. Carballo-Rubio, L. J. Garay and G. Garc´ıa-Moreno, “Unimodular Gravity vs General Relativity: +A status report,” [arXiv: 2207.08499 [gr-qc]]. +[10] T. Padmanabhan, “Emergence and expansion of cosmic space as due to the quest for holographic +equipartition,” [arXiv: 1206.4916 [hep-th]]. +[11] T. Padmanabhan, “Emergent perspective of gravity and dark energy,” Res. Astron. Astrophys. 12 +(2012) 891, doi: 10.1088/1674-4527/12/8/003 [arXiv: 1207.0505 [astro-ph.CO]]. +[12] N. Komatsu, “Generalized thermodynamic constraints on holographic-principle-based cosmological +scenarios,” Phys. Rev. D 99 (2019) 043523, doi: 10.1103/PhysRevD.99.043523 [arXiv: 1810.11138 +[gr-qc]]. +[13] M. Gogberashvili, “Cosmological constant from the entropy balance condition,” Adv. High Energy +Phys. 2018 (2018) 3702498, doi: 10.1155/2018/3702498 [arXiv: 1807.06943 [physics.gen-ph]]. +[14] M. Gogberashvili and I. Kanatchikov, “Cosmological parameters from the thermodynamic model of +gravity,” Int. J. Theor. Phys. 53 (2014) 1779, doi: 10.1007/s10773-013-1976-6 [arXiv: 1210.4618 +[physics.gen-ph]]. +[15] T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state,” Phys. Rev. Lett. 75 +(1995) 1260, doi: 10.1103/PhysRevLett.75.1260 [arXiv: gr-qc/9504004]. +[16] T. Padmanabhan, “Thermodynamical aspects of gravity: New insights,” Rept. Prog. Phys. 73 (2010) +046901, doi: 10.1088/0034-4885/73/4/046901 [arXiv: 0911.5004 [gr-qc]]. +[17] M, Ribeiro, et al., “The entropy universe,” Entropy 23 (2021) 222, doi: 10.3390/e23020222. +[18] R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74 (2002) 825, doi: 10.1103/RevMod- +Phys.74.825 [arXiv: hep-th/0203101]. +[19] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333, doi: +10.1103/Phys- +RevD.7.2333. +4 + +[20] S. W. Hawking, “Black hole explosions?” Nature 248 (1974) 30, doi: 10.1038/248030a0. +[21] S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43 (1975) 199 [erratum: +Commun. Math. Phys. 46 (1976) 206], doi: 10.1007/BF02345020. +[22] R. Landauer, “Information is physical,” Phys. Today 44 (1991) 23, doi: 10.1063/1.881299. +[23] M. Gogberashvili, “Information-probabilistic description of the universe,” Int. J. Theor. Phys. 55 +(2016) 4185, doi: 10.1007/s10773-016-3045-4 [arXiv: 1504.06183 [physics.gen-ph]]. +[24] M. Gogberashvili and B. Modrekiladze, “Probing the information-probabilistic description,” Int. J. +Theor. Phys. 61 (2022) 149, doi: 10.1007/s10773-022-05129-3 [arXiv: 2105.05034 [gr-qc]]. +[25] M. Gogberashvili, “Towards an information description of space-time,” Found. Phys. 52 (2022) 74, +doi: 10.1007/s10701-022-00594-6 [arXiv: 2208.13738 [physics.gen-ph]]. +[26] W. Buchmuller and N. Dragon, “The cosmological constant as a boundary term,” JHEP 08 (2022) +167, doi: 10.1007/JHEP08(2022)167 [arXiv: 2203.15714 [hep-th]]. +[27] M. Gogberashvili and U. Chutkerashvili, “Cosmological constant in the thermodynamic models of +gravity,” Theor. Phys. 2 (2017) 163, doi: 10.22606/tp.2017.24002 [arXiv: 1605.04197 [physics.gen- +ph]]. +[28] S. A. Hayward, S. Mukohyama and M. C. Ashworth, “Dynamic black hole entropy,” Phys. Lett. A +256 (1999) 347, doi: 10.1016/S0375-9601(99)00225-X [arXiv: gr-qc/9810006]. +[29] D. Bak and S. J. Rey, “Cosmic holography,” Class. Quant. Grav. 17 (2000) L83, doi: 10.1088/0264- +9381/17/15/101 [arXiv: hep-th/9902173]. +[30] R. G. Cai and S. P. Kim, “First law of thermodynamics and Friedmann equations of Friedmann- +Robertson-Walker universe,” JHEP 02 (2005) 050, doi: 10.1088/1126-6708/2005/02/050 [arXiv: hep- +th/0501055]. +[31] M. Akbar and R. G. Cai, “Thermodynamic behavior of Friedmann equations at apparent horizon +of FRW universe,” Phys. Rev. D 75 (2007) 084003, doi: 10.1103/PhysRevD.75.084003 [arXiv: hep- +th/0609128]. +[32] E. Gaztanaga, “The cosmological constant as a zero action boundary,” Mon. Not. Roy. Astron. Soc. +502 (2021) 436, doi: 10.1093/mnras/stab056 [arXiv: 2101.07368 [gr-qc]]. +[33] E. Gaztanaga, “The cosmological constant as event horizon,” Symmetry 14 (2022) 300, doi: +10.3390/sym14020300 [arXiv: 2202.00641 [astro-ph.CO]]. +[34] S. Mukohyama, M. Seriu and H. Kodama, “Can the entanglement entropy be the origin of black hole +entropy?” Phys. Rev. D 55 (1997) 7666, doi: 10.1103/PhysRevD.55.7666 [arXiv: gr-qc/9701059]. +[35] J. W. Lee, J. Lee and H. C. Kim, “Dark energy from vacuum entanglement,” JCAP 08 (2007) 005, +doi: 10.1088/1475-7516/2007/08/005 [arXiv: hep-th/0701199]. +[36] B. Margalef-Bentabol, J. Margalef-Bentabol and J. Cepa, “Evolution of the cosmological horizons in a +concordance universe,” JCAP 12 (2012) 035, doi: 10.1088/1475-7516/2012/12/035 [arXiv: 1302.1609 +[astro-ph.CO]]. +[37] M. +Li, +“A +model +of +holographic +dark +energy,” +Phys. +Lett. +B +603 +(2004) +1, +doi: +10.1016/j.physletb.2004.10.014 [arXiv: hep-th/0403127]. +5 + diff --git a/htE3T4oBgHgl3EQfIgkt/content/tmp_files/load_file.txt b/htE3T4oBgHgl3EQfIgkt/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..87b1063458964487409ca8ab2550be00ad399082 --- /dev/null +++ b/htE3T4oBgHgl3EQfIgkt/content/tmp_files/load_file.txt @@ -0,0 +1,340 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf,len=339 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='04334v1 [gr-qc] 11 Jan 2023 Fixing cosmological constant on the event horizon Merab Gogberashvili1,2 1Javakhishvili State University, 3 Chavchavadze Ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=', Tbilisi 0179, Georgia 2Andronikashvili Institute of Physics, 6 Tamarashvili St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=', Tbilisi 0177, Georgia January 12, 2023 Abstract Standard cosmological equations are written for the Hubble volume, while the real boundary of space-time is the event horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Within the unimodular and thermodynamic approaches to gravity, the dark energy term in cosmological equations appears as an integration constant, which we fix at the event horizon and obtain the observed value for the cosmological constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' PACS numbers: 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='Es;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='Kd;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='Bp, Keywords: Dark Energy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Thermodynamic gravity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Cosmological horizons Numerous observations imply that the late universe is in accelerated expansion [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Within the framework of the standard cosmological model, an accelerated expansion can be accounted for by a positive cosmological constant Λ, which presents in the system of equations for a homogeneous, isotropic and flat universe (k = 0), H2 = 8πG 3 ρ + Λ 3 , (1) ¨a a ≡ ˙H + H2 = −4πG 3 (ρ + 3p) + Λ 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (2) Here overdots denote derivatives with respect to the cosmic time, H ≡ ˙a/a is the Hubble parameter, G is the gravitational constant, and ρ and p are the mass and pressure densities of cosmological fluids (we use the system of units where c = ℏ = kB = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' In (1) and (2) the cosmological constant Λ is a free parameter and is fixed only from observations, which for the value of dark energy density gives [3], ΩΛ = Λ 3H2 0 ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='692 , (3) where H0 denotes the present value of the Hubble parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' One of the main problems of standard cosmology is that the measured value of Λ is much smaller than theoretical estimations obtained from the standard quantum field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' In order to resolve this discrepancy, various models have been proposed (see the reviews [4,5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' It is known that, using the Friedmann equation (1), the acceleration equation (2) can be expressed without Λ, ˙H = −4πG(ρ + p) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (4) Also, combining (1) and (2), one can obtain the matter energy-momentum conservation equation, ˙ρ = −3H(ρ + p) , (5) 1 where the cosmological constant Λ does not appear as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' If instead of (1) and (2), one will choose (4) and (5) as the independent system of cosmological equations, Λ obtains the role of integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Indeed, excluding (ρ + p) from (4) and (5), 4πG 3 ˙ρ = H ˙H , (6) and integrating this relation over the time, we obtain the Friedmann equation (1), H2 = 8πG 3 ρ + C , (7) but with an integration constant C instead of Λ/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' So, in a cosmological models where the system (4) – (5) is primary, and the Friedmann equation (1) represents its first integral, the value of Λ can be obtained from boundary conditions of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' The examples of scenarios where Λ arises as an integration constant are unimodular relativity [6–9] and thermodynamic approach to gravity [10–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Key ingredient in thermodynamic model of gravity is entropy, which allows us to study different aspects of various physical systems using a similar mathematical framework (see the recent review [17]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Most thermodynamic cosmological scenarios are based on the holographic principle (see the review [18]) and for an associated entropy of a volume usually is used the Bekenstein–Hawking formula for black holes [19,20], SBH = A 4G = πR2 G , (8) where R denotes the radius and A = 4πR2 is the surface area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' In thermodynamic cosmology, to the Hubble sphere of radius RH = 1 H , (9) having the surface and volume AH = 4π H2 , VH = 4π 3H3 , (10) can be associated the temperature [21], TH = H 2π , (11) and the black hole type entropy (8), SH = AH 4G = π GH2 > 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (12) In thermodynamic approach, the Friedmann equation (7) has the natural interpretation as the balance of gravitational and matter heat densities in the spirit of the first law of thermodynamics [15,16], while the acceleration equation (4) can be obtained by equating the entropy input in the Hubble volume to the sum of entropy flux (entropy received per unit surface) transferred through the horizon and the entropy supplied by internal sources (entropy generated per unit volume).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Indeed, if we neglect the entropy supplied by internal sources, the time derivative of the entropy contained within the Hubble volume, SH, should be equal to the flux of the matter entropy density, Sm, through the boundary AH, ˙SH = SmAH .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (13) Using the classical Gibbs–Duhem relation, ρ + p = THSm , (14) the equation (13) takes the form: ˙AH = 4G(ρ + p) AH TH , (15) 2 which, using (10) and (11), reduces to the standard acceleration equation (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Note that in thermodynamic picture the Universe cannot export the entropy to any external universes and it seems that its total entropy is conserved [22–25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Thus, in various scenarios, the Friedmann equation (7) contains the integration constant C (the dark energy term).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' This change of the role of Λ from a parameter of the matter action to a property of states does not solve the cosmological constant problem, but it does change it from a question of fine-tuning to a question of boundary conditions [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' To find proper boundary conditions, note that cosmological equations are written for the Hubble volume, since as a proper causal boundary of the classical space-time (for the flat universe, k = 0) usually the Hubble horizon is considered [28,29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Then the metric fluctuations are bounded by RH and thermodynamic laws also are satisfied on this boundary [30,31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' On the other hand, the quantum fluctuations of matter fields should be limited not by the Hubble horizon RH, but by the event horizon Re ≥ RH, which represents a real boundary of space-time [32, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Then, cosmological equations should also contain the energy density corresponding to entanglements of quantum particles across the Hubble horizon [34] and can be taken into account by introducing a surface term at RH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' It was found that the perfect fluid of entanglement has a negative pressure [35] and can be interpreted as the origin of dark energy [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' The value of the event horizon at the current cosmic time can be estimated as (see, for example, [36]): Re = 1 H0 � 0 −1 dy � Ωm(1 + y)3 + ΩΛ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='96 RH √ΩΛ , (16) where Ωm denotes the matter density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' While particle entanglements can be effective up to Re, in the context of cosmology (as well as in the context of black holes), (16) is always defined globally (see more discussions in [37]) and at the event horizon we can assume absence of matter, Ωm|R→Re → 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (17) Using this assumption, we can fix the integration constant in (7): C = H2|R→Re = 1 R2e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' (18) Therefore, for the dark energy density we obtain the value C H2 0 = R2 H R2e ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='08 ΩΛ , (19) which almost coincides with the observed density of the dark energy (3), within the uncertainties in measurements of Ωm and ΩΛ in (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' To summarize, in this paper we have noted that within the unimodular or thermodynamic approaches to gravity, in the Friedmann equation (7) the cosmological term appears as an integration constant, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' is not associated with the large vacuum expectation values and can be fixed from boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Since the real boundary of space-time is the event horizon and not the Hubble sphere, we assume that cosmological equations should contain the terms corresponding to the entanglements of quantum particles across the apparent horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Using the fact that in a region enclosed by an event horizon, like a black hole, interior matter density should tend to zero at the horizon (17), in the Friedmann equation (7) we fix the integration constant (18) and obtain the value for the dark energy density (19) that almost coincides with the observations (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Perlmutter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [Supernova Cosmology Project], “Measurements of Ω and Λ from 42 high redshift supernovae,” Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 517 (1999) 565, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1086/307221 [arXiv: astro-ph/9812133].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 3 [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Riess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [Supernova Search Team], “Observational evidence from supernovae for an acceler- ating universe and a cosmological constant,” Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 116 (1998) 1009, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1086/300499 [arXiv: astro-ph/9805201].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Ade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [Planck], “Planck 2015 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' XIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Cosmological parameters,” Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 594 (2016) A13, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1051/0004-6361/201525830 [arXiv: 1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='01589 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Padmanabhan, “Cosmological constant: The weight of the vacuum,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 380 (2003) 235, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1016/S0370-1573(03)00120-0 [arXiv: hep-th/0212290].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Bamba, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Capozziello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Nojiri and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests,” Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Space Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 342 (2012) 155, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/s10509-012-1181-8 [arXiv: 1205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='3421 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Ng and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' van Dam, “Unimodular theory of gravity and the cosmological constant,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 32 (1991) 1337, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='529283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Finkelstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Galiautdinov and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Baugh, “Unimodular relativity and cosmological constant,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 42 (2001) 340, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1328077 [arXiv: gr-qc/0009099 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Padilla and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Saltas, “A note on classical and quantum unimodular gravity,” Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' C 75 (2015) 561, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1140/epjc/s10052-015-3767-0 [arXiv: 1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='3573 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Carballo-Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Garay and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Garc´ıa-Moreno, “Unimodular Gravity vs General Relativity: A status report,” [arXiv: 2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='08499 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Padmanabhan, “Emergence and expansion of cosmic space as due to the quest for holographic equipartition,” [arXiv: 1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='4916 [hep-th]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Padmanabhan, “Emergent perspective of gravity and dark energy,” Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 12 (2012) 891, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/1674-4527/12/8/003 [arXiv: 1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='0505 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [12] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Komatsu, “Generalized thermodynamic constraints on holographic-principle-based cosmological scenarios,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D 99 (2019) 043523, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='043523 [arXiv: 1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='11138 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili, “Cosmological constant from the entropy balance condition,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' High Energy Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 2018 (2018) 3702498, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1155/2018/3702498 [arXiv: 1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='06943 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='gen-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Kanatchikov, “Cosmological parameters from the thermodynamic model of gravity,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 53 (2014) 1779, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/s10773-013-1976-6 [arXiv: 1210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='4618 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='gen-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Jacobson, “Thermodynamics of space-time: The Einstein equation of state,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 75 (1995) 1260, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1260 [arXiv: gr-qc/9504004].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Padmanabhan, “Thermodynamical aspects of gravity: New insights,” Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 73 (2010) 046901, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/0034-4885/73/4/046901 [arXiv: 0911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='5004 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [17] M, Ribeiro, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=', “The entropy universe,” Entropy 23 (2021) 222, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='3390/e23020222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Bousso, “The holographic principle,” Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 74 (2002) 825, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/RevMod- Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='825 [arXiv: hep-th/0203101].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Bekenstein, “Black holes and entropy,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D 7 (1973) 2333, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/Phys- RevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='2333.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 4 [20] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Hawking, “Black hole explosions?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Nature 248 (1974) 30, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1038/248030a0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Hawking, “Particle creation by black holes,” Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 43 (1975) 199 [erratum: Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 46 (1976) 206], doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/BF02345020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Landauer, “Information is physical,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Today 44 (1991) 23, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='881299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili, “Information-probabilistic description of the universe,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 55 (2016) 4185, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/s10773-016-3045-4 [arXiv: 1504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='06183 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='gen-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Modrekiladze, “Probing the information-probabilistic description,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 61 (2022) 149, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/s10773-022-05129-3 [arXiv: 2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='05034 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili, “Towards an information description of space-time,” Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 52 (2022) 74, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/s10701-022-00594-6 [arXiv: 2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='13738 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='gen-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [26] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Buchmuller and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Dragon, “The cosmological constant as a boundary term,” JHEP 08 (2022) 167, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1007/JHEP08(2022)167 [arXiv: 2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='15714 [hep-th]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gogberashvili and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Chutkerashvili, “Cosmological constant in the thermodynamic models of gravity,” Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 2 (2017) 163, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='22606/tp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='24002 [arXiv: 1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='04197 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='gen- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Hayward, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Mukohyama and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Ashworth, “Dynamic black hole entropy,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' A 256 (1999) 347, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1016/S0375-9601(99)00225-X [arXiv: gr-qc/9810006].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Bak and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rey, “Cosmic holography,” Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 17 (2000) L83, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/0264- 9381/17/15/101 [arXiv: hep-th/9902173].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Cai and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Kim, “First law of thermodynamics and Friedmann equations of Friedmann- Robertson-Walker universe,” JHEP 02 (2005) 050, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/1126-6708/2005/02/050 [arXiv: hep- th/0501055].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Akbar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Cai, “Thermodynamic behavior of Friedmann equations at apparent horizon of FRW universe,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D 75 (2007) 084003, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='084003 [arXiv: hep- th/0609128].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [32] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gaztanaga, “The cosmological constant as a zero action boundary,” Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 502 (2021) 436, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1093/mnras/stab056 [arXiv: 2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='07368 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [33] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Gaztanaga, “The cosmological constant as event horizon,” Symmetry 14 (2022) 300, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='3390/sym14020300 [arXiv: 2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='00641 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Mukohyama, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Seriu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Kodama, “Can the entanglement entropy be the origin of black hole entropy?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' D 55 (1997) 7666, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1103/PhysRevD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='7666 [arXiv: gr-qc/9701059].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Lee and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Kim, “Dark energy from vacuum entanglement,” JCAP 08 (2007) 005, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/1475-7516/2007/08/005 [arXiv: hep-th/0701199].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Margalef-Bentabol, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Margalef-Bentabol and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Cepa, “Evolution of the cosmological horizons in a concordance universe,” JCAP 12 (2012) 035, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1088/1475-7516/2012/12/035 [arXiv: 1302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1609 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Li, “A model of holographic dark energy,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' B 603 (2004) 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='physletb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content='014 [arXiv: hep-th/0403127].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} +page_content=' 5' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/htE3T4oBgHgl3EQfIgkt/content/2301.04334v1.pdf'} diff --git a/itFAT4oBgHgl3EQf-B4t/content/tmp_files/2301.08760v1.pdf.txt b/itFAT4oBgHgl3EQf-B4t/content/tmp_files/2301.08760v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1b70c4f90d94933aab6f64f88e056e637bd3db34 --- /dev/null +++ b/itFAT4oBgHgl3EQf-B4t/content/tmp_files/2301.08760v1.pdf.txt @@ -0,0 +1,961 @@ +MITP-23-002 +A Lighter QCD Axion from Anarchy +Fatemeh Elahi,1, ∗ Gilly Elor,1, † Alexey Kivel,1, ‡ Julien Laux,1, § Saereh Najjari,1, ¶ and Felix Yu1, ∗∗ +1PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics +Johannes Gutenberg University, 55099 Mainz, Germany +We introduce the Anarchic Axion, a class of axion models which solves the Strong CP problem +with a lighter than usual QCD axion, thus populating new parameter space that ongoing and future +experiments target. +The Anarchic Axion is driven light by a soft breaking of the Peccei-Quinn +symmetry, which also predicts a residual neutron electric dipole moment. We introduce a novel +measure to quantify the tuning required for large deviations from the usual QCD axion band. In +addition to motivating searches for unusually light axions, this work establishes a new target for +axion effective field theory. +The Peccei-Quinn (PQ) solution [1, 2] to the Strong +Charge-Parity (CP) problem of quantum chromodynam- +ics (QCD) predicts relationships between the axion mass +ma, decay constant fa and axion-photon coupling gaγγ. +In this Letter, we introduce a new class of multi-scalar +axion models — The Anarchic Axion —so dubbed as to +emphasize that the PQ symmetry arises accidentally. +The U(1)PQ symmetry is softly broken leading to a so- +lution to the Strong CP problem that deviates from the +traditional QCD axion band, importantly populating a +region of parameter space targeted by many on-going ex- +periments. Related work to solving the strong CP prob- +lem departing from the canonical band include Refs. [3– +11]. Furthermore, the new parameter space corresponds +to an almost perfect alignment between the soft breaking +vacuum and the θQCD vacuum. This provides a unique +handle on the Axion Quality Problem [3, 12–17] allow- +ing the introduction of a novel measure for quantifying +the fine tuning. The Anarchic Axion can be made nat- +ural given a Clockwork [18–20] inspired ultraviolet (UV) +completion. +In this Letter we first introduce the field content and +the potential of an Anarchic Axion model. Given an ap- +propriate basis choice, we compute the ma, fa and gaγγ +relations, and present the new parameter space where +experiments can hunt for the Anarchic Axion. We then +discuss the quality of this solution to the Strong CP prob- +lem and introduce a fine tuning measure to quantify the +axion quality. We conclude by commenting on possible +natural UV completions and future directions. +The Anarchic Axion. — The particle content and +charge assignments of the model, summarized in Table. I, +consists of three complex scalars: H1 and H2 which can +be identified with the Higgs doublet fields in DFSZ axion +constructions [21, 22], and a gauge singlet Φ. Standard +Model (SM) fermions coupling to H1 and H2 will medi- +ate the requisite effective operator coupling the Anarchic +Axion and the anomalous G ˜G QCD term. +The scalar +Field +SU(3)c +SU(2)L +U(1)Y +Z5 +U(1)P Q +Qi +L +3 +2 +1/6 +0 +XQ +ui +R +3 +1 +2/3 +1 +XQ-X1 +di +R +3 +1 +-1/3 +0 +XQ-X2 +Li +L +1 +2 +-1/2 +0 +XL +ei +R +1 +1 +-1 +0 +XL-X2 +H1 +1 +2 +-1/2 +4 +X1 +H2 +1 +2 +1/2 +0 +X2 +Φ +1 +1 +0 +1 +X3 +TABLE I. The field content of the Anarchic Axion model. +potential is +V = +� +i=1,2 +� +µ2 +i |Hi|2 + λi|Hi|4� ++ λ|H1|2|H2|2 + λ′|H1H2|2 ++ µ2 +3|Φ|2 + λ3|Φ|4 + λ13|H1|2|Φ|2 + λ23|H2|2|Φ|2 , +(1a) +V Cλ +break = −CλH1H2Φ + h.c. , +(1b) +which is invariant under the global U(1)H1 × U(1)H2 × +U(1)Φ symmetry. Additional gauge symmetry preserving +terms are forbidden by invoking a Z5 symmetry at high +scales. The Z5 allows a term Eq. (1b) which breaks the +global symmetry down to U(1)Y ×U(1)X, where U(1)Y is +identified with SM hypercharge and U(1)X will be iden- +tified with the accidentally arising PQ symmetry, with +X3 = −X1 − X2. +We choose the parameters of the potential such that all +three complex scalar fields acquire a vacuum expectation +value (vev) v1,2,3. Writing the electrically neutral fields +in a non-linear representation, we have +√ +2H0 +i = (vi + +hi)eiai/vi and +√ +2Φ = (v3+h3)eia3/v3, where hi define the +CP even radial modes and ai define the CP odd angular +modes. +Given an appropriate choice of basis, the angular +modes can be rewritten as two Goldstone fields a and +A. We will then derive a basis-invariant anomalous CP- +Violating (CPV) phase in the QCD sector, providing a +mass for the Goldstone modes and allowing the identi- +fication of one mode a with the axion which solves the +strong CP problem while the other mode A is heavy. +arXiv:2301.08760v1 [hep-ph] 20 Jan 2023 + +2 +The interesting phenomenology of the Anarchic Axion +is the deviation from the canonical QCD axion band in +{ma, fa} parameter space (and similarly in the axion- +photon effective coupling), which results from the intro- +duction of soft PQ breaking at low scales. Specifically, +V Bµ +break = −BµH1H2 + h.c. , +(2) +which further breaks the symmetry down to U(1)Y . +We parameterize the symmetry breaking couplings as +Bµ = |Bµ|e−iθµ and Cλ = |Cλ|e−iθλ. The original global +symmetry can be used to render θλ unphysical, and hence +Cλ is a real parameter. +The Goldstone basis. — Following the procedure dis- +cussed in the supplementary material, we perform a ba- +sis transformation to align the Goldstone fields with the +U(1)Y ×U(1)X symmetries, which isolates the Goldstone +eaten by the gauging of hypercharge. In this new basis, +the angular potential is +Vang = −|Bµ| +� 2 +� +i=1 +(vi + hi) +� +cos +� a +va ++ A +vA +δ2 − θµ +� +(3) +− |Cλ| +√ +2 +� 3 +� +i=1 +(vi + hi) +� +cos +� A +vA +(1 + δ2) − θλ +� +, +where δ += vA/va, v1v2 += vva/ +√ +1 + δ2 and v3 += +vA/ +√ +1 + δ2, with v = +� +v2 +1 + v2 +2 ≈ 246 GeV is the elec- +troweak vev. +Next, we include the correction to the potential aris- +ing from QCD instantons induced by the coupling of SM +quarks to H1 and H2. The effective Lagrangian in the +Anarchic Axion model is +LG ˜ +G ⊃ g2 +s +32π2 +� +¯θSM − Ng +� a +va ++ δ2 A +vA +�� +Ga +µν ˜Gaµν , (4) +where Ng is the number of quark generations and ¯θSM ≡ +θQCD + arg det YuYd for the SM quark Yukawa matrices. +By applying global U(1) transformations on H1, H2, Φ +and the SM quarks, we can reshuffle the separate phases +from Eq. (3) and Eq. (4) into a new ¯θ defined via ¯θSM − +Ngθµ ≡ Ng ¯θ. We may choose U(1) phases such that ¯θ is +only in the Bµ contribution to the potential, and hence +below ΛQCD the corresponding a and A fields experience +the instanton potential, +LG ˜ +G ⊃ Λ4 +QCD cos +� +Ng +� a +va ++ δ2 A +vA +�� +, +(5) +where Λ4 +QCD ≡ +mumd +(mu+md)2 m2 +πf 2 +π. +Via the Peccei-Quinn +mechanism, ¯θ is relaxed to the observable CPV parameter +¯θeff, seen as the tadpoles effects of a and A in Eq. (5). +Consequently, the total angular potential for a and A +fields is now +−Vang = Λ4 +QCD cos +� +Ng +� +α + α′δ2�� +(6) ++ Λ4 +QCD +va +vmax +cos +� +α + α′δ2 + ¯θ +� ++ +|Cλ|vv2 +A +√ +2δ(1 + δ2) cos +� +α′(1 + δ2) +� +, +where we have introduced α ≡ a/va, α′ ≡ A/vA as con- +venient notation for the fields, and we have +vmax ≡ +Λ4 +QCD +|Bµ|v +� +1 + δ2 , +(7) +as the extremal value of the PQ vev va. +Relaxation and heavy A mass. — To ensure A is heavy, +we will necessarily take |Cλ| ≫ |Bµ|1/2 as well as require +δ ≪ 1, such that the mass of A arises dominantly from +the Cλ contribution to the potential, yielding +m2 +A = |Cλ|v +√ +2 +�1 +δ + δ + O +� +δ2�� +, +(8) +setting the scale of A well above the electroweak scale. +The vmax scale is the energy where the soft PQ breaking +parameter must be nearly aligned to the ¯θSM to avoid +neutron electric dipole moment (nEDM) constraints [23]. +Pragmatically, as will be shown below, vmax corresponds +to the largest possible scale suppression in gaγγ for ¯θ ≈ π. +The Anarchic Axion Parameters. — We now derive the +ma, fa and gaγγ relations. After spontaneous breaking of +the PQ symmetry by va, the physical degrees of freedom +a and A acquire tadpoles α0 and α′ +0, respectively. Impor- +tantly, the unphysical θλ also allows us to shift α′ +0 purely +into α0, leaving α′ +0 unobservable, as seen in Eq. (6). Con- +sequently, the tadpole α0 entirely generates |¯θeff| = α0, +giving a potentially measurable nEDM. Note that in this +basis, α0 entirely captures the deviation from the canon- +ical DFSZ due to non-vanishing Bµ. +Expanding Eq. (6) about the minimum and dropping +constant terms and the heavy A field, yields +− Vang +Λ4 +QCD += α +� +Ng sin +� +Ng ¯θeff +� ++ +va +vmax +sin +�¯θ − ¯θeff +�� ++ 1 +2α2 +� +N 2 +g cos +� +Ng ¯θeff +� ++ +va +vmax +cos +�¯θ − ¯θeff +�� +. (9) +For very small δ ≪ 1, a is already in its mass basis, where +ma is given up to O +� +δ4� +corrections by +m2 +a = +Λ4 +QCD +v2a +� +N 2 +g cos +� +Ng ¯θeff +� ++ +va +vmax +cos +�¯θ − ¯θeff +�� +. +(10) + +3 +1/k = 10−10/(π − ¯θ) +vmax/fa +¯θeff += 10−9 +¯θeff += 10−11 +k = 10−8 +k = 10−4 +k = 1 +nEDM: ¯θeff +≥ 10−10 +10−1 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +10−1 +100 +101 +102 +FIG. 1. Contours correspond to values of physical CPV |¯θeff|, +obtained from Eq. (13). The gray region corresponds to pa- +rameter space constrained by the nEDM measurement. +Using Eq. (10), the axion decay constant is +1 +fa +≡ Ng +va += − +cos +�¯θ − ¯θeff +� +2Ngvmax cos +� +Ng ¯θeff +� +(11) ++ +� +� +� +� +m2a +Λ4 +QCD cos +� +Ng ¯θeff +� + +� +cos +�¯θ − ¯θeff +� +2Ngvmax cos +� +Ng ¯θeff +� +�2 +. +Note that in the limit va ≪ vmax, we recover the canon- +ical relation m2 +af 2 +a = Λ4 +QCD. +Finally, to evaluate the axion-diphoton coupling, we +partition the irreducible U(1)em anomaly shared by a1 +and a2 into the mass eigenstate a, giving +gaγγ = e2 +8π2 +� E +N − 1.92 +� � +1 + δ2 +2 + O +� +δ3�� 1 +fa +, +(12) +where E/N = 8/3, analogous to the DFSZ case [24]. +CP Violation and nEDM. — We now return to the +derivation of the tadpole α0 acquired by a, and the result- +ing observable CPV ¯θeff constrained by measurements of +the nEDM. To make contact with phenomenology, it will +be useful to consider the leading order contribution to +¯θeff. The first term of Eq. (9) encodes the residual CPV +¯θeff in the Anarchic Axion model, where the leading con- +tribution up to O((¯θ − π)2) is given by +¯θeff = +2(¯θ − π) +� +1 + +4N 2 +g m2av2max +Λ4 +QCD +− 1 +. +(13) +Contours of ¯θeff are show in Fig. 1. We define k ≡ (¯θ − +π)/10−10 to capture the sensitivity to the deviation of ¯θ +from π, i.e. for k ≲ 1 a tuning will be required and we +saturate at vmax/fa → 1/Ng. The white region is allowed +by the nEDM bound. For k ≳ 1, we recover the DFSZ +solution to strong CP, relaxing the required tuning. +Results. — In Fig. 2, we display gaγγ vs. ma for the +Anarchic Axion. The DFSZ axion line is shown in yel- +low. Regions targeted by experimental searches or con- +strained by astrophysical considerations are shaded out +in gray [24]. For fixed values of ma and vmax, the blue +contours are computed by plugging in 1/fa from Eq. (11) +into Eq. (12) for gaγγ, and using Eq. (13) to fix ¯θeff as +a function of k, ma and vmax. We also use Eq. (13) to +enforce the nEDM constraint |¯θeff| ≤ 10−10. Choosing +a specific k denoted by a red dotted line, we can access +lighter axion masses along a given blue contour of fixed +vmax up to the intersection point. Explicitly, accessing +smaller axion masses requires a small k and hence tuning +¯θ closer to π. +As +Eq. +(11) +suggests +for +sufficiently +small +ma +(i.e., ma ≪ +��Λ2 +QCD cos +�¯θ − ¯θeff +� +/(2Ngvmax) +��), 1/fa be- +comes insensitive to ma, +and approaches 1/fa +≃ +��cos +�¯θ − ¯θeff +� +/(Ngvmax) +��. Physically, the vev shift from +the Bµ term begins to dominate in this regime; corre- +sponding to the kink in the blue lines of +Fig. 2 upon +their intersection with the k = 1 line. +In Fig. 2 we have enforced ¯θ ∈ +� π +2 , π +� +leading to light +Anarchic Axion masses populating the region to the left +of the DFSZ band. Note that heavier masses can popu- +late the region to the right of the DFSZ line for ¯θ < π/2. +We leave the details of the heavy Anarchic Axion to fu- +ture work [26]. +The Quality Problem. — All axion models suffer from +a high scale quality problem, i.e. higher dimensional op- +erators, which are generally present from gravity effects, +break the PQ symmetry at high scales and shift the ax- +ion vev. To preserve the quality of the PQ solution, we +are forced to fine-tune parameters of the UV theory. +The quality problem of the Anarchic Axion manifests +as an alignment of ¯θ with π once the soft breaking Bµ +term starts to dominate the vev shift, as is evident from +the low ma plateau in Fig. 2. To quantify the quality +problem, we introduce a measure ∆BG of fine tuning, +following [27, 28]: +∆BG(¯θeff) ≡ +��� +¯θ +¯θeff +∂¯θeff +∂¯θ +��� . +(14) +Note that a large value of ∆BG implies a large tuning. +Indeed, in Fig. 3 we observe that ∆BG grows as ¯θ → π. +We emphasize that the region where the Anarchic Axion +exhibits a lighter than usual axion is characterized by +a non-trivial fine tuning. This approach of quantifying +the quality problem can be potentially applied to other +axion models where the PQ symmetry breaking enters +explicitly at high scales. Note that this is only possible +since the residual CPV ¯θeff is calculable. +We also mention the possibility that the soft break- +ing Bµ term of the Anarchic Axion model can arise as +the leading low energy operator matched to a Planck- +suppressed PQ breaking term in canonical axion models. +We will reserve a study of the matching requirements of +soft PQ breaking terms in high-quality axion models for +the future. +Discussion. — In this Letter we have introduced the +Anarchic Axion model which solves the QCD Strong +CP problem while populating new regions of parameter + +4 +0.001 +1 +1000 +106 +10-15 +10-11 +ABRA +SHAFT +CAST +MWD +HB +SN +ν Solar +Cosmology +ma[eV] +gaγγ [GeV−1] +k = π − ¯θ +10−10 +10−6 +¯θ ≥ π +2 and +¯θeff +≤ 10−10 +Haloscopes +10−9 +DFSZ +k = 10−8 +k = 10−4 +k = 1 +vmax = 109 GeV +vmax = 1011 GeV +vmax = 1013 GeV +vmax = 107 GeV +FIG. 2. Parameter space for the axion-diphoton coupling in the Anarchic Axion model consistent with current nEDM con- +straint [23]. Experimental limits, shown by the gray shaded regions are extracted from Ref. [25]. We show representative values +of vmax and k that highlight the accessible light axion parameter space probed by ongoing haloscope and microwave cavity +experiments. +1.8 +2.0 +2.2 +2.5 +2.8 +3.0 +1 +2 +5 +10 +20 +50 +Δθ +ΔBG +¯θ +ΔBG(¯θeff) +1.8 +2.0 +2.2 +2.5 +2.8 +3.0 +1 +2 +5 +10 +20 +50 +FIG. 3. +A measure of tuning for the variable ¯θ consistent +with nEDM constraints on ¯θeff given in Eq. (13), fixing ma = +10−6 eV and vmax = 107 GeV. As the figure demonstrates, +the tuning exponentially increases as ¯θ → π, and this tuning +is negligibly sensitive to alternate ma and vmax values. +space. We close by mentioning that these regions with +fine tuning can be motivated by, e.g. a clockwork-like +ultraviolet model. For instance, consider a U(1)PQ bulk +gauge symmetry in a 5D warped geometry with a bulk +electroweak singlet scalar, where PQ charges will be car- +ried by a brane-localized Higgs and right-handed up-type +quarks. Given an appropriate choice of boundary condi- +tions for the bulk field, the Anarchic Axion model then +arises as an effective description with a global U(1)PQ +symmetry. +A discrete Z5 symmetry can be identified +with a remnant of the bulk gauge symmetry. We leave +the details of such UV completions to future work [26]. +While the interesting phenomenology of the Anarchic +Axion model discussed in this Letter arose due to a soft +PQ breaking term, other variations can produce similar +phenomenology. For instance, replacing the soft breaking +Bµ term with a Φ3 term would result in a potential which +is protected by an accidental and global Z3 symmetry. +We leave the exploration of variants of Anarchic Axion +models to future work [26]. We expect the cosmological +production of the Anarchic Axion to proceed through a +variation of the canonical misalignment mechanisms and +also leave the detailed implications of Anarchic Axion +dark matter to future study. +The experimental observation of an exceptionally light +axion deviating from the canonical QCD axion band +would be evidence for an Anarchic Axion solution to the +Strong CP problem. +Note added:. — When this work was in preparation, +a related preprint appeared [29], focusing on generating +high-quality axion solutions by suppressing Planck-scale +operators using chiral gauged U(1) symmetries. +We thank Prisco Lo Chiatto for useful conversations. +We thank Raymond Co, Joshua Eby, and Alfredo Wal- +ter Mario Guerrera for useful discussions and comments +on the draft. F.E. and G.E. are grateful to CERN for +their hospitality. This work is supported by the Cluster +of Excellence Precision Physics, Fundamental Interac- + +5 +tions and Structure of Matter (PRISMA+ – EXC 2118/1) +within the German Excellence Strategy (project ID +39083149). +FE is also funded by grant 05H18UMCA1 +of the German Federal Ministry for Education and Re- +search (BMBF). +∗ felahi@uni-mainz.de +† gelor@uni-mainz.de +‡ alkivel@uni-mainz.de +§ jlaux01@uni-mainz.de +¶ snajjari@uni-mainz.de +∗∗ yu001@uni-mainz.de +[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 +(1977). +[2] R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 +(1977). +[3] B. Holdom and M. E. Peskin, Nucl. Phys. B 208, 397 +(1982). +[4] T. Gherghetta, N. Nagata, and M. Shifman, Phys. Rev. +D 93, 115010 (2016), arXiv:1604.01127 [hep-ph]. +[5] P. Agrawal, G. Marques-Tavares, +and W. Xue, JHEP +03, 049 (2018), arXiv:1708.05008 [hep-ph]. +[6] P. +Agrawal +and +K. +Howe, +JHEP 12, +029 +(2018), +arXiv:1710.04213 [hep-ph]. +[7] P. +Agrawal +and +K. +Howe, +JHEP 12, +035 +(2018), +arXiv:1712.05803 [hep-ph]. +[8] A. +Hook, +Phys. +Rev. +Lett. +120, +261802 +(2018), +arXiv:1802.10093 [hep-ph]. +[9] M. K. Gaillard, M. B. Gavela, R. Houtz, P. Quilez, +and R. Del Rey, Eur. Phys. J. C 78, 972 (2018), +arXiv:1805.06465 [hep-ph]. +[10] L. Di Luzio, B. Gavela, P. Quilez, +and A. Ringwald, +JHEP 05, 184 (2021), arXiv:2102.00012 [hep-ph]. +[11] A. Kivel, J. Laux, +and F. Yu, JHEP 11, 088 (2022), +arXiv:2207.08740 [hep-ph]. +[12] M. Kamionkowski and J. March-Russell, Phys. Lett. B +282, 137 (1992), arXiv:hep-th/9202003. +[13] J. E. Kim and G. Carosi, Rev. Mod. Phys. 82, 557 +(2010), [Erratum: +Rev.Mod.Phys. 91, 049902 (2019)], +arXiv:0807.3125 [hep-ph]. +[14] L. Darm´e and E. Nardi, Phys. Rev. D 104, 055013 (2021), +arXiv:2102.05055 [hep-ph]. +[15] M. Dine, (2022), arXiv:2207.01068 [hep-ph]. +[16] A. +Banerjee, +J. +Eby, +and +G. +Perez, +(2022), +arXiv:2210.05690 [hep-ph]. +[17] Q. Bonnefoy, (2022), arXiv:2212.00102 [hep-ph]. +[18] K. +Choi +and +S. +H. +Im, +JHEP +01, +149 +(2016), +arXiv:1511.00132 [hep-ph]. +[19] G. F. Giudice and M. McCullough, JHEP 02, 036 (2017), +arXiv:1610.07962 [hep-ph]. +[20] A. Ahmed and B. M. Dillon, Phys. Rev. D 96, 115031 +(2017), arXiv:1612.04011 [hep-ph]. +[21] M. Dine, W. Fischler, and M. Srednicki, Physics Letters +B 104, 199 (1981). +[22] A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980). +[23] C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020), +arXiv:2001.11966 [hep-ex]. +[24] R. L. Workman et al. (Particle Data Group), PTEP +2022, 083C01 (2022). +[25] C. O’Hare, “cajohare/axionlimits: Axionlimits,” https: +//cajohare.github.io/AxionLimits/ (2020). +[26] F. Elahi, G. Elor, A. Kivel, J. Laux, S. Najjari, +and +F. Yu, . +[27] J. R. Ellis, +K. Enqvist, +D. V. Nanopoulos, +and +F. Zwirner, Mod. Phys. Lett. A 1, 57 (1986). +[28] R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 +(1988). +[29] Y.-C. Qiu, J.-W. Wang, +and T. T. Yanagida, +(2023), +arXiv:2301.02345 [hep-ph]. + +1 +Supplemental Material for: Lightening the Axion with Anarchy +Fatemeh Elahi, Gilly Elor, Alexey Kivel, Julien Laux, Saereh Najjari and Felix Yu +In this supplementary material, we first present the details of the Goldstone basis necessary for identifying the mass +eigenstatates of the Anarchic Axion a and the heavy field A. We then present the details of the derivation of ¯θ. +GOLDSTONE BASIS +In order to identify the corresponding Goldstone bosons to the spontaneously broken U(1) symmetries of hyper- +charge U(1)Y , Peccei-Quinn U(1)X and an orthogonal global U(1)Z, we perform an O(3) basis rotation on the initial +U(1)H1 × U(1)H2 × U(1)Φ symmetries. We call the Goldstone bosons G for hypercharge, a for Peccei-Quinn, A for +U(1)Z and the corresponding vevs v, va and vA, respectively. The rotation matrix reads +� +� +G +a +A +� +� = +� +� +sφcγ +−cφcγ +−sγ +cφcβ − sφsβsγ sφcβ + cφsβsγ −sβcγ +cφsβ + sφcβsγ sφsβ − cφcβsγ +cβcγ +� +� +� +� +a1 +a2 +a3 +� +� , +(S1) +with tan φ = v1/v2, tan β = vA/va and γ = 0, since Φ is not charged under U(1)Y and therefore a3 does not mix into +G. The corresponding vev relations derived from orthogonality conditions are +v1 = v sin φ , +v2 = v cos φ , +v3 = va sin β = vA cos β , +va cos β = v sin φ cos φ . +(S2) +Under this basis rotation the angular potential in our model transforms as +Vang = − |Bµ| +� 2 +� +i=1 +(vi + hi) +� +cos +� 2 +� +i=1 +ai +vi +− θµ +� +− |Cλ| +√ +2 +� 3 +� +i=1 +(vi + hi) +� +cos +� 3 +� +i=1 +ai +vi +− θλ +� +O(3) +−→ − |Bµ| +� 2 +� +i=1 +(vi + hi) +� +cos +� a +va ++ A +vA +tan2 β − θµ +� +− |Cλ| +√ +2 +� 3 +� +i=1 +(vi + hi) +� +cos +� A +vA +sec2 β − θλ +� +. +(S3) +In this new basis the dependence of the angular potential on G and φ conveniently drops out. We can replace tan β +by a small parameter δ ≡ vA/va, leading to +tan2 β = δ2 , +sec2 β = 1 + δ2 , +v1v2 = +vva +√ +1 + δ2 , +v3 = +vA +√ +1 + δ2 . +(S4) +DERIVATION OF ¯θ +We present the derivation of the Anarchic Axion strong CP-violating parameter ¯θ and discuss its relaxation. The +overall observable strong CP-violating is basis independent and must be defined by a unique linear combination of +the CP-violating phases, similar to the SM, where the quark phases and θQCD contribute to the unique observable +¯θSM. The CPV of the Anarchic Axion can be reshuffled by applying a U(1) transformation on the fields H1, H2, Φ +and the SM quarks, thereby redistributing the CP-violating phases θµ, θλ, and ¯θSM. Starting with the Lagrangian +in Eq. (1a), the phases can be rotated into the quark masses by applying the transformations +H2 → eiθµH2 , +Φ → ei(−θµ+θλ)Φ . +(S5) +This introduces real prefactors in all terms of Eq. (1a) and an additional phase factor eiθµ in the SM Yukawa couplings +¯QLYdH2dR → ¯QLYdH2eiθµdR ≡ ¯QL(Y ′ +d)H2dR , +(S6) +where QL are the left-handed quark doublets, dR are the right-handed down-type quarks, and Y ′ +d is the new Yukawa +coupling matrix. Note that the unphysical θλ phase is absorbed by Φ. The resulting strong CPV is defined through +(θQCD − arg(det(Y ′ +dYu))) G ˜G = (θQCD − arg(det(YdYu))) − Ngθµ) G ˜G += (¯θSM − Ngθµ) G ˜G ≡ Ng ¯θ G ˜G . +(S7) +Note that one can likewise choose to transform H1 in Eq. (S5) such that the phase factor appears in Yu, resulting in +an identical ¯θ. + diff --git a/itFAT4oBgHgl3EQf-B4t/content/tmp_files/load_file.txt b/itFAT4oBgHgl3EQf-B4t/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c7d685ba99cd5875a05ec8717d67458599004fb6 --- /dev/null +++ b/itFAT4oBgHgl3EQf-B4t/content/tmp_files/load_file.txt @@ -0,0 +1,381 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf,len=380 +page_content='MITP-23-002 A Lighter QCD Axion from Anarchy Fatemeh Elahi,1, ∗ Gilly Elor,1, † Alexey Kivel,1, ‡ Julien Laux,1, § Saereh Najjari,1, ¶ and Felix Yu1, ∗∗ 1PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics Johannes Gutenberg University, 55099 Mainz, Germany We introduce the Anarchic Axion, a class of axion models which solves the Strong CP problem with a lighter than usual QCD axion, thus populating new parameter space that ongoing and future experiments target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Anarchic Axion is driven light by a soft breaking of the Peccei-Quinn symmetry, which also predicts a residual neutron electric dipole moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We introduce a novel measure to quantify the tuning required for large deviations from the usual QCD axion band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' In addition to motivating searches for unusually light axions, this work establishes a new target for axion effective field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Peccei-Quinn (PQ) solution [1, 2] to the Strong Charge-Parity (CP) problem of quantum chromodynam- ics (QCD) predicts relationships between the axion mass ma, decay constant fa and axion-photon coupling gaγγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' In this Letter, we introduce a new class of multi-scalar axion models — The Anarchic Axion —so dubbed as to emphasize that the PQ symmetry arises accidentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The U(1)PQ symmetry is softly broken leading to a so- lution to the Strong CP problem that deviates from the traditional QCD axion band, importantly populating a region of parameter space targeted by many on-going ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Related work to solving the strong CP prob- lem departing from the canonical band include Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [3– 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Furthermore, the new parameter space corresponds to an almost perfect alignment between the soft breaking vacuum and the θQCD vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' This provides a unique handle on the Axion Quality Problem [3, 12–17] allow- ing the introduction of a novel measure for quantifying the fine tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Anarchic Axion can be made nat- ural given a Clockwork [18–20] inspired ultraviolet (UV) completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' In this Letter we first introduce the field content and the potential of an Anarchic Axion model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Given an ap- propriate basis choice, we compute the ma, fa and gaγγ relations, and present the new parameter space where experiments can hunt for the Anarchic Axion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We then discuss the quality of this solution to the Strong CP prob- lem and introduce a fine tuning measure to quantify the axion quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We conclude by commenting on possible natural UV completions and future directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Anarchic Axion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — The particle content and charge assignments of the model, summarized in Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' I, consists of three complex scalars: H1 and H2 which can be identified with the Higgs doublet fields in DFSZ axion constructions [21, 22], and a gauge singlet Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Standard Model (SM) fermions coupling to H1 and H2 will medi- ate the requisite effective operator coupling the Anarchic Axion and the anomalous G ˜G QCD term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The scalar Field SU(3)c SU(2)L U(1)Y Z5 U(1)P Q Qi L 3 2 1/6 0 XQ ui R 3 1 2/3 1 XQ-X1 di R 3 1 1/3 0 XQ-X2 Li L 1 2 1/2 0 XL ei R 1 1 1 0 XL-X2 H1 1 2 1/2 4 X1 H2 1 2 1/2 0 X2 Φ 1 1 0 1 X3 TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The field content of the Anarchic Axion model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' potential is V = � i=1,2 � µ2 i |Hi|2 + λi|Hi|4� + λ|H1|2|H2|2 + λ′|H1H2|2 + µ2 3|Φ|2 + λ3|Φ|4 + λ13|H1|2|Φ|2 + λ23|H2|2|Φ|2 , (1a) V Cλ break = −CλH1H2Φ + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' , (1b) which is invariant under the global U(1)H1 × U(1)H2 × U(1)Φ symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Additional gauge symmetry preserving terms are forbidden by invoking a Z5 symmetry at high scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Z5 allows a term Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (1b) which breaks the global symmetry down to U(1)Y ×U(1)X, where U(1)Y is identified with SM hypercharge and U(1)X will be iden- tified with the accidentally arising PQ symmetry, with X3 = −X1 − X2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We choose the parameters of the potential such that all three complex scalar fields acquire a vacuum expectation value (vev) v1,2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Writing the electrically neutral fields in a non-linear representation, we have √ 2H0 i = (vi + hi)eiai/vi and √ 2Φ = (v3+h3)eia3/v3, where hi define the CP even radial modes and ai define the CP odd angular modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Given an appropriate choice of basis, the angular modes can be rewritten as two Goldstone fields a and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We will then derive a basis-invariant anomalous CP- Violating (CPV) phase in the QCD sector, providing a mass for the Goldstone modes and allowing the identi- fication of one mode a with the axion which solves the strong CP problem while the other mode A is heavy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='08760v1 [hep-ph] 20 Jan 2023 2 The interesting phenomenology of the Anarchic Axion is the deviation from the canonical QCD axion band in {ma, fa} parameter space (and similarly in the axion- photon effective coupling), which results from the intro- duction of soft PQ breaking at low scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Specifically, V Bµ break = −BµH1H2 + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' , (2) which further breaks the symmetry down to U(1)Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We parameterize the symmetry breaking couplings as Bµ = |Bµ|e−iθµ and Cλ = |Cλ|e−iθλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The original global symmetry can be used to render θλ unphysical, and hence Cλ is a real parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Goldstone basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — Following the procedure dis- cussed in the supplementary material, we perform a ba- sis transformation to align the Goldstone fields with the U(1)Y ×U(1)X symmetries, which isolates the Goldstone eaten by the gauging of hypercharge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' In this new basis, the angular potential is Vang = −|Bµ| � 2 � i=1 (vi + hi) � cos � a va + A vA δ2 − θµ � (3) − |Cλ| √ 2 � 3 � i=1 (vi + hi) � cos � A vA (1 + δ2) − θλ � , where δ = vA/va, v1v2 = vva/ √ 1 + δ2 and v3 = vA/ √ 1 + δ2, with v = � v2 1 + v2 2 ≈ 246 GeV is the elec- troweak vev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Next, we include the correction to the potential aris- ing from QCD instantons induced by the coupling of SM quarks to H1 and H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The effective Lagrangian in the Anarchic Axion model is LG ˜ G ⊃ g2 s 32π2 � ¯θSM − Ng � a va + δ2 A vA �� Ga µν ˜Gaµν , (4) where Ng is the number of quark generations and ¯θSM ≡ θQCD + arg det YuYd for the SM quark Yukawa matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' By applying global U(1) transformations on H1, H2, Φ and the SM quarks, we can reshuffle the separate phases from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (3) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (4) into a new ¯θ defined via ¯θSM − Ngθµ ≡ Ng ¯θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We may choose U(1) phases such that ¯θ is only in the Bµ contribution to the potential, and hence below ΛQCD the corresponding a and A fields experience the instanton potential, LG ˜ G ⊃ Λ4 QCD cos � Ng � a va + δ2 A vA �� , (5) where Λ4 QCD ≡ mumd (mu+md)2 m2 πf 2 π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Via the Peccei-Quinn mechanism, ¯θ is relaxed to the observable CPV parameter ¯θeff, seen as the tadpoles effects of a and A in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Consequently, the total angular potential for a and A fields is now −Vang = Λ4 QCD cos � Ng � α + α′δ2�� (6) + Λ4 QCD va vmax cos � α + α′δ2 + ¯θ � + |Cλ|vv2 A √ 2δ(1 + δ2) cos � α′(1 + δ2) � , where we have introduced α ≡ a/va, α′ ≡ A/vA as con- venient notation for the fields, and we have vmax ≡ Λ4 QCD |Bµ|v � 1 + δ2 , (7) as the extremal value of the PQ vev va.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Relaxation and heavy A mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — To ensure A is heavy, we will necessarily take |Cλ| ≫ |Bµ|1/2 as well as require δ ≪ 1, such that the mass of A arises dominantly from the Cλ contribution to the potential, yielding m2 A = |Cλ|v √ 2 �1 δ + δ + O � δ2�� , (8) setting the scale of A well above the electroweak scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The vmax scale is the energy where the soft PQ breaking parameter must be nearly aligned to the ¯θSM to avoid neutron electric dipole moment (nEDM) constraints [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Pragmatically, as will be shown below, vmax corresponds to the largest possible scale suppression in gaγγ for ¯θ ≈ π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Anarchic Axion Parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — We now derive the ma, fa and gaγγ relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' After spontaneous breaking of the PQ symmetry by va, the physical degrees of freedom a and A acquire tadpoles α0 and α′ 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Impor- tantly, the unphysical θλ also allows us to shift α′ 0 purely into α0, leaving α′ 0 unobservable, as seen in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Con- sequently, the tadpole α0 entirely generates |¯θeff| = α0, giving a potentially measurable nEDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note that in this basis, α0 entirely captures the deviation from the canon- ical DFSZ due to non-vanishing Bµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Expanding Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (6) about the minimum and dropping constant terms and the heavy A field, yields − Vang Λ4 QCD = α � Ng sin � Ng ¯θeff � + va vmax sin �¯θ − ¯θeff �� + 1 2α2 � N 2 g cos � Ng ¯θeff � + va vmax cos �¯θ − ¯θeff �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (9) For very small δ ≪ 1, a is already in its mass basis, where ma is given up to O � δ4� corrections by m2 a = Λ4 QCD v2a � N 2 g cos � Ng ¯θeff � + va vmax cos �¯θ − ¯θeff �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (10) 3 1/k = 10−10/(π − ¯θ) vmax/fa ¯θeff = 10−9 ¯θeff = 10−11 k = 10−8 k = 10−4 k = 1 nEDM: ¯θeff ≥ 10−10 10−1 100 101 102 103 104 105 106 107 108 109 10−1 100 101 102 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Contours correspond to values of physical CPV |¯θeff|, obtained from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The gray region corresponds to pa- rameter space constrained by the nEDM measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (10), the axion decay constant is 1 fa ≡ Ng va = − cos �¯θ − ¯θeff � 2Ngvmax cos � Ng ¯θeff � (11) + � � � � m2a Λ4 QCD cos � Ng ¯θeff � + � cos �¯θ − ¯θeff � 2Ngvmax cos � Ng ¯θeff � �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note that in the limit va ≪ vmax, we recover the canon- ical relation m2 af 2 a = Λ4 QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Finally, to evaluate the axion-diphoton coupling, we partition the irreducible U(1)em anomaly shared by a1 and a2 into the mass eigenstate a, giving gaγγ = e2 8π2 � E N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='92 � � 1 + δ2 2 + O � δ3�� 1 fa , (12) where E/N = 8/3, analogous to the DFSZ case [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' CP Violation and nEDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — We now return to the derivation of the tadpole α0 acquired by a, and the result- ing observable CPV ¯θeff constrained by measurements of the nEDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' To make contact with phenomenology, it will be useful to consider the leading order contribution to ¯θeff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The first term of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (9) encodes the residual CPV ¯θeff in the Anarchic Axion model, where the leading con- tribution up to O((¯θ − π)2) is given by ¯θeff = 2(¯θ − π) � 1 + 4N 2 g m2av2max Λ4 QCD − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (13) Contours of ¯θeff are show in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We define k ≡ (¯θ − π)/10−10 to capture the sensitivity to the deviation of ¯θ from π, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' for k ≲ 1 a tuning will be required and we saturate at vmax/fa → 1/Ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The white region is allowed by the nEDM bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' For k ≳ 1, we recover the DFSZ solution to strong CP, relaxing the required tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 2, we display gaγγ vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' ma for the Anarchic Axion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The DFSZ axion line is shown in yel- low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Regions targeted by experimental searches or con- strained by astrophysical considerations are shaded out in gray [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' For fixed values of ma and vmax, the blue contours are computed by plugging in 1/fa from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (11) into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (12) for gaγγ, and using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (13) to fix ¯θeff as a function of k, ma and vmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We also use Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (13) to enforce the nEDM constraint |¯θeff| ≤ 10−10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Choosing a specific k denoted by a red dotted line, we can access lighter axion masses along a given blue contour of fixed vmax up to the intersection point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Explicitly, accessing smaller axion masses requires a small k and hence tuning ¯θ closer to π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' As Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (11) suggests for sufficiently small ma (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=', ma ≪ ��Λ2 QCD cos �¯θ − ¯θeff � /(2Ngvmax) ��), 1/fa be- comes insensitive to ma, and approaches 1/fa ≃ ��cos �¯θ − ¯θeff � /(Ngvmax) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Physically, the vev shift from the Bµ term begins to dominate in this regime;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' corre- sponding to the kink in the blue lines of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 2 upon their intersection with the k = 1 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 2 we have enforced ¯θ ∈ � π 2 , π � leading to light Anarchic Axion masses populating the region to the left of the DFSZ band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note that heavier masses can popu- late the region to the right of the DFSZ line for ¯θ < π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We leave the details of the heavy Anarchic Axion to fu- ture work [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The Quality Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — All axion models suffer from a high scale quality problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' higher dimensional op- erators, which are generally present from gravity effects, break the PQ symmetry at high scales and shift the ax- ion vev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' To preserve the quality of the PQ solution, we are forced to fine-tune parameters of the UV theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The quality problem of the Anarchic Axion manifests as an alignment of ¯θ with π once the soft breaking Bµ term starts to dominate the vev shift, as is evident from the low ma plateau in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' To quantify the quality problem, we introduce a measure ∆BG of fine tuning, following [27, 28]: ∆BG(¯θeff) ≡ ��� ¯θ ¯θeff ∂¯θeff ∂¯θ ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (14) Note that a large value of ∆BG implies a large tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Indeed, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 3 we observe that ∆BG grows as ¯θ → π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We emphasize that the region where the Anarchic Axion exhibits a lighter than usual axion is characterized by a non-trivial fine tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' This approach of quantifying the quality problem can be potentially applied to other axion models where the PQ symmetry breaking enters explicitly at high scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note that this is only possible since the residual CPV ¯θeff is calculable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We also mention the possibility that the soft break- ing Bµ term of the Anarchic Axion model can arise as the leading low energy operator matched to a Planck- suppressed PQ breaking term in canonical axion models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We will reserve a study of the matching requirements of soft PQ breaking terms in high-quality axion models for the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — In this Letter we have introduced the Anarchic Axion model which solves the QCD Strong CP problem while populating new regions of parameter 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='001 1 1000 106 10-15 10-11 ABRA SHAFT CAST MWD HB SN ν Solar Cosmology ma[eV] gaγγ [GeV−1] k = π − ¯θ 10−10 10−6 ¯θ ≥ π 2 and ¯θeff ≤ 10−10 Haloscopes 10−9 DFSZ k = 10−8 k = 10−4 k = 1 vmax = 109 GeV vmax = 1011 GeV vmax = 1013 GeV vmax = 107 GeV FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Parameter space for the axion-diphoton coupling in the Anarchic Axion model consistent with current nEDM con- straint [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Experimental limits, shown by the gray shaded regions are extracted from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We show representative values of vmax and k that highlight the accessible light axion parameter space probed by ongoing haloscope and microwave cavity experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='0 1 2 5 10 20 50 Δθ ΔBG ¯θ ΔBG(¯θeff) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='0 1 2 5 10 20 50 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' A measure of tuning for the variable ¯θ consistent with nEDM constraints on ¯θeff given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (13), fixing ma = 10−6 eV and vmax = 107 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' As the figure demonstrates, the tuning exponentially increases as ¯θ → π, and this tuning is negligibly sensitive to alternate ma and vmax values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We close by mentioning that these regions with fine tuning can be motivated by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' a clockwork-like ultraviolet model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' For instance, consider a U(1)PQ bulk gauge symmetry in a 5D warped geometry with a bulk electroweak singlet scalar, where PQ charges will be car- ried by a brane-localized Higgs and right-handed up-type quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Given an appropriate choice of boundary condi- tions for the bulk field, the Anarchic Axion model then arises as an effective description with a global U(1)PQ symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' A discrete Z5 symmetry can be identified with a remnant of the bulk gauge symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We leave the details of such UV completions to future work [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' While the interesting phenomenology of the Anarchic Axion model discussed in this Letter arose due to a soft PQ breaking term, other variations can produce similar phenomenology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' For instance, replacing the soft breaking Bµ term with a Φ3 term would result in a potential which is protected by an accidental and global Z3 symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We leave the exploration of variants of Anarchic Axion models to future work [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We expect the cosmological production of the Anarchic Axion to proceed through a variation of the canonical misalignment mechanisms and also leave the detailed implications of Anarchic Axion dark matter to future study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The experimental observation of an exceptionally light axion deviating from the canonical QCD axion band would be evidence for an Anarchic Axion solution to the Strong CP problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note added:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' — When this work was in preparation, a related preprint appeared [29], focusing on generating high-quality axion solutions by suppressing Planck-scale operators using chiral gauged U(1) symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We thank Prisco Lo Chiatto for useful conversations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We thank Raymond Co, Joshua Eby, and Alfredo Wal- ter Mario Guerrera for useful discussions and comments on the draft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' are grateful to CERN for their hospitality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' This work is supported by the Cluster of Excellence Precision Physics, Fundamental Interac- 5 tions and Structure of Matter (PRISMA+ – EXC 2118/1) within the German Excellence Strategy (project ID 39083149).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' FE is also funded by grant 05H18UMCA1 of the German Federal Ministry for Education and Re- search (BMBF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' ∗ felahi@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de † gelor@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de ‡ alkivel@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de § jlaux01@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de ¶ snajjari@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de ∗∗ yu001@uni-mainz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='de [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Peccei and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Quinn, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 38, 1440 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Peccei and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Quinn, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D16, 1791 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Holdom and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Peskin, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' B 208, 397 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Gherghetta, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Nagata, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Shifman, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D 93, 115010 (2016), arXiv:1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='01127 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Agrawal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Marques-Tavares, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Xue, JHEP 03, 049 (2018), arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='05008 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Agrawal and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Howe, JHEP 12, 029 (2018), arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='04213 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Agrawal and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Howe, JHEP 12, 035 (2018), arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='05803 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Hook, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 120, 261802 (2018), arXiv:1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='10093 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Gaillard, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Gavela, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Houtz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Quilez, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Del Rey, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' C 78, 972 (2018), arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='06465 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Di Luzio, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Gavela, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Quilez, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Ringwald, JHEP 05, 184 (2021), arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='00012 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Kivel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Laux, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Yu, JHEP 11, 088 (2022), arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='08740 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Kamionkowski and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' March-Russell, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' B 282, 137 (1992), arXiv:hep-th/9202003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Kim and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Carosi, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 82, 557 (2010), [Erratum: Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 91, 049902 (2019)], arXiv:0807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='3125 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Darm´e and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Nardi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D 104, 055013 (2021), arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='05055 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Dine, (2022), arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='01068 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Banerjee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Eby, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Perez, (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='05690 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [17] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Bonnefoy, (2022), arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='00102 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Choi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Im, JHEP 01, 149 (2016), arXiv:1511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='00132 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [19] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Giudice and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' McCullough, JHEP 02, 036 (2017), arXiv:1610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='07962 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Ahmed and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Dillon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' D 96, 115031 (2017), arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='04011 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Dine, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Fischler, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Srednicki, Physics Letters B 104, 199 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Zhitnitsky, Sov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 31, 260 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Abel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 124, 081803 (2020), arXiv:2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='11966 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [24] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (Particle Data Group), PTEP 2022, 083C01 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [25] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' O’Hare, “cajohare/axionlimits: Axionlimits,” https: //cajohare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='io/AxionLimits/ (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [26] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Elahi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Elor, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Kivel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Laux, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Najjari, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Yu, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Ellis, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Enqvist, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Nanopoulos, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Zwirner, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' A 1, 57 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Barbieri and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Giudice, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' B 306, 63 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' [29] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Qiu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Wang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Yanagida, (2023), arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content='02345 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' 1 Supplemental Material for: Lightening the Axion with Anarchy Fatemeh Elahi, Gilly Elor, Alexey Kivel, Julien Laux, Saereh Najjari and Felix Yu In this supplementary material, we first present the details of the Goldstone basis necessary for identifying the mass eigenstatates of the Anarchic Axion a and the heavy field A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We then present the details of the derivation of ¯θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' GOLDSTONE BASIS In order to identify the corresponding Goldstone bosons to the spontaneously broken U(1) symmetries of hyper- charge U(1)Y , Peccei-Quinn U(1)X and an orthogonal global U(1)Z, we perform an O(3) basis rotation on the initial U(1)H1 × U(1)H2 × U(1)Φ symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We call the Goldstone bosons G for hypercharge, a for Peccei-Quinn, A for U(1)Z and the corresponding vevs v, va and vA, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The rotation matrix reads � � G a A � � = � � sφcγ −cφcγ −sγ cφcβ − sφsβsγ sφcβ + cφsβsγ −sβcγ cφsβ + sφcβsγ sφsβ − cφcβsγ cβcγ � � � � a1 a2 a3 � � , (S1) with tan φ = v1/v2, tan β = vA/va and γ = 0, since Φ is not charged under U(1)Y and therefore a3 does not mix into G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The corresponding vev relations derived from orthogonality conditions are v1 = v sin φ , v2 = v cos φ , v3 = va sin β = vA cos β , va cos β = v sin φ cos φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S2) Under this basis rotation the angular potential in our model transforms as Vang = − |Bµ| � 2 � i=1 (vi + hi) � cos � 2 � i=1 ai vi − θµ � − |Cλ| √ 2 � 3 � i=1 (vi + hi) � cos � 3 � i=1 ai vi − θλ � O(3) −→ − |Bµ| � 2 � i=1 (vi + hi) � cos � a va + A vA tan2 β − θµ � − |Cλ| √ 2 � 3 � i=1 (vi + hi) � cos � A vA sec2 β − θλ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S3) In this new basis the dependence of the angular potential on G and φ conveniently drops out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' We can replace tan β by a small parameter δ ≡ vA/va, leading to tan2 β = δ2 , sec2 β = 1 + δ2 , v1v2 = vva √ 1 + δ2 , v3 = vA √ 1 + δ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S4) DERIVATION OF ¯θ We present the derivation of the Anarchic Axion strong CP-violating parameter ¯θ and discuss its relaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The overall observable strong CP-violating is basis independent and must be defined by a unique linear combination of the CP-violating phases, similar to the SM, where the quark phases and θQCD contribute to the unique observable ¯θSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The CPV of the Anarchic Axion can be reshuffled by applying a U(1) transformation on the fields H1, H2, Φ and the SM quarks, thereby redistributing the CP-violating phases θµ, θλ, and ¯θSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Starting with the Lagrangian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (1a), the phases can be rotated into the quark masses by applying the transformations H2 → eiθµH2 , Φ → ei(−θµ+θλ)Φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S5) This introduces real prefactors in all terms of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (1a) and an additional phase factor eiθµ in the SM Yukawa couplings ¯QLYdH2dR → ¯QLYdH2eiθµdR ≡ ¯QL(Y ′ d)H2dR , (S6) where QL are the left-handed quark doublets, dR are the right-handed down-type quarks, and Y ′ d is the new Yukawa coupling matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' Note that the unphysical θλ phase is absorbed by Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' The resulting strong CPV is defined through (θQCD − arg(det(Y ′ dYu))) G ˜G = (θQCD − arg(det(YdYu))) − Ngθµ) G ˜G = (¯θSM − Ngθµ) G ˜G ≡ Ng ¯θ G ˜G .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S7) Note that one can likewise choose to transform H1 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} +page_content=' (S5) such that the phase factor appears in Yu, resulting in an identical ¯θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itFAT4oBgHgl3EQf-B4t/content/2301.08760v1.pdf'} diff --git a/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/2301.04340v1.pdf.txt b/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/2301.04340v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..615545e34858d27d5d6ff11c170e9978c6613cb1 --- /dev/null +++ b/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/2301.04340v1.pdf.txt @@ -0,0 +1,2968 @@ +Proportional Fairness in Obnoxious Facility Location +Haris Aziz*1, Alexander Lam†1(�), Bo Li‡2, Fahimeh Ramezani§1, and Toby +Walsh¶1 +1UNSW Sydney +2Hong Kong Polytechnic University +Abstract +We consider the obnoxious facility location problem (in which agents prefer the facility +location to be far from them) and propose a hierarchy of distance-based proportional fairness +concepts for the problem. These fairness axioms ensure that groups of agents at the same +location are guaranteed to be a distance from the facility proportional to their group size. We +consider deterministic and randomized mechanisms, and compute tight bounds on the price +of proportional fairness. In the deterministic setting, not only are our proportional fairness +axioms incompatible with strategyproofness, the Nash equilibria may not guarantee welfare +within a constant factor of the optimal welfare. On the other hand, in the randomized setting, +we identify proportionally fair and strategyproof mechanisms that give an expected welfare +within a constant factor of the optimal welfare. +1 +Introduction +In the obnoxious facility location problem (OFLP), some undesirable facility such as a garbage +dump or an oil refinery is to be located on a unit interval (i.e. the domain of locations is [0, 1]), +and the agents along the interval wish to be as far from the facility as possible [Feigenbaum et +al., 2020; Cheng et al., 2011; Ibara and Nagamochi, 2012; Cheng et al., 2019]. In this problem, +agents have single-dipped preferences, contrasting with the single-peaked preferences of agents in +the classic facility location problem (in which agents prefer to be located as close as possible to +the facility). +The obnoxious facility location problem models many real-world facility placements which +negatively impact nearby agents, such as a prison or a power plant [Church and Drezner, 2022]. +Aside from the geographic placement of an obnoxious facility, the OFLP can also be applied to +*haris.aziz@unsw.edu.au +†alexander.lam1@unsw.edu.au +‡comp-bo.li@polyu.edu.hk +§ramezani81@googlemail.com +¶t.walsh@unsw.edu.au +1 +arXiv:2301.04340v1 [cs.GT] 11 Jan 2023 + +various collective decision making problems. For instance, when agents are averse to their worst +possible social outcomes (represented by their locations), the problem captures issues where a +decision needs to be made on a social policy or a budget composition. When a socially sensitive +or a politically undesirable policy needs to be implemented, the placements of such a policy in the +space of outcomes may need to take equity considerations. +It is known that placing the facility at one of the interval endpoints maximizes the sum of agent +distances [Cheng et al., 2013], but such a solution may not be ‘proportionally fair’ for the agents. +To build intuition, consider the instance depicted in Figure 1 where there are two agents at 0.1 and +five agents at 0.8. The optimal utilitarian solution (which maximizes the sum of agent distances) +places the facility at 0, disproportionately disadvantaging the agents at 0.1 who are located only +0.1 distance from the facility. A facility location of 0.45 results in both groups of agents having the +same distance from the facility, and would be considered to be more ‘fair’ in the egalitarian sense. +However, it is not proportionally fair: despite having over twice as many agents, the group of agents +at 0.8 have the same distance from the facility as the group of agents at 0.1. A proportionally fair +solution places the facility at 0.3, and results in the distance between a group of agents and the +facility being proportional to the size of the group. +In this work, we pursue notions of proportional fairness as a central concern for the problem. +Specifically, we formulate a hierarchy of proportional fairness axioms which guarantee that each +group of agents at the same location are a distance from the facility proportional to the relative size +of the group. While proportional fairness axioms have been formulated and studied in the classic +facility location problem [Aziz et al., 2021], they have not yet been applied to the OFLP. Our pa- +per provides a comprehensive overview of proportionally fair solutions for the obnoxious facility +location problem, examining the interplay between proportional fairness and utilitarian/egalitarian +welfare, and investigating concerns of agent strategic behaviour in both the deterministic and ran- +domized settings. +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +xx +xxxxx +f∗ +UW +2-UFS f∗ +EW +Figure 1: OFLP with agent location profile (0.1, 0.1, 0.8, 0.8, 0.8, 0.8) represented by x. The facil- +ity locations (represented by •) correspond to a utilitarian outcome, f ∗ +UW = 0; a proportionally fair +outcome, 2-UFS = 0.3; and an egalitarian outcome, f ∗ +EW = 0.45. +Contributions +• We formalize (approximate) proportional fairness concepts such as 2-Individual Fair Share +(2-IFS) and 2-Unanimous Fair Share (2-UFS) in the context of the obnoxious facility loca- +tion problem. Several of the definitions are natural adaptations of axioms from fair division +and participatory budgeting. +• We find tight bounds on the price of 2-IFS and 2-UFS fairness for the objectives of egalitarian +and utilitarian welfare, in both the deterministic and randomized settings. +2 + +Table 1: Table of price of fairness and welfare approximation results. +Price of Fairness +Best Known Approx. +by 2-UFS SP Mech. +2-IFS +2-UFS +Deterministic +UW +2 +2 +(Thm. 1) +(Thm. 2) +Incompatible +EW +1 +n-1 +(Prop. 4) +(Prop. 3) +(Thm. 3) +Randomized +UW +12/11 +1.09384. . . +1.5 +(Cor. 3) +(Cor. 4) +(Thm. 8) +EW +1 +1 +1 +(Prop. 3) +(Cor. 2) +(Prop. 6) +• We prove that our proportional fairness axioms are incompatible with strategyproofness in +the deterministic setting, and give strategyproof randomized mechanisms that satisfy these +proportional fairness axioms in expectation and either have a constant approximation ratio +for utilitarian welfare or are optimal for egalitarian welfare. +• For the deterministic mechanisms that maximize utilitarian welfare under the constraints of +2-IFS and 2-UFS, we prove that a pure ϵ-Nash equilibrium always exists and find linear +bounds on the corresponding ϵ-prices of anarchy. +• Finally, we give two possible extensions of our model: the fairness axiom of 2-Proportional +Fairness (2-PF), which is stronger than 2-UFS as it captures proportional fairness concerns +for groups of agents near but not necessarily at the same location, and the hybrid model, +which additionally includes ‘classic’ agents which want to be near the facility (along with +‘obnoxious’ agents which want to be far away from the facility). We give existence results +for both extensions. +Table 1 summarizes some of our results. Results lacking proofs are proven in the appendix. +Related Work +Facility location problems have been explored in the fields of computer science, +economics and operations research. In the latter field, an optimization approach is usually taken, +aiming to minimize transport costs. Summaries of results and approaches in the operations research +literature are given by Hekmatfar [2009] and Melo et al. [2009]. On the other hand, research on +the facility location problem at the intersection of computer science and economics often takes an +approximate mechanism design approach, assuming that agent locations are private information +and finding strategyproof mechanisms which approximate the optimal social cost. The seminal +paper on this approach is written by Procaccia and Tennenholtz [2013], and for a recent and com- +prehensive survey on facility location mechanism design, we refer the reader to a survey by Chan +et al. [2021]. Our paper lies at the intersection of these two approaches, analyzing the agent strate- +gic behaviour in the optimal mechanisms which satisfy our proportional fairness axioms as well as +identifying a randomized strategyproof and proportionally fair mechanism. +The papers most relevant to our research are those that treat the facility as obnoxious: agents +prefer the facility to be as far as possible. Similar to the classical facility location problem, early +operations research on the OFLP apply an optimization approach to compute solutions; a review +3 + +of these approaches is given by Church and Drezner [2022]. There have been several recent papers +on the obnoxious facility location problem that assume agents’ location are private information, +and thus aim to design strategyproof facility location mechanisms. Some of the earliest research +applying a mechanism design approach was initiated by Cheng et al. [2011, 2013], in which they +define an agent’s utility as its distance from the facility, and design strategyproof mechanisms +which approximate the optimal utilitarian welfare on the path and network metrics, respectively. +Other recent examples of related papers include [Cheng et al., 2019; Feigenbaum et al., 2020; Ibara +and Nagamochi, 2012; Xu et al., 2021]. These papers do not pose or study the fairness concepts +that we explore in this paper. +Notions of fairness in various collective decision problems have been widely explored over +the last few decades [Moulin, 2003; Nash, 1950; Shapley, 1953]. Fairness objectives specifically +relevant to the facility location problem include maximum cost/egalitarian welfare (see, e.g. [Pro- +caccia and Tennenholtz, 2013; Wang et al., 2021]) and maximum total/average group cost [Zhou +et al., 2022]. Rather than optimize/approximate fairness objectives, we focus on solutions enforc- +ing proportional fairness axioms, in which groups of agents with similar or identical preferences +(represented in our setting as their location) have a minimum utility guarantee relative to the group +size. The axioms of proportional fairness that we present stem from several related areas of social +choice. Individual Fair Share (IFS) is closely related to the axiom of proportionality proposed by +Steinhaus [1948], and appears in participatory budgeting along with Unanimous Fair Share (UFS) +[Bogomolnaia et al., 2005; Aziz et al., 2019]. Most recently, all of our proportional fairness axioms +have been studied in the classical facility location problem by Aziz et al. [2021]. +In our paper, we also analyse the loss of efficiency, defined as the price of fairness, of imple- +menting the proportional fairness axioms that we have proposed. There have been many recent +results on the price of fairness in various social choice contexts. For instance, Barman et al. +[2020], Caragiannis et al. [2012] and Bei et al. [2021] find price of fairness bounds for axioms +such as envy-freeness and equitability in fair division, Bertsimas et al. [2011] look at the price +of proportional fairness in resource allocation, and Michorzewski et al. [2020] explore the areas +of budget division and probabilistic social choice. There has also been work on price of fairness +bounds for the facility location problem, such as when there is a lexicographic minimax objective +[Buzna et al., 2014]. Wang and Zhang [2021] assume that facilities have preferences over subsets +of agents, observing the concepts of fairness and efficiency from the facilities’ perspectives. +As strategyproofness is impossible in our deterministic setting, we present results on the ex- +istence of pure Nash equilibria and the price of anarchy. Similar models where such results are +proven include a variation of the Hotelling-Downs model where clients have limited attraction +ranges [Feldman et al., 2016], and two-stage facility location games where both facilities and +clients act strategically [Krogmann et al., 2021]. In the classic facility location problem, Aziz et +al. [2021] characterize the pure Nash equilibria of strictly monotonic facility location mechanisms +satisfying UFS and show that the resulting facility location (under the pure Nash equilibria) is +also guaranteed to satisfy UFS. In our setting, the price of anarchy is not well-defined for certain +proportionally fair mechanisms, as a pure Nash equilibrium may not exist for a given location pro- +file. As a result, we prove the existence of an approximate equilibrium notion, called pure ϵ-Nash +equilibrium. Examples of papers applying this notion to other settings include [Chien and Sinclair, +2011; Mylvaganam et al., 2015]. +The second half of our paper focuses on the randomized setting to overcome the incompatibility +with strategyproofness. The use of randomized mechanisms to overcome impossibility results is +4 + +prevalent in many social choice contexts (see, e.g., [Brandt, 2017; Aziz, 2019]). Additionally, Aziz +et al. [2022] use a randomized approach in the classic facility location problem to achieve stronger +notions of proportional fairness, providing a unique characterization of universally anonymous +and universally truthful mechanisms satisfying an axiom called Strong Proportionality. The use of +randomized mechanisms also results in better approximation ratio/price of fairness bounds. This is +common in many variants of the facility location problem, such as when agents have fractional or +optional preferences [Fong et al., 2018; Chen et al., 2020], or in the hybrid facility location model +[Feigenbaum et al., 2020]. +2 +Model +Let N = {1, . . . , n} be a set of agents, and let X := [0, 1] be the domain of locations.1 Agent i’s +location is denoted by xi ∈ X; the profile of agent locations is denoted by x = (x1, . . . , xn) ∈ +Xn. We also assume the agent locations are ordered such that x1 ≤ · · · ≤ xn. A deterministic +mechanism is a mapping f : Xn → X from a location profile ˆx ∈ Xn to a facility location y ∈ X. +We define a randomized mechanism as a probability distribution over deterministic mechanisms. +Given a facility location y ∈ X, agent i’s utility2 is equal to its distance from the facility u(y, xi) := +|y − xi|. We are interested in maximizing the objectives of Utilitarian Welfare (UW), defined for a +facility location y and location profile x as the sum of agent utilities � +i u(y, xi), and Egalitarian +Welfare (EW), defined as the minimum agent utility mini u(y, xi). +Note that the preferences in OFLP can be viewed as single-dipped. In contrast, the classical +facility location problem (FLP) concerns single-peaked preferences. The underlying model of both +FLP and OFLP is the same except that the agents’ preferences have a different structure. +Unless specified otherwise, we will state results for the obnoxious facility location problem +(OFLP). For the first half of the paper, we will discuss the deterministic setting, and then move to +the randomized setting for the second half. +3 +Proportional Fairness Axioms +In this section, we introduce proportional fairness axioms for the obnoxious facility location prob- +lem. +3.1 +Individual Fair Share +We first present an adaptation of Individual Fair Share (IFS), the weakest of our proportional fair- +ness axioms (as studied by Aziz et al. [2021] in the context of the classic facility location problem). +IFS provides a minimum distance guarantee between each agent and the facility, requiring that each +agent has at least 1 +n utility. By placing two agents at 1 +4 and 3 +4, it is easy to see that an IFS solution +may not exist. As a result, we turn to approximations of IFS. +1Our results can be naturally extended to any compact interval on R. +2This definition is consistent with [Cheng et al., 2013]. +5 + +Definition 1 (α-Individual Fair Share (IFS)). Given a profile of locations x, a facility location y +satisfies α-Individual Fair Share (α-IFS) if +u(y, xi) ≥ 1 +αn +∀i ∈ N. +We find that the lowest value of α such that an α−IFS solution always exists is α = 2. Intu- +itively, with α = 2, each agent has a ball of radius +1 +2n around its location. The sum of ball lengths +is 1, meaning there will always be a 2-IFS solution. Furthermore, for any α < 2, the sum of ball +lengths will exceed 1, so an α−IFS solution may not always exist. +Proposition 1. The lowest value of α for which an α-IFS solution always exists is α = 2. +A polynomial time mechanism (which we denote as f ∗ +2IFS) that maximizes the utilitarian wel- +fare under the constraint of 2-IFS simply iterates through the endpoints of the intervals which sat- +isfy the constraint and outputs the optimal facility location, breaking ties in favour of the leftmost +optimal location. +3.2 +Unanimous Fair Share +We now present Unanimous Fair Share (UFS), a strengthening and generalization of IFS to groups +of agents at the same location. Informally, if there are k agents at the same location, then UFS +requires that the facility is placed at least k +n distance from these agents. Again, we focus on ap- +proximations of UFS as a UFS solution may not exist. +Definition 2 (α-Unanimous Fair Share (UFS)). Given a profile of locations x, a facility location y +satisfies α-Unanimous Fair Share (α-UFS) if for any set of agents S with identical location, +u(y, xi) ≥ |S| +αn +∀i ∈ S. +Note that α−UFS implies α−IFS. As with α−IFS, we find that the optimal value of α for which +an α-UFS solution always exists is α = 2. The proof intuition is similar to that of Theorem 1, but +the balls vary in size depending on the number of agents in the group. +Proposition 2. The lowest value of α for which an α-UFS solution always exists is α = 2. +Similar to f ∗ +2IFS, a polynomial time mechanism (which we denote as f ∗ +2UFS) that computes the +optimal 2-UFS facility location for utilitarian welfare iterates through the endpoints of the intervals +satisfying 2-UFS and outputs the optimal facility location, breaking ties in favour of the leftmost +optimal location. +4 +Deterministic Setting +We begin with the deterministic setting, analyzing the price of proportional fairness and agent +strategic behaviour. All results stated in this section are for the deterministic setting. +6 + +4.1 +Price of Fairness +In this section, we analyze the price of fairness for our (approximate) fairness axioms.3 Informally, +the price of fairness measures the loss of efficiency from imposing a certain fairness constraint. +We focus on the objectives of utilitarian and egalitarian welfare, defined as the sum of utilities and +the minimum agent utility, respectively. +A fairness property P is a mapping from an agent location profile x ∈ Xn to a (possibly empty) +set of facility locations P(x) ∈ X. Every facility location P(x) satisfies the fairness property P. +The price of fairness for property P is the worst case ratio between the optimal welfare and the +optimal welfare from a facility location satisfying P. +4.1.1 +Utilitarian Welfare +The utilitarian welfare of an instance is a standard measure of efficiency. Finding the price of our +proportional fairness axioms for utilitarian welfare quantifies the impact on efficiency when the +OFLP system is constrained to be proportionally fair. +Definition 3 (Price of Fairness for Utilitarian Welfare). Let f ∗ +UW be the mechanism that returns +the solution maximizing utilitarian welfare. For utilitarian welfare and fairness property P, we +define the price of fairness as the worst case ratio (over all location profiles) between the optimal +utilitarian welfare and the optimal utilitarian welfare achieved by a facility location satisfying +fairness property P: +max +x∈[0,1]n +� +i u(f ∗ +UW(x), xi) +maxy∈P(x) +� +i u(y, xi). +We now move to compute the price of 2-IFS fairness for utilitarian welfare. Recall that the +solution maximizing utilitarian welfare must be either 0 or 1 [Cheng et al., 2013]. +Lemma 1. The price of 2-IFS for utilitarian welfare is at least 2. +Proof. Suppose n is even, and that the agents are located at 1 +2n −ϵ, +3 +2n −2ϵ, . . . , n−1 +2n − n +2ϵ, n+1 +2n + n +2ϵ, +. . . , 2n−3 +2n ++ 2ϵ, 2n−1 +2n ++ ϵ for some sufficiently small ϵ (see, e.g. Figure 2). Under this symmetric +profile, either a facility location of 0 or 1 leads to the maximum utilitarian welfare of n +2. The only +facility locations satisfying 2-IFS are within the interval [ 1 +2 − n +2ϵ, 1 +2 + n +2ϵ]. Any location in this +interval gives the same utilitarian welfare as there are an equal number of agents on both sides, so +suppose the facility is at 1 +2. This corresponds to a utilitarian welfare of n +2 +1 +2n(1 + 3 + · · · + n − 1) + +2ϵ(1 + 2 + · · · + n +2) = n +4 + ϵn(1 + n +2). Taking the limit ϵ → 0 gives a ratio of 2. +Remark 1. The above example places the facility at the midpoint of the optimal median interval. +The median is known for minimizing sum of distances. +Theorem 1. The price of 2-IFS for utilitarian welfare is 2, and this bound is tight. +We next compute bounds on the price of 2-UFS fairness for utilitarian welfare. +Theorem 2. The price of 2-UFS for utilitarian welfare is 2, and this bound is tight. +3The price of fairness can also be interpreted as the approximation ratio for the respective optimal mechanism +satisfying the fairness constraint. +7 + +0 +1 +x1 +x2 +x3 +x4 +f ∗ +UW +f ∗ +2IFS +Figure 2: The instance in the proof of Lemma 1 for n = 4. f ∗ +UW represents the utilitarian wel- +fare maximizing facility placement, whilst f ∗ +2IFS represents the facility that maximizes utilitarian +welfare under the constraints of 2-IFS. The red intervals denote locations that are infeasible under +2-IFS. +As the price of fairness for utilitarian welfare is the same for both proportional fairness axioms, +it may be desirable to implement 2-UFS in favour of 2-IFS when loss of utilitarian welfare is the +primary concern. +4.1.2 +Egalitarian Welfare +The egalitarian welfare is an alternate measure of fairness frequently observed in the literature, +focussing on the worst off agent. Our price of fairness analysis gives an insight into the tradeoff +between egalitarian welfare/maximin fairness and proportional fairness in the OFLP. +Definition 4 (Price of Fairness for Egalitarian Welfare). Let f ∗ +EW be the mechanism that returns +the solution maximizing Egalitarian Welfare. For egalitarian welfare and fairness property P, we +define the price of fairness as the worst case ratio (over all location profiles) between the optimal +egalitarian welfare and the optimal egalitarian welfare achieved by a facility location satisfying +fairness property P: +max +x∈[0,1]n +mini u(f ∗ +EW(x), xi) +maxy∈P(x) mini u(y, xi). +Our first result is that the price of 2-IFS is 1, meaning that a mechanism that maximizes egali- +tarian welfare is guaranteed to satisfy 2-IFS. The intuition is that since a 2-IFS solution (in which +every agent obtains at least +1 +2n utility) always exists, a solution which maximizes the worst off +agent’s utility would therefore result in each agent obtaining at least +1 +2n utility. +Proposition 3. The price of 2-IFS for egalitarian welfare is 1. +On the other hand, we find that the price of 2-UFS is noticeably worse, taking a linear factor of +n − 1. The intuition behind this is that a coalition of n − 1 agents at one point can ensure that the +facility is distant from their location (and closer to the remaining agent’s location) by a ‘factor’ of +n − 1. +Theorem 3. The price of 2-UFS for egalitarian welfare is n − 1. +Proof. We first prove that the lower bound is n − 1. It suffices to consider n ≥ 3. Consider the +location profile with 1 agent at +1 +2n − ϵ and n − 1 agents at n+1 +2n + ϵ for sufficiently small ϵ > 0, +(see, e.g. Figure 3). The optimal solution places the facility at 1 resulting in an egalitarian welfare +of n−1 +2n − ϵ. The only 2-UFS solutions are in the interval [ 1 +n − ϵ, 1 +n + ϵ], and the solution of 1 +n + ϵ +results in an egalitarian welfare of +1 +2n + 2ϵ. As ϵ → 0, the ratio approaches n − 1. +8 + +0 +1 +x2...xn +x1 +f ∗ +EW +2UFS(x) +Figure 3: The instance in the proof of Theorem 3. f ∗ +EW represents the egalitarian welfare maxi- +mizing facility placement, whilst 2UFS(x) represents the interval of facility placements satisfying +2-UFS. The red intervals denote locations that are infeasible under 2-UFS. +We now prove that the upper bound is n − 1. Firstly, it clearly suffices to consider location +profiles where groups contain at most n − 1 agents. Now suppose there exists such an x where +mini u(f ∗ +EW(x), xi) ≥ n−1 +2n , i.e. there is a solution where every agent has at least n−1 +2n utility. Then +this also satisfies 2-UFS and results in an egalitarian ratio of 1. Therefore the maximum ratio must +have mini u(f ∗ +EW(x), xi) < n−1 +2n . Due to 2-UFS, we also have maxy∈2UFS(x) mini u(y, xi) ≥ +1 +2n. +The theorem statement follows from dividing these two terms. +4.2 +Incompatibility with Strategyproofness +In mechanism design, the normative property of strategyproofness is often sought as it disincen- +tivizes agents from misreporting their true location. +Definition 5 (Strategyproofness). A (deterministic) mechanism f is strategyproof if for every agent +i ∈ N, we have for every xi, x′ +i and ˆx−i, +u(f(xi, ˆx−i), xi) ≥ u(f(x′ +i, ˆx−i), xi). +We say that a randomized mechanism is strategyproof in expectation if no agent can improve +its expected utility by misreporting its own location. +We note that no strategyproof and deterministic mechanism can achieve any approximation of +IFS (and therefore also UFS). This follows from the characterization of deterministic strategyproof +mechanisms for the OFLP by Feigenbaum and Sethuraman [2015] which we describe below. +Definition 6 (Feigenbaum and Sethuraman [2015]). Let f be a deterministic mechanism s.t. |Rf +n| = +|{fn(x) : x ∈ Xn}| ≤ 2 for all n ∈ N. For each n ∈ N, let Rf +n = {αn, βn} s.t. βn ≥ αn, and +let mn = αn+βn +2 +. For any n ∈ N, for every profile x ∈ Xn, consider the partition of the agents +Lx = {i ∈ N : xi < mn}, M x = {i ∈ N : xi = mn}, and Ex = {i ∈ N : xi > mn}. We say that +f is a midpoint mechanism if it satisfies the following property: for any n ∈ N, let x, y ∈ Xn be +any profiles s.t. f(x) = βn and f(y) = αn. If βn > αn, then there exists an agent i which satisfies +one of the following: +(D-1) i ∈ Lx and i ∈ M y +(D-2) i ∈ Lx and i ∈ Ey +(D-3) i ∈ M x and i ∈ Ey. +9 + +This definition has the following intuition: the mechanism can switch the facility location from +right to left or from left to right only when an agent crosses the midpoint in the opposite direction. +Proposition 4. There exists no strategyproof mechanism that achieves any approximation of IFS. +Proof. Feigenbaum and Sethuraman [2015] proved that the midpoint mechanisms characterize all +strategyproof mechanisms. Consider any profile which locates at least one agent at each point in +Rf +n. Such a mechanism does not satisfy any approximation of IFS. +In other words, for every midpoint mechanism, there exists a location profile where the mech- +anism places the facility at an agent’s location. +Since strategyproofness is incompatible with our fairness axioms, we are interested in the per- +formance of proportionally fair mechanisms in our model when accounting for agent strategic +behaviour. Such performance can be quantified by the price of anarchy. +4.3 +ϵ-Price of Anarchy +In this section, we compute the worst case loss of efficiency by agents misreporting their location +under the mechanisms f ∗ +2IFS and f ∗ +2UFS. Recall these are the mechanisms which maximize utilitar- +ian welfare under the constraints of 2-IFS and 2-UFS, respectively. Typically, this efficiency loss +is quantified by the price of anarchy [Koutsoupias and Papadimitriou, 1999; Nisan et al., 2007], +defined as the worst case ratio between the utilitarian welfare corresponding to the truthful agent +location profile, and the minimum utilitarian welfare corresponding to a pure Nash equilibrium of +reports. +Definition 7. Given a (truthful) profile of agent locations x and a deterministic mechanism f, +a pure Nash equilibrium is a profile of reported agent locations x′ = (x′ +1, . . . , x′ +n) such that no +single agent can improve its own utility (with respect to its true location) by changing its reported +location. +However, for f ∗ +2IFS and f ∗ +2UFS, a pure Nash equilibrium may not necessarily exist, and hence +the price of anarchy is not well-defined. +Proposition 5. A pure Nash equilibrium may not exist for f ∗ +2IFS or f ∗ +2UFS. +As a result, we turn to proving existence of the approximate notion of pure ϵ-Nash equilibria, +and computing the corresponding notion of ϵ-price of anarchy. +Definition 8 (Tardos and Vazirani [2007]). A pure ϵ-Nash equilibrium is a profile of reported agent +locations x′ = (x′ +1, . . . , x′ +n) such that no single agent can improve its own utility (with respect to its +true location) by strictly more than ϵ by changing its reported location. A pure Nash equilibrium +is a pure ϵ-Nash equilibrium where ϵ = 0. +Theorem 4. For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ +2IFS. +Theorem 5. For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ +2UFS. +For a mechanism f, the ϵ-price of anarchy is defined as the worst case ratio (over all location +profiles x) between the utilitarian welfare corresponding to all agents reporting truthfully and the +minimum utilitarian welfare corresponding to agents reporting in a pure ϵ-Nash equilibrium. +10 + +Definition 9. Given f and x, define the set of pure ϵ-Nash equilibria location profiles as ϵ- +Equil(f, x). The price of anarchy for utilitarian welfare is defined as: +ϵ-PoA(f) := max +x∈Xn +� +i u(f(x), xi) +minx′∈ϵ-Equil(f,x) +� +i u(f(x′), xi). +We must show that the price of anarchy is well-defined by proving that a pure Nash equilibrium +always exists. However, we cannot simply apply the early theorems of [Debreu, 1952; Glicksberg, +1952; Fan, 1952], which show existence of a pure Nash equilibrium when basic strategy space +conditions are satisfied along with players having continuous and quasiconcave payoff functions.4 +This is because the payoff function is neither continuous nor quasiconcave. +Nevertheless, we prove that a pure Nash equilibrium always exists for f ∗ +2IFS and f ∗ +2UFS. +We now proceed to find ϵ-price of anarchy bounds for utilitarian welfare. The same proof +arguments can be applied to find identical bounds for both f ∗ +2IFS and f ∗ +2UFS. +Theorem 6. For any ϵ ∈ (0, 1 +n), the ϵ-price of anarchy for f ∗ +2IFS and f ∗ +2UFS of utilitarian welfare +is at least 2n−1+nϵ +1−nϵ . The price of anarchy is unbounded for ϵ ≥ 1 +n. +Theorem 7. For any ϵ ∈ (0, 1 +2n), the ϵ−price of anarchy for f ∗ +2IFS and f ∗ +2UFS of utilitarian welfare +is at most +2n +1−2nϵ. +Proof. Firstly, we note that under a pure ϵ-Nash equilibrium, each agent must have at least +1 +2n − ϵ +utility. To see this, suppose there is a profile of reports x′ where some agent i has strictly less +than +1 +2n − ϵ utility. By switching its report to its truthful location, agent i can strictly improve +its utility by greater than ϵ, as the facility must be at least +1 +2n distance from the agent’s truthful +location, hence x′ is not a pure ϵ-Nash equilibrium. Therefore the utilitarian welfare under a pure +ϵ-Nash equilibrium must be at least 1 +2 − nϵ. Now the utilitarian welfare under any instance is at +most n, from all agents being located at 0 and the facility being placed at 1. The theorem statement +immediately follows. +By setting ϵ = 0 in the ϵ-price of anarchy bounds of Theorems 6 and 7, we achieve the follow- +ing result. +Corollary 1. If a pure Nash equilibrium exists, the price of anarchy for f ∗ +2IFS and f ∗ +2UFS of utili- +tarian welfare is between 2n − 1 and 2n. +As the ϵ-price of anarchy of our proportional fairness axioms in the deterministic setting is +linear, it may be desirable to use a randomized, strategyproof mechanism when the agent locations +are private information. We give examples of such mechanisms in the upcoming section. +5 +Randomized Mechanisms +By using randomized mechanisms, we can achieve a better price of fairness for 2-IFS and 2-UFS, +and overcome the incompatibility with strategyproofness. We define a randomized mechanism +4A function f is quasiconcave if f(λx + (1 − λ)y) ≥ min{f(x), f(y)}. +11 + +as a probability distribution over deterministic mechanisms, and an agent’s utility as its expected +distance from the facility. +In the randomized setting, the optimal approximation of IFS and UFS for which a solution +always exists is α = 2. This can be easily seen by setting 1 agent at 1 +2. Our fairness axioms are +adapted as follows: +Definition 10 (α-Individual Fair Share (IFS) in expectation). A mechanism f satisfies α-Individual +Fair Share in expectation (α-IFS in expectation) if for any location profile x, +E[u(f(x), xi)] ≥ 1 +αn +∀i ∈ N. +Definition 11 (α-Unanimous Fair Share (UFS) in expectation). A mechanism f satisfies α-Unanimous +Fair Share in expectation (α-UFS in expectation) if for any location profile x and any set of agents +S at the same location, +E[u(f(x), xi)] ≥ |S| +αn +∀i ∈ S. +5.1 +Strategyproofness +From Proposition 4, we know that in the deterministic setting, strategyproofness is incompatible +with our proportional fairness axioms. In the randomized setting, the space of mechanisms is much +larger and hence we are able to overcome this impossibility. +We first consider Mechanism 2 from [Cheng et al., 2013]. Denoting the numbers of agents +located in [0, 1/2] and (1/2, 1] by n1 and n2 respectively, Mechanism 2 places the facility at 0 with +probability α and at 1 with probability (1−α), where α = +2n1n2+n2 +2 +n2 +1+n2 +2+4n1n2. This mechanism is known +to be group strategy-proof (in expectation) and 3 +2−approximates the utilitarian welfare. As we will +show, this mechanism satisfies 2-UFS (and therefore also 2-IFS). +Theorem 8. Mechanism 2 satisfies 2-UFS in expectation. +5.2 +Egalitarian Welfare +We now provide some results on egalitarian welfare. Specifically, we give a randomized, strate- +gyproof mechanism which maximizes egalitarian welfare subject to the constraints of 2-IFS and +2-UFS in expectation. +Randomized Egalitarian Welfare mechanism +• If all agents are in [0, 1 +2], place the facility at 1. +• If all agents are in ( 1 +2, 1], place the facility at 0. +• Otherwise, place the facility at 0 with probability 1 +2 and at 1 with probability 1 +2. +By considering cases, it is easy to see that this mechanism is strategyproof in expectation. +Proposition 6. Randomized Egalitarian Welfare mechanism is strategyproof in expectation. +12 + +Before analyzing the optimality and approximation ratio of this mechanism, we prove a lemma +that shows that in the randomized setting, it suffices to consider mechanisms which can only place +the facility at 0 or 1. +Lemma 2. Consider an arbitrary agent location profile x. For every 2-IFS/UFS randomized mech- +anism that gives strictly positive probability to a facility placement between 0 and 1, there exists a +2-IFS/UFS randomized mechanism that only gives positive support to a facility placement at 0 or +1 that leads to weakly higher expected utility for each agent. +We now proceed to prove that Randomized Egalitarian Welfare mechanism is egalitarian +welfare-optimal. +Proposition 7. The Randomized Egalitarian Welfare mechanism is optimal for egalitarian wel- +fare and satisfies 2-UFS. +Proof. The cases where all agents are in [0, 1 +2] and all agents are in ( 1 +2, 1] are trivial. +We now examine the case where both intervals have at least one agent. An agent at xi has +1 +2xi + 1 +2(1−xi) = 1/2 expected distance from the facility, hence this mechanism satisfies 2-UFS in +expectation. By Lemma 2, it suffices to only consider mechanisms which can only place the facility +at 0 or 1. Suppose that instead of having 1 +2 probability of placing the facility at either endpoint, we +place the facility at 1 with 1 +2 + p probability and at 0 with 1 +2 − p probability, where p ∈ (0, 1 +2]. The +expected utility of the rightmost agent is xn( 1 +2 − p) + (1 − xn)( 1 +2 + p) = 1 +2 + p(1 − 2xn) < 1 +2. By +a symmetric argument, if the facility was placed at 1 with 1 +2 − p probability and at 0 with 1 +2 + p +probability, the expected utility of the leftmost agent would be strictly less than 1 +2. Hence, our +mechanism is optimal in this case. +In other words, the approximation ratio of this mechanism for egalitarian welfare is 1. Recall +that the price of fairness can be interpreted as the approximation ratio of the respective optimal +mechanism that satisfies the fairness constraint. This leads us to the following corollary. +Corollary 2. In the randomized setting, the price of fairness of 2-UFS for egalitarian welfare is 1. +This is in stark contrast to the deterministic setting where the respective price of fairness is +n − 1. +5.3 +2-IFS +We now analyze utilitarian welfare, beginning with the axiom of 2-IFS. Consider the randomized +mechanism below which maximizes the utilitarian welfare subject to the 2-IFS constraint: +2-IFS Randomized mechanism +• If �n +i=1 xi = n +2, place the facility at 0 with probability 1 +2 and at 1 with probability 1 +2. +• If �n +i=1 xi > n +2, +– If x1 ≥ +1 +2n, place the facility at 0 with probability 1. +– If x1 < +1 +2n, place the facility at 0 with probability 1 − α, and at 1 with probability α, +where α = +1−2nx1 +2n(1−2x1). +13 + +• If �n +i=1 xi < n +2, +– If xn ≤ 1 − +1 +2n, place the facility at 1 with probability 1. +– If xn > 1 − +1 +2n, place the facility at 0 with probability 1 − β, and at 1 with probability +β, where β = +1−2nxn +2n(1−2xn). +The intuition behind this mechanism is as follows. When �n +i=1 xi = +n +2, both facility locations +of 0 and 1 are tied in terms of maximizing utilitarian welfare, and by placing the facility at either +location with probability 1 +2, we achieve 2-IFS in expectation. When �n +i=1 xi > +n +2, the optimal +facility location is 0, so the mechanism places the facility there if it does not violate 2-IFS for +any agent, else it also places the facility at 1 with the minimum probability that ensures 2-IFS is +ensured for all agents. The case where �n +i=1 xi < n +2 is similar and symmetric. +Our proof of the mechanism’s welfare-optimality is based on its intuition. +Lemma 3. 2-IFS Randomized mechanism is optimal for utilitarian welfare amongst all random- +ized mechanisms satisfying 2-IFS in expectation. +We now prove a tight, constant approximation ratio for this mechanism. +Theorem 9. 2-IFS Randomized mechanism has an approximation ratio for utilitarian welfare of +12 +11 ≈ 1.091. +This leads to the following price of fairness result for 2-IFS. +Corollary 3. In the randomized setting, the price of fairness of 2-IFS for utilitarian welfare is +12 +11 ≈ 1.091. +5.4 +2-UFS +We now move to analyze the axiom of 2-UFS in the context of utilitarian welfare. As in the previ- +ous subsection, we begin by describing a randomized mechanism which maximizes the utilitarian +welfare subject to the 2-UFS constraint: +2-UFS Randomized mechanism +• Order the m unique agent locations so that x1 is the smallest agent location and xm is the +largest agent location. +• Let S1, . . . , Sm denote the groups of agents at the m unique agent locations. +• If �m +i=1 |Si|xi = n +2, place the facility at 0 with probability 1 +2 and at 1 with probability 1 +2. +• If �m +i=1 |Si|xi > n +2, +– Let k denote the index of the largest unique agent location satisfying xk < 1 +2. +– For i in {1, . . . , k}, set αi = |Si|−2nxi +2n(1−2xi). +– Letting α = max{α1, . . . , αk}, place the facility at 0 with probability 1 − α and at 1 +with probability α. +14 + +• If �m +i=1 |Si|xi < n +2, +– Let k denote the index of the smallest unique agent location satisfying xk > 1 +2. +– For i in {k, . . . , m}, set αi = |Si|−2nxi +2n(1−2xi). +– Letting α = min{αk, . . . , αm}, place the facility at 0 with probability 1 − α and at 1 +with probability α. +This mechanism is similar to the 2-IFS Randomized mechanism, but we must now iterate +through the groups of agents to find the optimal value of α that guarantees 2-UFS for all agents. +Specifically, if �m +i=1 |Si|xi > n +2, then αi denotes the smallest probability weight on location 1 such +that 2-UFS is achieved for Si. Hence by setting α to be the largest αi, we achieve 2-UFS for all +agents. +Again, our proof of this mechanism’s optimality is based on the aforementioned intuition. +Lemma 4. 2-UFS Randomized mechanism is optimal for utilitarian welfare amongst all random- +ized mechanisms satisfying 2-UFS in expectation. +Surprisingly, imposing the stronger fairness axiom of 2-UFS as opposed to 2-IFS has a minimal +effect on the welfare-optimal mechanism’s approximation ratio. +Theorem 10. 2-UFS Randomized mechanism has an approximation ratio of 2 +7(1 + 2 +√ +2) ≈ +1.09384. +From Theorem 10, we have the following corollary. +Corollary 4. In the randomized setting, the price of fairness of 2-UFS for utilitarian welfare is +2 +7(1 + 2 +√ +2) ≈ 1.09384. +6 +Extension 1: Proportional Fairness +In our analyses of price of fairness and randomized mechanisms, we have considered 2-IFS and +2-UFS, which give minimum distance guarantees for individual agents and groups of agents at the +same location, respectively. One downside of the 2-UFS definition is that agents located near each +other but not at the same location are considered to be in separate groups. An axiom which accounts +for groups of agents located relatively close to each other is Proportional Fairness (PF), from [Aziz +et al., 2021]. As with IFS and UFS, a PF solution may not exist so we define approximate α−PF +as follows: +Definition 12 (α-PF). Given a profile of locations x, a facility location y satisfies α-PF if for any +set of agents S within range r := maxi∈S{xi} − mini∈S{xi}, +u(y, xi) ≥ 1 +α(|S|/(n)) − r +∀i ∈ S. +Note that α−PF implies α−UFS, and therefore also implies α−IFS. +However, α−UFS does not imply α−PF, hence α−PF is a stronger notion than α−UFS. +Lemma 5. For α = 2, there exists an α−UFS facility location y that does not satisfy α−PF. +15 + +It follows from Theorem 2 that the smallest value of α for which an α-PF solution exists for all +location profiles is greater or equal than 2. We now show that a 2-PF solution always exists. +Theorem 11. A 2-PF solution always exists. +Proof Sketch. We prove the theorem by induction on the number of groups. Suppose we have m +groups of agents where each group consists of agents at the same location. When m = 1, i.e, all +the agents are at the same point, 2-PF existence follows from 2-UFS existence. Now, we assume +for any k groups of agents where k ≤ m that there exists a 2-PF solution and we extend that for +k = m + 1. +Suppose we have m + 1 groups of agents placed at centers c1, c2, ..., cm+1 which are ordered +from left to right. Set a ball Bi with radius |Si| +2n around each center ci. We consider several cases +based on the intersection of balls. If all the balls are disjoint, it can be shown there exists a point +y ∈ [0, 1] which lies outside the union of balls B1 ∪ · · · ∪ Bm+1, satisfying the 2-PF inequality. +If there exists two balls, say B1 and B2, intersecting each other, they are merged with the agents +placed at a new center c′ +1. We then set a ball B′ +1 centered at c′ +1 with radius |S1| +2n + |S2| +2n . Now, we +have m groups of agents placed at c′ +1, c3, . . . , cm+1, and from our inductive assumption, we know +a 2-PF solution exists. +Thus, 2-PF is the optimal approximation of PF for the obnoxious facility location problem. +7 +Extension 2: Hybrid Model +In the hybrid model, agents either want to be located close to the facility (as in the classic facility +location model), or wish to be located far away from the facility (as in our obnoxious facility +location model). Such a model has several real-world applications such as the placement of schools +or religious places of worship; families with children or religious people would want to live near +the facility for convenience, whilst others would want to be far from the facility due to the increased +noise and traffic. In our model, we say an agent is type C if it is a classic agent and prefers to be +closer to the facility, and an agent is type O if it is an obnoxious agent and prefers to be further +away from the facility.5 We denote the set of classic agents as NC and the set of obnoxious agents +as NO. +A type C agent has utility u(y, xi) = 1 − d(y, xi) and a type O agent has utility u(y, xi) = +d(y, xi).6 +When defining IFS and UFS in the hybrid model, we use definitions consistent with [Aziz +et al., 2021] and this paper. Our definition of Hybrid-Individual Fair Share (H-IFS) provides an +appropriate distance guarantee for each agent. +Definition 13 (Hybrid-Individual Fair Share (H-IFS)). Given a profile of locations x, a facility +location y satisfies Hybrid-Individual Fair Share (H-IFS) if for all i ∈ NC, +u(y, xi) ≥ 1 +n +or, equivalently, +d(y, xi) ≤ 1 − 1 +n, +5Our model is based on the model presented by Feigenbaum and Sethuraman [2015]. +6This choice of utility function is adapted from [Feigenbaum and Sethuraman, 2015; Aziz et al., 2021]. We refer +the reader to those papers for a justification of the utility model. +16 + +and for all i ∈ NO, +u(y, xi) ≥ 1 +2n +or, equivalently, +d(y, xi) ≥ 1 +2n. +When defining UFS, we aim to capture proportional fairness guarantees for subsets of agents +of the same type at the same location. Consider every subset S ⊆ N of agents at the same location, +where S = SC ∪ SO. SC denotes the agents of S that are of type C, and SO denotes the agents of +S that are of type O. +Definition 14 (Hybrid-Unanimous Fair Share (H-UFS)). Given a profile of locations x such that a +subset of Sj ⊆ N agents7 share the same type and location, a facility location y satisfies Hybrid- +Unanimous Fair Share (H-UFS) if for all i ∈ SC, +u(y, xi) ≥ |SC| +n +or, equivalently, +d(y, xi) ≤ 1 − |SC| +n , +and for all i ∈ SO, +u(y, xi) ≥ |SO| +2n +or, equivalently, +d(y, xi) ≥ |SO| +2n . +Example 1. Suppose there are n − k type C agents and k type O agents, all at the same location. +The facility needs to be between +k +2n and k +n distance from the group. +Although our definitions have a discrepancy in utility functions between the classic and obnox- +ious agents, we have specified them to be consistent with related literature and to be the optimal +bounds such that a solution is guaranteed to exist. Furthermore, existence of a H-UFS solution +under our definition implies existence of a solution under a weaker definition where a set SC of +classic agents at the same location instead have a utility guarantee of |SC| +2n . +Theorem 12. Under the hybrid model, a H-UFS solution always exists. +8 +Discussion +In this paper we have formulated proportional fairness axioms for the obnoxious facility location +problem, and given welfare-optimal deterministic and randomized mechanisms satisfying these +axioms. In both the deterministic and randomized setting, we prove tight price of fairness bounds +for 2-IFS and 2-UFS, for the objectives of utilitarian and egalitarian welfare. These correspond +to the approximation ratios of the respective welfare-optimal mechanisms. For the deterministic +utilitarian welfare-optimal mechanisms, we also prove existence of pure ϵ-Nash equilibria and +linear ϵ-price of anarchy bounds. We also give a randomized, strategyproof mechanism satisfying +2-UFS with a constant utilitarian approximation ratio. +There are several future directions to this work, such as those stemming from our proposed ex- +tensions of 2-PF and the hybrid model. For example, the price of anarchy and price of fairness for +these two extensions could be computed. We could also supplement our price of anarchy results +7j ∈ {C, O} +17 + +with bounds on the price of stability. Further extensions to the price of fairness results could in- +volve different objective and utility functions. It is also worth analyzing the Nash equilibria of the +randomized utilitarian welfare-optimal mechanisms, as they are not strategyproof in expectation. +Although our proportional fairness axioms are incompatible with strategyproofness in the deter- +ministic setting, we may consider weaker notions of strategyproofness which may be compatible +with our fairness properties. +Acknowledgements +We would like to acknowledge the helpful feedback and suggestions from Minming Li. +References +H. Aziz, A. Bogomolnaia, and H. Moulin. Fair mixing: the case of dichotomous preferences. +In Proceedings of the 2019 ACM Conference on Economics and Computation, pages 753–781, +2019. +H. Aziz, A. Lam, B. E. Lee, and T. Walsh. Strategyproof and proportionally fair facility location. +CoRR, abs/2111.01566, 2021. +H. Aziz, A. Lam, M. Suzuki, and T. Walsh. Random rank: The one and only strategyproof and +proportionally fair randomized facility location mechanism. arXiv preprint arXiv:2205.14798, +2022. +H. Aziz. A probabilistic approach to voting, allocation, matching, and coalition formation. In The +Future of Economic Design, pages 45–50. Springer, 2019. +S. Barman, U. Bhaskar, and N. Shah. Optimal bounds on the price of fairness for indivisible goods. +In International Conference on Web and Internet Economics, pages 356–369. Springer, 2020. +X. Bei, X. Lu, P. Manurangsi, and W. Suksompong. The price of fairness for indivisible goods. +Theory of Computing Systems, 65(7):1069–1093, 2021. +D. Bertsimas, V. F. Farias, and N. Trichakis. The price of fairness. Operations research, 59(1):17– +31, 2011. +A. Bogomolnaia, H. Moulin, and R. Stong. Collective choice under dichotomous preferences. +Journal of Economic Theory, 122(2):165–184, 2005. +F. Brandt. Rolling the dice: Recent results in probabilistic social choice. Trends in computational +social choice, pages 3–26, 2017. +L. Buzna, M. Koháni, and J. Janáˇcek. An approximation algorithm for the facility location problem +with lexicographic minimax objective. Journal of Applied Mathematics, 2014, 2014. +I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. The efficiency of fair divi- +sion. Theory of Computing Systems, 50(4):589–610, 2012. +18 + +H. Chan, A. Filos-Ratsikas, B. Li, M. Li, and C. Wang. Mechanism design for facility location +problems: A survey. In 30th, 2021. +Z. Chen, K. C. K. Fong, M. Li, K. Wang, H. Yuan, and Y. Zhang. Facility location games with +optional preference. Theoretical Computer Science, 847:185–197, 2020. +Y. Cheng, W. Yu, and G. Zhang. Mechanisms for obnoxious facility game on a path. In Combinato- +rial Optimization and Applications - 5th International Conference, COCOA 2011, Zhangjiajie, +China, August 4-6, 2011. Proceedings, pages 262–271, 2011. +Y. Cheng, W. Yu, and G. Zhang. Strategy-proof approximation mechanisms for an obnoxious +facility game on networks. Theor. Comput. Sci., 497:154–163, 2013. +Y. Cheng, Q. Han, W. Yu, and G. Zhang. Strategy-proof mechanisms for obnoxious facility game +with bounded service range. J. Comb. Optim., 37(2):737–755, 2019. +S. Chien and A. Sinclair. Convergence to approximate nash equilibria in congestion games. Games +and Economic Behavior, 71(2):315–327, 2011. +R. L. Church and Z. Drezner. Review of obnoxious facilities location problems. Computers & +Operations Research, 138:105468, 2022. +G. Debreu. A social equilibrium existence theorem. Proceedings of the National Academy of +Sciences, 38(10):886–893, 1952. +K. Fan. Fixed-point and minimax theorems in locally convex topological linear spaces. Proceed- +ings of the National Academy of Sciences of the United States of America, 38(2):121, 1952. +I. Feigenbaum and J. Sethuraman. Strategyproof mechanisms for one-dimensional hybrid and +obnoxious facility location models. In Incentive and Trust in E-Communities, Papers from the +2015 AAAI Workshop, Austin, Texas, USA, January 25, 2015, 2015. +I. Feigenbaum, M. Li, J. Sethuraman, F. Wang, and S. Zou. Strategic facility location problems +with linear single-dipped and single-peaked preferences. Autonomous Agents and Multi-Agent +Systems, 34(2):1–47, 2020. +M. Feldman, A. Fiat, and S. Obraztsova. Variations on the hotelling-downs model. In Thirtieth +AAAI Conference on Artificial Intelligence, 2016. +K. C. K. Fong, M. Li, P. Lu, T. Todo, and M. Yokoo. Facility location games with fractional +preferences. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. +I. L. Glicksberg. A further generalization of the kakutani fixed point theorem, with application +to nash equilibrium points. Proceedings of the American Mathematical Society, 3(1):170–174, +1952. +R. M. Hekmatfar. Facility location. Physica-Verlag, 2009. +19 + +K. Ibara and H. Nagamochi. Characterizing mechanisms in obnoxious facility game. In Combina- +torial Optimization and Applications - 6th International Conference, COCOA 2012, Banff, AB, +Canada, August 5-9, 2012. Proceedings, volume 7402 of Lecture Notes in Computer Science, +pages 301–311. Springer, 2012. +E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Annual Symposium on Theoretical +Aspects of Computer Science, pages 404–413. Springer, 1999. +S. Krogmann, P. Lenzner, L. Molitor, and A. Skopalik. Two-stage facility location games with +strategic clients and facilities. In Proceedings of the Thirtieth International Joint Conference on +Artificial Intelligence, pages 292–298, 2021. +M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama. Facility location and supply chain management– +a review. European Journal of Operational Research, 196(2):401–412, 2009. +M. Michorzewski, D. Peters, and P. Skowron. Price of fairness in budget division and probabilistic +social choice. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, +pages 2184–2191, 2020. +H. Moulin. Fair division and collective welfare. MIT press, 2003. +T. Mylvaganam, M. Sassano, and A. Astolfi. Constructive ϵ-nash equilibria for nonzero-sum dif- +ferential games. IEEE Transactions on Automatic Control, 60(4):950–965, 2015. +J. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950. +N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic Game Theory. Cambridge +University Press, New York, NY, USA, 2007. +A. D. Procaccia and M. Tennenholtz. Approximate mechanism design without money. In 14th, +pages 1–26, 2013. +L. S. Shapley. A Value for n-Person Games, pages 143–164. Princeton University Press, Princeton, +NJ, 1953. +H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948. +E. Tardos and V. Vazirani. +Basic solution concepts and computational issues. +In N. Nisan, +T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 1, pages +3–28. Cambridge University Press Cambridge, 2007. +C. Wang and M. Zhang. Fairness and efficiency in facility location problems with continuous +demands. +In Proceedings of the 20th International Conference on Autonomous Agents and +MultiAgent Systems, pages 1371–1379, 2021. +C. Wang, X. Wu, M. Li, and H. Chan. Facility’s perspective to fair facility location problems. In +Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 5734–5741, +2021. +20 + +X. Xu, B. Li, M. Li, and L. Duan. Two-facility location games with minimum distance requirement. +Journal of Artificial Intelligence Research, 70:719–756, 2021. +H. Zhou, M. Li, and H. Chan. Strategyproof mechanisms for group-fair facility location prob- +lems. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, +pages 613–619, 2022. +21 + +A +Proof of Proposition 1 +Proposition 1. The lowest value of α for which an α-IFS solution always exists is α = 2. +Proof. Consider n agents at ordered locations x1, . . . , xn. For each agent i, we construct an open +ball Bi with center xi and radius +1 +2n: Bi = {z|d(z, xi) < |1| +2n}. Note that the sum of ball lengths is +1. +There are two cases: +• Bi ∩ Bj = ∅ for all i ̸= j. As the sum of ball lengths is 1, the boundaries of two consecutive +balls intersect, and thus the facility can be placed at the boundary of any ball. +• Bi ∩ Bj ̸= ∅ for some i ̸= j. In this case, the length of B1 ∩ · · · ∩ Bn is less than 1, hence +there must be an interval on [0, 1] that is not covered by any ball. The facility can be placed +within this interval to achieve a 2−IFS solution. +To see that an α−IFS solution may not exist for α < 2, consider for n = 2 the location profile +( 1 +4, 3 +4), in which the intersection of the balls encompasses the entire unit interval. +B +Proof of Proposition 2 +Proposition 2. The lowest value of α for which an α-UFS solution always exists is α = 2. +Proof. Consider n agents at m unique ordered locations x1, . . . , xm, and for i ∈ [m], let Si denote +the group of agents at location xi. For each Si, we construct an open ball Bi with center xi and +radius |Si| +2n : Bi = {z|d(z, xi) < |Si| +2n }. Note that the sum of ball lengths is �m +i=1 +|Si| +n = 1. +There are two cases: +• Bi ∩ Bj = ∅ for all i ̸= j. As the sum of ball lengths is 1, the boundaries of two consecutive +balls intersect, and thus the facility can be placed at the boundary of any ball. +• Bi ∩ Bj ̸= ∅ for some i ̸= j. In this case, the length of B1 ∩ · · · ∩ Bm is less than 1, hence +there must be an interval on [0, 1] that is not covered by any ball. The facility can be placed +within this interval to achieve a 2−UFS solution. +To see that an α−UFS solution may not exist for α < 2, place all n agents at location 1 +2. +C +Proof of Theorem 1 +Theorem 1. The price of 2−IFS for utilitarian welfare is 2, and this bound is tight. +Proof. Suppose without loss of generality that the optimal facility location is 0. We define a +sufficiently small ϵ > 0 which will be used in specifying certain agent locations, but is negligible +in the computation of the welfare ratio. +Case 1: Suppose that the optimal 2−IFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where +k ≤ n +2. +22 + +Since y∗ is the optimal 2−IFS facility location, any facility location left of xk must violate +2−IFS. To see this, suppose there exists some y′ < xk such that y′ satisfies 2−IFS. A facility +placed at y′ corresponds to a higher utilitarian welfare than y∗ as it is more distant from a majority +of agents, leading to a contradiction. Furthermore, the welfare ratio +� +i u(f ∗ +UW(x), xi) +maxy∈2IFS(x) +� +i u(y, xi) = +�n +i=1 xi +�k +i=1(y∗ − xi) + �n +i=k+1(xi − y∗) +increases with �k +i=1 xi, so we must maximize x1, . . . , xk whilst ensuring any facility location left +of xk violates 2−IFS. We therefore deduce that xi = 2i−1 +2n −iϵ for i ∈ {1, . . . , k}, and we therefore +have +max +x∈[0,1]n +� +i u(f ∗ +UW(x), xi) +maxy∈2IFS(x) +� +i u(y, xi) += max +x∈[0,1]n +�n +i=1 xi +�k +i=1(y∗ − xi) + �n +i=k+1(xi − y∗) += +max +xk+1,...,xn∈[0,1] +�k +i=1( 2i−1 +2n − iϵ) + �n +i=k+1 xi +�k +i=1(y∗ − ( 2i−1 +2n − iϵ)) + �n +i=k+1(xi − y∗) +. +Now for the optimal facility location to be 0, we must have � +i xi ≥ � +i(1−xi), or � +i xi ≥ n +2. We +rewrite this as �n +i=k+1 xi ≥ n +2 − �k +i=1 xi. Now the welfare ratio increases as �n +i=k+1 xi decreases, +so it is maximized w.r.t xk+1, . . . , xn when we have �n +i=k+1 xi = n +2 − �k +i=1 xi (which results in +location 1 being tied with 0 as the optimal facility location). +Substituting this into the welfare ratio, we have +max +x∈[0,1]n +� +i u(f ∗ +UW(x), xi) +maxy∈2IFS(x) +� +i u(y, xi) += +max +xk+1,...,xn∈[0,1] +�k +i=1( 2i−1 +2n − iϵ) + �n +i=k+1 xi +�k +i=1(y∗ − ( 2i−1 +2n − iϵ)) + �n +i=k+1(xi − y∗) += +�k +i=1( 2i−1 +2n − iϵ) + n +2 − �k +i=1( 2i−1 +2n − iϵ) +(2k − n)y∗ − �k +i=1( 2i−1 +2n − iϵ) + n +2 − �k +i=1( 2i−1 +2n − iϵ) += +n/2 +(2k − n)y∗ − 2( 1 +2n + · · · + 2k−1 +2n ) + n +2 + 2 �k +i=1 iϵ += +n/2 +(2k − n)y∗ + n +2 − k2 +n + 2 �k +i=1 iϵ +. +Since k ≤ +n +2, shifting a facility within (xk, xk+1) slightly to the left causes the total utility to +weakly increase as there are a greater number of agents who gain utility than those who lose utility. +Therefore as y∗ is the optimal 2−IFS facility, it must be as close to xk as possible, at y∗ = k +n − kϵ. +23 + +Substituting this into the welfare ratio (and ignoring the negligible ϵ), we have +max +x∈[0,1]n +� +i u(f ∗ +UW(x), xi) +maxy∈2IFS(x) +� +i u(y, xi) = +n/2 +(2k − n)y∗ + n +2 − k2 +n += +n/2 +(2k − n) k +n + n +2 − k2 +n += +n/2 +k2 +n − k + n +2 +. +Simple calculus shows that the denominator is minimized (w.r.t. k ∈ (0, n +2]) when k = +n +2, +resulting in a welfare ratio of 2. Therefore when the optimal 2−IFS facility location y∗ satisfies +y∗ ∈ [xk, xk+1], where k ≤ n +2, the price of 2−IFS for utilitarian welfare is at most 2. +Case 2: Suppose that the unique optimal 2−IFS facility location y satisfies y∗ ∈ [xk, xk+1], +where k > n +2.8 We can assume uniqueness without loss of generality as a differing facility location +y† with the same utilitarian welfare as y∗ must satisfy y† ∈ [xj, xj+1], where j ≤ n +2. Similar to the +previous case, any facility location right of xk+1 must violate 2−IFS as y∗ is the optimal facility +location, and we have y∗ = xk+1 − +1 +2n as it lies to the right of the majority of agents, so shifting it +leftwards would decrease the utilitarian welfare. We also remark that xk ≤ xk+1 − 1 +n as y∗ satisfies +2−IFS. +We apply a sequence of transformations to the location profile where each transformation in- +creases the welfare ratio. The transformations convert the location profile into an instance of Case +1 (where the optimal 2−IFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k ≤ n +2). +The transformations are as follows: +• If xk−1 (and xk) are at y∗ − +1 +2n(= xk+1 − 1 +n), shift xk rightwards to x′ +k = y∗ + (y∗ − xk), +causing the optimal 2−IFS facility location y∗ to remain at the same location and/or satisfy +Case 1. +• If xk−1 ∈ (xk+1 − 2 +n, xk+1 − 1 +n), shift xk rightwards to x′ +k = xk−1 + 1 +n, causing the optimal +2−IFS facility location y∗ to move leftwards to y′ = x′ +k − +1 +2n(= xk−1 + +1 +2n) and/or satisfy +Case 1. +• If xk−1 ≤ xk+1 − 2 +n, shift xk rightwards to x′ +k = xk+1 − 1 +n + ϵ, causing the optimal 2−IFS +facility location y∗ to move leftwards to y′ = x′ +k − 1 +2n(= xk+1 − 3 +2n + ϵ) and/or satisfy Case +1. +To justify the effect on y∗ from shifting xk, recall that if y∗ still satisfies Case 2 after the shift, then +it is still the rightmost location satisfying 2−IFS as the majority of agents lie left of y∗. Now if y∗ +changes to a location satisfying Case 1, then by our previous analysis the welfare ratio is at most +2, so we can disregard this scenario. Suppose that the first dot point occurs i.e. y∗ remains at the +same location. Recall that the welfare ratio is +� +i u(f ∗ +UW(x), xi) +maxy∈2IFS(x) +� +i u(y, xi) = +�n +i=1 xi +�n +i=1 |y∗ − xi|. +8We can disregard k = n as we would have y∗ = 1, and as 0 is the optimal facility location, we have �n +i=1 xi ≥ n +2 , +which corresponds to a welfare ratio under 2. +24 + +The optimal facility location is still 0 as the sum of agent locations increases, so the numerator +strictly increases. The denominator remains the same as xk has moved to an equidistant location +on the other side of y∗, and all other agents are at the same location. Thus this transformation +increases the welfare ratio. +Consider the second and third dot points, i.e., y∗ moves to y′ = x′ +k − 1 +2n. Clearly, the numerator +increases, so we now show that the denominator decreases. The change in utilitarian welfare from +the transformation is +�k−1 +� +i=1 +(y′ − xi) + (x′ +k − y′) + +n +� +i=k+1 +(xi − y′) +� +− +� k +� +i=1 +(y∗ − xi) + +n +� +i=k+1 +(xi − y∗) +� += (k − 1)(y′ − y∗) − (n − k)(y′ − y∗) + (x′ +k + xk) − (y∗ + y′) += (y′ − y∗)(2k − n − 1) + (x′ +k + xk) − (y∗ + y′) < 0. +We know that (y′−y∗)(2k−n−1) < 0 as y′ < y∗ and k ≥ n+1 +2 . We also know that xk ≤ y∗− 1 +2n as +y∗ satisfies 2−IFS and that y′ = x′ +k − 1 +2n, so from this we deduce that x′ +k +xk < y∗ +y′. Therefore +the denominator of the welfare ratio decreases, and the transformation increases the welfare ratio. +As the transformations only require that k > n +2, we can repeatedly apply them (and update xk +to be the rightmost agent left of y∗) until we have an instance of Case 1, which has been shown to +have a maximum welfare ratio of 2. Therefore the theorem statement holds. +D +Proof of Theorem 2 +Theorem 2. The price of 2−UFS for utilitarian welfare is 2, and this bound is tight. +Proof. Similar to the proof of Theorem 1, we suppose without loss of generality that the optimal +facility location is 0 and define a sufficiently small ϵ > 0. We also divide the proof into two cases: +Case 1: Suppose that the optimal 2−UFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], +where k ≤ n +2. To avoid contradicting the 2−UFS optimality of y∗, the agent locations x1, . . . , xk +must be arranged such that any location left of xk violates 2−UFS. Furthermore, those agents +must be located such that �k +i=1 xi is maximized, as the welfare ratio increases with �k +i=1 xi. We +claim that this occurs when all k agents are at the same location of +k +2n − ϵ. To see this, suppose +that among agents {1, . . . , k} that there are m ≤ k unique agent locations, and construct an open +ball at each unique agent location with radius +c +2n, where c is the number of agents at the location. +Any location within an open ball fails to satisfy 2−UFS, so to maximize the welfare ratio and +avoid a contradiction, the leftmost open ball must include 0, and the m balls should overlap by +an ϵ distance (to prevent a 2−UFS facility being placed at the boundary between two balls). An +example of this with m = k is for i ∈ {1, . . . , k}, xi = 2i−1 +2n − iϵ. Therefore we see that for m ≤ k +unique agent locations, the sum of agent locations is �k +i=1 xi = +1 +2n + · · · + 2k−1 +2n − mϵ, which is +maximized when all k agents are at +k +2n − ϵ. +As in the 2−IFS proof, we require �n +i=1 xi ≥ +n +2 for the optimal facility location to be 0, +and since the welfare ratio decreases with xk+1 + · · · + xn, we must have �n +i=1 xi = +n +2 and +25 + +xk+1 + · · · + xn = n +2 − (x1 + · · · + xk). Furthermore, as y is the optimal 2−UFS location, it must +take the leftmost 2−UFS point within [xk, xk+1], which is at k +n − ϵ. Substituting these expressions +into the welfare ratio gives +� +i u(f ∗ +UW(x), xi) +maxy∈2UFS(x) +� +i u(y, xi) = +�n +i=1 xi +�n +i=1 |y∗ − xi| = +n/2 +k2 +n − k + n +2 +, +which has been shown in the proof of Theorem 1 to attain a maximum of 2. Therefore in this case, +the price of 2−UFS for utilitarian welfare is at most 2. +Case 2: Suppose that the unique optimal 2−UFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], +where k > n +2. We can assume uniqueness without loss of generality as a differing facility location +y† with the same utilitarian welfare as y∗ must satisfy y† ∈ [xj, xj+1], where j ≤ n +2. We will apply +a sequence of transformations which weakly increase the welfare ratio and result in a location pro- +file satisfying Case 1. The transformation works as follows: shift xk rightwards to x′ +k = y∗ + +1 +2n. +If there is already an agent at y + +1 +2n, then instead shift xk rightwards to x′ +k = y∗ + +1 +2n + ϵk where +ϵk > 0 is sufficiently small, such that there are no other agents at x′ +k.9 This causes y∗ to remain +at the same location and/or satisfy Case 1, as if y∗ still satisfies Case 2, it is the rightmost location +satisfying 2−UFS10, and the location y∗ still satisfies 2−UFS. Furthermore, the optimal facility +location remains as 0 as the sum of agent locations strictly increases. If y∗ satisfies Case 1 then we +know the welfare ratio is at most 2 so we disregard this scenario. We now show that otherwise the +transformation increases the welfare ratio. Recall that the welfare ratio is +� +i u(f ∗ +UW(x), xi) +maxy∈2UFS(x) +� +i u(y, xi) = +�n +i=1 xi +�n +i=1 |y∗ − xi|. +We know that before the shift, y∗ ≥ xk + +1 +2n, so the numerator increases by at least 1 +n. The +denominator either decreases, remains the same, or increases by at most ϵk. Since ϵk is chosen +to be sufficiently small, we conclude that this transformation causes the welfare ratio to weakly +increase. By repeatedly applying these transformations and updating xk to be the rightmost agent +left of y∗, we eventually arrive at a location profile satisfying Case 1, which we know has a welfare +ratio of at most 2. Hence the price of 2−UFS for utilitarian welfare is at most 2. Lemma 1 also +implies that the price of 2−UFS for utilitarian welfare is at least 2, and hence the theorem statement +follows. +E +Proof of Proposition 3 +Proposition 3. The price of 2−IFS for egalitarian welfare is 1. +Proof. We know a 2−IFS solution must always exist, meaning that under any agent location pro- +file, there exists a facility location such that every agent is at least +1 +2n distance from the facility. It +follows immediately that a solution maximizes egalitarian welfare satisfies 2−IFS. +9Such a location always exists unless xn = 1, y∗ = 1 − +1 +2n and x1, . . . , xn−1 < y∗, but it can easily be shown +using �n +i=1 ≥ n +2 that such a location profile corresponds to a welfare ratio less than 2. +10The majority of agents are left of y∗, so shifting y∗ leftwards decreases the utilitarian welfare. +26 + +F +Proof of Proposition 5 +Proposition 5. A pure Nash equilibrium may not exist for f ∗ +2IFS or f ∗ +2UFS. +Proof. For simplicity, we prove this statement for f ∗ +2IFS. The same arguments hold verbatim for +f ∗ +2UFS. +We define a sufficiently small constant ϵ > 0, and consider the location profile x = ( 1 +4−ϵ, 3 +4+ϵ). +We denote the reported location profile as x′ = (x′ +1, x′ +2), and prove this statement by considering +cases on agent 1’s reported location x′ +1. Note that under a pure Nash equilibrium, f ∗ +2IFS cannot +place the facility in the interval [0, 1 +2 − ϵ), as agent 1 can change its report to x′ +1 = 1 +4 − ϵ to strictly +increase its utility. Similarly, under a pure Nash equilibrium, f ∗ +2IFS cannot place the facility in the +interval ( 1 +2 + ϵ, 1], as agent 2 can change its report to x′ +2 = 3 +4 + ϵ to strictly increase its utility. +Case 1 (x′ +1 < 1 +4 − ϵ): If x′ +2 ≤ 3 +4, then f ∗ +2IFS places the facility at 1, and thus this is not a pure +Nash equilibrium. If x′ +2 > 3 +4, then f ∗ +2IFS places the facility at x′ +1 + 1 +4 < 1 +2 − ϵ, thus this is also not +a pure Nash equilibrium. +Case 2 (x′ +1 ≥ 1 +4): If f ∗ +2IFS places the facility at a location strictly right of 0, then this is not a +pure Nash equilibrium as agent 2 can report x′ +2 = 1 to move the facility to 0, improving its utility. +If f ∗ +2IFS places the facility at 0, then this is also not a pure Nash equilibrium as agent 1 can change +its report to x′ +1 = 1 +4 − ϵ to strictly increase its utility. +Case 3 (x′ +1 ∈ [ 1 +4 − ϵ, 1 +4)): Recall that under a pure Nash equilibrium, f ∗ +2IFS cannot place +the facility in the interval ( 1 +2 + ϵ, 1]. Due to x′ +1, f ∗ +2IFS also cannot place the facility in the interval +[0, x′ +1+ 1 +4). If x′ +2 ≤ 3 +4, then f ∗ +2IFS places the facility at 1, and thus this is not a pure Nash equilibrium. +Suppose that x′ +2 > 3 +4, meaning the facility must be placed in the interval [x′ +1 + 1 +4, x′ +2 − 1 +4]. As f ∗ +2IFS +places the facility at the leftmost point of the optimal interval, it places the facility at x′ +1 + 1 +4. Thus, +for any x′ +1 ∈ [ 1 +4 − ϵ, 1 +4), there exists some sufficiently small δ > 0 such that agent 1 can instead +report x′ +1 + δ to improve its utility, so by definition there does not exist a pure Nash equilibrium. +In other words, agent 1 can continually shift its reported location asymptotically closer to 1 +4 to +improve its utility, but from Case 2, we know that x′ +1 cannot reach 1 +4 as otherwise there is no pure +Nash equilibrium. +G +Proof of Theorem 4 +Theorem 4. For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ +2IFS. +Proof. Consider an arbitrary true agent location profile x = (x1, . . . , xn) and sufficiently small +ϵ > 0. Note that a pure ϵ-Nash equilibrium is also a pure δ-Nash equilibrium, where δ > ϵ. +Case 1 (n is even): +Subcase 1a: We first show that if xi ≥ +2i−1 +2n +for any i ∈ {1, . . . , n +2}, then a pure ϵ-Nash +equilibrium exists. Suppose this is the case, and let j = arg mini∈[ n +2 ]{xi ≥ 2i−1 +2n }. If j = 1 (i.e. +x1, . . . , xn ≥ +1 +2n), then the reported location profile (1, . . . , 1) is a pure ϵ-Nash equilibrium. This +is because an agent can only influence the facility position by changing its report to a location in +[0, 1 +2n), moving the facility from 0 to a point in (0, 1 +n) and reducing its utility. +If j > 1, then we will show that the reported location profile x′ = (x′ +1, . . . , x′ +n) = ( 1 +2n − +ϵ, . . . , 2(j−1)−1 +2n +− (j − 1)ϵ, 1, . . . , 1) is a pure ϵ-Nash equilibrium. Under x′, the facility cannot be +placed in [0, j−1 +n − (j − 1)ϵ) due to x′ +1, . . . , x′ +j−1, and hence it is placed at j−1 +n − (j − 1)ϵ. +27 + +Suppose that for some agent i ∈ {1, . . . , j − 1} changes its report to some x′ +i ̸= 2i−1 +2n − iϵ. +Under the resulting location profile, the facility moves to a location in [0, 1 +n − 2ϵ] if i = 1 and +[ i−1 +n − (i − 1)ϵ, i +n − (i + 1)ϵ] if i ∈ {2, . . . , j − 2}, reducing the agent’s utility. As agent j − 2 +is located at 2(j−2)−1 +2n +− (j − 2)ϵ, agent j − 1 (who is located at x′ +j−1 = 2(j−1)−1 +2n +− (j − 1)ϵ) can +improve its utility by reporting a new location x′′ +j−1 = x′ +j−1 + ϵ1, where ϵ1 < ϵ. This causes the +facility to shift to the right. However, agent j − 1 cannot improve its utility by more than ϵ, as if it +reports a location x′′ +j−1 ≥ x′ +j−1 + ϵ, the facility will be placed at j−2 +2n − (j − 2)ϵ, reducing its utility. +Hence agents 1, . . . , j − 1 cannot improve their utility by more than ϵ by changing their reported +location. +Now consider agents j, . . . , n whose true locations satisfy xj, . . . , xn ≥ 2j−1 +2n and have reported +locations x′ +j, . . . , x′ +n = 1. As at least half of the agents must lie to the right of the facility, the +facility takes the leftmost location satisfying 2−IFS, even after any agent changes its report.11 +Hence an agent from {j, . . . , n} can only influence the facility location by changing its report to a +location in ( 2(j−1)−1 +2n +− (j − 1)ϵ, 2(j−1)+1 +2n +− (j − 1)ϵ), causing the facility to move to a location in +( j−1 +n − (j − 1)ϵ, j+1 +n − (j − 1)ϵ). It is easy to see that this strictly reduces the agent’s utility. We +have shown that no deviation by a single agent can cause its utility to increase by more than ϵ, and +hence x′ is a pure ϵ-Nash equilibrium. Therefore a pure ϵ-Nash equilibrium exists if xi ≥ 2i−1 +2n for +any i ∈ {1, . . . , n +2}. +Subcase 1b: By symmetry, we see that a ϵ-Nash equilibrium also exists if xi ≤ 2i−1 +2n for any +i ∈ {n +2 + 2, . . . , n}. However, the exact symmetric argument does not work for i = +n +2 + 1 if +x n +2 +1 > +n+3 +4n as under the reported location profile (0, . . . , 0, n+3 +2n + ( n +2 − 1)ϵ, . . . , 1 − +1 +2n + ϵ), +agent n +2 + 1 can change its report from x′n +2 +1 = 0 to n+1 +2n + ( n +2)ϵ, causing the facility to move from +n+2 +2n + ( n +2 − 1)ϵ to +1 +2n. This is because f ∗ +2IFS breaks ties in favour of the leftmost optimal location, +and results in increased utility as x n +2 +1 ∈ ( n+3 +4n , n+1 +2n ]. +We now show that if xi > +2i−1 +2n +for all i ∈ {n +2 + 2, . . . , n} and x n +2 +1 ∈ ( n+3 +4n , n+1 +2n ], a pure +ϵ-Nash equilibrium exists. It suffices to assume that xi < 2i−1 +2n for all i ∈ {1, . . . , n +2}, as otherwise +we know from Subcase 1a that a pure ϵ-Nash equilibrium exists. We divide this proof to two further +subcases depending on where x n +2 +1 is located. +Subcase 1bi: In this subcase we consider x n +2 +1 < 1 +2 + +1 +2n. We claim that x′ = ( 1 +2n − ϵ, 3 +2n − +2ϵ, . . . , n−1 +2n − ( n +2)ϵ, 0, n+3 +2n + ( n +2 − 1)ϵ, . . . , 1 − 1 +2n + ϵ) is a pure ϵ-Nash equilibrium. Under x′, the +facility is placed at the rightmost point of the only feasible interval, at y′ = n+2 +2n + (n +2 − 1)ϵ, as +there is a majority of agents left of the point. If any agent i ∈ {1, . . . , n +2 − 1} changes its report, +the facility will move to a location in [ 1 +2n, 1 +n − 2ϵ] if i = 1, and in [ i−1 +n − (i − 1)ϵ, i +n − (i + 1)ϵ] if +i ∈ {2, . . . , n +2 −1}. This reduces agent i’s utility as xi < 2i−1 +2n . We now consider agent n +2 (reporting +x′n +2 = n−1 +2n − ( n +2)ϵ). Any location right of y′ is not feasible and under x′, there are n +2 + 2 agent +reports, including x′n +2 , left of the facility. Hence agent n +2 can only influence the facility location by +changing its report to a point in ( n+1 +2n + ( n +2 − 1)ϵ, 1], causing the facility to move to the leftmost +point of the feasible interval, at n−2 +2n − ( n +2 − 1)ϵ. This reduces its utility as x n +2 < n−1 +2n . Next we +consider agent n +2 + 1 (reporting x′n +2 +1 = 0), whose report can only change the facility’s location +within the feasible interval [ 1 +2 − ( n +2)ϵ, n+2 +2n + ( n +2 − 1)ϵ]. As we have x n +2 +1 < 1 +2 + +1 +2n, it is most +optimal to have the facility at y′ = n+2 +2n + ( n +2 − 1)ϵ, achieved by reporting x′n +2 +1 = 0. Finally, we +11Recall that f ∗ +2IF S selects the leftmost optimal location if there is a tie. +28 + +consider agents n +2 + 2, . . . , n. Similar to Subcase 1a, agent n +2 + 2 can improve its utility by strictly +less than ϵ by reporting a location x′′n +2 +2 = x′n +2 +2 − ϵ1, where ϵ1 < ϵ. If ϵ1 ≥ ϵ, the facility is placed +at n+4 +2n + ( n +2 − 2)ϵ, reducing the agent’s utility. An agent i ∈ {n +2 + 3, . . . , n} can only cause the +facility to be in [ i−1 +n + (i − 1)ϵ, i+1 +n + (i − 2)ϵ]. This results in a reduction of utility as xi > 2i−1 +2n +for all i ∈ {n +2 + 2, . . . , n}. As no single agent can improve its utility by more than ϵ by changing +its report, x′ is a pure ϵ-Nash equilibrium and hence one exists for this subcase. +Subcase 1bii: In this subcase we consider x n +2 +1 ≥ 1 +2 + +1 +2n. We claim that x′ = ( 1 +2n − ϵ, 3 +2n − +2ϵ, . . . , n−1 +2n −( n +2)ϵ, n+1 +2n +( n +2)ϵ, n+3 +2n +( n +2 −1)ϵ, . . . , 1− 1 +2n +ϵ) is a pure Nash ϵ-equilibrium. Here +the facility is placed at the leftmost point of the optimal interval, at 1 +2 − ( n +2)ϵ. By using identical +reasoning as in Subcase 1bi, it is easy to see that agents 1, . . . , n +2, and agents n +2 + 2, . . . , n cannot +improve their utility by more than ϵ by misreporting. In this subcase, it is agent n +2 rather than agent +n +2 + 2 who can improve its utility by less than ϵ by misreporting slightly to the right. Also, as +in Subcase 1bi, agent n +2 + 1 can only change the facility’s location to within the feasible interval +[ 1 +2 − ( n +2)ϵ, n+2 +2n + (n +2 − 1)ϵ], but since we have x n +2 +1 ≥ 1 +2 + +1 +2n, their optimal facility location of +1 +2 − ( n +2)ϵ is achieved by their report of x′n +2 +1 = n+1 +2n + ( n +2)ϵ. +Subcase 1c: It reminds to consider the subcase where xi < 2i−1 +2n for all i ∈ {1, . . . , n +2} and +xi > 2i−1 +2n for all i ∈ {n +2 + 1, . . . , n}. Under this subcase, we claim that the location profile x′ = +(x′ +1, . . . , x′ +n) = ( 1 +2n − ϵ, 3 +2n − 2ϵ, . . . , n−1 +2n − ( n +2)ϵ, 1, . . . , 1) is a pure ϵ-Nash equilibrium. Here, the +facility is placed at 1 +2 −( n +2)ϵ. By using the same arguments as in the first subcase, we see that agents +1, . . . , n +2 −1 who have reported locations x′ +1 = +1 +2n−ϵ, x′ +2 = +3 +2n−2ϵ, . . . , x′n +2 −1 = n−3 +2n −( n +2 −1)ϵ have +no incentive to change their report. Agent n +2 who reports location x′n +2 = n−1 +2n − ( n +2)ϵ can improve +its utility by strictly less than ϵ, by changing its report to x′′n +2 = x′n +2 + ϵ1, where ϵ1 < ϵ. Similar to +Subcase 1a, if ϵ1 ≥ ϵ, then the facility is placed at n−2 +2n − ( n +2 − 1)ϵ, reducing the agent’s utility. The +agents n +2 + 1, . . . , n who have reported their location as 1 under x′ can only move the facility to a +location in ( 1 +2 −( n +2)ϵ, 1 +2 + 1 +n −( n +2)ϵ) by changing its report to a location in ( n−1 +2n −( n +2)ϵ, n+1 +2n −( n +2)ϵ).12 +However as we have x n +2 +1, . . . , xn > n+1 +2n , this causes their utility to decrease. We have shown that +under x′, no single agent can cause its utility to increase by more than ϵ by changing its report, +and hence x′ is a ϵ-Nash equilibrium. By exhaustion of cases, we have shown that a pure ϵ-Nash +equilibrium always exists under f ∗ +2IFS if n is even. +Case 2 (n is odd): By using identical reasoning to the case where n is even, we can see that +if xi ≥ +2i−1 +2n +for any i ∈ {1, . . . , n−1 +2 , a pure ϵ-Nash equilibrium exists. Specifically, if we let +j = arg mini∈[ n−1 +2 ]{xi ≥ 2i−1 +2n }, then the pure ϵ-Nash equilibrium is x′ = (1, . . . , 1) if j = 1, and +x′ = ( 1 +2n − ϵ, . . . , 2(j−1)−1 +2n +− (j − 1)ϵ, 1, . . . , 1) if j > 1. Furthermore, symmetric reasoning shows +that if xi ≤ 2i−1 +2n for any i ∈ {n+3 +2 , . . . , n}, a pure ϵ-Nash equilibrium exists. It remains to consider +the case where xi < 2i−1 +2n for all i ∈ {1, . . . , n−1 +2 } and xi > 2i−1 +2n for all i ∈ {n+3 +2 , . . . , n} (and x n+1 +2 +can be anywhere). +Subcase 2a: Here we consider the subcase where x n+1 +2 +≥ 1 +2. We claim that x′ = ( 1 +2n − ϵ, 3 +2n − +2ϵ, . . . , n−2 +2n − ( n−1 +2 )ϵ, 1, n+2 +2n + ( n+3 +2 )ϵ, . . . , 1 − +1 +2n + ϵ) is a pure ϵ-Nash equilibrium. Here the +interval of feasible agent locations is [ n−1 +2n − ( n−1 +2 )ϵ, n+1 +2n + ( n+3 +2 )ϵ], and the facility is placed at the +leftmost point of the interval, at y′ = n−1 +2n − ( n−1 +2 )ϵ, as there is a majority of agents right of the +interval. Any misreport by agent 1 will cause the facility to be placed in the interval [0, 1 +n − 2ϵ], +12We note that � +i x′ +i < n +2 − 1 + n +4 ( 1 +2n + n−1 +2n ) = 5n +8 − 1, which is less than n +2 if and only if n = 2. However if +n = 2 it is trivial that x′ is a pure ϵ-Nash equilibrium. +29 + +which reduces their utility as x1 < +1 +2n. Agent i ∈ {2, . . . , n−3 +2 } can only cause the facility to be +placed in [ i−1 +n − (i − 1)ϵ, i +n − (i + 1)ϵ], which reduces their utility. A symmetric argument can +be applied to show that agents n+5 +2 , . . . , n cannot improve their utility by misreporting. Agent n−1 +2 +(who reports x′ +n−1 +2 += n−2 +2n − ( n−1 +2 )ϵ) can improve its utility by strictly less than ϵ by changing its +report to x′′ +n−1 +2 += x′ +n−1 +2 ++ ϵ1, where ϵ1 < ϵ. Similar to Subcase 1a, if ϵ1 ≥ ϵ, the agent’s utility will +be decreased. As the facility takes the leftmost feasible point under x′, agent n+3 +2 +can only change +the facility location to the rightmost feasible point (at n+3 +2n + ( n+5 +2 )ϵ), by misreporting such that +there is a majority of agents left of the facility location. This reduces the agent’s utility. Finally, +it is easy to see that agent n+1 +2 +cannot improve its utility by misreporting: the infeasible regions +under x′ are a result of the other agent reports, and hence agent n+1 +2 +cannot cause the facility to be +placed outside of the feasible interval. As x n+1 +2 +≥ 1 +2, the leftmost point of the interval is its most +optimal facility placement over its possible reports. Therefore x′ is a pure ϵ-Nash equilibrium as no +agent can improve its utility by more than ϵ by misreporting, and hence a pure ϵ-Nash equilibrium +exists for this subcase. +Subcase 2b: In this subcase, x n+1 +2 +< 1 +2 (and xi < 2i−1 +2n for all i ∈ {1, . . . , n−1 +2 } and xi > 2i−1 +2n +for all i ∈ {n+3 +2 , . . . , n}). By using a symmetric argument as in Subcase 2a, x′ = ( 1 +2n − ϵ, 3 +2n − +2ϵ, . . . , n−2 +2n −( n−1 +2 )ϵ, 0, n+2 +2n +( n+3 +2 )ϵ, . . . , 1− 1 +2n +ϵ), where the facility is placed at n+1 +2n +( n+3 +2 )ϵ, +is a pure ϵ-Nash equilibrium. +In this proof, we have provided a pure ϵ-Nash equilibrium for every possible location profile, +and hence by exhaustion of cases, a ϵ-pure Nash equilibrium always exists for f ∗ +2IFS. +H +Proof of Theorem 5 +Theorem 5. For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ +2UFS. +Proof. In the proof of Theorem 4, we divided all possible agent location profiles into several +subcases, and provide a pure ϵ-Nash equilibrium for each subcase. We claim for every subcase, the +pure ϵ-Nash equilibrium we describe in the proof of Theorem 4 is also a ϵ-Nash equilibrium for +f ∗ +2UFS. First, we remark that every given pure ϵ-Nash equilibrium has the same facility placement +under f ∗ +2UFS. This can be seen as every pure ϵ-Nash equilibrium has the n agents reporting n +distinct locations, with the exception of the equilibria where multiple agents report 0 or 1. Under +these equilibria, the facility takes the rightmost (resp. leftmost) location of the feasible interval, so +the change to a 2−UFS constraint does not affect the facility placement. +A simple case by case analysis shows that for each pure ϵ-Nash equilibrium x′ described in the +proof of Theorem 4, no agent can improve its utility by more than ϵ by changing its report under +f ∗ +2UFS. The same arguments hold verbatim for f ∗ +2UFS and the constraint of 2−UFS, even when +accounting for agents being able to change their report to the same location as another agent’s +report (to widen the ‘infeasible’ ball around the report). We give the following intuition: if agent i +makes such a report change from x′ +i, this either causes the facility to move to some location near +x′ +i which has consequently become feasible, or it ‘pushes’ the facility towards xi (such as if the +facility takes the leftmost feasible location under x′ and agent i changes its report from x′ +i = 1 to +the rightmost reported location left of the facility). Hence every possible agent location profile has +a pure ϵ-Nash equilibrium under f ∗ +2UFS. +30 + +I +Proof of Theorem 6 +Theorem 6. For any ϵ ∈ (0, 1 +n), the ϵ-price of anarchy for f ∗ +2IFS and f ∗ +2UFS of utilitarian welfare +is at least 2n−1+nϵ +1−nϵ . The price of anarchy is unbounded for ϵ ≥ 1 +n. +Proof. Suppose for any ϵ ∈ (0, 1 +n) that we have the (true) agent location profile x = ( 1 +2n − ϵ +2, 1 +2n − +ϵ +2, . . . , 1 +2n − ϵ +2). We show that the location profile x′ = (1, . . . , 1) is a pure ϵ-Nash equilibrium for +x. Under x′, both f ∗ +2IFS and f ∗ +2UFS place the facility at 0, causing each agent to have +1 +2n − ϵ +2 utility. +An agent can only change the facility position by deviating to a reported location in [0, 1 +2n), causing +the facility to instead be placed somewhere in (0, 1 +n). This results in the agent receiving a utility +of u(xi) < +1 +2n + ϵ +2, which is an increase of at most ϵ. Since no agent can improve its utility by +greater than ϵ by misreporting, x′ is a pure ϵ-Nash equilibrium. Now the utilitarian welfare under x +is n − 1 +2 + nϵ +2 , whilst under x′ it is 1 +2 − nϵ +2 (w.r.t. x). Hence the ϵ-price of anarchy is at least 2n−1+nϵ +1−nϵ +for ϵ ∈ (0, 1 +n). +For ϵ ≥ +1 +n, the (true) agent location profile x = (0, . . . , 0) has a corresponding pure ϵ-Nash +equilibrium of x′ = (1, . . . , 1) which results in each agent having 0 utility. This can be seen as no +agent can improve its utility by 1 +n or greater, as an agent can only change the facility to a location +in (0, 1 +n) by changing its report to a location in (0, 1 +2n). As each agent has 0 utility under the pure +ϵ-Nash equilibrium, the ϵ-price of anarchy is unbounded for ϵ ≥ 1 +n. +J +Proof of Theorem 8 +Theorem 8. Mechanism 2 satisfies 2−UFS in expectation. +Proof. Consider a coalition of |S| agents at location xi and suppose there are n1 agents in [0, 1 +2] +and n2 agents in ( 1 +2, 1]. The expected distance from the facility is +E(d(y, xi)) = +2n1n2 + n2 +2 +n2 +1 + n2 +2 + 4n1n2 +xi + +n2 +1 + 2n1n2 +n2 +1 + n2 +2 + 4n1n2 +(1 − xi) += +n2 +1 + 2n1n2 +n2 +1 + n2 +2 + 4n1n2 ++ xi +� +n2 +2 − n2 +1 +n2 +1 + n2 +2 + 4n1n2 +� +. +Due to symmetry it suffices to only consider xi ∈ [0, 1 +2], and since E(d(y, xi)) is a linear function +of x, we further restrict our attention to xi ∈ {0, 1 +2}. +When xi = 1 +2, E(d(y, xi)) = 1 +2 and hence 2−UFS is satisfied for any coalition of agents at 1 +2. +31 + +When xi = 0, +E(d(y, xi)) = +n2 +1 + 2n1n2 +n2 +1 + n2 +2 + 4n1n2 += +n1(2n2 +1 + 6n1n2 + 4n2 +2) +2(n2 +1 + n2 +2 + 4n1n2)(n1 + n2) +> +n1(n2 +1 + 4n1n2 + n2 +2) +2(n2 +1 + n2 +2 + 4n1n2)(n1 + n2) += +n1 +2(n1 + n2) +≥ |S| +2n . +Therefore Mechanism 2 satisfies 2−UFS. +K +Proof of Lemma 2 +Lemma 2. Consider an arbitrary agent location profile x. For every 2−IFS/UFS randomized +mechanism that gives positive support to a facility placement between 0 and 1, there exists a +2−IFS/UFS randomized mechanism that only gives positive support to a facility placement at 0 or +1 that leads to weakly higher expected utility for each agent. +Proof. Consider an arbitrary location profile x = (x1, . . . , xn), and suppose for this profile that +some (2−IFS/UFS) mechanism places the facility at location c ∈ (0, 1) with probability p. If +instead the mechanism placed the facility at location 1 with probability cp and at location 0 with +probability p − cp, each agent’s expected distance from the facility would increase. This can be +seen as for any xi ≤ c, +cp(1 − xi) + (p − cp)xi = pxi − 2cpxi + cp += cp + pxi(1 − c) − cpxi +≥ cp − cpxi +≥ p(c − xi), +and for any xj > c, +cp(1 − xj) + (p − cp)xj = pxj + cp(1 − xj) − cpxj +≥ pxj − cpxj +≥ p(xj − c). +Therefore this modified mechanism also satisfies 2−IFS/UFS and results in weakly higher ex- +pected utility for each agent than the original mechanism. By repeatedly applying this modifica- +tion, any 2−IFS/UFS mechanism that places positive probability on any location between 0 and 1 +can be modified to a 2−IFS/UFS mechanism that only places positive probability on locations 0 +and 1. +32 + +L +Proof of Lemma 3 +Lemma 3. 2-IFS Randomized mechanism is optimal amongst all randomized mechanisms sat- +isfying 2-IFS in expectation. +Proof. We first prove by cases that the mechanism satisfies 2-IFS in expectation. Recall that for +the OFLP, the utilitarian welfare maximizing solution places the facility at either 0 or 1. +Case 1 (�n +i=1 xi = n +2) +In this case, the facility locations of 0 and 1 are tied for maximizing utilitarian welfare, so +placing the facility at either location with probability 1 +2 is optimal. The mechanism also satisfies +2-IFS in expectation as the expected distance of any agent from the facility is 1 +2xi + 1 +2(1 − xi) = +1 +2 ≥ +1 +2n. +Case 2 (�n +i=1 xi > n +2) +In this case, the optimal facility location is 0. It is trivial that placing the facility at 0 with +probability 1 when x1 ≥ +1 +2n is optimal and satisfies 2-IFS, so we consider the subcase where +x1 < +1 +2n. +We first show that the mechanism satisfies 2-IFS in this case. The expected distance between +x1 and the facility is +(1 − α)x1 + α(1 − x1) = 2n − 1 − 2nx1 +2n(1 − 2x1) x1 + +1 − 2nx1 +2n(1 − 2x1)(1 − x1) += 2nx1 − x1 − 2nx2 +1 + 1 − x1 − 2nx1 + 2nx2 +1 +2n(1 − 2x1) += 1 +2n. +2-IFS is therefore satisfied for agents x2, . . . , xn as α ≤ 1 +2. +We now show for this case that the mechanism is optimal amongst all randomized mechanisms +satisfying 2-IFS in expectation. By Lemma 2, it suffices to only consider mechanisms that can +only place the facility at 0 or 1. +Now consider the 2-IFS Randomized mechanism. If α were increased, the utilitarian welfare +would decrease, and if α were decreased, 2−IFS would be violated for x1, hence α = +1−2nx1 +2n(1−2x1) is +optimal and therefore the mechanism is optimal under the constraint of 2-IFS in expectation. +Case 3 (�n +i=1 xi > n +2) +This case is similar and symmetric to Case 2. +M +Proof of Proposition 6 +Proposition 6. Randomized Egalitarian Welfare mechanism is strategyproof in expectation. +Proof. If all agents are in [0, 1 +2] or all agents are in ( 1 +2, 1], then each agent has at least 1 +2 expected +utility. Any misreport either causes their expected utility to either stay the same or be reduced to +1 +2 from the facility being placed at 0 or 1 with probability 1 +2 each. If there is at least one agent +in each interval, then an agent can only affect the outcome if it is the only agent in its interval +and it misreports its location to be in the other interval. However this weakly reduces the agent’s +expected utility, which consequently has an upper bound of 1 +2. +33 + +N +Proof of Theorem 9 +Theorem 9. 2-IFS Randomized mechanism has an approximation ratio of 12 +11 ≈ 1.091. +Proof. It suffices to consider the case where �n +i=1 xi > +n +2 and x1 < +1 +2n as the case where +�n +i=1 xi > +n +2 is symmetric, and the mechanism is optimal for the cases of �n +i=1 xi = +n +2, and +�n +i=1 xi > n +2 and x1 ≥ +1 +2n. +The approximation ratio of the mechanism is +max +x∈Xn +� +φ∗(x) +φ2IFS(x) +� += max +x∈Xn +� +i xi +(1 − α) � +i xi + α � +i(1 − xi) += max +x∈Xn +� +i xi +2n−1−2nx1 +2n(1−2x1) +� +i xi + +1−2nx1 +2n(1−2x1) +� +i(1 − xi) += max +x∈Xn +� +i xi +1−2nx1 +2(1−2x1) + +n−1 +n(1−2x1) +� +i xi += max +x∈Xn +1 +1−2nx1 +2(1−2x1) � +i xi + +n−1 +n(1−2x1) += +max +x1∈[0, 1 +2n ) +1 +1−2nx1 +2(1−2x1)(n−1+x1) + +n−1 +n(1−2x1) += +max +x1∈[0, 1 +2n ) +2n(1 − 2x1)(n − 1 + x1) +n − 2n2x1 + 2(n − 1)(n − 1 + x1). +In the second last line, we substitute x2, . . . , xn = 1 as the ratio is monotonic increasing with +� +i xi. Some optimization programming shows that when n ≥ 3, the ratio is maximized when +x1 = 0. Substituting x1 = 0 into the ratio gives +2n2 − 2n +2n2 − 3n + 2, +which has a derivative of − 2(n2−4n+2) +(2n2−3n+2)2. We therefore see our ratio has a maximum turning point at +x = 2+ +√ +2 and is monotonic decreasing after this point. For integer n ≥ 3, the ratio is maximized +when either n = 3 or n = 4, and the ratio is equal to 12 +11 ≈ 1.091 for both of these points. +We now consider the case where n = 2 (and x1 < 1 +4). The ratio becomes +max +x1∈[0, 1 +4 ) +2 − 2x1 − 4x2 +1 +2 − 3x1 += 1 +9(22 − 4 +√ +10) +≈ 1.039. +Therefore the mechanism’s welfare ratio is maximized when x1 = 0 and either n = 3 or n = 4, +taking a value of 12 +11 ≈ 1.091. +O +Proof of Lemma 4 +Lemma 3. 2-UFS Randomized mechanism is optimal amongst all randomized mechanisms sat- +isfying 2−UFS in expectation. +34 + +Proof. Similar to the proof of Lemma 3, we prove this statement by cases. +Case 1 (�m +i=1 |Si|xi = n +2) +When �m +i=1 |Si|xi = +n +2, the facility locations of 0 and 1 are tied for maximizing utilitarian +welfare, so placing the facility at either location with probability 1 +2 is optimal. The mechanism +also satisfies 2−UFS in expectation as the expected distance of any agent from the facility is +1 +2xi + 1 +2(1 − xi) = 1 +2. +Case 2 (�m +i=1 |Si|xi > n +2) +Note that in this case the optimal facility location is 0. We first show that the mechanism +satisfies 2−UFS in this case. For a group of agents Si at xi < 1 +2, the expected distance from the +facility is +α(1 − xi) + xi(1 − α) ≥ αi(1 − xi) + xi(1 − αi) += |Si| − 2nxi +2n(1 − 2xi)(1 − xi) + 2n − 2nxi − |Si| +2n(1 − 2xi) +xi += |Si|(1 − 2xi) +2n(1 − 2xi) = |Si| +2n . +By setting |Si| = n, we also see that α ≤ 1 +2, hence 2−UFS is satisfied for any group of agents at +xj ≥ 1 +2. +We now show for this case that the mechanism is optimal amongst all randomized mechanisms +satisfying 2-UFS in expectation. By Lemma 2, it suffices to only consider mechanisms that can +only place the facility at 0 or 1. Now under the 2−UFS Randomized mechanism, increasing α +would decrease the utilitarian welfare, and decreasing α would violate 2−UFS for some group of +agents. Hence the mechanism is optimal under the constraint of 2−UFS in expectation. +Case 3 (�m +i=1 |Si|xi < n +2) +This case is similar and symmetric to Case 2. +P +Proof of Theorem 10 +Theorem 10. 2-UFS Randomized mechanism has an approximation ratio of 2 +7(1 + 2 +√ +2) ≈ +1.09384. +Proof. Without loss of generality we suppose that �n +i=1 > n +2. Let j be the index of the group of +agents corresponding to α (i.e. αj = max{α1, . . . , αk}). +35 + +The approximation ratio of the mechanism is +max +x∈Xn +� +φ∗(x) +φ2UFS(x) +� += max +x∈Xn +� +i xi +(1 − α) � +i xi + α � +i(1 − xi) += max +x∈Xn +� +i xi +2n−|Sj|−2nxj +2n(1−2xj) +� +i xi + |Sj|−2nxj +2n(1−2xj) +� +i(1 − xi) += max +x∈Xn +� +i xi +|Sj|−2nxj +2(1−2xj) + +n−|Sj| +n(1−2xj) +� +i xi += max +x∈Xn +1 +|Sj|−2nxj +2(1−2xj) � +i xi + +n−|Sj| +n(1−2xj) += +max +xj∈[0, 1 +2 ) +|Sj|∈{1,...,n−1} +1 +|Sj|−2nxj +2(1−2xj)(n−|Sj|+|Sj|xj) + +n−|Sj| +n(1−2xj) += +max +xj∈[0, 1 +2 ) +|Sj|∈{1,...,n−1} +2n(1 − 2xj)(n − |Sj| + |Sj|xj) +n|Sj| − 2n2xj + 2(n − |Sj|)(n − |Sj| + |Sj|xj) += max +xj∈[0, 1 +2 ) +r∈(0,1) +2(1 − 2xj)(1 − r + rxj) +r − 2xj + 2(1 − r)(1 − r + rxj) where r = |Sj| +n . +Some optimization programming shows that this ratio is maximized at r = 1 − +1 +√ +2 and xj = 0, +taking a value of 2 +7(1 + 2 +√ +2). +Q +Proof of Lemma 5 +Lemma 5. For α = 2, there exists an α−UFS facility location y that does not satisfy α−PF. +Proof. Assume that n = 10 and that we have 2 groups of agents, with the first group of 7 agents +located at the point c1 = 0.35, and the second group of 3 agents located at the point c2 = 0.55. We +consider two balls B1 and B2 respectively with centers c1 and c2 and radius |S1| +2n = +7 +20 = 0.35 and +|S2| +2n = +3 +20 = 0.15. We set the facility location y at the point 0.71. Since point y is outside of the +two balls, it satisfies 2-UFS. However, it does not satisfy the 2-PF inequality: d(y, c2) = 0.16 ≱ +|S1| +20 + |S2| +20 − r = 0.3. +R +Lemma 6 and Proof of Lemma 6 +Here we introduce an auxiliary lemma which will be used in the proof of Theorem 11. +Lemma 6. The intersection of (I − Bi)’s is not empty. +36 + +Proof. We consider two cases: +• Every open ball Bi, i ∈ [m] lies completely in interval I = [0, 1]. Hence, the boundary +points of interval I are not in each Bi’s and therefore {0, 1} ∈ ∩m +i=1(I − Bi). +• There exists an open ball which does not completely lie in the interval I. Assuming the +points x1, x2, ..., xm are ordered from left to right, let k be the smallest index such that Bk +does not completely lie in I. So either 0 ∈ Bk or 1 ∈ Bk. Both end points 0 and 1 can +not be in Bk, since in this case |Bk| = |Sk| +n +> 1. Let us assume 0 ∈ Bk and 1 /∈ Bk, i.e, +1 ∈ (I − Bk). Now if for every i ∈ [m], we have 1 ∈ (I − Bi), the lemma statement holds. +Now suppose there exists an open ball Bj such that 1 /∈ (I − Bj), i.e, 1 ∈ Bj. Without +loss of generality let j be the largest index in which the aforementioned statement holds. We +consider two cases: +– Bk ∩ Bj is not an empty set. In this case [0, 1] ⊆ Bk ∪ Bj and |Sk| +n + |Sj| +n > 1, which +can not happen. +– Bk ∩ Bj is an empty set. We consider the set A := I − (Bk ∪ Bj) and consider two +cases: +* A ⊆ ∪j−1 +i=k+1Bi: in this case [0, 1] ⊆ ∪m +i=1Bi and �m +i=1 +|Si| +n +> 1, which can not +happen. +* A ⊈ ∪j−1 +i=k+1Bi. Therefore there exists y ∈ A such that y /∈ ∪j−1 +i=k+1Bi. Also by the +definition of A, y /∈ (Bk ∪ Bj). For every 1 ≤ i ≤ k − 1, Bi ⊂ Bk holds as i is +the smallest index such that its corresponding ball contains the point 0. Similarly, +we have for every j + 1 ≤ i ≤ m, Bi ⊂ Bj. Hence y /∈ Bi for every i ∈ [m], i.e, +y ∈ (I − Bi) for every i ∈ [m] and y ∈ ∩m +i=1(I − Bi). +S +Proof of Theorem 11 +Theorem 11. A 2-PF solution always exists. +Proof. Suppose we have m unique agent locations, i.e. m groups of agents. We prove the theorem +by induction on the number of groups. When all the agents have the same location, i.e, m = 1, +we can allocate the facility y at the furthest boundary point. This trivially satisfies 2-PF. Now, we +assume for any k groups of agents where k ≤ m that there exists a 2-PF solution, and we extend +that for k = m + 1. +Suppose we have m + 1 groups of agents placed at points c1, c2, . . . , cm+1, which are ordered +such that c1 ≤ c2 ≤ · · · ≤ cm+1. Let Si denote the group of agents at ci. We set an open ball Bi +with radius |Si| +2n , around each center ci. To prove the theorem, we consider several cases. +• Case 1 (There is no overlap between any two balls, i.e. Bi∩Bj = ∅∀i, j ∈ {1, 2, . . . , m+1}). +In Lemma 6, we have shown that the intersection of (I − Bi)’s is not empty, so there exists +a point y outside of every ball Bi where the facility can be placed. Here r is the distance +between centers ci and cj. If r = 0, then 2-PF is satisfied since we have d(y, ci) ≥ +|Si| +2n . +37 + +Otherwise, since all the balls are disjoint, r is larger than the sum of the radii of Bi and Bj, +so |Si| +2n + |Sj| +2n − r < 0. Hence, +d(y, ck) ≥ |Si| +2n + |Sj| +2n − r +for k = i, j, +and thus y satisfies the 2-PF inequality. +• Case 2 (There exists at least two overlapping balls, i.e., ∃ i, j ∈ {1, 2, . . . , m + 1} s.t. +Bi ∩ Bj ̸= ∅). +– Case 2a (There exists one ball that is contained within another ball, i.e., ∃ i, j ∈ +{1, 2, . . . , m + 1} s.t.Bi ⊆ Bj). Without loss of generality, we assume B2 ⊆ B1. Now +we place all the agents at c2 and c1 together at c1. We set a new ball B +′ centered at +c1 with radius |S1| +2n + |S2| +2n , which is the summation of the radii of B1 and B2. Now, we +have m new groups of agents located at the centers c1, c3, . . . , cm+1. By induction, a +2-PF solution y exists. We claim that y is also a 2-PF solution for m + 1 groups of +agents located c1, c2, . . . , cm+1. Since y is a 2-PF solution for the m groups of agents +located at c1, c3, ..., cm+1, y lies outside of every ball, satisfying the 2-PF inequality for +r = 0. Since y is outside the ball B′, y is outside of balls B1 and B2, therefore we have +d(y, c1) ≥ |S1| +2n and d(y, c2) ≥ |S2| +2n . So y satisfies 2-PF inequalities for r = 0. We now +set r to be the distance between two centers c1 and c2 (i.e., r = c2 − c1). Since y is +outside the ball B′ we have d(y, c1) ≥ |S1| +2n + |S2| +2n ≥ |S1| +2n + |S2| +2n − r, so c1 satisfies the +PF inequality. To show that the agents at c2 also satisfy the PF inequality, we consider +2 cases: +* Case 2ai (Ball B2 does not contain center c1 (see Figure 4)). We denote a := +(c2 − c1) − |S2| +2n as the distance between c1 and the left boundary of B2, b := |S2| +2n +as the radius of B2 and c := c1 + |S1| +2n − c2 − |S2| +2n as the distance between the right +boundaries of B1 and B2. In this case, we have +|S1| +2n + |S2| +2n − r = a + 2b + c + b − a − b = 2b + c. +(1) +Since y is outside of ball B′, we have d(y, c2) ≥ 2b + c and by (1), d(y, c2) ≥ +|S1| +2n + |S2| +2n − r and thus the 2-PF inequality is satisfied. +* Case 2aii (Ball B2 contains center c1 (see Figure 5)). In this case, the range r is +smaller than the diameter of B2. We denote a := c2 − c1 as the distance between +the two centers, b := |S2| +2n as the radius of B2 and c := c1 + |S1| +2n − c2 − |S2| +2n as the +distance between the right boundaries of B1 and B2. We have +|S1| +2n + |S2| +2n − r = a + b + c + b − a = 2b + c. +(2) +Since y is outside of ball B′, we have d(y, c2) ≥ 2b + c and by (2), d(y, c2) ≥ +|S1| +2n + |S2| +2n − r and thus the 2-PF inequality is satisfied. +38 + +Figure 4: B1 and B′ are open balls centered at c1 and B2 is an open ball centered at c2. The +variables a, b and c denote the distances between the boundaries of the balls and the centers. +Figure 5: B1 and B′ are open balls centered at c1 and B2 is an open ball centered at c2. The +variables a, b and c denote the distances between the boundaries of the balls and the centers. +39 + +– Case 2b (There exist two overlapping balls, i.e. ∃ i, j ∈ {1, 2, . . . , m+1} s.t. Bi∩Bj ̸= +∅, but they are not contained within each other.) Without loss of generality, we assume +B1 ∩ B2 ̸= ∅. Consider the line segment that connects the left border of B1 to the right +border of ball B2 and denote the midpoint of this line as c′ +1 := 1 +2(c1 − |S1| +2n + c2 + |S2| +2n ). +We move all the agents at c1 and c2 to point c′ +1 and set a new ball B′ around it with +radius |S1| +2n + |S2| +2n , which is the summation of radii of B1 and B2. Similar to the previous +subcase, by our inductive assumption there exists a 2-PF solution y for the new m +groups of agents placed at c′ +1, c3, ..., cm, cm+1. Now we claim that y is a 2-PF solution +for c1, c2, ..., cm+1 as well. Since y is outside of the ball B′, y is also outside of the +balls B1 and B2, therefore d(y, c1) ≥ |S1| +2n and d(y, c2) ≥ |S2| +2n . So y satisfies the 2-PF +inequalities for r = 0. We now set r to be the distance between two centers c1 and c2 +(i.e., r = c2 − c1) and consider 3 cases which depend on whether the intersections of +the balls also contain a center. In each case we show that |S1| +2n + |S2| +2n − r is equal to +the length of intersection of B1 and B2 which denote as |intersection| (and hence the +2-PF inequality is satisfied). +* Case 2bi (The intersection between B1 and B2 does not contain centers c1 and c2 +(see Figure 6)). We denote a := c2 − |S2| +2n − c1 as the distance between c1 and the +left boundary of B2, b := c1 + |S1| +2n − (c2 − |S2| +2n ) as the length of the intersection, +and c := c2 − |S1| +2n − c1 as the distance between c2 and the right boundary of B1. +We have |S1| +2n + |S2| +2n − r = a + b + b + c − a − b − c = b = |intersection|. +Since y is placed outside of ball B′, it is outside of balls B1 and B2. We have +d(y, ci) ≥ |Si| +2n ≥ |intersection| = |S1| +2 + |S2| +2 − r and thus 2-PF is satisfied. +Figure 6: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively. The terms a, b, c and +|intersection| +2 +denote the distances between the boundaries of the balls and the centers. +* Case 2bii (The intersection between B1 and B2 contains one of the centers c1 and +c2 (see Figure 7)). Without loss of generality suppose the contained center is c2. +We denote a := c2 − |S2| +2n − c1 as the distance between c1 and the left boundary of +B2, b := |S2| +2n as the radius of B2, and c := c2 − |S1| +2n − c1 as the distance between +c2 and the right boundary of B1. We have |S1| +2n + |S2| +2n − r = a + b + c + b − a − b = +40 + +b + c = |intersection|. Since y is outside of B1, we have +d(y, c1) ≥ |S1| +2n = a + b + c ≥ b + c += |intersection| = |S1| +2n + |S2| +2n − r. +Now we show d(y, c2) satisfies the 2-PF inequality. Recall B′ is a ball centered +at the midpoint of the left boundary of B1 and right boundary of B2, with radius +|S1| +2n + |S2| +2n . Also, y lies outside of B′, so the right boundary of B2 has a distance of +length |intersection| +2 +from the right boundary of B′. We therefore have +d(y, c2) ≥ |S2| +2n + |intersection| +2 += b + b + c +2 +Also, since b ≥ c, we have +b + b + c +2 +≥ b + c = |intersection| = |S1| +2n + |S2| +2n − r. +Figure 7: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively. The terms a, b, c and +|intersection| +2 +denote the distances between the boundaries of the balls and the centers. +* Case 2biii (The intersection between B1 and B2 contains both centers c1 and c2 +(see Figure 8)). We denote a := c2 − |S2| +2n − c1 as the distance between c1 and the +left boundary of B2, b := c2 − c1 as the distance between the two centers, and +c := c2 − |S1| +2n − c1 as the distance between c2 and the right boundary of B1. We +have |S1| +2n + |S2| +2n −r = b+c+b+a−b = a+b+c = |intersection|. In this case, b+c +is the radius of ball B1 and a+b is the radius of ball B2. Since the balls B1 and B2 +are not contained within each other, we have b + c > a and a + b > c (see Figure +8). Like before, B′ is a ball with a center at the midpoint of the left boundary of +B1 and right boundary of B2 and radius |S1| +2n + |S2| +2n , and y lies outside of this ball, +41 + +so the boundaries of each ball B1 and B2 have a distance of length |intersection| +2 +with +the boundary of B′. We therefore have +d(y, c1) ≥ b + c + |intersection| +2 += b + c + a + b + c +2 +≥ b + c + a = |intersection| = |S1| +2n + |S2| +2n − r. +Similarly, we can show that y satisfies the 2-PF inequality for center c2. +d(y, c2) ≥ a + b + |intersection| +2 += a + b + a + b + c +2 +≥ a + b + c = |intersection| = |S1| +2n + |S2| +2n − r. +Hence the facility placement of y satisfies the 2-PF inequalities. +Figure 8: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively. The terms a, b, c and +|intersection| +2 +denote the distances between the boundaries of the balls and the centers. +By exhaustion of cases, we have proven the inductive statement, and thus a facility placement that +satisfies 2-PF always exists. +T +Proof of Theorem 12 +Theorem 12. Under the hybrid model, a H-UFS solution always exists. +Proof. Let nC denote the number of classic agents and nO denote the number of obnoxious agents +(such that nC + nO = n). Consider an arbitrary agent location profile with m unique classic +agent locations x1, . . . , xm, and suppose they are ordered such that x1 ≤ . . . xm. We first focus on +the region of feasible facility locations pertaining to the classic agents’ distance constraints. For +42 + +i ∈ [m], let SCi denote the group of classic agents at location xi, and construct a closed ball with +center xi and radius 1 − +|SCi| +n : Bi = {z|d(z, xi) ≤ 1 − +|SCi| +n }. By definition, the intersection of the +closed balls ∩i∈[m]Bi denotes the (continuous) region of feasible facility locations pertaining to the +classic agents’ distance constraints. From [Aziz et al., 2021], we know this region is non-empty. +We show that the length of the feasible region ∩i∈[m]Bi is at least n−nC +n +by iteratively trans- +forming the agent location profile to one where all classic agents are at 0 or 1, and showing that +each transformation weakly decreases the feasible region length. For each ball Bi, there is a (pos- +sibly empty) left interval of infeasible points Li and a (possibly empty) right interval of infeasible +points Ri such that Bi = [0, 1] − Li − Ri. We denote the left infeasible interval of points as +Li = [0, xi − (1 − +|SCi| +n )) if xi − (1 − +|SCi| +n ) > 0 and as Li = ∅ otherwise. Similarly, we denote the +right infeasible interval of points as Ri = (xi +(1− +|SCi| +n ), 1]. The union of left infeasible intervals +is therefore ∪i∈[m]Li = [0, maxi∈[m] xi − (1 − +|SCi| +n )) if there exists a nonempty Li, and is empty +otherwise. The union of right infeasible intervals is ∪i∈[m]Ri = (mini∈[m] xi + (1 − +|SCi| +n ), 1] if +there exists a nonempty Ri, and is empty otherwise. Therefore the length of the feasible region is +min +� +min +i∈[m] +� +xi + (1 − |SCi| +n ) +� +, 1 +� +− max +� +0, max +i∈[m] +� +xi − (1 − |SCi| +n ) +�� +. +By symmetry, we suppose without loss of generality that +min +i∈[m] +� +xi + (1 − |SCi| +n ) +� +≤ 1. +We consider the following transformation. Let j correspond to the agent location with the largest +right infeasible interval, i.e. +j := arg min +i∈[m] +� +xi + (1 − |SCi| +n ) +� +, +and we have xj < 1. If xj > 0, move all agents at xj to 0. We show that this transformation +weakly decreases the feasible region length: in mini∈[m] +� +xi + (1 − +|SCi| +n ) +� +, xi decreases to 0 +and |SCi| weakly increases (it strictly increases if there are already agents at 0). Furthermore, +the maxi∈[m] +� +xi − (1 − +|SCi| +n ) +� +term is unaffected unless the shifted group of agents originally +corresponded to the maximum value, in which case the xi term decreases by at most the length +of the shift, and the (1 − +|SCi| +n ) term weakly decreases as |SCi| weakly increases. Therefore this +transformation weakly decreases the feasible region length. Now the agent location with the largest +right infeasible interval is 0, so our feasible region length is +(1 − +|SCj′| +n +) − max +� +0, max +i∈[m] +� +xi − (1 − |SCi| +n ) +�� +, +where j′ corresponds to the location xj′ = 0. If the right boundary of the largest left infeasible +interval maxi∈[m] +� +xi − (1 − +|SCi| +n ) +� +corresponds to the agents at xj′ = 0, then it is at most 0, and +the feasible region length is (1 − +|SCj′ | +n +) which is at least n−nC +n +. We now suppose that this is not the +case. +43 + +We have +max +i∈[m] +� +xi − (1 − |SCi| +n ) +� +≤ max +i∈[m] +� +1 − (1 − |SCi| +n ) +� +, +so the feasible region length is at least +(1 − +|SCj′| +n +) − max +� +0, max +i∈[m] +�|SCi| +n +�� +. +Since arg maxi∈[m] +� |SCi| +n +� +̸= j′, the feasible region length is at least +1 − +|SCj′| + |SCk| +n +≥ n − nC +n +where k ̸= j′. +We now know the length of the (continuous) feasible region corresponding to the classic agents +is at least n−nC +n += nO +n . We now consider the obnoxious agents. Suppose we construct an open ball +of radius +|SOi| +2n +around each group of obnoxious agents at the same location. Any location within +one of these open balls is infeasible. The sum of ball lengths is nO +n , so using a similar argument +to that in the proof of Proposition 2, we see that a feasible solution with respect to both the classic +agents’ and obnoxious agents’ distance inequalities always exists. +44 + diff --git a/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/load_file.txt b/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..18cde5e2932000c5dbcd7623798afb103880d0ff --- /dev/null +++ b/jNE3T4oBgHgl3EQfJAm8/content/tmp_files/load_file.txt @@ -0,0 +1,1650 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf,len=1649 +page_content='Proportional Fairness in Obnoxious Facility Location Haris Aziz*1, Alexander Lam†1(�), Bo Li‡2, Fahimeh Ramezani§1, and Toby Walsh¶1 1UNSW Sydney 2Hong Kong Polytechnic University Abstract We consider the obnoxious facility location problem (in which agents prefer the facility location to be far from them) and propose a hierarchy of distance-based proportional fairness concepts for the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' These fairness axioms ensure that groups of agents at the same location are guaranteed to be a distance from the facility proportional to their group size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider deterministic and randomized mechanisms, and compute tight bounds on the price of proportional fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the deterministic setting, not only are our proportional fairness axioms incompatible with strategyproofness, the Nash equilibria may not guarantee welfare within a constant factor of the optimal welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' On the other hand, in the randomized setting, we identify proportionally fair and strategyproof mechanisms that give an expected welfare within a constant factor of the optimal welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1 Introduction In the obnoxious facility location problem (OFLP), some undesirable facility such as a garbage dump or an oil refinery is to be located on a unit interval (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' the domain of locations is [0, 1]), and the agents along the interval wish to be as far from the facility as possible [Feigenbaum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Ibara and Nagamochi, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this problem, agents have single-dipped preferences, contrasting with the single-peaked preferences of agents in the classic facility location problem (in which agents prefer to be located as close as possible to the facility).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The obnoxious facility location problem models many real-world facility placements which negatively impact nearby agents, such as a prison or a power plant [Church and Drezner, 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aside from the geographic placement of an obnoxious facility, the OFLP can also be applied to haris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='aziz@unsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='au †alexander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='lam1@unsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='au ‡comp-bo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='li@polyu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='hk §ramezani81@googlemail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='com ¶t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='walsh@unsw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='au 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='04340v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='GT] 11 Jan 2023 various collective decision making problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For instance, when agents are averse to their worst possible social outcomes (represented by their locations), the problem captures issues where a decision needs to be made on a social policy or a budget composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When a socially sensitive or a politically undesirable policy needs to be implemented, the placements of such a policy in the space of outcomes may need to take equity considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It is known that placing the facility at one of the interval endpoints maximizes the sum of agent distances [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2013], but such a solution may not be ‘proportionally fair’ for the agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To build intuition, consider the instance depicted in Figure 1 where there are two agents at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 and five agents at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The optimal utilitarian solution (which maximizes the sum of agent distances) places the facility at 0, disproportionately disadvantaging the agents at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 who are located only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 distance from the facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A facility location of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='45 results in both groups of agents having the same distance from the facility, and would be considered to be more ‘fair’ in the egalitarian sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, it is not proportionally fair: despite having over twice as many agents, the group of agents at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8 have the same distance from the facility as the group of agents at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A proportionally fair solution places the facility at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3, and results in the distance between a group of agents and the facility being proportional to the size of the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this work, we pursue notions of proportional fairness as a central concern for the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Specifically, we formulate a hierarchy of proportional fairness axioms which guarantee that each group of agents at the same location are a distance from the facility proportional to the relative size of the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' While proportional fairness axioms have been formulated and studied in the classic facility location problem [Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021], they have not yet been applied to the OFLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our pa- per provides a comprehensive overview of proportionally fair solutions for the obnoxious facility location problem, examining the interplay between proportional fairness and utilitarian/egalitarian welfare, and investigating concerns of agent strategic behaviour in both the deterministic and ran- domized settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='9 1 xx xxxxx f∗ UW 2-UFS f∗ EW Figure 1: OFLP with agent location profile (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8) represented by x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The facil- ity locations (represented by •) correspond to a utilitarian outcome, f ∗ UW = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' a proportionally fair outcome, 2-UFS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' and an egalitarian outcome, f ∗ EW = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Contributions We formalize (approximate) proportional fairness concepts such as 2-Individual Fair Share (2-IFS) and 2-Unanimous Fair Share (2-UFS) in the context of the obnoxious facility loca- tion problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Several of the definitions are natural adaptations of axioms from fair division and participatory budgeting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We find tight bounds on the price of 2-IFS and 2-UFS fairness for the objectives of egalitarian and utilitarian welfare, in both the deterministic and randomized settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2 Table 1: Table of price of fairness and welfare approximation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Price of Fairness Best Known Approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' by 2-UFS SP Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS 2-UFS Deterministic UW 2 2 (Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1) (Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2) Incompatible EW 1 n-1 (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4) (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3) (Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3) Randomized UW 12/11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='09384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='5 (Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3) (Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4) (Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 8) EW 1 1 1 (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3) (Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2) (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 6) We prove that our proportional fairness axioms are incompatible with strategyproofness in the deterministic setting, and give strategyproof randomized mechanisms that satisfy these proportional fairness axioms in expectation and either have a constant approximation ratio for utilitarian welfare or are optimal for egalitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For the deterministic mechanisms that maximize utilitarian welfare under the constraints of 2-IFS and 2-UFS, we prove that a pure ϵ-Nash equilibrium always exists and find linear bounds on the corresponding ϵ-prices of anarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Finally, we give two possible extensions of our model: the fairness axiom of 2-Proportional Fairness (2-PF), which is stronger than 2-UFS as it captures proportional fairness concerns for groups of agents near but not necessarily at the same location, and the hybrid model, which additionally includes ‘classic’ agents which want to be near the facility (along with ‘obnoxious’ agents which want to be far away from the facility).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We give existence results for both extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Table 1 summarizes some of our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Results lacking proofs are proven in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Related Work Facility location problems have been explored in the fields of computer science, economics and operations research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the latter field, an optimization approach is usually taken, aiming to minimize transport costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Summaries of results and approaches in the operations research literature are given by Hekmatfar [2009] and Melo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' On the other hand, research on the facility location problem at the intersection of computer science and economics often takes an approximate mechanism design approach, assuming that agent locations are private information and finding strategyproof mechanisms which approximate the optimal social cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The seminal paper on this approach is written by Procaccia and Tennenholtz [2013], and for a recent and com- prehensive survey on facility location mechanism design, we refer the reader to a survey by Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our paper lies at the intersection of these two approaches, analyzing the agent strate- gic behaviour in the optimal mechanisms which satisfy our proportional fairness axioms as well as identifying a randomized strategyproof and proportionally fair mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The papers most relevant to our research are those that treat the facility as obnoxious: agents prefer the facility to be as far as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to the classical facility location problem, early operations research on the OFLP apply an optimization approach to compute solutions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' a review 3 of these approaches is given by Church and Drezner [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There have been several recent papers on the obnoxious facility location problem that assume agents’ location are private information, and thus aim to design strategyproof facility location mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Some of the earliest research applying a mechanism design approach was initiated by Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2011, 2013], in which they define an agent’s utility as its distance from the facility, and design strategyproof mechanisms which approximate the optimal utilitarian welfare on the path and network metrics, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Other recent examples of related papers include [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Feigenbaum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Ibara and Nagamochi, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' These papers do not pose or study the fairness concepts that we explore in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Notions of fairness in various collective decision problems have been widely explored over the last few decades [Moulin, 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nash, 1950;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Shapley, 1953].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fairness objectives specifically relevant to the facility location problem include maximum cost/egalitarian welfare (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [Pro- caccia and Tennenholtz, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021]) and maximum total/average group cost [Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Rather than optimize/approximate fairness objectives, we focus on solutions enforc- ing proportional fairness axioms, in which groups of agents with similar or identical preferences (represented in our setting as their location) have a minimum utility guarantee relative to the group size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The axioms of proportional fairness that we present stem from several related areas of social choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Individual Fair Share (IFS) is closely related to the axiom of proportionality proposed by Steinhaus [1948], and appears in participatory budgeting along with Unanimous Fair Share (UFS) [Bogomolnaia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Most recently, all of our proportional fairness axioms have been studied in the classical facility location problem by Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In our paper, we also analyse the loss of efficiency, defined as the price of fairness, of imple- menting the proportional fairness axioms that we have proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There have been many recent results on the price of fairness in various social choice contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For instance, Barman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2020], Caragiannis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2012] and Bei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2021] find price of fairness bounds for axioms such as envy-freeness and equitability in fair division, Bertsimas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2011] look at the price of proportional fairness in resource allocation, and Michorzewski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2020] explore the areas of budget division and probabilistic social choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There has also been work on price of fairness bounds for the facility location problem, such as when there is a lexicographic minimax objective [Buzna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2014].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang and Zhang [2021] assume that facilities have preferences over subsets of agents, observing the concepts of fairness and efficiency from the facilities’ perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As strategyproofness is impossible in our deterministic setting, we present results on the ex- istence of pure Nash equilibria and the price of anarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar models where such results are proven include a variation of the Hotelling-Downs model where clients have limited attraction ranges [Feldman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2016], and two-stage facility location games where both facilities and clients act strategically [Krogmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the classic facility location problem, Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2021] characterize the pure Nash equilibria of strictly monotonic facility location mechanisms satisfying UFS and show that the resulting facility location (under the pure Nash equilibria) is also guaranteed to satisfy UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In our setting, the price of anarchy is not well-defined for certain proportionally fair mechanisms, as a pure Nash equilibrium may not exist for a given location pro- file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As a result, we prove the existence of an approximate equilibrium notion, called pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Examples of papers applying this notion to other settings include [Chien and Sinclair, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mylvaganam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The second half of our paper focuses on the randomized setting to overcome the incompatibility with strategyproofness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The use of randomized mechanisms to overcome impossibility results is 4 prevalent in many social choice contexts (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', [Brandt, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz, 2019]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Additionally, Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2022] use a randomized approach in the classic facility location problem to achieve stronger notions of proportional fairness, providing a unique characterization of universally anonymous and universally truthful mechanisms satisfying an axiom called Strong Proportionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The use of randomized mechanisms also results in better approximation ratio/price of fairness bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This is common in many variants of the facility location problem, such as when agents have fractional or optional preferences [Fong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2020], or in the hybrid facility location model [Feigenbaum et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2020].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2 Model Let N = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n} be a set of agents, and let X := [0, 1] be the domain of locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 Agent i’s location is denoted by xi ∈ X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' the profile of agent locations is denoted by x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn) ∈ Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We also assume the agent locations are ordered such that x1 ≤ · · · ≤ xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A deterministic mechanism is a mapping f : Xn → X from a location profile ˆx ∈ Xn to a facility location y ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We define a randomized mechanism as a probability distribution over deterministic mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a facility location y ∈ X, agent i’s utility2 is equal to its distance from the facility u(y, xi) := |y − xi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We are interested in maximizing the objectives of Utilitarian Welfare (UW), defined for a facility location y and location profile x as the sum of agent utilities � i u(y, xi), and Egalitarian Welfare (EW), defined as the minimum agent utility mini u(y, xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that the preferences in OFLP can be viewed as single-dipped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In contrast, the classical facility location problem (FLP) concerns single-peaked preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The underlying model of both FLP and OFLP is the same except that the agents’ preferences have a different structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Unless specified otherwise, we will state results for the obnoxious facility location problem (OFLP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For the first half of the paper, we will discuss the deterministic setting, and then move to the randomized setting for the second half.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3 Proportional Fairness Axioms In this section, we introduce proportional fairness axioms for the obnoxious facility location prob- lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 Individual Fair Share We first present an adaptation of Individual Fair Share (IFS), the weakest of our proportional fair- ness axioms (as studied by Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' [2021] in the context of the classic facility location problem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' IFS provides a minimum distance guarantee between each agent and the facility, requiring that each agent has at least 1 n utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By placing two agents at 1 4 and 3 4, it is easy to see that an IFS solution may not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As a result, we turn to approximations of IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1Our results can be naturally extended to any compact interval on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2This definition is consistent with [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5 Definition 1 (α-Individual Fair Share (IFS)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a profile of locations x, a facility location y satisfies α-Individual Fair Share (α-IFS) if u(y, xi) ≥ 1 αn ∀i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We find that the lowest value of α such that an α−IFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Intu- itively, with α = 2, each agent has a ball of radius 1 2n around its location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The sum of ball lengths is 1, meaning there will always be a 2-IFS solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, for any α < 2, the sum of ball lengths will exceed 1, so an α−IFS solution may not always exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The lowest value of α for which an α-IFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A polynomial time mechanism (which we denote as f ∗ 2IFS) that maximizes the utilitarian wel- fare under the constraint of 2-IFS simply iterates through the endpoints of the intervals which sat- isfy the constraint and outputs the optimal facility location, breaking ties in favour of the leftmost optimal location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='2 Unanimous Fair Share We now present Unanimous Fair Share (UFS), a strengthening and generalization of IFS to groups of agents at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Informally, if there are k agents at the same location, then UFS requires that the facility is placed at least k n distance from these agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Again, we focus on ap- proximations of UFS as a UFS solution may not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 2 (α-Unanimous Fair Share (UFS)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a profile of locations x, a facility location y satisfies α-Unanimous Fair Share (α-UFS) if for any set of agents S with identical location, u(y, xi) ≥ |S| αn ∀i ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that α−UFS implies α−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As with α−IFS, we find that the optimal value of α for which an α-UFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The proof intuition is similar to that of Theorem 1, but the balls vary in size depending on the number of agents in the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The lowest value of α for which an α-UFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to f ∗ 2IFS, a polynomial time mechanism (which we denote as f ∗ 2UFS) that computes the optimal 2-UFS facility location for utilitarian welfare iterates through the endpoints of the intervals satisfying 2-UFS and outputs the optimal facility location, breaking ties in favour of the leftmost optimal location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4 Deterministic Setting We begin with the deterministic setting, analyzing the price of proportional fairness and agent strategic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' All results stated in this section are for the deterministic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 Price of Fairness In this section, we analyze the price of fairness for our (approximate) fairness axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3 Informally, the price of fairness measures the loss of efficiency from imposing a certain fairness constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We focus on the objectives of utilitarian and egalitarian welfare, defined as the sum of utilities and the minimum agent utility, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A fairness property P is a mapping from an agent location profile x ∈ Xn to a (possibly empty) set of facility locations P(x) ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Every facility location P(x) satisfies the fairness property P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of fairness for property P is the worst case ratio between the optimal welfare and the optimal welfare from a facility location satisfying P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 Utilitarian Welfare The utilitarian welfare of an instance is a standard measure of efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Finding the price of our proportional fairness axioms for utilitarian welfare quantifies the impact on efficiency when the OFLP system is constrained to be proportionally fair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 3 (Price of Fairness for Utilitarian Welfare).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let f ∗ UW be the mechanism that returns the solution maximizing utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For utilitarian welfare and fairness property P, we define the price of fairness as the worst case ratio (over all location profiles) between the optimal utilitarian welfare and the optimal utilitarian welfare achieved by a facility location satisfying fairness property P: max x∈[0,1]n � i u(f ∗ UW(x), xi) maxy∈P(x) � i u(y, xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now move to compute the price of 2-IFS fairness for utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall that the solution maximizing utilitarian welfare must be either 0 or 1 [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2-IFS for utilitarian welfare is at least 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose n is even, and that the agents are located at 1 2n −ϵ, 3 2n −2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2n − n 2ϵ, n+1 2n + n 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 2n−3 2n + 2ϵ, 2n−1 2n + ϵ for some sufficiently small ϵ (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under this symmetric profile, either a facility location of 0 or 1 leads to the maximum utilitarian welfare of n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The only facility locations satisfying 2-IFS are within the interval [ 1 2 − n 2ϵ, 1 2 + n 2ϵ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any location in this interval gives the same utilitarian welfare as there are an equal number of agents on both sides, so suppose the facility is at 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This corresponds to a utilitarian welfare of n 2 1 2n(1 + 3 + · · · + n − 1) + 2ϵ(1 + 2 + · · · + n 2) = n 4 + ϵn(1 + n 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Taking the limit ϵ → 0 gives a ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The above example places the facility at the midpoint of the optimal median interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The median is known for minimizing sum of distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2-IFS for utilitarian welfare is 2, and this bound is tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We next compute bounds on the price of 2-UFS fairness for utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2-UFS for utilitarian welfare is 2, and this bound is tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 3The price of fairness can also be interpreted as the approximation ratio for the respective optimal mechanism satisfying the fairness constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 7 0 1 x1 x2 x3 x4 f ∗ UW f ∗ 2IFS Figure 2: The instance in the proof of Lemma 1 for n = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' f ∗ UW represents the utilitarian wel- fare maximizing facility placement, whilst f ∗ 2IFS represents the facility that maximizes utilitarian welfare under the constraints of 2-IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The red intervals denote locations that are infeasible under 2-IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the price of fairness for utilitarian welfare is the same for both proportional fairness axioms, it may be desirable to implement 2-UFS in favour of 2-IFS when loss of utilitarian welfare is the primary concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='2 Egalitarian Welfare The egalitarian welfare is an alternate measure of fairness frequently observed in the literature, focussing on the worst off agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our price of fairness analysis gives an insight into the tradeoff between egalitarian welfare/maximin fairness and proportional fairness in the OFLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 4 (Price of Fairness for Egalitarian Welfare).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let f ∗ EW be the mechanism that returns the solution maximizing Egalitarian Welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For egalitarian welfare and fairness property P, we define the price of fairness as the worst case ratio (over all location profiles) between the optimal egalitarian welfare and the optimal egalitarian welfare achieved by a facility location satisfying fairness property P: max x∈[0,1]n mini u(f ∗ EW(x), xi) maxy∈P(x) mini u(y, xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our first result is that the price of 2-IFS is 1, meaning that a mechanism that maximizes egali- tarian welfare is guaranteed to satisfy 2-IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The intuition is that since a 2-IFS solution (in which every agent obtains at least 1 2n utility) always exists, a solution which maximizes the worst off agent’s utility would therefore result in each agent obtaining at least 1 2n utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2-IFS for egalitarian welfare is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' On the other hand, we find that the price of 2-UFS is noticeably worse, taking a linear factor of n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The intuition behind this is that a coalition of n − 1 agents at one point can ensure that the facility is distant from their location (and closer to the remaining agent’s location) by a ‘factor’ of n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2-UFS for egalitarian welfare is n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first prove that the lower bound is n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It suffices to consider n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider the location profile with 1 agent at 1 2n − ϵ and n − 1 agents at n+1 2n + ϵ for sufficiently small ϵ > 0, (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The optimal solution places the facility at 1 resulting in an egalitarian welfare of n−1 2n − ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The only 2-UFS solutions are in the interval [ 1 n − ϵ, 1 n + ϵ], and the solution of 1 n + ϵ results in an egalitarian welfare of 1 2n + 2ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As ϵ → 0, the ratio approaches n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 8 0 1 x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='xn x1 f ∗ EW 2UFS(x) Figure 3: The instance in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' f ∗ EW represents the egalitarian welfare maxi- mizing facility placement, whilst 2UFS(x) represents the interval of facility placements satisfying 2-UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The red intervals denote locations that are infeasible under 2-UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now prove that the upper bound is n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Firstly, it clearly suffices to consider location profiles where groups contain at most n − 1 agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now suppose there exists such an x where mini u(f ∗ EW(x), xi) ≥ n−1 2n , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' there is a solution where every agent has at least n−1 2n utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Then this also satisfies 2-UFS and results in an egalitarian ratio of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the maximum ratio must have mini u(f ∗ EW(x), xi) < n−1 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Due to 2-UFS, we also have maxy∈2UFS(x) mini u(y, xi) ≥ 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The theorem statement follows from dividing these two terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='2 Incompatibility with Strategyproofness In mechanism design, the normative property of strategyproofness is often sought as it disincen- tivizes agents from misreporting their true location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 5 (Strategyproofness).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A (deterministic) mechanism f is strategyproof if for every agent i ∈ N, we have for every xi, x′ i and ˆx−i, u(f(xi, ˆx−i), xi) ≥ u(f(x′ i, ˆx−i), xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We say that a randomized mechanism is strategyproof in expectation if no agent can improve its expected utility by misreporting its own location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We note that no strategyproof and deterministic mechanism can achieve any approximation of IFS (and therefore also UFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This follows from the characterization of deterministic strategyproof mechanisms for the OFLP by Feigenbaum and Sethuraman [2015] which we describe below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 6 (Feigenbaum and Sethuraman [2015]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let f be a deterministic mechanism s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' |Rf n| = |{fn(x) : x ∈ Xn}| ≤ 2 for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For each n ∈ N, let Rf n = {αn, βn} s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' βn ≥ αn, and let mn = αn+βn 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any n ∈ N, for every profile x ∈ Xn, consider the partition of the agents Lx = {i ∈ N : xi < mn}, M x = {i ∈ N : xi = mn}, and Ex = {i ∈ N : xi > mn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We say that f is a midpoint mechanism if it satisfies the following property: for any n ∈ N, let x, y ∈ Xn be any profiles s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' f(x) = βn and f(y) = αn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If βn > αn, then there exists an agent i which satisfies one of the following: (D-1) i ∈ Lx and i ∈ M y (D-2) i ∈ Lx and i ∈ Ey (D-3) i ∈ M x and i ∈ Ey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 9 This definition has the following intuition: the mechanism can switch the facility location from right to left or from left to right only when an agent crosses the midpoint in the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There exists no strategyproof mechanism that achieves any approximation of IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Feigenbaum and Sethuraman [2015] proved that the midpoint mechanisms characterize all strategyproof mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider any profile which locates at least one agent at each point in Rf n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Such a mechanism does not satisfy any approximation of IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In other words, for every midpoint mechanism, there exists a location profile where the mech- anism places the facility at an agent’s location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since strategyproofness is incompatible with our fairness axioms, we are interested in the per- formance of proportionally fair mechanisms in our model when accounting for agent strategic behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Such performance can be quantified by the price of anarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3 ϵ-Price of Anarchy In this section, we compute the worst case loss of efficiency by agents misreporting their location under the mechanisms f ∗ 2IFS and f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall these are the mechanisms which maximize utilitar- ian welfare under the constraints of 2-IFS and 2-UFS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Typically, this efficiency loss is quantified by the price of anarchy [Koutsoupias and Papadimitriou, 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nisan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2007], defined as the worst case ratio between the utilitarian welfare corresponding to the truthful agent location profile, and the minimum utilitarian welfare corresponding to a pure Nash equilibrium of reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a (truthful) profile of agent locations x and a deterministic mechanism f, a pure Nash equilibrium is a profile of reported agent locations x′ = (x′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ n) such that no single agent can improve its own utility (with respect to its true location) by changing its reported location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, for f ∗ 2IFS and f ∗ 2UFS, a pure Nash equilibrium may not necessarily exist, and hence the price of anarchy is not well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A pure Nash equilibrium may not exist for f ∗ 2IFS or f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As a result, we turn to proving existence of the approximate notion of pure ϵ-Nash equilibria, and computing the corresponding notion of ϵ-price of anarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 8 (Tardos and Vazirani [2007]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A pure ϵ-Nash equilibrium is a profile of reported agent locations x′ = (x′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ n) such that no single agent can improve its own utility (with respect to its true location) by strictly more than ϵ by changing its reported location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A pure Nash equilibrium is a pure ϵ-Nash equilibrium where ϵ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ 2IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For a mechanism f, the ϵ-price of anarchy is defined as the worst case ratio (over all location profiles x) between the utilitarian welfare corresponding to all agents reporting truthfully and the minimum utilitarian welfare corresponding to agents reporting in a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 10 Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given f and x, define the set of pure ϵ-Nash equilibria location profiles as ϵ- Equil(f, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of anarchy for utilitarian welfare is defined as: ϵ-PoA(f) := max x∈Xn � i u(f(x), xi) minx′∈ϵ-Equil(f,x) � i u(f(x′), xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We must show that the price of anarchy is well-defined by proving that a pure Nash equilibrium always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, we cannot simply apply the early theorems of [Debreu, 1952;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Glicksberg, 1952;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fan, 1952], which show existence of a pure Nash equilibrium when basic strategy space conditions are satisfied along with players having continuous and quasiconcave payoff functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='4 This is because the payoff function is neither continuous nor quasiconcave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nevertheless, we prove that a pure Nash equilibrium always exists for f ∗ 2IFS and f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now proceed to find ϵ-price of anarchy bounds for utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The same proof arguments can be applied to find identical bounds for both f ∗ 2IFS and f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ ∈ (0, 1 n), the ϵ-price of anarchy for f ∗ 2IFS and f ∗ 2UFS of utilitarian welfare is at least 2n−1+nϵ 1−nϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of anarchy is unbounded for ϵ ≥ 1 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ ∈ (0, 1 2n), the ϵ−price of anarchy for f ∗ 2IFS and f ∗ 2UFS of utilitarian welfare is at most 2n 1−2nϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Firstly, we note that under a pure ϵ-Nash equilibrium, each agent must have at least 1 2n − ϵ utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To see this, suppose there is a profile of reports x′ where some agent i has strictly less than 1 2n − ϵ utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By switching its report to its truthful location, agent i can strictly improve its utility by greater than ϵ, as the facility must be at least 1 2n distance from the agent’s truthful location, hence x′ is not a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the utilitarian welfare under a pure ϵ-Nash equilibrium must be at least 1 2 − nϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now the utilitarian welfare under any instance is at most n, from all agents being located at 0 and the facility being placed at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The theorem statement immediately follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By setting ϵ = 0 in the ϵ-price of anarchy bounds of Theorems 6 and 7, we achieve the follow- ing result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If a pure Nash equilibrium exists, the price of anarchy for f ∗ 2IFS and f ∗ 2UFS of utili- tarian welfare is between 2n − 1 and 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the ϵ-price of anarchy of our proportional fairness axioms in the deterministic setting is linear, it may be desirable to use a randomized, strategyproof mechanism when the agent locations are private information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We give examples of such mechanisms in the upcoming section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5 Randomized Mechanisms By using randomized mechanisms, we can achieve a better price of fairness for 2-IFS and 2-UFS, and overcome the incompatibility with strategyproofness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We define a randomized mechanism 4A function f is quasiconcave if f(λx + (1 − λ)y) ≥ min{f(x), f(y)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 11 as a probability distribution over deterministic mechanisms, and an agent’s utility as its expected distance from the facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the randomized setting, the optimal approximation of IFS and UFS for which a solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This can be easily seen by setting 1 agent at 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our fairness axioms are adapted as follows: Definition 10 (α-Individual Fair Share (IFS) in expectation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A mechanism f satisfies α-Individual Fair Share in expectation (α-IFS in expectation) if for any location profile x, E[u(f(x), xi)] ≥ 1 αn ∀i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 11 (α-Unanimous Fair Share (UFS) in expectation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A mechanism f satisfies α-Unanimous Fair Share in expectation (α-UFS in expectation) if for any location profile x and any set of agents S at the same location, E[u(f(x), xi)] ≥ |S| αn ∀i ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='1 Strategyproofness From Proposition 4, we know that in the deterministic setting, strategyproofness is incompatible with our proportional fairness axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the randomized setting, the space of mechanisms is much larger and hence we are able to overcome this impossibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first consider Mechanism 2 from [Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2013].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Denoting the numbers of agents located in [0, 1/2] and (1/2, 1] by n1 and n2 respectively, Mechanism 2 places the facility at 0 with probability α and at 1 with probability (1−α), where α = 2n1n2+n2 2 n2 1+n2 2+4n1n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This mechanism is known to be group strategy-proof (in expectation) and 3 2−approximates the utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As we will show, this mechanism satisfies 2-UFS (and therefore also 2-IFS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mechanism 2 satisfies 2-UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='2 Egalitarian Welfare We now provide some results on egalitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Specifically, we give a randomized, strate- gyproof mechanism which maximizes egalitarian welfare subject to the constraints of 2-IFS and 2-UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Randomized Egalitarian Welfare mechanism If all agents are in [0, 1 2], place the facility at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If all agents are in ( 1 2, 1], place the facility at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Otherwise, place the facility at 0 with probability 1 2 and at 1 with probability 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By considering cases, it is easy to see that this mechanism is strategyproof in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Randomized Egalitarian Welfare mechanism is strategyproof in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 12 Before analyzing the optimality and approximation ratio of this mechanism, we prove a lemma that shows that in the randomized setting, it suffices to consider mechanisms which can only place the facility at 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider an arbitrary agent location profile x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For every 2-IFS/UFS randomized mech- anism that gives strictly positive probability to a facility placement between 0 and 1, there exists a 2-IFS/UFS randomized mechanism that only gives positive support to a facility placement at 0 or 1 that leads to weakly higher expected utility for each agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now proceed to prove that Randomized Egalitarian Welfare mechanism is egalitarian welfare-optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The Randomized Egalitarian Welfare mechanism is optimal for egalitarian wel- fare and satisfies 2-UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The cases where all agents are in [0, 1 2] and all agents are in ( 1 2, 1] are trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now examine the case where both intervals have at least one agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An agent at xi has 1 2xi + 1 2(1−xi) = 1/2 expected distance from the facility, hence this mechanism satisfies 2-UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By Lemma 2, it suffices to only consider mechanisms which can only place the facility at 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose that instead of having 1 2 probability of placing the facility at either endpoint, we place the facility at 1 with 1 2 + p probability and at 0 with 1 2 − p probability, where p ∈ (0, 1 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The expected utility of the rightmost agent is xn( 1 2 − p) + (1 − xn)( 1 2 + p) = 1 2 + p(1 − 2xn) < 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By a symmetric argument, if the facility was placed at 1 with 1 2 − p probability and at 0 with 1 2 + p probability, the expected utility of the leftmost agent would be strictly less than 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence, our mechanism is optimal in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In other words, the approximation ratio of this mechanism for egalitarian welfare is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall that the price of fairness can be interpreted as the approximation ratio of the respective optimal mechanism that satisfies the fairness constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This leads us to the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the randomized setting, the price of fairness of 2-UFS for egalitarian welfare is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This is in stark contrast to the deterministic setting where the respective price of fairness is n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3 2-IFS We now analyze utilitarian welfare, beginning with the axiom of 2-IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider the randomized mechanism below which maximizes the utilitarian welfare subject to the 2-IFS constraint: 2-IFS Randomized mechanism If �n i=1 xi = n 2, place the facility at 0 with probability 1 2 and at 1 with probability 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If �n i=1 xi > n 2, – If x1 ≥ 1 2n, place the facility at 0 with probability 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – If x1 < 1 2n, place the facility at 0 with probability 1 − α, and at 1 with probability α, where α = 1−2nx1 2n(1−2x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 13 If �n i=1 xi < n 2, – If xn ≤ 1 − 1 2n, place the facility at 1 with probability 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – If xn > 1 − 1 2n, place the facility at 0 with probability 1 − β, and at 1 with probability β, where β = 1−2nxn 2n(1−2xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The intuition behind this mechanism is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When �n i=1 xi = n 2, both facility locations of 0 and 1 are tied in terms of maximizing utilitarian welfare, and by placing the facility at either location with probability 1 2, we achieve 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When �n i=1 xi > n 2, the optimal facility location is 0, so the mechanism places the facility there if it does not violate 2-IFS for any agent, else it also places the facility at 1 with the minimum probability that ensures 2-IFS is ensured for all agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The case where �n i=1 xi < n 2 is similar and symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our proof of the mechanism’s welfare-optimality is based on its intuition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS Randomized mechanism is optimal for utilitarian welfare amongst all random- ized mechanisms satisfying 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now prove a tight, constant approximation ratio for this mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS Randomized mechanism has an approximation ratio for utilitarian welfare of 12 11 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This leads to the following price of fairness result for 2-IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the randomized setting, the price of fairness of 2-IFS for utilitarian welfare is 12 11 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='4 2-UFS We now move to analyze the axiom of 2-UFS in the context of utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As in the previ- ous subsection, we begin by describing a randomized mechanism which maximizes the utilitarian welfare subject to the 2-UFS constraint: 2-UFS Randomized mechanism Order the m unique agent locations so that x1 is the smallest agent location and xm is the largest agent location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , Sm denote the groups of agents at the m unique agent locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If �m i=1 |Si|xi = n 2, place the facility at 0 with probability 1 2 and at 1 with probability 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If �m i=1 |Si|xi > n 2, – Let k denote the index of the largest unique agent location satisfying xk < 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – For i in {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , k}, set αi = |Si|−2nxi 2n(1−2xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – Letting α = max{α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , αk}, place the facility at 0 with probability 1 − α and at 1 with probability α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 14 If �m i=1 |Si|xi < n 2, – Let k denote the index of the smallest unique agent location satisfying xk > 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – For i in {k, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , m}, set αi = |Si|−2nxi 2n(1−2xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – Letting α = min{αk, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , αm}, place the facility at 0 with probability 1 − α and at 1 with probability α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This mechanism is similar to the 2-IFS Randomized mechanism, but we must now iterate through the groups of agents to find the optimal value of α that guarantees 2-UFS for all agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Specifically, if �m i=1 |Si|xi > n 2, then αi denotes the smallest probability weight on location 1 such that 2-UFS is achieved for Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence by setting α to be the largest αi, we achieve 2-UFS for all agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Again, our proof of this mechanism’s optimality is based on the aforementioned intuition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-UFS Randomized mechanism is optimal for utilitarian welfare amongst all random- ized mechanisms satisfying 2-UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Surprisingly, imposing the stronger fairness axiom of 2-UFS as opposed to 2-IFS has a minimal effect on the welfare-optimal mechanism’s approximation ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-UFS Randomized mechanism has an approximation ratio of 2 7(1 + 2 √ 2) ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='09384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' From Theorem 10, we have the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the randomized setting, the price of fairness of 2-UFS for utilitarian welfare is 2 7(1 + 2 √ 2) ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='09384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 6 Extension 1: Proportional Fairness In our analyses of price of fairness and randomized mechanisms, we have considered 2-IFS and 2-UFS, which give minimum distance guarantees for individual agents and groups of agents at the same location, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' One downside of the 2-UFS definition is that agents located near each other but not at the same location are considered to be in separate groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An axiom which accounts for groups of agents located relatively close to each other is Proportional Fairness (PF), from [Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As with IFS and UFS, a PF solution may not exist so we define approximate α−PF as follows: Definition 12 (α-PF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a profile of locations x, a facility location y satisfies α-PF if for any set of agents S within range r := maxi∈S{xi} − mini∈S{xi}, u(y, xi) ≥ 1 α(|S|/(n)) − r ∀i ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that α−PF implies α−UFS, and therefore also implies α−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, α−UFS does not imply α−PF, hence α−PF is a stronger notion than α−UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For α = 2, there exists an α−UFS facility location y that does not satisfy α−PF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 15 It follows from Theorem 2 that the smallest value of α for which an α-PF solution exists for all location profiles is greater or equal than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now show that a 2-PF solution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A 2-PF solution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof Sketch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We prove the theorem by induction on the number of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose we have m groups of agents where each group consists of agents at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When m = 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e, all the agents are at the same point, 2-PF existence follows from 2-UFS existence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now, we assume for any k groups of agents where k ≤ m that there exists a 2-PF solution and we extend that for k = m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose we have m + 1 groups of agents placed at centers c1, c2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', cm+1 which are ordered from left to right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Set a ball Bi with radius |Si| 2n around each center ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider several cases based on the intersection of balls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If all the balls are disjoint, it can be shown there exists a point y ∈ [0, 1] which lies outside the union of balls B1 ∪ · · · ∪ Bm+1, satisfying the 2-PF inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If there exists two balls, say B1 and B2, intersecting each other, they are merged with the agents placed at a new center c′ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We then set a ball B′ 1 centered at c′ 1 with radius |S1| 2n + |S2| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now, we have m groups of agents placed at c′ 1, c3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , cm+1, and from our inductive assumption, we know a 2-PF solution exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Thus, 2-PF is the optimal approximation of PF for the obnoxious facility location problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 7 Extension 2: Hybrid Model In the hybrid model, agents either want to be located close to the facility (as in the classic facility location model), or wish to be located far away from the facility (as in our obnoxious facility location model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Such a model has several real-world applications such as the placement of schools or religious places of worship;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' families with children or religious people would want to live near the facility for convenience, whilst others would want to be far from the facility due to the increased noise and traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In our model, we say an agent is type C if it is a classic agent and prefers to be closer to the facility, and an agent is type O if it is an obnoxious agent and prefers to be further away from the facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='5 We denote the set of classic agents as NC and the set of obnoxious agents as NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A type C agent has utility u(y, xi) = 1 − d(y, xi) and a type O agent has utility u(y, xi) = d(y, xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='6 When defining IFS and UFS in the hybrid model, we use definitions consistent with [Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021] and this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Our definition of Hybrid-Individual Fair Share (H-IFS) provides an appropriate distance guarantee for each agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 13 (Hybrid-Individual Fair Share (H-IFS)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a profile of locations x, a facility location y satisfies Hybrid-Individual Fair Share (H-IFS) if for all i ∈ NC, u(y, xi) ≥ 1 n or, equivalently, d(y, xi) ≤ 1 − 1 n, 5Our model is based on the model presented by Feigenbaum and Sethuraman [2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 6This choice of utility function is adapted from [Feigenbaum and Sethuraman, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We refer the reader to those papers for a justification of the utility model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 16 and for all i ∈ NO, u(y, xi) ≥ 1 2n or, equivalently, d(y, xi) ≥ 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When defining UFS, we aim to capture proportional fairness guarantees for subsets of agents of the same type at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider every subset S ⊆ N of agents at the same location, where S = SC ∪ SO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' SC denotes the agents of S that are of type C, and SO denotes the agents of S that are of type O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Definition 14 (Hybrid-Unanimous Fair Share (H-UFS)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Given a profile of locations x such that a subset of Sj ⊆ N agents7 share the same type and location, a facility location y satisfies Hybrid- Unanimous Fair Share (H-UFS) if for all i ∈ SC, u(y, xi) ≥ |SC| n or, equivalently, d(y, xi) ≤ 1 − |SC| n , and for all i ∈ SO, u(y, xi) ≥ |SO| 2n or, equivalently, d(y, xi) ≥ |SO| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose there are n − k type C agents and k type O agents, all at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The facility needs to be between k 2n and k n distance from the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Although our definitions have a discrepancy in utility functions between the classic and obnox- ious agents, we have specified them to be consistent with related literature and to be the optimal bounds such that a solution is guaranteed to exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, existence of a H-UFS solution under our definition implies existence of a solution under a weaker definition where a set SC of classic agents at the same location instead have a utility guarantee of |SC| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theorem 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under the hybrid model, a H-UFS solution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 8 Discussion In this paper we have formulated proportional fairness axioms for the obnoxious facility location problem, and given welfare-optimal deterministic and randomized mechanisms satisfying these axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In both the deterministic and randomized setting, we prove tight price of fairness bounds for 2-IFS and 2-UFS, for the objectives of utilitarian and egalitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' These correspond to the approximation ratios of the respective welfare-optimal mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For the deterministic utilitarian welfare-optimal mechanisms, we also prove existence of pure ϵ-Nash equilibria and linear ϵ-price of anarchy bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We also give a randomized, strategyproof mechanism satisfying 2-UFS with a constant utilitarian approximation ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There are several future directions to this work, such as those stemming from our proposed ex- tensions of 2-PF and the hybrid model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For example, the price of anarchy and price of fairness for these two extensions could be computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We could also supplement our price of anarchy results 7j ∈ {C, O} 17 with bounds on the price of stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Further extensions to the price of fairness results could in- volve different objective and utility functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It is also worth analyzing the Nash equilibria of the randomized utilitarian welfare-optimal mechanisms, as they are not strategyproof in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Although our proportional fairness axioms are incompatible with strategyproofness in the deter- ministic setting, we may consider weaker notions of strategyproofness which may be compatible with our fairness properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Acknowledgements We would like to acknowledge the helpful feedback and suggestions from Minming Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' References H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bogomolnaia, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Moulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fair mixing: the case of dichotomous preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the 2019 ACM Conference on Economics and Computation, pages 753–781, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lam, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lee, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Walsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategyproof and proportionally fair facility location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' CoRR, abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='01566, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suzuki, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Walsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Random rank: The one and only strategyproof and proportionally fair randomized facility location mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='14798, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Aziz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A probabilistic approach to voting, allocation, matching, and coalition formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In The Future of Economic Design, pages 45–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Barman, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bhaskar, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Shah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Optimal bounds on the price of fairness for indivisible goods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In International Conference on Web and Internet Economics, pages 356–369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bei, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Manurangsi, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suksompong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of fairness for indivisible goods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theory of Computing Systems, 65(7):1069–1093, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bertsimas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Farias, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Trichakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Operations research, 59(1):17– 31, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bogomolnaia, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Moulin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Stong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Collective choice under dichotomous preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Journal of Economic Theory, 122(2):165–184, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Brandt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Rolling the dice: Recent results in probabilistic social choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Trends in computational social choice, pages 3–26, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Buzna, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Koháni, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Janáˇcek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An approximation algorithm for the facility location problem with lexicographic minimax objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Journal of Applied Mathematics, 2014, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Caragiannis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Kaklamanis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Kanellopoulos, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Kyropoulou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The efficiency of fair divi- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theory of Computing Systems, 50(4):589–610, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 18 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Filos-Ratsikas, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mechanism design for facility location problems: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In 30th, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Yuan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Facility location games with optional preference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theoretical Computer Science, 847:185–197, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cheng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Yu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mechanisms for obnoxious facility game on a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Combinato- rial Optimization and Applications - 5th International Conference, COCOA 2011, Zhangjiajie, China, August 4-6, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proceedings, pages 262–271, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cheng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Yu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategy-proof approximation mechanisms for an obnoxious facility game on networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 497:154–163, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cheng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Han, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Yu, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategy-proof mechanisms for obnoxious facility game with bounded service range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 37(2):737–755, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chien and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Sinclair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Convergence to approximate nash equilibria in congestion games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Games and Economic Behavior, 71(2):315–327, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Church and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Drezner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Review of obnoxious facilities location problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Computers & Operations Research, 138:105468, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Debreu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A social equilibrium existence theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 38(10):886–893, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fixed-point and minimax theorems in locally convex topological linear spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proceed- ings of the National Academy of Sciences of the United States of America, 38(2):121, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Feigenbaum and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Sethuraman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategyproof mechanisms for one-dimensional hybrid and obnoxious facility location models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Incentive and Trust in E-Communities, Papers from the 2015 AAAI Workshop, Austin, Texas, USA, January 25, 2015, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Feigenbaum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Sethuraman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategic facility location problems with linear single-dipped and single-peaked preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Autonomous Agents and Multi-Agent Systems, 34(2):1–47, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Feldman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fiat, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Obraztsova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Variations on the hotelling-downs model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Thirtieth AAAI Conference on Artificial Intelligence, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Todo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Yokoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Facility location games with fractional preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Glicksberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A further generalization of the kakutani fixed point theorem, with application to nash equilibrium points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proceedings of the American Mathematical Society, 3(1):170–174, 1952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hekmatfar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Facility location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Physica-Verlag, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 19 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Ibara and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nagamochi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Characterizing mechanisms in obnoxious facility game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Combina- torial Optimization and Applications - 6th International Conference, COCOA 2012, Banff, AB, Canada, August 5-9, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proceedings, volume 7402 of Lecture Notes in Computer Science, pages 301–311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Springer, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Koutsoupias and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Papadimitriou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Worst-case equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Annual Symposium on Theoretical Aspects of Computer Science, pages 404–413.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Springer, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Krogmann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lenzner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Molitor, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Skopalik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Two-stage facility location games with strategic clients and facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pages 292–298, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Melo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nickel, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Saldanha-Da-Gama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Facility location and supply chain management– a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' European Journal of Operational Research, 196(2):401–412, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Michorzewski, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Peters, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Skowron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Price of fairness in budget division and probabilistic social choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2184–2191, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Moulin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fair division and collective welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' MIT press, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mylvaganam, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Sassano, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Astolfi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Constructive ϵ-nash equilibria for nonzero-sum dif- ferential games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' IEEE Transactions on Automatic Control, 60(4):950–965, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The bargaining problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Econometrica, 18(2):155–162, 1950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nisan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Roughgarden, É.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Tardos, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Vazirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Algorithmic Game Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cambridge University Press, New York, NY, USA, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Procaccia and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Tennenholtz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Approximate mechanism design without money.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In 14th, pages 1–26, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Shapley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A Value for n-Person Games, pages 143–164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Princeton University Press, Princeton, NJ, 1953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Steinhaus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The problem of fair division.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Econometrica, 16:101–104, 1948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Tardos and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Vazirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Basic solution concepts and computational issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Nisan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Roughgarden, É.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Tardos, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Vazirani, editors, Algorithmic Game Theory, chapter 1, pages 3–28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Cambridge University Press Cambridge, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Fairness and efficiency in facility location problems with continuous demands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pages 1371–1379, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Wu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Facility’s perspective to fair facility location problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 5734–5741, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 20 X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Duan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Two-facility location games with minimum distance requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Journal of Artificial Intelligence Research, 70:719–756, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Zhou, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Li, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Chan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Strategyproof mechanisms for group-fair facility location prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, pages 613–619, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 21 A Proof of Proposition 1 Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The lowest value of α for which an α-IFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider n agents at ordered locations x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For each agent i, we construct an open ball Bi with center xi and radius 1 2n: Bi = {z|d(z, xi) < |1| 2n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that the sum of ball lengths is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There are two cases: Bi ∩ Bj = ∅ for all i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the sum of ball lengths is 1, the boundaries of two consecutive balls intersect, and thus the facility can be placed at the boundary of any ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bi ∩ Bj ̸= ∅ for some i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case, the length of B1 ∩ · · · ∩ Bn is less than 1, hence there must be an interval on [0, 1] that is not covered by any ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The facility can be placed within this interval to achieve a 2−IFS solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To see that an α−IFS solution may not exist for α < 2, consider for n = 2 the location profile ( 1 4, 3 4), in which the intersection of the balls encompasses the entire unit interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' B Proof of Proposition 2 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The lowest value of α for which an α-UFS solution always exists is α = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider n agents at m unique ordered locations x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xm, and for i ∈ [m], let Si denote the group of agents at location xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For each Si, we construct an open ball Bi with center xi and radius |Si| 2n : Bi = {z|d(z, xi) < |Si| 2n }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that the sum of ball lengths is �m i=1 |Si| n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There are two cases: Bi ∩ Bj = ∅ for all i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the sum of ball lengths is 1, the boundaries of two consecutive balls intersect, and thus the facility can be placed at the boundary of any ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bi ∩ Bj ̸= ∅ for some i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case, the length of B1 ∩ · · · ∩ Bm is less than 1, hence there must be an interval on [0, 1] that is not covered by any ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The facility can be placed within this interval to achieve a 2−UFS solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To see that an α−UFS solution may not exist for α < 2, place all n agents at location 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' C Proof of Theorem 1 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2−IFS for utilitarian welfare is 2, and this bound is tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose without loss of generality that the optimal facility location is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We define a sufficiently small ϵ > 0 which will be used in specifying certain agent locations, but is negligible in the computation of the welfare ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1: Suppose that the optimal 2−IFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 22 Since y∗ is the optimal 2−IFS facility location, any facility location left of xk must violate 2−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To see this, suppose there exists some y′ < xk such that y′ satisfies 2−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A facility placed at y′ corresponds to a higher utilitarian welfare than y∗ as it is more distant from a majority of agents, leading to a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, the welfare ratio � i u(f ∗ UW(x), xi) maxy∈2IFS(x) � i u(y, xi) = �n i=1 xi �k i=1(y∗ − xi) + �n i=k+1(xi − y∗) increases with �k i=1 xi, so we must maximize x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xk whilst ensuring any facility location left of xk violates 2−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We therefore deduce that xi = 2i−1 2n −iϵ for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , k}, and we therefore have max x∈[0,1]n � i u(f ∗ UW(x), xi) maxy∈2IFS(x) � i u(y, xi) = max x∈[0,1]n �n i=1 xi �k i=1(y∗ − xi) + �n i=k+1(xi − y∗) = max xk+1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=',xn∈[0,1] �k i=1( 2i−1 2n − iϵ) + �n i=k+1 xi �k i=1(y∗ − ( 2i−1 2n − iϵ)) + �n i=k+1(xi − y∗) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now for the optimal facility location to be 0, we must have � i xi ≥ � i(1−xi), or � i xi ≥ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We rewrite this as �n i=k+1 xi ≥ n 2 − �k i=1 xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now the welfare ratio increases as �n i=k+1 xi decreases, so it is maximized w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t xk+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn when we have �n i=k+1 xi = n 2 − �k i=1 xi (which results in location 1 being tied with 0 as the optimal facility location).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Substituting this into the welfare ratio, we have max x∈[0,1]n � i u(f ∗ UW(x), xi) maxy∈2IFS(x) � i u(y, xi) = max xk+1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=',xn∈[0,1] �k i=1( 2i−1 2n − iϵ) + �n i=k+1 xi �k i=1(y∗ − ( 2i−1 2n − iϵ)) + �n i=k+1(xi − y∗) = �k i=1( 2i−1 2n − iϵ) + n 2 − �k i=1( 2i−1 2n − iϵ) (2k − n)y∗ − �k i=1( 2i−1 2n − iϵ) + n 2 − �k i=1( 2i−1 2n − iϵ) = n/2 (2k − n)y∗ − 2( 1 2n + · · · + 2k−1 2n ) + n 2 + 2 �k i=1 iϵ = n/2 (2k − n)y∗ + n 2 − k2 n + 2 �k i=1 iϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since k ≤ n 2, shifting a facility within (xk, xk+1) slightly to the left causes the total utility to weakly increase as there are a greater number of agents who gain utility than those who lose utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore as y∗ is the optimal 2−IFS facility, it must be as close to xk as possible, at y∗ = k n − kϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 23 Substituting this into the welfare ratio (and ignoring the negligible ϵ), we have max x∈[0,1]n � i u(f ∗ UW(x), xi) maxy∈2IFS(x) � i u(y, xi) = n/2 (2k − n)y∗ + n 2 − k2 n = n/2 (2k − n) k n + n 2 − k2 n = n/2 k2 n − k + n 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Simple calculus shows that the denominator is minimized (w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' k ∈ (0, n 2]) when k = n 2, resulting in a welfare ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore when the optimal 2−IFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k ≤ n 2, the price of 2−IFS for utilitarian welfare is at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2: Suppose that the unique optimal 2−IFS facility location y satisfies y∗ ∈ [xk, xk+1], where k > n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='8 We can assume uniqueness without loss of generality as a differing facility location y† with the same utilitarian welfare as y∗ must satisfy y† ∈ [xj, xj+1], where j ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to the previous case, any facility location right of xk+1 must violate 2−IFS as y∗ is the optimal facility location, and we have y∗ = xk+1 − 1 2n as it lies to the right of the majority of agents, so shifting it leftwards would decrease the utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We also remark that xk ≤ xk+1 − 1 n as y∗ satisfies 2−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We apply a sequence of transformations to the location profile where each transformation in- creases the welfare ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The transformations convert the location profile into an instance of Case 1 (where the optimal 2−IFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k ≤ n 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The transformations are as follows: If xk−1 (and xk) are at y∗ − 1 2n(= xk+1 − 1 n), shift xk rightwards to x′ k = y∗ + (y∗ − xk), causing the optimal 2−IFS facility location y∗ to remain at the same location and/or satisfy Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If xk−1 ∈ (xk+1 − 2 n, xk+1 − 1 n), shift xk rightwards to x′ k = xk−1 + 1 n, causing the optimal 2−IFS facility location y∗ to move leftwards to y′ = x′ k − 1 2n(= xk−1 + 1 2n) and/or satisfy Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If xk−1 ≤ xk+1 − 2 n, shift xk rightwards to x′ k = xk+1 − 1 n + ϵ, causing the optimal 2−IFS facility location y∗ to move leftwards to y′ = x′ k − 1 2n(= xk+1 − 3 2n + ϵ) and/or satisfy Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To justify the effect on y∗ from shifting xk, recall that if y∗ still satisfies Case 2 after the shift, then it is still the rightmost location satisfying 2−IFS as the majority of agents lie left of y∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now if y∗ changes to a location satisfying Case 1, then by our previous analysis the welfare ratio is at most 2, so we can disregard this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose that the first dot point occurs i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' y∗ remains at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall that the welfare ratio is � i u(f ∗ UW(x), xi) maxy∈2IFS(x) � i u(y, xi) = �n i=1 xi �n i=1 |y∗ − xi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 8We can disregard k = n as we would have y∗ = 1, and as 0 is the optimal facility location, we have �n i=1 xi ≥ n 2 , which corresponds to a welfare ratio under 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 24 The optimal facility location is still 0 as the sum of agent locations increases, so the numerator strictly increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The denominator remains the same as xk has moved to an equidistant location on the other side of y∗, and all other agents are at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Thus this transformation increases the welfare ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider the second and third dot points, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', y∗ moves to y′ = x′ k − 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Clearly, the numerator increases, so we now show that the denominator decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The change in utilitarian welfare from the transformation is �k−1 � i=1 (y′ − xi) + (x′ k − y′) + n � i=k+1 (xi − y′) � − � k � i=1 (y∗ − xi) + n � i=k+1 (xi − y∗) � = (k − 1)(y′ − y∗) − (n − k)(y′ − y∗) + (x′ k + xk) − (y∗ + y′) = (y′ − y∗)(2k − n − 1) + (x′ k + xk) − (y∗ + y′) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We know that (y′−y∗)(2k−n−1) < 0 as y′ < y∗ and k ≥ n+1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We also know that xk ≤ y∗− 1 2n as y∗ satisfies 2−IFS and that y′ = x′ k − 1 2n, so from this we deduce that x′ k +xk < y∗ +y′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the denominator of the welfare ratio decreases, and the transformation increases the welfare ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the transformations only require that k > n 2, we can repeatedly apply them (and update xk to be the rightmost agent left of y∗) until we have an instance of Case 1, which has been shown to have a maximum welfare ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the theorem statement holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' D Proof of Theorem 2 Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2−UFS for utilitarian welfare is 2, and this bound is tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to the proof of Theorem 1, we suppose without loss of generality that the optimal facility location is 0 and define a sufficiently small ϵ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We also divide the proof into two cases: Case 1: Suppose that the optimal 2−UFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To avoid contradicting the 2−UFS optimality of y∗, the agent locations x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xk must be arranged such that any location left of xk violates 2−UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, those agents must be located such that �k i=1 xi is maximized, as the welfare ratio increases with �k i=1 xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim that this occurs when all k agents are at the same location of k 2n − ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To see this, suppose that among agents {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , k} that there are m ≤ k unique agent locations, and construct an open ball at each unique agent location with radius c 2n, where c is the number of agents at the location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any location within an open ball fails to satisfy 2−UFS, so to maximize the welfare ratio and avoid a contradiction, the leftmost open ball must include 0, and the m balls should overlap by an ϵ distance (to prevent a 2−UFS facility being placed at the boundary between two balls).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An example of this with m = k is for i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , k}, xi = 2i−1 2n − iϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore we see that for m ≤ k unique agent locations, the sum of agent locations is �k i=1 xi = 1 2n + · · · + 2k−1 2n − mϵ, which is maximized when all k agents are at k 2n − ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As in the 2−IFS proof, we require �n i=1 xi ≥ n 2 for the optimal facility location to be 0, and since the welfare ratio decreases with xk+1 + · · · + xn, we must have �n i=1 xi = n 2 and 25 xk+1 + · · · + xn = n 2 − (x1 + · · · + xk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, as y is the optimal 2−UFS location, it must take the leftmost 2−UFS point within [xk, xk+1], which is at k n − ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Substituting these expressions into the welfare ratio gives � i u(f ∗ UW(x), xi) maxy∈2UFS(x) � i u(y, xi) = �n i=1 xi �n i=1 |y∗ − xi| = n/2 k2 n − k + n 2 , which has been shown in the proof of Theorem 1 to attain a maximum of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore in this case, the price of 2−UFS for utilitarian welfare is at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2: Suppose that the unique optimal 2−UFS facility location y∗ satisfies y∗ ∈ [xk, xk+1], where k > n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We can assume uniqueness without loss of generality as a differing facility location y† with the same utilitarian welfare as y∗ must satisfy y† ∈ [xj, xj+1], where j ≤ n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We will apply a sequence of transformations which weakly increase the welfare ratio and result in a location pro- file satisfying Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The transformation works as follows: shift xk rightwards to x′ k = y∗ + 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If there is already an agent at y + 1 2n, then instead shift xk rightwards to x′ k = y∗ + 1 2n + ϵk where ϵk > 0 is sufficiently small, such that there are no other agents at x′ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='9 This causes y∗ to remain at the same location and/or satisfy Case 1, as if y∗ still satisfies Case 2, it is the rightmost location satisfying 2−UFS10, and the location y∗ still satisfies 2−UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, the optimal facility location remains as 0 as the sum of agent locations strictly increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If y∗ satisfies Case 1 then we know the welfare ratio is at most 2 so we disregard this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now show that otherwise the transformation increases the welfare ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall that the welfare ratio is � i u(f ∗ UW(x), xi) maxy∈2UFS(x) � i u(y, xi) = �n i=1 xi �n i=1 |y∗ − xi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We know that before the shift, y∗ ≥ xk + 1 2n, so the numerator increases by at least 1 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The denominator either decreases, remains the same, or increases by at most ϵk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since ϵk is chosen to be sufficiently small, we conclude that this transformation causes the welfare ratio to weakly increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By repeatedly applying these transformations and updating xk to be the rightmost agent left of y∗, we eventually arrive at a location profile satisfying Case 1, which we know has a welfare ratio of at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence the price of 2−UFS for utilitarian welfare is at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 1 also implies that the price of 2−UFS for utilitarian welfare is at least 2, and hence the theorem statement follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' E Proof of Proposition 3 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of 2−IFS for egalitarian welfare is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We know a 2−IFS solution must always exist, meaning that under any agent location pro- file, there exists a facility location such that every agent is at least 1 2n distance from the facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It follows immediately that a solution maximizes egalitarian welfare satisfies 2−IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 9Such a location always exists unless xn = 1, y∗ = 1 − 1 2n and x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn−1 < y∗, but it can easily be shown using �n i=1 ≥ n 2 that such a location profile corresponds to a welfare ratio less than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 10The majority of agents are left of y∗, so shifting y∗ leftwards decreases the utilitarian welfare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 26 F Proof of Proposition 5 Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A pure Nash equilibrium may not exist for f ∗ 2IFS or f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For simplicity, we prove this statement for f ∗ 2IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The same arguments hold verbatim for f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We define a sufficiently small constant ϵ > 0, and consider the location profile x = ( 1 4−ϵ, 3 4+ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote the reported location profile as x′ = (x′ 1, x′ 2), and prove this statement by considering cases on agent 1’s reported location x′ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that under a pure Nash equilibrium, f ∗ 2IFS cannot place the facility in the interval [0, 1 2 − ϵ), as agent 1 can change its report to x′ 1 = 1 4 − ϵ to strictly increase its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similarly, under a pure Nash equilibrium, f ∗ 2IFS cannot place the facility in the interval ( 1 2 + ϵ, 1], as agent 2 can change its report to x′ 2 = 3 4 + ϵ to strictly increase its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1 (x′ 1 < 1 4 − ϵ): If x′ 2 ≤ 3 4, then f ∗ 2IFS places the facility at 1, and thus this is not a pure Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If x′ 2 > 3 4, then f ∗ 2IFS places the facility at x′ 1 + 1 4 < 1 2 − ϵ, thus this is also not a pure Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2 (x′ 1 ≥ 1 4): If f ∗ 2IFS places the facility at a location strictly right of 0, then this is not a pure Nash equilibrium as agent 2 can report x′ 2 = 1 to move the facility to 0, improving its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If f ∗ 2IFS places the facility at 0, then this is also not a pure Nash equilibrium as agent 1 can change its report to x′ 1 = 1 4 − ϵ to strictly increase its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 3 (x′ 1 ∈ [ 1 4 − ϵ, 1 4)): Recall that under a pure Nash equilibrium, f ∗ 2IFS cannot place the facility in the interval ( 1 2 + ϵ, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Due to x′ 1, f ∗ 2IFS also cannot place the facility in the interval [0, x′ 1+ 1 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If x′ 2 ≤ 3 4, then f ∗ 2IFS places the facility at 1, and thus this is not a pure Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose that x′ 2 > 3 4, meaning the facility must be placed in the interval [x′ 1 + 1 4, x′ 2 − 1 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As f ∗ 2IFS places the facility at the leftmost point of the optimal interval, it places the facility at x′ 1 + 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Thus, for any x′ 1 ∈ [ 1 4 − ϵ, 1 4), there exists some sufficiently small δ > 0 such that agent 1 can instead report x′ 1 + δ to improve its utility, so by definition there does not exist a pure Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In other words, agent 1 can continually shift its reported location asymptotically closer to 1 4 to improve its utility, but from Case 2, we know that x′ 1 cannot reach 1 4 as otherwise there is no pure Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' G Proof of Theorem 4 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ 2IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider an arbitrary true agent location profile x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn) and sufficiently small ϵ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Note that a pure ϵ-Nash equilibrium is also a pure δ-Nash equilibrium, where δ > ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1 (n is even): Subcase 1a: We first show that if xi ≥ 2i−1 2n for any i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2}, then a pure ϵ-Nash equilibrium exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose this is the case, and let j = arg mini∈[ n 2 ]{xi ≥ 2i−1 2n }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If j = 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn ≥ 1 2n), then the reported location profile (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This is because an agent can only influence the facility position by changing its report to a location in [0, 1 2n), moving the facility from 0 to a point in (0, 1 n) and reducing its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If j > 1, then we will show that the reported location profile x′ = (x′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ n) = ( 1 2n − ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 2(j−1)−1 2n − (j − 1)ϵ, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under x′, the facility cannot be placed in [0, j−1 n − (j − 1)ϵ) due to x′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ j−1, and hence it is placed at j−1 n − (j − 1)ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 27 Suppose that for some agent i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , j − 1} changes its report to some x′ i ̸= 2i−1 2n − iϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under the resulting location profile, the facility moves to a location in [0, 1 n − 2ϵ] if i = 1 and [ i−1 n − (i − 1)ϵ, i n − (i + 1)ϵ] if i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , j − 2}, reducing the agent’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As agent j − 2 is located at 2(j−2)−1 2n − (j − 2)ϵ, agent j − 1 (who is located at x′ j−1 = 2(j−1)−1 2n − (j − 1)ϵ) can improve its utility by reporting a new location x′′ j−1 = x′ j−1 + ϵ1, where ϵ1 < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This causes the facility to shift to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, agent j − 1 cannot improve its utility by more than ϵ, as if it reports a location x′′ j−1 ≥ x′ j−1 + ϵ, the facility will be placed at j−2 2n − (j − 2)ϵ, reducing its utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence agents 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , j − 1 cannot improve their utility by more than ϵ by changing their reported location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now consider agents j, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n whose true locations satisfy xj, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn ≥ 2j−1 2n and have reported locations x′ j, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As at least half of the agents must lie to the right of the facility, the facility takes the leftmost location satisfying 2−IFS, even after any agent changes its report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='11 Hence an agent from {j, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n} can only influence the facility location by changing its report to a location in ( 2(j−1)−1 2n − (j − 1)ϵ, 2(j−1)+1 2n − (j − 1)ϵ), causing the facility to move to a location in ( j−1 n − (j − 1)ϵ, j+1 n − (j − 1)ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It is easy to see that this strictly reduces the agent’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have shown that no deviation by a single agent can cause its utility to increase by more than ϵ, and hence x′ is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore a pure ϵ-Nash equilibrium exists if xi ≥ 2i−1 2n for any i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 1b: By symmetry, we see that a ϵ-Nash equilibrium also exists if xi ≤ 2i−1 2n for any i ∈ {n 2 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, the exact symmetric argument does not work for i = n 2 + 1 if x n 2 +1 > n+3 4n as under the reported location profile (0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 0, n+3 2n + ( n 2 − 1)ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1 − 1 2n + ϵ), agent n 2 + 1 can change its report from x′n 2 +1 = 0 to n+1 2n + ( n 2)ϵ, causing the facility to move from n+2 2n + ( n 2 − 1)ϵ to 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This is because f ∗ 2IFS breaks ties in favour of the leftmost optimal location, and results in increased utility as x n 2 +1 ∈ ( n+3 4n , n+1 2n ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now show that if xi > 2i−1 2n for all i ∈ {n 2 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n} and x n 2 +1 ∈ ( n+3 4n , n+1 2n ], a pure ϵ-Nash equilibrium exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It suffices to assume that xi < 2i−1 2n for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2}, as otherwise we know from Subcase 1a that a pure ϵ-Nash equilibrium exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We divide this proof to two further subcases depending on where x n 2 +1 is located.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 1bi: In this subcase we consider x n 2 +1 < 1 2 + 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim that x′ = ( 1 2n − ϵ, 3 2n − 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2n − ( n 2)ϵ, 0, n+3 2n + ( n 2 − 1)ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1 − 1 2n + ϵ) is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under x′, the facility is placed at the rightmost point of the only feasible interval, at y′ = n+2 2n + (n 2 − 1)ϵ, as there is a majority of agents left of the point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If any agent i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2 − 1} changes its report, the facility will move to a location in [ 1 2n, 1 n − 2ϵ] if i = 1, and in [ i−1 n − (i − 1)ϵ, i n − (i + 1)ϵ] if i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2 −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This reduces agent i’s utility as xi < 2i−1 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now consider agent n 2 (reporting x′n 2 = n−1 2n − ( n 2)ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any location right of y′ is not feasible and under x′, there are n 2 + 2 agent reports, including x′n 2 , left of the facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence agent n 2 can only influence the facility location by changing its report to a point in ( n+1 2n + ( n 2 − 1)ϵ, 1], causing the facility to move to the leftmost point of the feasible interval, at n−2 2n − ( n 2 − 1)ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This reduces its utility as x n 2 < n−1 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Next we consider agent n 2 + 1 (reporting x′n 2 +1 = 0), whose report can only change the facility’s location within the feasible interval [ 1 2 − ( n 2)ϵ, n+2 2n + ( n 2 − 1)ϵ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As we have x n 2 +1 < 1 2 + 1 2n, it is most optimal to have the facility at y′ = n+2 2n + ( n 2 − 1)ϵ, achieved by reporting x′n 2 +1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Finally, we 11Recall that f ∗ 2IF S selects the leftmost optimal location if there is a tie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 28 consider agents n 2 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to Subcase 1a, agent n 2 + 2 can improve its utility by strictly less than ϵ by reporting a location x′′n 2 +2 = x′n 2 +2 − ϵ1, where ϵ1 < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If ϵ1 ≥ ϵ, the facility is placed at n+4 2n + ( n 2 − 2)ϵ, reducing the agent’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An agent i ∈ {n 2 + 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n} can only cause the facility to be in [ i−1 n + (i − 1)ϵ, i+1 n + (i − 2)ϵ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This results in a reduction of utility as xi > 2i−1 2n for all i ∈ {n 2 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As no single agent can improve its utility by more than ϵ by changing its report, x′ is a pure ϵ-Nash equilibrium and hence one exists for this subcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 1bii: In this subcase we consider x n 2 +1 ≥ 1 2 + 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim that x′ = ( 1 2n − ϵ, 3 2n − 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2n −( n 2)ϵ, n+1 2n +( n 2)ϵ, n+3 2n +( n 2 −1)ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1− 1 2n +ϵ) is a pure Nash ϵ-equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Here the facility is placed at the leftmost point of the optimal interval, at 1 2 − ( n 2)ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By using identical reasoning as in Subcase 1bi, it is easy to see that agents 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2, and agents n 2 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n cannot improve their utility by more than ϵ by misreporting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this subcase, it is agent n 2 rather than agent n 2 + 2 who can improve its utility by less than ϵ by misreporting slightly to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Also, as in Subcase 1bi, agent n 2 + 1 can only change the facility’s location to within the feasible interval [ 1 2 − ( n 2)ϵ, n+2 2n + (n 2 − 1)ϵ], but since we have x n 2 +1 ≥ 1 2 + 1 2n, their optimal facility location of 1 2 − ( n 2)ϵ is achieved by their report of x′n 2 +1 = n+1 2n + ( n 2)ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 1c: It reminds to consider the subcase where xi < 2i−1 2n for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2} and xi > 2i−1 2n for all i ∈ {n 2 + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under this subcase, we claim that the location profile x′ = (x′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′ n) = ( 1 2n − ϵ, 3 2n − 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2n − ( n 2)ϵ, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Here, the facility is placed at 1 2 −( n 2)ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By using the same arguments as in the first subcase, we see that agents 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n 2 −1 who have reported locations x′ 1 = 1 2n−ϵ, x′ 2 = 3 2n−2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , x′n 2 −1 = n−3 2n −( n 2 −1)ϵ have no incentive to change their report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Agent n 2 who reports location x′n 2 = n−1 2n − ( n 2)ϵ can improve its utility by strictly less than ϵ, by changing its report to x′′n 2 = x′n 2 + ϵ1, where ϵ1 < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to Subcase 1a, if ϵ1 ≥ ϵ, then the facility is placed at n−2 2n − ( n 2 − 1)ϵ, reducing the agent’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The agents n 2 + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n who have reported their location as 1 under x′ can only move the facility to a location in ( 1 2 −( n 2)ϵ, 1 2 + 1 n −( n 2)ϵ) by changing its report to a location in ( n−1 2n −( n 2)ϵ, n+1 2n −( n 2)ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='12 However as we have x n 2 +1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn > n+1 2n , this causes their utility to decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have shown that under x′, no single agent can cause its utility to increase by more than ϵ by changing its report, and hence x′ is a ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By exhaustion of cases, we have shown that a pure ϵ-Nash equilibrium always exists under f ∗ 2IFS if n is even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2 (n is odd): By using identical reasoning to the case where n is even, we can see that if xi ≥ 2i−1 2n for any i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2 , a pure ϵ-Nash equilibrium exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Specifically, if we let j = arg mini∈[ n−1 2 ]{xi ≥ 2i−1 2n }, then the pure ϵ-Nash equilibrium is x′ = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) if j = 1, and x′ = ( 1 2n − ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 2(j−1)−1 2n − (j − 1)ϵ, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) if j > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, symmetric reasoning shows that if xi ≤ 2i−1 2n for any i ∈ {n+3 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n}, a pure ϵ-Nash equilibrium exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It remains to consider the case where xi < 2i−1 2n for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2 } and xi > 2i−1 2n for all i ∈ {n+3 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n} (and x n+1 2 can be anywhere).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 2a: Here we consider the subcase where x n+1 2 ≥ 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim that x′ = ( 1 2n − ϵ, 3 2n − 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−2 2n − ( n−1 2 )ϵ, 1, n+2 2n + ( n+3 2 )ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1 − 1 2n + ϵ) is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Here the interval of feasible agent locations is [ n−1 2n − ( n−1 2 )ϵ, n+1 2n + ( n+3 2 )ϵ], and the facility is placed at the leftmost point of the interval, at y′ = n−1 2n − ( n−1 2 )ϵ, as there is a majority of agents right of the interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any misreport by agent 1 will cause the facility to be placed in the interval [0, 1 n − 2ϵ], 12We note that � i x′ i < n 2 − 1 + n 4 ( 1 2n + n−1 2n ) = 5n 8 − 1, which is less than n 2 if and only if n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However if n = 2 it is trivial that x′ is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 29 which reduces their utility as x1 < 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Agent i ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−3 2 } can only cause the facility to be placed in [ i−1 n − (i − 1)ϵ, i n − (i + 1)ϵ], which reduces their utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A symmetric argument can be applied to show that agents n+5 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n cannot improve their utility by misreporting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Agent n−1 2 (who reports x′ n−1 2 = n−2 2n − ( n−1 2 )ϵ) can improve its utility by strictly less than ϵ by changing its report to x′′ n−1 2 = x′ n−1 2 + ϵ1, where ϵ1 < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to Subcase 1a, if ϵ1 ≥ ϵ, the agent’s utility will be decreased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As the facility takes the leftmost feasible point under x′, agent n+3 2 can only change the facility location to the rightmost feasible point (at n+3 2n + ( n+5 2 )ϵ), by misreporting such that there is a majority of agents left of the facility location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This reduces the agent’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Finally, it is easy to see that agent n+1 2 cannot improve its utility by misreporting: the infeasible regions under x′ are a result of the other agent reports, and hence agent n+1 2 cannot cause the facility to be placed outside of the feasible interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As x n+1 2 ≥ 1 2, the leftmost point of the interval is its most optimal facility placement over its possible reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore x′ is a pure ϵ-Nash equilibrium as no agent can improve its utility by more than ϵ by misreporting, and hence a pure ϵ-Nash equilibrium exists for this subcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Subcase 2b: In this subcase, x n+1 2 < 1 2 (and xi < 2i−1 2n for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−1 2 } and xi > 2i−1 2n for all i ∈ {n+3 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By using a symmetric argument as in Subcase 2a, x′ = ( 1 2n − ϵ, 3 2n − 2ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , n−2 2n −( n−1 2 )ϵ, 0, n+2 2n +( n+3 2 )ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1− 1 2n +ϵ), where the facility is placed at n+1 2n +( n+3 2 )ϵ, is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this proof, we have provided a pure ϵ-Nash equilibrium for every possible location profile, and hence by exhaustion of cases, a ϵ-pure Nash equilibrium always exists for f ∗ 2IFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' H Proof of Theorem 5 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ > 0, a pure ϵ-Nash equilibrium always exists for f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the proof of Theorem 4, we divided all possible agent location profiles into several subcases, and provide a pure ϵ-Nash equilibrium for each subcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim for every subcase, the pure ϵ-Nash equilibrium we describe in the proof of Theorem 4 is also a ϵ-Nash equilibrium for f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' First, we remark that every given pure ϵ-Nash equilibrium has the same facility placement under f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This can be seen as every pure ϵ-Nash equilibrium has the n agents reporting n distinct locations, with the exception of the equilibria where multiple agents report 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under these equilibria, the facility takes the rightmost (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' leftmost) location of the feasible interval, so the change to a 2−UFS constraint does not affect the facility placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A simple case by case analysis shows that for each pure ϵ-Nash equilibrium x′ described in the proof of Theorem 4, no agent can improve its utility by more than ϵ by changing its report under f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The same arguments hold verbatim for f ∗ 2UFS and the constraint of 2−UFS, even when accounting for agents being able to change their report to the same location as another agent’s report (to widen the ‘infeasible’ ball around the report).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We give the following intuition: if agent i makes such a report change from x′ i, this either causes the facility to move to some location near x′ i which has consequently become feasible, or it ‘pushes’ the facility towards xi (such as if the facility takes the leftmost feasible location under x′ and agent i changes its report from x′ i = 1 to the rightmost reported location left of the facility).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence every possible agent location profile has a pure ϵ-Nash equilibrium under f ∗ 2UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 30 I Proof of Theorem 6 Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For any ϵ ∈ (0, 1 n), the ϵ-price of anarchy for f ∗ 2IFS and f ∗ 2UFS of utilitarian welfare is at least 2n−1+nϵ 1−nϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The price of anarchy is unbounded for ϵ ≥ 1 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose for any ϵ ∈ (0, 1 n) that we have the (true) agent location profile x = ( 1 2n − ϵ 2, 1 2n − ϵ 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1 2n − ϵ 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We show that the location profile x′ = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) is a pure ϵ-Nash equilibrium for x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under x′, both f ∗ 2IFS and f ∗ 2UFS place the facility at 0, causing each agent to have 1 2n − ϵ 2 utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' An agent can only change the facility position by deviating to a reported location in [0, 1 2n), causing the facility to instead be placed somewhere in (0, 1 n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This results in the agent receiving a utility of u(xi) < 1 2n + ϵ 2, which is an increase of at most ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since no agent can improve its utility by greater than ϵ by misreporting, x′ is a pure ϵ-Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now the utilitarian welfare under x is n − 1 2 + nϵ 2 , whilst under x′ it is 1 2 − nϵ 2 (w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence the ϵ-price of anarchy is at least 2n−1+nϵ 1−nϵ for ϵ ∈ (0, 1 n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For ϵ ≥ 1 n, the (true) agent location profile x = (0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 0) has a corresponding pure ϵ-Nash equilibrium of x′ = (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , 1) which results in each agent having 0 utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This can be seen as no agent can improve its utility by 1 n or greater, as an agent can only change the facility to a location in (0, 1 n) by changing its report to a location in (0, 1 2n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' As each agent has 0 utility under the pure ϵ-Nash equilibrium, the ϵ-price of anarchy is unbounded for ϵ ≥ 1 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' J Proof of Theorem 8 Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Mechanism 2 satisfies 2−UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider a coalition of |S| agents at location xi and suppose there are n1 agents in [0, 1 2] and n2 agents in ( 1 2, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The expected distance from the facility is E(d(y, xi)) = 2n1n2 + n2 2 n2 1 + n2 2 + 4n1n2 xi + n2 1 + 2n1n2 n2 1 + n2 2 + 4n1n2 (1 − xi) = n2 1 + 2n1n2 n2 1 + n2 2 + 4n1n2 + xi � n2 2 − n2 1 n2 1 + n2 2 + 4n1n2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Due to symmetry it suffices to only consider xi ∈ [0, 1 2], and since E(d(y, xi)) is a linear function of x, we further restrict our attention to xi ∈ {0, 1 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When xi = 1 2, E(d(y, xi)) = 1 2 and hence 2−UFS is satisfied for any coalition of agents at 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 31 When xi = 0, E(d(y, xi)) = n2 1 + 2n1n2 n2 1 + n2 2 + 4n1n2 = n1(2n2 1 + 6n1n2 + 4n2 2) 2(n2 1 + n2 2 + 4n1n2)(n1 + n2) > n1(n2 1 + 4n1n2 + n2 2) 2(n2 1 + n2 2 + 4n1n2)(n1 + n2) = n1 2(n1 + n2) ≥ |S| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore Mechanism 2 satisfies 2−UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' K Proof of Lemma 2 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider an arbitrary agent location profile x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For every 2−IFS/UFS randomized mechanism that gives positive support to a facility placement between 0 and 1, there exists a 2−IFS/UFS randomized mechanism that only gives positive support to a facility placement at 0 or 1 that leads to weakly higher expected utility for each agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider an arbitrary location profile x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn), and suppose for this profile that some (2−IFS/UFS) mechanism places the facility at location c ∈ (0, 1) with probability p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If instead the mechanism placed the facility at location 1 with probability cp and at location 0 with probability p − cp, each agent’s expected distance from the facility would increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This can be seen as for any xi ≤ c, cp(1 − xi) + (p − cp)xi = pxi − 2cpxi + cp = cp + pxi(1 − c) − cpxi ≥ cp − cpxi ≥ p(c − xi), and for any xj > c, cp(1 − xj) + (p − cp)xj = pxj + cp(1 − xj) − cpxj ≥ pxj − cpxj ≥ p(xj − c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore this modified mechanism also satisfies 2−IFS/UFS and results in weakly higher ex- pected utility for each agent than the original mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By repeatedly applying this modifica- tion, any 2−IFS/UFS mechanism that places positive probability on any location between 0 and 1 can be modified to a 2−IFS/UFS mechanism that only places positive probability on locations 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 32 L Proof of Lemma 3 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS Randomized mechanism is optimal amongst all randomized mechanisms sat- isfying 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first prove by cases that the mechanism satisfies 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall that for the OFLP, the utilitarian welfare maximizing solution places the facility at either 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1 (�n i=1 xi = n 2) In this case, the facility locations of 0 and 1 are tied for maximizing utilitarian welfare, so placing the facility at either location with probability 1 2 is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The mechanism also satisfies 2-IFS in expectation as the expected distance of any agent from the facility is 1 2xi + 1 2(1 − xi) = 1 2 ≥ 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2 (�n i=1 xi > n 2) In this case, the optimal facility location is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It is trivial that placing the facility at 0 with probability 1 when x1 ≥ 1 2n is optimal and satisfies 2-IFS, so we consider the subcase where x1 < 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first show that the mechanism satisfies 2-IFS in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The expected distance between x1 and the facility is (1 − α)x1 + α(1 − x1) = 2n − 1 − 2nx1 2n(1 − 2x1) x1 + 1 − 2nx1 2n(1 − 2x1)(1 − x1) = 2nx1 − x1 − 2nx2 1 + 1 − x1 − 2nx1 + 2nx2 1 2n(1 − 2x1) = 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS is therefore satisfied for agents x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn as α ≤ 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now show for this case that the mechanism is optimal amongst all randomized mechanisms satisfying 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By Lemma 2, it suffices to only consider mechanisms that can only place the facility at 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now consider the 2-IFS Randomized mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If α were increased, the utilitarian welfare would decrease, and if α were decreased, 2−IFS would be violated for x1, hence α = 1−2nx1 2n(1−2x1) is optimal and therefore the mechanism is optimal under the constraint of 2-IFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 3 (�n i=1 xi > n 2) This case is similar and symmetric to Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' M Proof of Proposition 6 Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Randomized Egalitarian Welfare mechanism is strategyproof in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If all agents are in [0, 1 2] or all agents are in ( 1 2, 1], then each agent has at least 1 2 expected utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any misreport either causes their expected utility to either stay the same or be reduced to 1 2 from the facility being placed at 0 or 1 with probability 1 2 each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If there is at least one agent in each interval, then an agent can only affect the outcome if it is the only agent in its interval and it misreports its location to be in the other interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However this weakly reduces the agent’s expected utility, which consequently has an upper bound of 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 33 N Proof of Theorem 9 Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-IFS Randomized mechanism has an approximation ratio of 12 11 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' It suffices to consider the case where �n i=1 xi > n 2 and x1 < 1 2n as the case where �n i=1 xi > n 2 is symmetric, and the mechanism is optimal for the cases of �n i=1 xi = n 2, and �n i=1 xi > n 2 and x1 ≥ 1 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The approximation ratio of the mechanism is max x∈Xn � φ∗(x) φ2IFS(x) � = max x∈Xn � i xi (1 − α) � i xi + α � i(1 − xi) = max x∈Xn � i xi 2n−1−2nx1 2n(1−2x1) � i xi + 1−2nx1 2n(1−2x1) � i(1 − xi) = max x∈Xn � i xi 1−2nx1 2(1−2x1) + n−1 n(1−2x1) � i xi = max x∈Xn 1 1−2nx1 2(1−2x1) � i xi + n−1 n(1−2x1) = max x1∈[0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1 2n ) 1 1−2nx1 2(1−2x1)(n−1+x1) + n−1 n(1−2x1) = max x1∈[0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 1 2n ) 2n(1 − 2x1)(n − 1 + x1) n − 2n2x1 + 2(n − 1)(n − 1 + x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In the second last line, we substitute x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xn = 1 as the ratio is monotonic increasing with � i xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Some optimization programming shows that when n ≥ 3, the ratio is maximized when x1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Substituting x1 = 0 into the ratio gives 2n2 − 2n 2n2 − 3n + 2, which has a derivative of − 2(n2−4n+2) (2n2−3n+2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We therefore see our ratio has a maximum turning point at x = 2+ √ 2 and is monotonic decreasing after this point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For integer n ≥ 3, the ratio is maximized when either n = 3 or n = 4, and the ratio is equal to 12 11 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='091 for both of these points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now consider the case where n = 2 (and x1 < 1 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The ratio becomes max x1∈[0, 1 4 ) 2 − 2x1 − 4x2 1 2 − 3x1 = 1 9(22 − 4 √ 10) ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='039.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the mechanism’s welfare ratio is maximized when x1 = 0 and either n = 3 or n = 4, taking a value of 12 11 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' O Proof of Lemma 4 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-UFS Randomized mechanism is optimal amongst all randomized mechanisms sat- isfying 2−UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 34 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to the proof of Lemma 3, we prove this statement by cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1 (�m i=1 |Si|xi = n 2) When �m i=1 |Si|xi = n 2, the facility locations of 0 and 1 are tied for maximizing utilitarian welfare, so placing the facility at either location with probability 1 2 is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The mechanism also satisfies 2−UFS in expectation as the expected distance of any agent from the facility is 1 2xi + 1 2(1 − xi) = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2 (�m i=1 |Si|xi > n 2) Note that in this case the optimal facility location is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first show that the mechanism satisfies 2−UFS in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For a group of agents Si at xi < 1 2, the expected distance from the facility is α(1 − xi) + xi(1 − α) ≥ αi(1 − xi) + xi(1 − αi) = |Si| − 2nxi 2n(1 − 2xi)(1 − xi) + 2n − 2nxi − |Si| 2n(1 − 2xi) xi = |Si|(1 − 2xi) 2n(1 − 2xi) = |Si| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By setting |Si| = n, we also see that α ≤ 1 2, hence 2−UFS is satisfied for any group of agents at xj ≥ 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now show for this case that the mechanism is optimal amongst all randomized mechanisms satisfying 2-UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By Lemma 2, it suffices to only consider mechanisms that can only place the facility at 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now under the 2−UFS Randomized mechanism, increasing α would decrease the utilitarian welfare, and decreasing α would violate 2−UFS for some group of agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence the mechanism is optimal under the constraint of 2−UFS in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 3 (�m i=1 |Si|xi < n 2) This case is similar and symmetric to Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' P Proof of Theorem 10 Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 2-UFS Randomized mechanism has an approximation ratio of 2 7(1 + 2 √ 2) ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='09384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Without loss of generality we suppose that �n i=1 > n 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let j be the index of the group of agents corresponding to α (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' αj = max{α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , αk}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 35 The approximation ratio of the mechanism is max x∈Xn � φ∗(x) φ2UFS(x) � = max x∈Xn � i xi (1 − α) � i xi + α � i(1 − xi) = max x∈Xn � i xi 2n−|Sj|−2nxj 2n(1−2xj) � i xi + |Sj|−2nxj 2n(1−2xj) � i(1 − xi) = max x∈Xn � i xi |Sj|−2nxj 2(1−2xj) + n−|Sj| n(1−2xj) � i xi = max x∈Xn 1 |Sj|−2nxj 2(1−2xj) � i xi + n−|Sj| n(1−2xj) = max xj∈[0, 1 2 ) |Sj|∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=',n−1} 1 |Sj|−2nxj 2(1−2xj)(n−|Sj|+|Sj|xj) + n−|Sj| n(1−2xj) = max xj∈[0, 1 2 ) |Sj|∈{1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=',n−1} 2n(1 − 2xj)(n − |Sj| + |Sj|xj) n|Sj| − 2n2xj + 2(n − |Sj|)(n − |Sj| + |Sj|xj) = max xj∈[0, 1 2 ) r∈(0,1) 2(1 − 2xj)(1 − r + rxj) r − 2xj + 2(1 − r)(1 − r + rxj) where r = |Sj| n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Some optimization programming shows that this ratio is maximized at r = 1 − 1 √ 2 and xj = 0, taking a value of 2 7(1 + 2 √ 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Q Proof of Lemma 5 Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For α = 2, there exists an α−UFS facility location y that does not satisfy α−PF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Assume that n = 10 and that we have 2 groups of agents, with the first group of 7 agents located at the point c1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='35, and the second group of 3 agents located at the point c2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider two balls B1 and B2 respectively with centers c1 and c2 and radius |S1| 2n = 7 20 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='35 and |S2| 2n = 3 20 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We set the facility location y at the point 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since point y is outside of the two balls, it satisfies 2-UFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' However, it does not satisfy the 2-PF inequality: d(y, c2) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='16 ≱ |S1| 20 + |S2| 20 − r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' R Lemma 6 and Proof of Lemma 6 Here we introduce an auxiliary lemma which will be used in the proof of Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The intersection of (I − Bi)’s is not empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 36 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider two cases: Every open ball Bi, i ∈ [m] lies completely in interval I = [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence, the boundary points of interval I are not in each Bi’s and therefore {0, 1} ∈ ∩m i=1(I − Bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' There exists an open ball which does not completely lie in the interval I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Assuming the points x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', xm are ordered from left to right, let k be the smallest index such that Bk does not completely lie in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' So either 0 ∈ Bk or 1 ∈ Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Both end points 0 and 1 can not be in Bk, since in this case |Bk| = |Sk| n > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let us assume 0 ∈ Bk and 1 /∈ Bk, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e, 1 ∈ (I − Bk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now if for every i ∈ [m], we have 1 ∈ (I − Bi), the lemma statement holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now suppose there exists an open ball Bj such that 1 /∈ (I − Bj), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e, 1 ∈ Bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Without loss of generality let j be the largest index in which the aforementioned statement holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider two cases: – Bk ∩ Bj is not an empty set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case [0, 1] ⊆ Bk ∪ Bj and |Sk| n + |Sj| n > 1, which can not happen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – Bk ∩ Bj is an empty set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider the set A := I − (Bk ∪ Bj) and consider two cases: A ⊆ ∪j−1 i=k+1Bi: in this case [0, 1] ⊆ ∪m i=1Bi and �m i=1 |Si| n > 1, which can not happen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A ⊈ ∪j−1 i=k+1Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore there exists y ∈ A such that y /∈ ∪j−1 i=k+1Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Also by the definition of A, y /∈ (Bk ∪ Bj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For every 1 ≤ i ≤ k − 1, Bi ⊂ Bk holds as i is the smallest index such that its corresponding ball contains the point 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similarly, we have for every j + 1 ≤ i ≤ m, Bi ⊂ Bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence y /∈ Bi for every i ∈ [m], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e, y ∈ (I − Bi) for every i ∈ [m] and y ∈ ∩m i=1(I − Bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' S Proof of Theorem 11 Theorem 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' A 2-PF solution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose we have m unique agent locations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' m groups of agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We prove the theorem by induction on the number of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' When all the agents have the same location, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e, m = 1, we can allocate the facility y at the furthest boundary point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' This trivially satisfies 2-PF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now, we assume for any k groups of agents where k ≤ m that there exists a 2-PF solution, and we extend that for k = m + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose we have m + 1 groups of agents placed at points c1, c2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , cm+1, which are ordered such that c1 ≤ c2 ≤ · · · ≤ cm+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let Si denote the group of agents at ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We set an open ball Bi with radius |Si| 2n , around each center ci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To prove the theorem, we consider several cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 1 (There is no overlap between any two balls, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bi∩Bj = ∅∀i, j ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , m+1}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In Lemma 6, we have shown that the intersection of (I − Bi)’s is not empty, so there exists a point y outside of every ball Bi where the facility can be placed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Here r is the distance between centers ci and cj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If r = 0, then 2-PF is satisfied since we have d(y, ci) ≥ |Si| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 37 Otherwise, since all the balls are disjoint, r is larger than the sum of the radii of Bi and Bj, so |Si| 2n + |Sj| 2n − r < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence, d(y, ck) ≥ |Si| 2n + |Sj| 2n − r for k = i, j, and thus y satisfies the 2-PF inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2 (There exists at least two overlapping balls, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', ∃ i, j ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , m + 1} s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bi ∩ Bj ̸= ∅).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' – Case 2a (There exists one ball that is contained within another ball, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', ∃ i, j ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , m + 1} s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='Bi ⊆ Bj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Without loss of generality, we assume B2 ⊆ B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now we place all the agents at c2 and c1 together at c1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We set a new ball B ′ centered at c1 with radius |S1| 2n + |S2| 2n , which is the summation of the radii of B1 and B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now, we have m new groups of agents located at the centers c1, c3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , cm+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By induction, a 2-PF solution y exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We claim that y is also a 2-PF solution for m + 1 groups of agents located c1, c2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , cm+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is a 2-PF solution for the m groups of agents located at c1, c3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', cm+1, y lies outside of every ball, satisfying the 2-PF inequality for r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is outside the ball B′, y is outside of balls B1 and B2, therefore we have d(y, c1) ≥ |S1| 2n and d(y, c2) ≥ |S2| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' So y satisfies 2-PF inequalities for r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now set r to be the distance between two centers c1 and c2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', r = c2 − c1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is outside the ball B′ we have d(y, c1) ≥ |S1| 2n + |S2| 2n ≥ |S1| 2n + |S2| 2n − r, so c1 satisfies the PF inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' To show that the agents at c2 also satisfy the PF inequality, we consider 2 cases: Case 2ai (Ball B2 does not contain center c1 (see Figure 4)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote a := (c2 − c1) − |S2| 2n as the distance between c1 and the left boundary of B2, b := |S2| 2n as the radius of B2 and c := c1 + |S1| 2n − c2 − |S2| 2n as the distance between the right boundaries of B1 and B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case, we have |S1| 2n + |S2| 2n − r = a + 2b + c + b − a − b = 2b + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' (1) Since y is outside of ball B′, we have d(y, c2) ≥ 2b + c and by (1), d(y, c2) ≥ |S1| 2n + |S2| 2n − r and thus the 2-PF inequality is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2aii (Ball B2 contains center c1 (see Figure 5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case, the range r is smaller than the diameter of B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote a := c2 − c1 as the distance between the two centers, b := |S2| 2n as the radius of B2 and c := c1 + |S1| 2n − c2 − |S2| 2n as the distance between the right boundaries of B1 and B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have |S1| 2n + |S2| 2n − r = a + b + c + b − a = 2b + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' (2) Since y is outside of ball B′, we have d(y, c2) ≥ 2b + c and by (2), d(y, c2) ≥ |S1| 2n + |S2| 2n − r and thus the 2-PF inequality is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 38 Figure 4: B1 and B′ are open balls centered at c1 and B2 is an open ball centered at c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The variables a, b and c denote the distances between the boundaries of the balls and the centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 5: B1 and B′ are open balls centered at c1 and B2 is an open ball centered at c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The variables a, b and c denote the distances between the boundaries of the balls and the centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 39 – Case 2b (There exist two overlapping balls, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' ∃ i, j ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , m+1} s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Bi∩Bj ̸= ∅, but they are not contained within each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=') Without loss of generality, we assume B1 ∩ B2 ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider the line segment that connects the left border of B1 to the right border of ball B2 and denote the midpoint of this line as c′ 1 := 1 2(c1 − |S1| 2n + c2 + |S2| 2n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We move all the agents at c1 and c2 to point c′ 1 and set a new ball B′ around it with radius |S1| 2n + |S2| 2n , which is the summation of radii of B1 and B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similar to the previous subcase, by our inductive assumption there exists a 2-PF solution y for the new m groups of agents placed at c′ 1, c3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', cm, cm+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now we claim that y is a 2-PF solution for c1, c2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', cm+1 as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is outside of the ball B′, y is also outside of the balls B1 and B2, therefore d(y, c1) ≥ |S1| 2n and d(y, c2) ≥ |S2| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' So y satisfies the 2-PF inequalities for r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now set r to be the distance between two centers c1 and c2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', r = c2 − c1) and consider 3 cases which depend on whether the intersections of the balls also contain a center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In each case we show that |S1| 2n + |S2| 2n − r is equal to the length of intersection of B1 and B2 which denote as |intersection| (and hence the 2-PF inequality is satisfied).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2bi (The intersection between B1 and B2 does not contain centers c1 and c2 (see Figure 6)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote a := c2 − |S2| 2n − c1 as the distance between c1 and the left boundary of B2, b := c1 + |S1| 2n − (c2 − |S2| 2n ) as the length of the intersection, and c := c2 − |S1| 2n − c1 as the distance between c2 and the right boundary of B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have |S1| 2n + |S2| 2n − r = a + b + b + c − a − b − c = b = |intersection|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is placed outside of ball B′, it is outside of balls B1 and B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have d(y, ci) ≥ |Si| 2n ≥ |intersection| = |S1| 2 + |S2| 2 − r and thus 2-PF is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 6: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The terms a, b, c and |intersection| 2 denote the distances between the boundaries of the balls and the centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2bii (The intersection between B1 and B2 contains one of the centers c1 and c2 (see Figure 7)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Without loss of generality suppose the contained center is c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote a := c2 − |S2| 2n − c1 as the distance between c1 and the left boundary of B2, b := |S2| 2n as the radius of B2, and c := c2 − |S1| 2n − c1 as the distance between c2 and the right boundary of B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have |S1| 2n + |S2| 2n − r = a + b + c + b − a − b = 40 b + c = |intersection|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since y is outside of B1, we have d(y, c1) ≥ |S1| 2n = a + b + c ≥ b + c = |intersection| = |S1| 2n + |S2| 2n − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now we show d(y, c2) satisfies the 2-PF inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Recall B′ is a ball centered at the midpoint of the left boundary of B1 and right boundary of B2, with radius |S1| 2n + |S2| 2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Also, y lies outside of B′, so the right boundary of B2 has a distance of length |intersection| 2 from the right boundary of B′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We therefore have d(y, c2) ≥ |S2| 2n + |intersection| 2 = b + b + c 2 Also, since b ≥ c, we have b + b + c 2 ≥ b + c = |intersection| = |S1| 2n + |S2| 2n − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 7: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The terms a, b, c and |intersection| 2 denote the distances between the boundaries of the balls and the centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Case 2biii (The intersection between B1 and B2 contains both centers c1 and c2 (see Figure 8)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote a := c2 − |S2| 2n − c1 as the distance between c1 and the left boundary of B2, b := c2 − c1 as the distance between the two centers, and c := c2 − |S1| 2n − c1 as the distance between c2 and the right boundary of B1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We have |S1| 2n + |S2| 2n −r = b+c+b+a−b = a+b+c = |intersection|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' In this case, b+c is the radius of ball B1 and a+b is the radius of ball B2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since the balls B1 and B2 are not contained within each other, we have b + c > a and a + b > c (see Figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Like before, B′ is a ball with a center at the midpoint of the left boundary of B1 and right boundary of B2 and radius |S1| 2n + |S2| 2n , and y lies outside of this ball, 41 so the boundaries of each ball B1 and B2 have a distance of length |intersection| 2 with the boundary of B′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We therefore have d(y, c1) ≥ b + c + |intersection| 2 = b + c + a + b + c 2 ≥ b + c + a = |intersection| = |S1| 2n + |S2| 2n − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similarly, we can show that y satisfies the 2-PF inequality for center c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' d(y, c2) ≥ a + b + |intersection| 2 = a + b + a + b + c 2 ≥ a + b + c = |intersection| = |S1| 2n + |S2| 2n − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Hence the facility placement of y satisfies the 2-PF inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Figure 8: B1, B2 and B′ are open balls centered at c1, c2 and c′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The terms a, b, c and |intersection| 2 denote the distances between the boundaries of the balls and the centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By exhaustion of cases, we have proven the inductive statement, and thus a facility placement that satisfies 2-PF always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' T Proof of Theorem 12 Theorem 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Under the hybrid model, a H-UFS solution always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let nC denote the number of classic agents and nO denote the number of obnoxious agents (such that nC + nO = n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Consider an arbitrary agent location profile with m unique classic agent locations x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' , xm, and suppose they are ordered such that x1 ≤ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' xm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We first focus on the region of feasible facility locations pertaining to the classic agents’ distance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For 42 i ∈ [m], let SCi denote the group of classic agents at location xi, and construct a closed ball with center xi and radius 1 − |SCi| n : Bi = {z|d(z, xi) ≤ 1 − |SCi| n }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By definition, the intersection of the closed balls ∩i∈[m]Bi denotes the (continuous) region of feasible facility locations pertaining to the classic agents’ distance constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' From [Aziz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=', 2021], we know this region is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We show that the length of the feasible region ∩i∈[m]Bi is at least n−nC n by iteratively trans- forming the agent location profile to one where all classic agents are at 0 or 1, and showing that each transformation weakly decreases the feasible region length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' For each ball Bi, there is a (pos- sibly empty) left interval of infeasible points Li and a (possibly empty) right interval of infeasible points Ri such that Bi = [0, 1] − Li − Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We denote the left infeasible interval of points as Li = [0, xi − (1 − |SCi| n )) if xi − (1 − |SCi| n ) > 0 and as Li = ∅ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Similarly, we denote the right infeasible interval of points as Ri = (xi +(1− |SCi| n ), 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The union of left infeasible intervals is therefore ∪i∈[m]Li = [0, maxi∈[m] xi − (1 − |SCi| n )) if there exists a nonempty Li, and is empty otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The union of right infeasible intervals is ∪i∈[m]Ri = (mini∈[m] xi + (1 − |SCi| n ), 1] if there exists a nonempty Ri, and is empty otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore the length of the feasible region is min � min i∈[m] � xi + (1 − |SCi| n ) � , 1 � − max � 0, max i∈[m] � xi − (1 − |SCi| n ) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' By symmetry, we suppose without loss of generality that min i∈[m] � xi + (1 − |SCi| n ) � ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We consider the following transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Let j correspond to the agent location with the largest right infeasible interval, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' j := arg min i∈[m] � xi + (1 − |SCi| n ) � , and we have xj < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If xj > 0, move all agents at xj to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We show that this transformation weakly decreases the feasible region length: in mini∈[m] � xi + (1 − |SCi| n ) � , xi decreases to 0 and |SCi| weakly increases (it strictly increases if there are already agents at 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Furthermore, the maxi∈[m] � xi − (1 − |SCi| n ) � term is unaffected unless the shifted group of agents originally corresponded to the maximum value, in which case the xi term decreases by at most the length of the shift, and the (1 − |SCi| n ) term weakly decreases as |SCi| weakly increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Therefore this transformation weakly decreases the feasible region length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Now the agent location with the largest right infeasible interval is 0, so our feasible region length is (1 − |SCj′| n ) − max � 0, max i∈[m] � xi − (1 − |SCi| n ) �� , where j′ corresponds to the location xj′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' If the right boundary of the largest left infeasible interval maxi∈[m] � xi − (1 − |SCi| n ) � corresponds to the agents at xj′ = 0, then it is at most 0, and the feasible region length is (1 − |SCj′ | n ) which is at least n−nC n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now suppose that this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 43 We have max i∈[m] � xi − (1 − |SCi| n ) � ≤ max i∈[m] � 1 − (1 − |SCi| n ) � , so the feasible region length is at least (1 − |SCj′| n ) − max � 0, max i∈[m] �|SCi| n �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Since arg maxi∈[m] � |SCi| n � ̸= j′, the feasible region length is at least 1 − |SCj′| + |SCk| n ≥ n − nC n where k ̸= j′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now know the length of the (continuous) feasible region corresponding to the classic agents is at least n−nC n = nO n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' We now consider the obnoxious agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Suppose we construct an open ball of radius |SOi| 2n around each group of obnoxious agents at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' Any location within one of these open balls is infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' The sum of ball lengths is nO n , so using a similar argument to that in the proof of Proposition 2, we see that a feasible solution with respect to both the classic agents’ and obnoxious agents’ distance inequalities always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} +page_content=' 44' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jNE3T4oBgHgl3EQfJAm8/content/2301.04340v1.pdf'} diff --git a/jdAyT4oBgHgl3EQfX_es/content/tmp_files/2301.00195v1.pdf.txt b/jdAyT4oBgHgl3EQfX_es/content/tmp_files/2301.00195v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..07d1561ce06bd9ab711464a46eef7ab7d28cc2fa --- /dev/null +++ b/jdAyT4oBgHgl3EQfX_es/content/tmp_files/2301.00195v1.pdf.txt @@ -0,0 +1,3125 @@ +Sub-Planck structures and sensitivity of the superposed photon-added or +photon-subtracted squeezed-vacuum states +Naeem Akhtar,1, ∗ Jizhou Wu,2, † Jia-Xin Peng,3 Wu-Ming Liu,4, 5, 6 and Gao Xianlong1, ‡ +1Department of Physics, Zhejiang Normal University, Jinhua 321004, China +2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China +3State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and +Atoms, Department of Physics, East China Normal University, Shanghai 200062, China +4Beijing National Laboratory for Condensed Matter Physics, Institute +of Physics, Chinese Academy of Sciences, Beijing 100190, China +5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China +6Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China +(Dated: January 3, 2023) +The Wigner function of the compass state (a superposition of four coherent states) develops phase- +space structures of dimension much less than the Planck scale ℏ, which are crucial in determining the +sensitivity of these states to phase-space displacements. In the present work, we introduce compass- +like states that may have connection to the contemporary experiments, which are obtained by either +adding photons to or subtracting photons from the superposition of two squeezed-vacuum states. We +show that, when a significant quantity of photons is added (or subtracted), the Wigner function of +these states are shown to have phase-space structures of an area that is substantially smaller than +the Planck scale. In addition, these states exhibit sensitivity to displacements that is much higher +than the standard quantum limit. Finally, we show that both the size of the sub-Planck structures +and the sensitivity of our states are strongly influenced by the average photon number, with the +photon addition case having a higher average photon number leading to the smaller sub-Planck +structures and, consequently, being more sensitive to displacement than the photon subtraction +case. Our states offer unprecedented resolution to the external perturbations, making them suitable +for quantum sensing applications. +I. +INTRODUCTION +Quantum mechanical states can be visualized in the +phase space via the Wigner quasiprobability distribu- +tion [1–5]. The term “Gaussian state” refers to a state +having the Gaussian Wigner function [6, 7]. The coher- +ent state [8] is an example of a Gaussian state. +The +Wigner function of the coherent state exhibits the Planck +limit [9, 10] in the phase space, which is also known as +the standard quantum limit (SQL) or shot-noise limit. +The Wigner function of certain non-Gaussian states +may attain negative values [11–14], indicating that these +states are nonclassical. +The quantum superposition is +the source of intriguing non-classical properties of quan- +tum states, such as quantum coherence [11, 15], squeez- +ing [16], and entanglement [17–19]. Non-classical quan- +tum states play a significant role in quantum-information +processing [20], tests of fundamental of physics [21–23], +and applications in sensing and metrology [24, 25]. +Non-classical states are not always non-Gaussian, how- +ever, non-classical states can be Gaussian in some cases. +For example, a squeezed-vacuum state (SVS) is a com- +mon non-classical state, but it possesses a Gaussian +Wigner function [12, 13]. The Wigner function of the +superposition of SVS is non-Gaussian and may have +∗ naeem abbasi@zjnu.edu.cn +† wujz3@sustech.edu.cn (Corresponding author) +‡ gaoxl@zjnu.edu.cn +negative amplitudes [26, 27]. Squeezed quantum states +play an important role in performing enhanced quan- +tum metrology [16, 28]. +Squeezed light has been uti- +lized experimentally to carry out improved measure- +ments [29, 30]. +The superpositions of two coherent states with op- +posite phases (cat states) also possess non-Gaussian +Wigner functions [31, 32]. +Moreover, the superposi- +tion of four coherent states, which is known as the +“compass state” [33] exhibits nonclassical features in the +Wigner function with dimensions far smaller than the +SQL. The quantum states with sub-Planck structures are +found very sensitive to environmental decoherence [34] +and have achieved prominent theoretical attentions in +quantum metrology [34–38]. +The connection between +sub-Planck structures and teleportation fidelity has been +established [39]. +Sub-Fourier sensitivity is a classical +analogue of the sub-Planck structures [40]. Compass-like +states have been thoroughly investigated in several situa- +tions [41–56]. Both theoretical [57–62] and experimental +study [63–66] have been taken to achieve the controlled +generation of such states. +In recent years, there has been a lot of focus on sub- +tracting photons from or adding photons to the quantum +states [67–79]. A non-Gaussian state can also be gen- +erated by adding or subtracting photons from a Gaus- +sian state. For example, when photons are added to +or subtracted from the Gaussian SVS, one may ob- +tain two non-Gaussian squeezed states that have non- +positive Wigner functions [72–75, 77, 79, 80]: photon- +arXiv:2301.00195v1 [quant-ph] 31 Dec 2022 + +2 +added squeezed-vacuum states (PASVS) [69] and photon- +subtracted squeezed-vacuum states (PSSVS) [75]. Both +PASVS and PSSVS have attracted theoretical interest in +quantum metrology [81–83]. +The first theoretical investigation into the photon- +addition operation is accomplished by adding photons to +the coherent states [84]. Later, the photon-addition op- +eration was successfully proved in experiments by using +a non-degenerate parametric amplifier with a weak cou- +pling [85]. The PSSVS is currently the most successfully +experimentally observed non-Gaussian SVS in quantum +optics [86, 87]. +Schr¨odinger cat-like states with higher amplitude can +be used as qubits in quantum computing or as re- +sources for quantum error-correcting coding [88, 89]. +Conventional methods are unable to produce Schr¨odinger +cat-like states with the necessary amplitudes [90–92]. +Numerous theoretical [93–95] and experimental [96, 97] +research involving the photons addition or subtractions +from the SVS have been carried out to achieve such +states. +In the present work, we introduce a few non-Gaussian +SVSs that may also hold the properties of the com- +pass state. In particular, we show that the Wigner func- +tion of the superpositions of two PASVSs (or PSSVSs) +exhibit phase-space structures of an area, which vary +inversely with the number of photons added (or sub- +tracted). When a large amount of the photons are added +to or subtracted from our states the support area of these +structures is substantially smaller than that found for +coherent states. Similar sub-Planck structures are also +found in the phase space of the mixed states related to +the PASVSs and PSSVSs. We demonstrate that the av- +erage photon number in the states significantly influences +the size of these sub-Planck structures, with photon ad- +dition case having higher average photon number leading +to smaller sub-Planck structures in the phase space than +photon subtraction case. +To investigate the potential applications of these non- +Gaussian states in quantum metrology, we analyze the +overlap between these states and their slightly shifted +analogues [98]. +The degree to which the state is sen- +sitive against perturbations in the phase space can be +determined from this overlap. +The sensitivity associ- +ated with coherent states cannot be improved by increas- +ing the number of photons. Techniques using probes pre- +pared in such states have the sensitivity at the SQL [99, +100]. Here, we show that the sensitivity of our states is +much higher than the SQL when the quantity of added +(or subtracted) photons is relatively high. Furthermore, +our superpositions exhibit this enhanced sensitivity in all +phase-space directions, whereas the mixtures only do so +for specific displacements. The varying average photon +number in the states also contributed to the variation in +the sensitivities between the photon addition and sub- +traction cases; it is shown that the photon addition cases +have higher sensitivity than the subtracted ones. +The structure of our paper is as follows. +In §II, we +review the concept of the sub-Planck structures associ- +ated to the compass state. In §III, we review the Wigner +functions of PASVS and PSSVS. In §IV, we introduce +our states and analyze their phase space by using the +Wigner function. Here, we also discuss the sensitivity of +our states against the phase-space perturbations. In §V, +we provide our conclusion. +II. +THEORY OF SUB-PLANCK STRUCTURES +This section provides the background of the sub-Planck +structures and is organized as follows. §II A introduces +the basic concepts that will be used in this article. In +§II B, we review the sub-Planck structures that build +in the phase space of the compass state. §II C explains +the sensitivity to phase-space displacements associated +to this compass state. +A. +Basic concepts +The position operator ˆx and the momentum operator +ˆp acts on an infinite-dimensional Hilbert space, forming +the so-called Heisenberg-Weyl (HW) algebra hw(1) [101– +103] for a single degree of freedom. The quantum uncer- +tainty principle [9, 10], arising from commutator relations +[ˆx, ˆp] = i (with ℏ being scaled to unity throughout) lim- +its the size of a phase-space structure [10], for example, +represented by the Wigner function [1] for hw(1) algebra +and, more generally, by Moyal symbols [104] for other +symmetries [102]. For convenience, we use the vector +ζ := (x, p)⊤, +(1) +to represent the position-momentum pair in the follow- +ing. +A Schr¨odinger coherent state is a non-spreading wave +packet of the quantum harmonic oscillator [8] and is an +eigenstate of the annihilation operator: +ˆa |α⟩ = α |α⟩ +with α ∈ C. The coherent states are obtained by dis- +placing the vacuum state |0⟩, i.e., +|α⟩ = ˆD(α) |0⟩ , +(2) +where +ˆD(α) := exp(αˆa† − α∗ˆa), +(3) +is the displacement operator [103]. +The overlap between two coherent states |α⟩ and |β⟩ +is [105] +|⟨α | β⟩|2 = e−|α|2−|β|2+2β∗α = e−|α−β|2, +(4) +which implies that two different coherent states are not +orthogonal. +The Wigner function for a generic quantum state ˆρ is +written as an expectation value of the parity kernel [4, 6] +Wˆρ (ζ) := tr +� +ˆρ ˆ∆(α) +� +, +(5) + +3 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 1: Wigner distribution of the compass state with (a) x0 = 4 (b) x0 = 8 and (c) x0 = 12. Insets represent the +central interference pattern of each case. +10-1 +100 +101 +x0 +10-3 +10-2 +10-1 +100 +101 +102 +"x"p +FIG. 2: Variation of the area of the central phase-space +structure of the compass state versus x0. +where +ˆ∆(α) := 2 ˆD(α)ˆΠ ˆD†(α), ˆΠ := (−1)ˆa†ˆa , +(6) +being the displaced parity operator. +The Wigner function for a coherent state is a strictly +positive function, and appeared as a Gaussian of the +form [5] (we omit the normalization of states and their +Wigner functions throughout the paper) +G(ζ; ±x0, ±p0) = e−(x∓x0)2−(p∓p0)2, +(7) +where (x0, p0) is the location of the coherent state in +phase space. +The product of uncertainties of position +and momentum for a coherent state has a lower limit +∆x∆p = 1/2 [5, 9, 10, 105], which is also known as the +Planck action in the phase space. +It is a common belief that phase-space structures with +areas smaller than the Planck scale either do not exist +or have no observational consequences for physical quan- +tum states. In fact, this is true for all Gaussian states +(coherent, squeezed, thermal, etc.) [6, 7] and even for +other non-Gaussian states like cat states [31, 32] that ex- +hibit rapid oscillations in one direction of phase space +but an infinite Gaussian profile in the orthogonal direc- +tion [54]. However, this notion was refuted by Zurek [33], +who demonstrated that the Wigner function of compass +states develops phase-space structures with dimensions +far smaller than the Planck scale, arguing that these +structures play a vital role in determining the sensitivity +of these states against perturbations. +B. +Zurek compass state +The Zurek compass state [33] is obtained from the su- +perposition of the following four coherent states +|ψ⟩ := |x0/ +√ +2⟩ + |−x0/ +√ +2⟩ + |ix0/ +√ +2⟩ + |−ix0/ +√ +2⟩ , +(8) +with x0 ∈ R. Fig. 1 depicts the Wigner function for this +compass state for the cases of x0 = 4, 8 and 12. Note +that we normalize the Wigner functions throughout by +using their maximum amplitudes, |Wˆρ(0)|. The Wigner +function of the compass state (8) can be represented as + +4 +(a) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(b) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(c) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +0 +0.2 +0.4 +0.6 +0.8 +1 +FIG. 3: Overlap of the compass state with its δα-displaced part with δα = (δx + iδp)/ +√ +2: (a) x0 = 4 (b) x0 = 8 and +(c) x0 = 12. +follows +W|ψ⟩(ζ) = W◦(ζ) + WΞ(ζ) + W⊞(ζ), +(9) +where the first term +W◦(ζ) :=G(ζ; x0, 0) + G(ζ; −x0, 0) + G(ζ; 0, x0)+ +G(ζ; 0, −x0), +(10) +represents the Wigner function of four coherent states +that appear in the phase space as Gaussian lobes. The +second term in Eq. (9) is +WΞ(ζ) := 1 +2 +� +i1,i2=±1 +I(i1x, i2p), +(11) +with +I(ζ) := G(ζ; x0/2, x0/2) cos +� +x0 +� +x + p − x0 +2 +� � +, +(12) +reflecting the Gaussian-modulated oscillations that ap- +pear far away from the phase-space origin. +The central pattern resembles a chessboard as shown +in the insets of Fig. 1 and is generated by +W⊞(ζ) := 1 +2G(ζ; 0, 0) +� +cos(2x0x) + cos(2x0p) +� +. +(13) +This pattern consists of tiles with alternate signs (central +chessboardlike pattern). The extension of each tile can +be roughly estimated by calculating zeros of Eq. (13), +and it is found that it is proportional to x−1 +0 +in all di- +rections of phase space. As a result, the support area of +each tile in the chessboardlike pattern is proportional to +x−2 +0 +as shown in the log-log plot of the central support +area versus x0 in Fig. 2, which is much smaller than the +area of the coherent state for x0 ≫ 1. Note that the mix- +ture of two cat states also contains the same sub-Planck +structures that are found in the compass state [54]. +The sub-Planck structures also emerge in the Wigner +functions of non-Gaussian states with the SU(1,1) [53] +and SU(2) symmetries [54]. +In particular, it has been +found that the Wigner function of the superposition of +four SU(1,1) (or SU(2)) coherent states also have sub- +Planck structures similar to the compass state when rep- +resented on the Poincar´e disk [53] (or the sphere [54]). +The two-mode bosonic realization of the SU(1,1) im- +plies that the sub-Planck structures in the phase space +of the SU(1,1) compass state can be associated to the +number of photons added to one of the modes of the +two-mode squeezed number states [53], and they arise +at greater numbers of these added photons. The exis- +tence of the sub-Planck structures in the Wigner func- +tion of the SU(2) compass state can similarly be linked +to the angular momentum; the higher value of the angu- +lar momentum causes sub-Planck structures in the phase +space [54]. In the subsequent sections, we will demon- +strate how adding or subtracting photons from superpo- +sitions related to the one-mode non-Gaussian SVS can +also cause the emergence of sub-Planck structures in the +phase space of those states. +C. +Sensitivity of compass state +The sensitivity of a quantum state to displacements +can be determined by calculating the overlap between it +and its slightly displaced version [98]. The overlap be- +tween a state ˆρ and its displaced version ˆD(δα)ˆρ ˆD†(δα) +is +Oˆρ(δα) := tr{ˆρ ˆD(δα)ˆρ ˆD†(δα)} = +���⟨ψ| ˆD(δα)|ψ⟩ +��� +2 +, +(14) +where δα ∈ C is an arbitrary displacement. Note that the +last equality of above expression holds when the state is +pure, ˆρ = |ψ⟩⟨ψ|. The smaller the displacement δα needs +to be in order to bring the overlap to zero, the more sensi- +tive the state is claimed to be against displacements [37]. +This overlap results in +O|α⟩(δα) = e−|δα|2, +(15) +for a coherent state |α⟩, indicating that the smallest no- +ticeable displacement that vanishes this overlap is above + +05 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 4: Wigner distribution of the PASVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases r = 0.5. Insets +represent the central interference pattern of each case. +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 5: Wigner distribution of the PSSVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases r = 0.5. Insets +represent the central interference pattern of each case. +the Planck scale, |δα| > 1. It is interesting to note that +the sensitivity to displacements in coherent states is inde- +pendent of the quantity of quanta contained in the state, +¯n = ⟨ˆa†ˆa⟩ = |α|2. Therefore, increasing ¯n will not im- +prove the sensitivity and is solely limited by the shot +noise introduced by vacuum fluctuations [99, 100]. +We now discuss the sensitivity of the compass state +(8) to phase-space displacements. Assuming x0 ≫ 1 and +|δα| ≪ 1 , the overlap (14) for this compass state results +in +O|ψ⟩(δα) = 1 +4e− 1 +2 |δα|2� +cos (x0δx) + cos (x0δp) +�2, +(16) + +6 +with +δα = δx + iδp, +δj ∈ R. +(17) +It can be concluded that O|ψ⟩(δα) becomes zero when +either of the conditions is satisfied +δx ± δp = 2m + 1 +x0 +π, m ∈ Z. +(18) +As illustrated in Fig. 3 for O|ψ⟩(δα) of cases when x0 +is increased from 4 to 12, the overlap vanishes for the +displacements |δα| ∼ x−1 +0 +and the arbitrary directions in +the phase space. As a result, it can be inferred that this +sensitivity is proportional to x−1 +0 +and that ¯n = x2 +0/2 ties it +to the number of excitations ¯n. Therefore, in comparison +to coherent states, a compass state with ¯n excitations has +shown √¯n-enhanced sensitivity to displacements of any +arbitrary directions in the phase space. Weak force mea- +surements have been performed with Heisenberg-limited +sensitivity using compass states [36, 37]. In contrast, cat +states have shown the sensitivity to displacements along +the specific direction in the phase space [54]. It has been +found that cat-state mixtures only exhibit this enhanced +sensitivity for displacements along particular phase-space +directions [53, 54]. Hence, cat-state mixtures with sub- +Planck structures in the Wigner function do not have +the potential for metrology of compass states, for which +the additional quantum coherence of the cat-state super- +position provided by the second term in Eq. (9) plays a +crucial role. +The SU(1,1) and SU(2) compass states have shown the +same sensitivity to displacements as their HW counter- +parts [53, 54]. The sensitivity of the SU(1,1) compass +state can be connected with the amount of the number +of photons added to one of the modes of the two-mode +squeezed number state, and this sensitivity improves as +the quantity of added photons increases [53]. Similarly, +the sensitivity of the SU(2) compass state improves as +the angular momentum goes higher [54]. +This addition +of the photons increases the average photon number in +the states, and it can be understood in a way similar to +that for compass states of the harmonic oscillator, i.e., +injecting more photons in the states improves its sensi- +tivity. +III. +NON-GAUSSIAN SVS +The non-Gaussian Wigner functions of the PASVS +and PSSVS illustrate the non-Gaussian nature of these +states [72–75, 77, 79]. In this section, we first provide +a brief review of two non-Gaussian SVS, the PASVS +and the PSSVS, in §III A and §III B, respectively. These +two states are heavily used in our construction of non- +Gaussian states that manifest the sub-Planck structures +in §IV. The Wigner functions of both PASVS and PSSVS +are discussed in relation to the amount of photons added +or subtracted in the following subsections. +A. +PASVS +First, we review the Wigner function of the PASVS. +The creation operator ˆa† is repeatedly applied to SVS +ˆS(±r) |0⟩ to obtain a single-mode PASVS [69] +|ψ± +PA⟩ := ˆa†n ˆS(±r) |0⟩ with n ∈ N. +(19) +The subscript “PA” is the shorthand for “PASVS”, and +we introduce“±” in the squeezing operator ˆS(±r) with +the definition [106] +ˆS(±r) := exp +� +± r +2 +� +ˆa†2 − ˆa2� � +. +(20) +which allows us to preserve part of the expressions intro- +duced in this section for later uses in §IV. +Using Eq. (5), the Wigner function of PASVS is easily +found to be [72, 73, 77, 79] +W|ψ± +PA⟩(ζ) =exp (χ±) [± sinh(2r)]n +π4n +n +� +l=0 +(n!)2 [∓2 coth(r)]l +l! [(n − l)!]2 +���Hn−l +� +−i +� +±2 coth(r)¯α± +���� +2 +, +(21) +where Hm represents the Hermite polynomial, and +χ± := ± sinh(2r) +� +α∗2 + α2� +− 2|α|2 cosh(2r), +(22) +with +¯α± := α cosh(r) ∓ α∗ sinh(r). +(23) +The +non-Gaussian +shape +of +the +Wigner +function +W|ψ+ +PA⟩(ζ), which is shown in Fig. 4 for the cases when +n is chosen as 10, 15 and 20, indicates that PASVS is a +non-Gaussian state. We can clearly see the interference +pattern that emerge in the form of an oscillating pattern +in the p direction in the phase space. As the number of +photons n rises, this pattern gets more pronounced (the +frequency of the oscillations is increased). Moreover, the +existence of these negative peaks in the Wigner function +shows that the PASVS is a non-classical state as well. +Another indication of the nonclassicality of this state is +the squeezing effect in one of the quadratures, which is +visible in the plots. Note that the PASVS is the Gaussian +SVS when n = 0. +B. +PSSVS +Now, we review the Wigner function of the PSSVS. +The PSSVS [74, 75] is obtained by repeatedly applying +the annihilation operator ˆa to the SVS as +|ψ± +PS⟩ := ˆan ˆS(±r) |0⟩ , +(24) + +7 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 6: Wigner distribution of the pure SPASVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases r = 0.5. +Insets represent the central interference pattern of each case. +101 +102 +n +10-2 +"x"p +FIG. 7: Variation of the area of the central phase-space +structure versus the photon number n of the SPASVS +state with n chosen from 5 to 100. +where the subscript “PS” is the shorthand for “PSSVS”. +The Wigner function of this state is also in a non- +Gaussian form, and is written as +W|ψ± +PS⟩(ζ) =exp (χ±) [± sinh(2r)]n +π4n +n +� +l=0 +(n!)2 [∓2 tanh(r)]l +l! [(n − l)!]2 +���Hn−l +� +−i +� +±2 tanh(r)¯α± +���� +2 +. +(25) +We plot the Wigner function W|ψ+ +PS⟩(ζ) in Fig. 5 with r +being 0.5 and n being 10, 15, and 20. This Wigner func- +tion exhibit the interference pattern around the origin of +the phase space and oscillates along the p direction in +the phase space. As n grows, the frequency of this os- +cillating pattern increases. The simpliest case n = 0 of +the PSSVS corresponds to the Gaussian SVS. Another +indicator of the non-classical nature of this state is the +squeezing effect in one of the quadratures, which is in- +dicative of the nonclassicality of state. +In summary, for non-zero values of n, the Wigner func- +tion of PASVS and PSSVS maintains non-Gaussianity. It +is interesting to note that both PASVS and PSSVS ex- +hibit similar phase-space features as cat-like states. The +addition or subtraction of photons from the Gaussian +SVS has been employed both theoretically [93–95] and +experimentally [96, 97] to produce cat-like states. Both +PASVS and PSSVS have been found very useful for the +quantum metrology [81–83]. When photons are added to +or subtracted from the Gaussian SVS, the average photon +number of the resulting state grows [82, 83]. It has been +shown that for the same number of photons applied on +the Gaussian SVS, the subsequent PASVS has a higher +average photon number than the PSSVS [82, 83]. This +means that the PASVS has a better potential for metrol- +ogy than the PSSVS [82]. +IV. +SUPERPOSITION OF NONGAUSSIAN SVS +In this section, we introduce the quantum states of our +interest and present their phase-space analysis by using +the Wigner function [1–5]. The photon-number distribu- +tion [27] and the Wigner function [26] have both been +used to discuss the nonclassicality in the superpositions + +8 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 8: Wigner distribution of the mixed-state SPASVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases +r = 0.5. Insets represent the central interference pattern of each case. +of two SVSs. Theoretically, a non-linear harmonic oscil- +lator can be used to create some specified superpositions +of two SVSs [27]. Here, we focus on the superposition of +two Gaussian SVSs with opposite phases given by +|ψSSV⟩ := ˆS(r) |0⟩ + ˆS(−r) |0⟩ , +(26) +with “SSV” in the subscript for the “superposition of +SVSs”. +The Wigner function corresponding to this +state exhibit non-Gaussian and non-classical proper- +ties [26, 27]. +The addition of n photons to the superposed state (26) +leads to the superposition of two photon-added squeezed- +vacuum states (SPASVS), that is, +|ψSPA⟩ := ˆa†n |ψSSV⟩ = |ψ+ +PA⟩ + |ψ− +PA⟩ +(27) +with the subscript “SPA” a shorthand for “SPASVS”. +Similarly, the subtraction of n photons from the super- +position (26) results in the superposition of two photon- +subtracted squeezed-vacuum states (SPSVS) of the fol- +lowing form: +|ψSPS⟩ := ˆan |ψSSV⟩ = |ψ+ +PS⟩ + |ψ− +PS⟩ , +(28) +where +the +subscript +“SPS” +is +the +short +form +of +“SPSSVS”. +Following subsections cover the discussion about these +two superpositions, which are structured as follows. In +§IV A, we discuss Wigner functions corresponding to +|ψSPA⟩ and |ψSPS⟩. Here, we describe how the addition +and subtraction of photons lead to the sub-Planck struc- +tures in the phase space. In §IV B, we discuss the sensi- +tivity to displacements associated with these two super- +positions. +A. +Photons addition versus photons subtraction +The Wigner function of the SPASVS (27) can be ob- +tained by using Eq. (5) as (see Appendix A for detailed +derivations) +W|SPA⟩(ζ) = 2 Re [IΞ(ζ)] + W⊞(ζ), +(29) +and is shown in Fig. 6 for the cases when n = 10, 15 and +20. The first term in (29) +IΞ(ζ) := +exp (ξ) [−i tanh(2r)]n +π4n cosh(r) +� +1 + tanh2(r) +n +� +l=0 +(n!)2 [−2i coth(r)]l +[(n − l)!]2 +Hn−l [iΩα−] Hn−l +� +−Ωα∗ ++ +� +, +(30) +provides the interference pattern that appears far away +from the phase-space origin, where +Ω := +� +tanh(2r) +sinh(r) +, +(31) +and +ξ := − tanh(2r) +� +α2 − α2∗� +− 2|α|2 sech(2r), +(32) +with +α± := α∗ sinh(r) ± α cosh(r) +(33) +being the hyperbolic-rotated α. +For our purposes, we concentrate on the second term in +Eq. 29, which contributes to the chessboardlike pattern +that is visible at the phase-space origin for n ≫ 1. This + +9 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 9: Wigner distribution of the pure SPSSVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases r = 0.5. +Insets represent the central interference pattern of each case. +101 +102 +n +10-2 +"x"p +FIG. 10: Variation of the area of the central +phase-space structure versus the photon number n of +the SPSSVS state with n chosen from 5 to 100. +central interference pattern is equal to the sum of the +individual Wigner functions of PASVSs as +W⊞(ζ) := W|ψ+ +PA⟩(ζ) + W|ψ− +PA⟩(ζ). +(34) +The extension of a single tile in the chessboardlike pat- +tern is inversely proportional to n along any arbitrary +direction in the phase space. +This is demonstrated in +Fig. 6, where we see that as n increases, the support area +of a fundamental tile in the chessboardlike pattern de- +creases. The area of a fundamental tile can be roughly +estimated by calculating the zeros of the Eq. (34). For +n ≫ 1, the support area of a fundamental tile may be +considerably lower than the area of the coherent state. +This is depicted in Fig. 7, where we plot the area of the +center tile against n using a log-log plot. Thus, the sub- +Planck structures that Zurek discovered for the compass +state [33] are also present in SPASVS. +The same sub-Planck structures are also contained by +following mixed state +ˆρPA := |ψ+ +PA⟩⟨ψ− +PA| + |ψ− +PA⟩⟨ψ+ +PA| , +(35) +and its Wigner function, which is the same as the one +given in Eq. (34), is shown in Fig. 8. +Similarly, for the SPSSVS (28), the Wigner function is +also written into two terms (see Appendix A for detailed +derivations): +W|SPS⟩(ζ) = 2 Re [IΞ(ζ)] + W⊞(ζ), +(36) +which is plotted in Fig. 9. With +ω := +� +tanh(2r) +cosh(r) +, +(37) +the term that contains +IΞ(ζ) := +exp (ξ) [i tanh(2r)]n +π4n cosh(r) +� +1 + tanh2(r) +n +� +l=0 +(n!)2 [2i tanh(r)]l +[(n − l)!]2 +Hn−l [−ωα−] Hn−l +� +−iωα∗ ++ +� +(38) +causes the interference pattern that manifests as oscil- +lating peaks far from the phase-space origin. Again, we +concentrate on the second term of Eq. (36), which results +in the chessboardlike pattern at the phase-space origin. + +10 +(a) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(b) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +(c) +-12 +-8 +-4 +0 +4 +8 +12 +x +-12 +-8 +-4 +0 +4 +8 +12 +p +-1.6 +-0.8 +0 +0.8 +1.6 +-1.6 +-0.8 +0 +0.8 +1.6 +-1 +-0.5 +0 +0.5 +1 +FIG. 11: Wigner distribution of the mixed-state SPSSVS with (a) n = 10 (b) n = 15 and (c) n = 20. In all cases +r = 0.5. Insets represent the central interference pattern of each case. +This term is the sum of the Wigner functions (25) of +PSSVSs, that is, +W⊞(ζ) := W|ψ+ +PS⟩(ζ) + W|ψ− +PS⟩(ζ). +(39) +This pattern manifests sub-Planck oscillations around +the origin of the phase space. It is similar to the pattern +identified for the case of SPASVS. Again, the extension of +a fundamental tile can be estimated by calculating zeros +of Eq. (39). As shown in Fig. 9, the extensions of these +alternating-sign tiles decrease isotropically as n increases, +and the support area of these tiles in the phase is signif- +icantly less than the coherent state for n ≫ 1. This is +also shown in Fig. 10, which is a log-log plot showing the +extension of the central tile. It is interesting to note that +for a given r and n, the central tile in the chessboardlike +pattern is larger than that of the SPASVS. +Additionally, we demonstrate that the following mixed +state likewise has the same sub-Planck structures +ˆρPS := |ψ+ +PS⟩⟨ψ− +PS| + |ψ− +PS⟩⟨ψ+ +PS| . +(40) +Similar to the case of the mixture of PASVSs (35), the +Wigner function of ˆρPS shown in Fig. 11 is identical to +Eq. (39). +Thus, the photon-addition or photon-subtraction op- +erations on the superpositions of the Gaussian SVS may +produce the sub-Planck structures in the phase space. +The average photon number of the resulting states is ac- +tually increased by either adding or subtracting photons +from the superposition of the Gaussian SVS [82], with the +addition of photons producing a higher average photon +number than the subtraction of photons. This difference +in holding the photons number in the states also effects +the size of the sub-Planck structures of such states. As an +illustration, the photons addition case has demonstrated +to hold smaller sub-Planck structures in the phase space +than the photons subtraction for the same amount of +photons utilized in the Gaussian SVS. Hence, the idea +of the sub-Planck structures connected to our states can +be understood in a manner similar to that of the com- +pass state [33], i.e., a higher average photon number in +the states leads to the smaller tiles in the chessboardlike +pattern. +In summary, the sub-Planck structures of the compass +state are present in the Wigner functions of both SPASVS +and SPSSVS. The mixtures associated to PASVSs or +PSSVSs likewise contain the same sub-Planck structures. +Additionally, for the available average photon number, +the SPASVS and its associated mixture show smaller sub- +Planck structures than their counterparts in the photon- +subtracted case. +B. +Sub-shot noise sensitivity of our states +In this subsection, we discuss the susceptibility of our +proposed states to phase-space displacement. Let us first +consider SPASVS (27). The overlap (14) for this state un- +der the approximation |δα| ≪ 1 and n ≫ 1 leads to (see +Appendix A 2 for the detailed derivations) +OSPA(δα) = +� +⟨ψ+ +PA| ˆD(δα) |ψ+ +PA⟩ + ⟨ψ− +PA| ˆD(δα) |ψ− +PA⟩ +�2 +. +(41) + +11 +(a) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(b) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(c) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +0 +0.2 +0.4 +0.6 +0.8 +1 +FIG. 12: Overlap of the pure SPASVS state with its δα-displaced part with δα = (δx + iδp)/ +√ +2: (a) n = 10 +(b) n = 15 and (c) n = 20. In all cases r = 0.5. +(a) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(b) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(c) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +0 +0.2 +0.4 +0.6 +0.8 +1 +FIG. 13: Overlap of the mixed-state SPASVS with its δα-displaced part with δα = (δx + iδp)/ +√ +2: (a) n = 10 +(b) n = 15 and (c) n = 20. In all cases r = 0.5. +Each term of this overlap is calculated as +⟨ψ± +PA| ˆD(δα) |ψ± +PA⟩ =[∓ sinh(2r)]n e−|η±|2/2 +4n +n +� +l=0 +(n!)2 +l![(n − l)!]2 +[∓2coth(r)]lHn−l [Θ±] Hn−l +� +Θ∗ +± +� +, +(42) +where +Θ± = i +� +±coth(r) +2 +η±, +(43) +and +η± = δαcosh(r) ∓ δα∗sinh(r), +(44) +with +δα = δx + iδp. +(45) +In Fig. 12, we plot this overlap for n=10, 15, and 20. For +the large n, a small displacement |δα| ≪ 1 can turn the +SPASVS into an state orthogonal to its original state, +and this orthogonality occurs in all phase-space direc- +tions. We have normalized overlaps to their maximum +amplitudes, Oˆρ(0). +Let us now consider the mixture of PASVSs (19), for +which the overlap (14) is calculated as +OˆρPA(δα) = +���⟨ψ+ +PA| ˆD(δα) |ψ+ +PA⟩ +��� +2 ++ +���⟨ψ− +PA| ˆD(δα) |ψ− +PA⟩ +��� +2 +. +(46) +We plot this overlap with n=10, 15, and 20 in Fig. 13. +Again, we see that the overlap OˆρPA(δα) disappears for +the displacement |δα| ≪ 1, but unlike the SPASVS, this +orthogonality now take place when δx = ±δp in the phase +space. +Similarly, overlap (14) for SPSSVS is obtained as +OSPS(δα) = +� +⟨ψ+ +PS| ˆD(δα) |ψ+ +PS⟩ + ⟨ψ− +PS| ˆD(δα) |ψ− +PS⟩ +�2 +, +(47) +where +⟨ψ± +PS| ˆD(δα) |ψ± +PS⟩ =[∓ sinh(2r)]n e−|η±|2/2 +4n +n +� +l=0 +(n!)2 +l![(n − l)!]2 +[∓2tanh(r)]lHn−l [θ±] Hn−l +� +θ∗ +± +� +, +(48) +with +θ± = i +� +±tanh(r) +2 +η±. +(49) + +12 +(a) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(b) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(c) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +0 +0.2 +0.4 +0.6 +0.8 +1 +FIG. 14: Overlap of the pure SPSSVS state with its δα-displaced part with δα = (δx + iδp)/ +√ +2: (a) n = 10 +(b) n = 15 and (c) n = 20. In all cases r = 0.5. +(a) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(b) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +(c) +-1.6 +-0.8 +0 +0.8 +1.6 +/x +-1.6 +-0.8 +0 +0.8 +1.6 +/p +0 +0.2 +0.4 +0.6 +0.8 +1 +FIG. 15: Overlap of the mixed-state SPSSVS with its δα-displaced part with δα = (δx + iδp)/ +√ +2: (a) n = 10 +(b) n = 15 and (c) n = 20. In all cases r = 0.5. +In Fig. 14, we plot this overlap with n equal to 10, 15, and +20. The SPSSVS overlap plot exhibits the same behavior +as the SPASVS: the overlap disappears in any direction in +phase space when |δα| ≪ 1. The only distinction is that, +for the same n and r, the central pattern of the overlap of +the SPSSVS is larger than that of the SPASVS, showing +that the SPSSVS is less sensitive than the SPASVS. +Finally, we consider mixtures of PSSVSs (24). +The +overlap (14) for this state leads to +OˆρPS(δα) = +���⟨ψ+ +PS| ˆD(δα) |ψ+ +PS⟩ +��� +2 ++ +���⟨ψ− +PS| ˆD(δα) |ψ− +PS⟩ +��� +2 +. +(50) +In Fig. 15, we plot the overlap OˆρPS(δα) using the same +parameter values as that of the SPSSVS. We observe that +the overlap of the mixture of the PSSVSs looks similar +to the mixture of the PASVSs, with the distinction being +that the mixture of PSSVSs appears to be less sensitive +for a given number of n and r, which is manifested as the +larger chessboardlike pattern in the center of the phase +space than that of the mixture of PASVSs. +In summary, we have demonstrated that the sensitivity +associated to our proposed states depends on the quan- +tity of photons added (or subtracted), and it drops con- +siderably below the sensitivity of the coherent state when +there are excessive amount of photons added (or sub- +tracted). For both SPASVS and SPSSVS, the enhanced +sensitivity is unaffected by the directions of phase-space +displacements. +However, for the mixtures related to +PASVSs or PSSVSs, this enhancement only takes place +in particular phase-space directions. This implies that +compared to mixed states, our superposition states have +more potential for quantum sensing applications. More- +over, it has been found that the quantum states associ- +ated with photon addition cases are more sensitive than +their counterparts of the photon subtraction cases. +V. +SUMMARY AND OUTLOOK +We have shown that the Wigner function of the +SPASVS (or SPSSVS) contains the chessboardlike pat- +tern around the origin of the phase space. Similar chess- +boardlike pattern is also emerged by the mixtures related +to PASVSs and PSSVSs. The support area of the phase- +space structures contained by this chessboardlike pattern +varies inversely with the photon number added (or sub- +tracted). When a sizable number of photons are added +(or subtracted), the support area of these structures is +noticeably smaller than that of the coherent state, and +these are the same sub-Planck structures, as shown by +compass states. +The average photon numbers of our states, which +are increased either by photon-addition or photon- + +13 +subtraction actions on the Gaussian SVS, have an im- +pact on the size of the sub-Planck structures in the phase +space. +The sub-Planck structures associated with the +SPASVS are smaller than those of the SPSSVS for the +same number of photons added or subtracted. This is be- +cause the photon-addition operation always leads to the +higher average photon number in the resultant states. +The association of the average photon number with the +sub-Planck structures in our states is much similar to +that of the compass states, i.e., higher average photon +number in the compass state correspond to the smaller +sub-Planck structures in the phase space. +We have demonstrated that the sensitivity of our pro- +posed states is noticeably higher than that of the coherent +state when a significant number of photons are added (or +subtracted). Both the SPASVS and SPSSVS exhibit the +enhanced sensitivity, which is independent of the phase- +space directions, indicating that they hold more promise +for quantum metrology. In addition, the difference in the +sensitivities between the photon addition and subtraction +cases is arose from the different average photon numbers +in the states; photon addition cases are demonstrated to +have greater sensitivity than the subtracted cases. +It is incredibly exciting that sub-Planck structures can +possibly build from photons being added to or subtracted +from states. As a result, it will be able to apply a va- +riety of ways to engineer compass-like states in associa- +tion with contemporary experiments [94–97]. For exam- +ple, the theoretical research in [94] shows that subtract- +ing a photon from the Gaussian SVS results in an odd +Schr¨odinger cat state. +Another subsequent theoretical +approach introduces the idea of photon subtraction from +the Gaussian SVS to produce the compass-like states [61]. +Additionally, theoretical research to construct the cat- +like states advocated in [94] is subsequently applied in +actual experiments [96, 97]. These illustrations unequiv- +ocally demonstrate that it is possible to add or subtract +photons from states in both theory and experiments to +produce compass-like states. It may possible that some +of these techniques can be modified to produce SPASVS +and SPSSVS, which are entirely new research avenues +that can be adapted in the future. +ACKNOWLEDGMENTS +NA acknowledges the support of postdoctoral fund +of +the +Zhejiang +Normal +University +under +Grant +No. ZC304021937. GX acknowledges support by the Na- +tional Natural Science Foundation of China (Grants Nos. +11835011 and No. 12174346). WML acknowledges the +support from the National Key R&D Program of China +under grants No. 2021YFA1400900, 2021YFA0718300, +2021YFA1402100, NSFC under grants Nos. 61835013, +12174461, 12234012, and Space Application System of +China Manned Space Program. +Appendix A: Wigner functions of SPASVS and SPSSVS +This section provides the main steps to drive the Wigner functions of SPASVS and SPSSVS. +1. +Derivations of the Wigner function of SPASVS +Let us first consider the Wigner function of SPASVS given by Eq. (29). First term of this Wigner function is given +by +IΞ(ζ) = +� +ψ+ +PA +��� ˆ∆(α) +��� ψ− +PA +� +, +(A1) +where the alternative form of the displaced parity operator ˆ∆(α) is [77] +ˆ∆(α) := 1 +π2 e2|α|2 � ∞ +−∞ +d2βe−2α∗β+2αβ∗ |β⟩⟨−β| . +(A2) +Eq. (A1) can be rewritten as +IΞ(ζ) = (−1)ne2|α|2 +π2 cosh(r) +� ∞ +−∞ +d2β|β|2n exp +� +− |β|2 − tanh(r) +2 +� +β2 + β∗2� +− 2βα∗ + 2β∗α +� +. +(A3) +We incorporate the factor |β|2n into a differential equation as +IΞ(ζ) = (−1)ne2|α|2 +π2 cosh(r) +∂2n +∂sn∂tn +� ∞ +−∞ +d2β exp +� +− |β|2 − tanh(r) +2 +� +β2 − β∗2� +− 2βα∗ + 2β∗α + sβ + tβ∗ +����� +s=t=0 +. +(A4) + +14 +Consider the integral formula [107] +� ∞ +−∞ +d2β exp +� +a|β|2 + bβ + cβ∗ + dβ2 + kβ∗2 +� += +π +√ +a2 − 4dk +exp +�−abc + b2k + c2d +a2 − 4dk +� +, +(A5) +whose convergent conditions are Re [a ± d ± k] < 0 and Re +� +(a2−4dk)/a±d±k +� +< 0. By using this integral Eq. (A4) leads +to +IΞ(ζ) = +(−1)neξ +π cosh(r) +� +1 + tanh2(r) +∂2n +∂sn∂tn exp +� +tanh(2r) +4 +s2 − tanh(2r) +4 +t2 + +� +1 + tanh2(r) +�−1st − 2 cosh(r)sech(2r)α−s +− 2 cosh(r)sech(2r)α∗ ++t +������ +s=t=0 +, +(A6) +with +ξ := −(α2 − α∗2) tanh(2r) − 2|α|2sech(2r). +(A7) +It is challenging to solve Eq. (A6) because it has eγst terms. We employ the following sum series [73] to get rid of it. +exp(Cs + Dt + Est) = +∞ +� +l=0 +El +l! +∂2l +∂Cl∂Dl [exp (Cs + Dt)] . +(A8) +Using this formula Eq. (A6) modifies as +IΞ(ζ) = +(−1)neξ +π cosh(r) +� +1 + tanh2(r) +∞ +� +l=0 +1 +l! 22l +� +1 + tanh2(r) +�−l +cosh2l(r)sech2l(2r) +∂2l +∂α∗l ++αl +− +∂2n +∂sn∂tn exp +�tanh(2r) +4 +s2 − tanh(2r) +4 +t2 +− 2 cosh(r)sech(2r)(α−s + α∗ ++t) +����� +s=t=0 +. +(A9) +Noticing the generating function of Hermite polynomial +Hn(x) = ∂n +∂sn exp +� +2xs − s2� �� +s=0, +(A10) +and its recursive relation +dl +dxl Hn(x) = +2ln! +(n − l)!Hn−l(x). +(A11) +The preceding equation can then be simplified in the form of Eq. (30) by applying the relationships (A10) and (A11). +Let us now calculate second term of the Wigner function (29). This term can be written as +W⊞(ζ) = +� +ψ+ +PA +��� ˆ∆(α) +��� ψ+ +PA +� ++ +� +ψ− +PA +��� ˆ∆(α) +��� ψ− +PA +� +, +(A12) +where +� +ψ± +PA +��� ˆ∆(α) +��� ψ± +PA +� +=(−1)n +π2 +e2|α|2 +cosh(r) +∂2n +∂sn∂tn +� ∞ +−∞ +d2β exp +� +− |β|2 ± 1 +2 tanh(r)(β2 + β∗2) − 2βα∗ + 2β∗α + sβ + tβ∗��� +s=t=0. +Using the integral (A5), we get +� +ψ± +PA +��� ˆ∆(α) +��� ψ± +PA +� +=(−1)n +π +exp +� +± sinh(2r)(α∗2 + α2) − 4 cosh2(r)|α|2� +∂2n +∂sn∂tn exp +� +± 1 +4 sinh(2r)(s2 + t2) ++ 2 cosh(r)(¯α±s − ¯α∗ +±t) + cosh2(r)st +����� +s=t=0 +. +(A13) +Again, use of sum series (A8) eliminates the factors eγst, that is, +� +ψ± +PA +��� ˆ∆(α) +��� ψ± +PA +� += +∞ +� +l=0 +(−1)l +22ll! +∂2l +∂ ¯αl +±∂ ¯α∗l +± +∂2n +∂sn∂tn exp +� +±sinh(2r) +4 +� +s2 + t2� ++ 2 cosh r +� +¯α±s − ¯α∗ +±t +������ +s=t=0 +. +(A14) +Then, by using the relations (A10) and (A11), the expression (39) is obtained. + +15 +2. +Derivations of the Wigner function of SPSSVS +This section presents the detailed derivation of the Eq. (36), for which the first term gets form as below +IΞ(ζ) = +� +ψ+ +PS +��� ˆ∆(α) +��� ψ− +PS +� +. +(A15) +This term is calculated as +IΞ(ζ) = 1 +π2 +e2|α|2 +cosh(r) +∂2n +∂sn∂tn exp +� +− tanh(r) +2 +� +t2 − s2�� � ∞ +−∞ +d2β exp +� +− |β|2 − +� +tanh(r)t + 2α∗� +β − +� +tanh(r)s +− 2α +� +β∗ − tanh(r) +2 +(β2 − β∗2) +����� +s=t=0 +. +(A16) +Using the integral (A5), we obtain +IΞ(ζ) = +eξ +π cosh(r) +� +1 + tanh2(r) +∂2n +∂sn∂tn exp +�tanh(2r) +4 +s2 − tanh(2r) +4 +t2 + 2sech(2r) sinh(r)(α∗ ++s − α−t) ++ sech(2r) sinh2(r)st +����� +s=t=0 +. +(A17) +Now, we eliminate eγst terms by using Eq. (A8) +IΞ(ζ) = +eξ +π cosh(r) +� +1 + tanh2(r) +∞ +� +l=0 +1 +l!22lsechl(2r) +∂2l +∂α∗l ++∂αl +− +∂2 +∂sn∂tn exp +�tanh(2r) +4 +s2 − tanh(2r) +4 +t2 ++ 2sech(2r) sinh(r)(α∗ ++s + α−t) +����� +s=t=0 +. +(A18) +Then, using the relations (A10) and (A11) we obtain expression (38). +Finally, we derive the second term of the Eq. (36). This term can be written as +W⊞(ζ) = +� +ψ+ +PS +��� ˆ∆(α) +��� ψ+ +PS +� ++ +� +ψ− +PS +��� ˆ∆(α) +��� ψ− +PS +� +, +(A19) +where +� +ψ± +PS +��� ˆ∆(α) +��� ψ± +PS +� += 1 +π exp +� +± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2� ∂2n +∂sntn exp +� +± 1 +4 sinh(2r)(s2 + t2) +± 2 sinh(r)(¯α±t + ¯α∗ +±s) − sinh2(r)st +����� +s,t=0 +. +(A20) +Again, we use Eq. (A8) to get rid of all eγst factors, obtaining +� +ψ± +PS +��� ˆ∆(α) +��� ψ± +PS +� += 1 +π exp +� +± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2� ∞ +� +l=0 +(−1)l +22ll! +∂2l +∂ ¯αl +±¯α∗l +± +∂2n +∂sntn exp +� +± sinh(2r) +4 +� +s2 + t2� +± 2 sinh(r) +� +¯α±t + ¯α∗ +±s +������ +s=t=0 +. +(A21) +Finally, this equation can be simplified to expression (39) by utilizing the relations (A10) and (A11). +OVERLAPS OF SPASV AND SPSSV +In this section, we calculate the overlap (14) of SPASVS and SPSSVS. Note that, for n ≫ 1 and |δα| ≪ 1, the +contribution of the cross terms between the states to the overlap is negligible, that is, +⟨ψ+ +PA| ˆD(δα) |ψ− +PA⟩ = 0 and ⟨ψ+ +PS| ˆD(δα) |ψ− +PS⟩ = 0. +(A22) + +16 +First, we drive each term of Eq. (41). PASV (19) can be rewritten as [73] +|ψ± +PA⟩ = ˆS(±r) +� +ˆa† cosh(r) ± ˆa sinh(r) +�n |0⟩ . +(A23) +Then, considering relation given by [73] +(fˆa + gˆa†) := +� +− i +� +fg +2 +�n +Hn +� +i +� +f +2g ˆa + i +� g +2f ˆa† +� +, +(A24) +which leads to +[ˆa† cosh(r) + ˆa sinh(r)]n = +� +− i +� +sinh(2r) +4 +�n +Hn +� +i +� +tanh(r) +2 +ˆa + i +� +coth(r) +2 +ˆa† +� +, +(A25) +[ˆa cosh(r) + ˆa† sinh(r)]n = +� +− i +� +sinh(2r) +4 +�n +Hn +� +i +� +tanh(r) +2 +ˆa† + i +� +coth(r) +2 +ˆa +� +. +(A26) +By using these relations, we obtain +⟨ψ± +PA| ˆD(δα)|ψ± +PA⟩ = +� +∓ sinh(2r) +4 +�n � +0 +����� Hn +� +i +� +±coth(r) +2 +ˆa +� +ˆD(η±)Hn +� +i +� +±coth(r) +2 +ˆa† +� ����� 0 +� +, += +� +∓ sinh(2r) +4 +�n � ∞ +−∞ +d2α +π +exp +� +− |α|2 +2 +− α +2 η∗ +± + α∗ +2 η± − |α − η±|2 +2 +� +Hn +� +i +� +±coth(r) +2 +α +� +Hn +� +i +� +±coth(r) +2 +(α∗ − η∗ +±) +� +, +(A27) +where +ˆD(η±) = ˆS†(±r) ˆD(δα) ˆS(±r) with η± = δα cosh(r) ∓ δα∗ sinh(r). +(A28) +By using (A10), we get +⟨ψ± +PA| ˆD(δα)|ψ± +PA⟩ = +� +∓ sinh(2r) +4 +�n +∂2n +∂τ n∂tn exp +� +− i +� +±2 coth(r) η∗ +±τ +� +exp +� +− τ 2 − t2� +� ∞ +−∞ +d2α +π +exp +� +− |α|2 +2 +− α +2 η∗ +± + α∗ +2 η± − |α − η±|2 +2 ++ i +� +±2 coth(r) αt + i +� +±2 coth(r) α∗τ +����� +τ=t=0 +. +(A29) +Using the integral (A5), the previous equation yields +⟨ψ± +PA| ˆD(δα)|ψ± +PA⟩ = +� +∓ sinh(2r) +4 +�n +exp +� +− |η±|2 +2 +� +∂2n +∂τ n∂tn exp +� +− t2 + i +� +±2 coth(r) η±t − τ 2 − i +� +±2 coth(r) η∗ +±τ +(A30) +∓ 2 coth(r) tτ +����� +t=τ=0 +. +(A31) +First, we rid out the factors eγτt from above equation by using (A8). Then, by using (A10) and (A11), the preceding +equation is simplified to (42). +Similarly, PSSVS can be rewritten as [73] +|ψ± +PS⟩ = ˆS(±r) +� +ˆa cosh(r) ± ˆa† sinh(r) +�n |0⟩ . +(A32) +The overlap +⟨ψ± +PS| ˆD(δα)|ψ± +PS⟩ = +� +∓ sinh(2r) +4 +�n � +0 +����� Hn +� +i +� +±tanh(r) +2 +ˆa +� +ˆD(η±)Hn +� +i +� +±tanh(r) +2 +ˆa† +� ����� 0 +� +, += +� +∓ sinh(2r) +4 +�n � ∞ +−∞ +d2α +π +exp +� +− |α|2 +2 +− α +2 η∗ +± + α∗ +2 η± − |α − η±|2 +2 +� +Hn +� +i +� +±tanh(r) +2 +α +� +Hn +� +i +� +±tanh(r) +2 +(α∗ − η∗ +±) +� +, +(A33) + +17 +can be easily simplified to (48). +[1] E. Wigner, On the quantum correction for thermody- +namic equilibrium, Phys. Rev. 40, 749 (1932). +[2] C. Gerry and P. Knight, Introductory Quantum Op- +tics (Cambridge University Press, England, Cambridge, +2005). +[3] W. P. Schleich, Quantum Optics in Phase Space (Wiley- +VCH, Weinheim, 2001). +[4] R. P. Rundle and M. J. Everitt, Overview of the phase +space formulation of quantum mechanics with applica- +tion to quantum technologies, Adv. Quantum Technol. +4, 2100016 (2021). +[5] U. Leonhardt, Measuring the quantum state of light, +Vol. 22 (Cambridge university press, United Kingdom, +1997). +[6] C. Navarrete-Benlloch, An Introduction to the Formal- +ism of +Quantum Information with Continuous Variables (Mor- +gan & Claypool/IOP, Bristol, 2015). +[7] B. L. Schumaker, Quantum mechanical pure states with +Gaussian wave functions, Phys. Rep. 135, 317 (1986). +[8] E. Schr¨odinger, Der stetige ¨ubergang von der mikro- zur +makromechanik, Sci. Nat. 14, 664 (1926). +[9] H. P. Robertson, The uncertainty principle, Phys. Rev. +34, 163 (1929). +[10] J. A. Wheeler and W. H. Zurek, Quantum Theory and +Measurement (Princeton University Press, Princeton, +NJ, 1983). +[11] V. Buˇzek and P. L. Knight, I: Quantum interference, su- +perposition states of light, and nonclassical effects (El- +sevier, 1995) pp. 1–158. +[12] M. Walschaers, Non-Gaussian quantum states and +where to find them, PRX Quantum 2, 030204 (2021). +[13] M. C. de Freitas and V. V. Dodonov, Non-Gaussianity +of four-photon superpositions of fock states, Quantum +Reports 3, 350 (2021). +[14] V. V. Dodonov, ‘Nonclassical’ states in quantum op- +tics: a ‘squeezed’ review of the first 75 years, J. Opt. B: +Quantum Semiclassical Opt. 4, R1 (2002). +[15] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: +Quantum coherence as a resource, Rev. Mod. Phys. 89, +041003 (2017). +[16] P. D. Drummond and Z. Ficek, Quantum Squeezing +(Springer-Verlag, Berlin, 2004). +[17] B. C. Sanders, Entangled coherent states, Phys. Rev. A +45, 6811 (1992). +[18] B. C. Sanders, Erratum: +Entangled coherent states +[Phys. Rev. A 45, 6811 (1992)], Phys. Rev. A 46, 2966 +(1992). +[19] B. C. Sanders, Review of entangled coherent states, J. +Phys. A: Math. Theor. 45, 244002 (2012). +[20] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, +R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynami- +cally protected cat-qubits: a new paradigm for universal +quantum computation, New J. Phys. 16, 045014 (2014). +[21] S. Bose, K. Jacobs, and P. L. Knight, Scheme to probe +the decoherence of a macroscopic object, Phys. Rev. A +59, 3204 (1999). +[22] W. +Marshall, +C. +Simon, +R. +Penrose, +and +D. +Bouwmeester, +Towards +quantum +superpositions +of a mirror, Phys. Rev. Lett. 91, 130401 (2003). +[23] W. +Marshall, +C. +Simon, +R. +Penrose, +and +D. Bouwmeester, Publisher’s note: +Towards quan- +tum superpositions of a mirror [Phys. Rev. Lett. 91, +130401 (2003)], Phys. Rev. Lett. 91, 159903 (2003). +[24] P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, +S. Gasparoni, and A. Zeilinger, De Broglie wavelength of +a non-local four-photon state, Nature 429, 158 (2004). +[25] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, +Super-resolving phase measurements with a multipho- +ton entangled state, Nature 429, 161 (2004). +[26] L. Happ, M. A. Efremov, H. Nha, and W. P. Schle- +ich, Sufficient condition for a quantum state to be gen- +uinely quantum non-Gaussian, New J. Phys. 20, 023046 +(2018). +[27] B. C. Sanders, Superposition of two squeezed vacuum +states and interference effects, Phys. Rev. A 39, 4284 +(1989). +[28] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum- +enhanced measurements: Beating the standard quan- +tum limit, Science 306, 1330 (2004). +[29] A gravitational wave observatory operating beyond the +quantum shot-noise limit, Nat. Physics 7, 962 (2011). +[30] Enhancing the sensitivity of the ligo gravitational wave +detector by using squeezed states of light, Nat. Physics +7, 962 (2013). +[31] G. J. Milburn, Quantum and classical Liouville dynam- +ics of the anharmonic oscillator, Phys. Rev. A 33, 674 +(1986). +[32] B. Yurke and D. Stoler, Generating Quantum Mechan- +ical Superpositions of Macroscopically Distinguishable +States via Amplitude Dispersion, Phys. Rev. Lett. 57, +13 (1986). +[33] W. H. Zurek, Sub-Planck structure in phase space and +its relevance for quantum decoherence, Nature 412, 712 +(2001). +[34] W. H. Zurek, Decoherence, einselection, and the quan- +tum origins of the classical, Rev. Mod. Phys. 75, 715 +(2003). +[35] A. K. Pan and P. K. Panigrahi, Cat state, sub-Planck +structure and weak measurement, Eur. Phys. J. D 67, +1 (2013). +[36] D. A. R. Dalvit, R. L. de Matos Filho, and F. Toscano, +Quantum metrology at the heisenberg limit with ion +trap motional compass states, New J. Phys. 8, 276 +(2006). +[37] F. Toscano, D. A. R. Dalvit, L. Davidovich, and +W. H. Zurek, Sub-Planck phase-space structures and +Heisenberg-limited measurements, Phys. Rev. A 73, +023803 (2006). +[38] S. Ghosh, J. Bera, P. K. Panigrahi, and U. Roy, +Sub-fourier quantum metrology through bright solitary +trains in Bose–Einstein condensate, Int. J. Quantum Inf. +17, 1950019 (2019). +[39] A. J. Scott and C. M. Caves, Teleportation fidelity as a +probe of sub-Planck phase-space structure, Ann. Phys. +(NY) 323, 2685 (2008). + +18 +[40] L. +Praxmeyer, +P. +Wasylczyk, +C. +Radzewicz, +and +K. W´odkiewicz, Time-Frequency Domain Analogues of +Phase Space Sub-Planck Structures, Phys. Rev. Lett. +98, 063901 (2007). +[41] P. Jacquod, I. Adagideli, and C. W. J. Beenakker, Decay +of the Loschmidt Echo for Quantum States with Sub- +Planck-scale Structures, Phys. Rev. Lett. 89, 154103 +(2002). +[42] D. A. Wisniacki, Short-time decay of the Loschmidt +echo, Phys. Rev. E 67, 016205 (2003). +[43] S. Ghosh, A. Chiruvelli, J. Banerji, and P. K. Pan- +igrahi, Mesoscopic superposition and sub-Planck-scale +structure in molecular wave packets, Phys. Rev. A 73, +013411 (2006). +[44] J. +R. +Bhatt, +P. +K. +Panigrahi, +and +M. +Vyas, +Entanglement-induced sub-Planck phase-space struc- +tures, Phys. Rev. A 78, 034101 (2008). +[45] M. Stobi´nska, G. J. Milburn, and K. W´odkiewicz, +Wigner function evolution of quantum states in the pres- +ence of self-Kerr interaction, Phys. Rev. A 78, 013810 +(2008). +[46] S. Ghosh, U. Roy, C. Genes, and D. Vitali, Sub-Planck- +scale structures in a vibrating molecule in the presence +of decoherence, Phys. Rev. A 79, 052104 (2009). +[47] U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, Sub- +Planck-scale structures in the P¨oschl-teller potential +and their sensitivity to perturbations, Phys. Rev. A 80, +052115 (2009). +[48] S. Ghosh, Coherent control of mesoscopic superpositions +in a diatomic molecule, Int. J. Quantum Inf. 10, 1250014 +(2012). +[49] A. Kumari, A. K. Pan, and P. K. Panigrahi, Sub-Planck +structure in a mixed state, Eur. Phys. D 69, 248 (2015). +[50] V. Dodonov, C. Valverde, L. Souza, and B. Baseia, De- +coherence of odd compass states in the phase-sensitive +amplifying/dissipating environment, Ann. Phys. (NY) +371, 296 (2016). +[51] P. Kumar and R.-K. Lee, Sensitivity of sub-Planck +structures of mesoscopically superposed coherent states +to the thermal reservoirs induced decoherence, Opt. +Commun. 394, 23 (2017). +[52] L. +A. +Howard, +T. +J. +Weinhold, +F. +Shahandeh, +J. Combes, M. R. Vanner, A. G. White, and M. Ring- +bauer, Quantum Hypercube States, Phys. Rev. Lett. +123, 020402 (2019). +[53] N. Akhtar, B. C. Sanders, and G. Xianlong, Sub-Planck +phase-space structure and sensitivity for SU(1,1) com- +pass states, Phys. Rev. A 106, 043704 (2022). +[54] N. +Akhtar, +B. +C. +Sanders, +and +C. +Navarrete- +Benlloch, Sub-Planck structures: Analogies between the +Heisenberg-Weyl and SU(2) groups, Phys. Rev. A 103, +053711 (2021). +[55] N. Shukla, N. Akhtar, and B. C. Sanders, Quantum +tetrachotomous states: Superposition of four coherent +states on a line in phase space, Phys. Rev. A 99, 063813 +(2019). +[56] P. K. Panigrahi et al., Compass state: Effect of squeez- +ing and displacement on the Fock space, arXiv preprint +arXiv:2211.10374 (2022). +[57] G. S. Agarwal and P. K. Pathak, Mesoscopic superposi- +tion of states with sub-Planck structures in phase space, +Phys. Rev. A 70, 053813 (2004). +[58] P. K. Pathak and G. S. Agarwal, Generation of a super- +position of multiple mesoscopic states of radiation in a +resonant cavity, Phys. Rev. A 71, 043823 (2005). +[59] M. Stobi´nska, A. S. Villar, and G. Leuchs, Generation +of Kerr non-Gaussian motional states of trapped ions, +Europhys. Lett. 94, 54002 (2011). +[60] Z. Leghtas, G. Kirchmair, B. Vlastakis, M. H. Devoret, +R. J. Schoelkopf, and M. Mirrahimi, Deterministic pro- +tocol for mapping a qubit to coherent state superposi- +tions in a cavity, Phys. Rev. A 87, 042315 (2013). +[61] L. C. G. Govia, E. J. Pritchett, and F. K. Wilhelm, +Generating nonclassical states from classical radiation +by subtraction measurements, New J. Phys. 16, 045011 +(2014). +[62] J. Hastrup, J. S. Neergaard-Nielsen, and U. L. Ander- +sen, Deterministic generation of a four-component opti- +cal cat state, Opt. Lett. 45, 640 (2020). +[63] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Legh- +tas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, +L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. +Schoelkopf, Extending the lifetime of a quantum bit +with error correction in superconducting circuits, Na- +ture 536, 441 (2016). +[64] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, +L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. De- +voret, and R. J. Schoelkopf, Deterministically encoding +quantum information using 100-photon Schr¨odinger cat +states, Science 342, 607 (2013). +[65] G. B. Lemos, R. M. Gomes, S. P. Walborn, P. H. +S. Ribeiro, and F. Toscano, Experimental observation +of quantum chaos in a beam of light, Nat. Commun. 3, +2041 (2012). +[66] D. R. Austin, T. Witting, A. S. Wyatt, and I. A. +Walmsley, Measuring sub-Planck structural analogues +in chronocyclic phase space, Opt. Commun. 283, 855 +(2010). +[67] H. Nha and H. J. Carmichael, Proposed test of quantum +nonlocality for continuous variables, Phys. Rev. Lett. +93, 020401 (2004). +[68] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, +M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, +Entanglement distillation from Gaussian input states, +Nat. Photonics 4, 178 (2010). +[69] Z. Zhang and H. Fan, Properties of states generated by +excitations on a squeezed vacuum state, Phys. Lett. A +165, 14 (1992). +[70] C. Hughes, M. G. Genoni, T. Tufarelli, M. G. A. Paris, +and M. S. Kim, Quantum non-Gaussianity witnesses in +phase space, Phys. Rev. A 90, 013810 (2014). +[71] C. Quesne, Completeness of photon-added squeezed +vacuum and one-photon states and of photon-added co- +herent states on a circle, Phys. Lett. A 288, 241 (2001). +[72] K. Si, X.-H. Ji, and H.-Y. Jia, Nonclassicality of photon- +added squeezed vacuum states, Chin. Phys. B 19, +064205 (2010). +[73] L.-Y. Hu and H.-Y. Fan, Nonclassicality of photon- +added squeezed vacuum and its decoherence in thermal +environment, J. Mod. Opt. 57, 1344 (2010). +[74] S. Dey and S. S. Nair, Generalized photon-subtracted +squeezed vacuum states, J. Phys. A: Math. Theor. 53, +385305 (2020). +[75] X.-G. Meng, Z. Wang, H.-Y. Fan, and J.-S. Wang, +Nonclassicality and decoherence of photon-subtracted +squeezed vacuum states, J. Opt. Soc. Am. B 29, 3141 +(2012). +[76] A. Biswas and G. S. Agarwal, Nonclassicality and de- + +19 +coherence of photon-subtracted squeezed states, Phys. +Rev. A 75, 032104 (2007). +[77] S.-J. Ma and W.-W. Luo, Comparison of nonclassicality +between photon-added and photon-subtracted squeezed +vacuum states, Chin. Phys. B 21, 024203 (2012). +[78] B. K¨uhn and W. Vogel, Quantum non-Gaussianity +and quantification of nonclassicality, Phys. Rev. A 97, +053823 (2018). +[79] X.-B. +Tang, +F. +Gao, +Y.-X. +Wang, +J.-G. +Wu, +and F. Shuang, Non-Gaussian features from excited +squeezed vacuum state, Opt. Commun. 345, 86 (2015). +[80] S. M. Barnett, G. Ferenczi, C. R. Gilson, and F. C. +Speirits, Statistics of photon-subtracted and photon- +added states, Phys. Rev. A 98, 013809 (2018). +[81] M. D. Lang and C. M. Caves, Optimal quantum- +enhanced interferometry using a laser power source, +Phys. Rev. Lett. 111, 173601 (2013). +[82] S. Wang, X. Xu, Y. Xu, and L. Zhang, Quantum in- +terferometry via a coherent state mixed with a photon- +added squeezed vacuum state, Opt. Commun. 444, 102 +(2019). +[83] R. Birrittella and C. C. Gerry, Quantum optical in- +terferometry via the mixing of coherent and photon- +subtracted squeezed vacuum states of light, J. Opt. Soc. +Am. B 31, 586 (2014). +[84] G. S. Agarwal and K. Tara, Nonclassical properties of +states generated by the excitations on a coherent state, +Phys. Rev. A 43, 492 (1991). +[85] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to- +classical transition with single-photon-added coherent +states of light, Science 306, 660 (2004). +[86] J. Wenger, R. Tualle-Brouri, and P. Grangier, Non- +gaussian statistics from individual pulses of squeezed +light, Phys. Rev. Lett. 92, 153601 (2004). +[87] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and +P. Grangier, Increasing entanglement between Gaussian +states by coherent photon subtraction, Phys. Rev. Lett. +98, 030502 (2007). +[88] P. T. Cochrane, G. J. Milburn, and W. J. Munro, +Macroscopically distinct quantum-superposition states +as a bosonic code for amplitude damping, Phys. Rev. A +59, 2631 (1999). +[89] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, +and S. Glancy, Quantum computation with optical co- +herent states, Phys. Rev. A 68, 042319 (2003). +[90] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, +M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, +Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, Opti- +cal synthesis of large-amplitude squeezed coherent-state +superpositions with minimal resources, Phys. Rev. Lett. +115, 023602 (2015). +[91] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. +Richards, I. A. Fedorov, and A. I. Lvovsky, Enlargement +of optical Schr¨odinger’s cat states, Nat. Photonics 11, +379 (2017). +[92] A. E. Ulanov, I. A. Fedorov, D. Sychev, P. Grang- +ier, and A. Lvovsky, Loss-tolerant state engineering for +quantum-enhanced metrology via the reverse hong–ou– +mandel effect, Nat. commun. 7, 1 (2016). +[93] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, +Photon subtracted squeezed states generated with peri- +odically poled ktiopo4, Opt. Express 15, 3568 (2007). +[94] M. Dakna, T. Anhut, T. Opatrn´y, L. Kn¨oll, and D.- +G. Welsch, Generating Schr¨odinger-cat-like states by +means of conditional measurements on a beam splitter, +Phys. Rev. A 55, 3184 (1997). +[95] K. Takase, J.-i. Yoshikawa, W. Asavanant, M. Endo, +and A. Furusawa, Generation of optical Schr¨odinger cat +states by generalized photon subtraction, Phys. Rev. A +103, 013710 (2021). +[96] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, +K. Mølmer, and E. S. Polzik, Generation of a super- +position of odd photon number states for quantum in- +formation networks, Phys. Rev. Lett. 97, 083604 (2006). +[97] A. Ourjoumtsev, +R. Tualle-Brouri, +J. Laurat, and +P. Grangier, Generating optical Schr¨odinger kittens +for quantum information processing, Science 312, 83 +(2006). +[98] K. M. R. Audenaert, Comparisons between quantum +state distinguishability measures, Quantum Inf. Com- +put. 14, 31 (2014). +[99] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Mar- +zolino, M. W. Mitchell, and S. Pirandola, Quantum- +enhanced measurements without entanglement, Rev. +Mod. Phys. 90, 035006 (2018). +[100] A. Luis, Quantum-limited metrology with nonlinear de- +tection schemes, SPIE Reviews 1, 018006 (2010). +[101] H. Weyl, The Theory of Groups and Quantum Mechan- +ics (Dover, New York, 1950). +[102] A. Perelomov, Generalized Coherent States and Their +Applications, Theoretical and Mathematical Physics +(Springer-Verlag, Berlin, 1986). +[103] J.-P. Gazeau, Coherent States in Quantum Physics +(Wiley-VCH, Berlin, 2009). +[104] J. E. Moyal, Quantum mechanics as a statistical theory, +Math. Proc. Cambridge Philos. Soc. 45, 99 (1949). +[105] R. Gilmore, Properties of coherent states, Rev. Mex. +Fis. 23, 143 (1974). +[106] P. Kok and B. W. Lovett, Introduction to Optical Quan- +tum Information Processing, 1st ed. (Cambridge Univer- +sity Press, 2010). +[107] R. R. Puri, Mathematical methods of quantum optics +(Springer-Verlag, Berlin, 2001). + diff --git a/jdAyT4oBgHgl3EQfX_es/content/tmp_files/load_file.txt b/jdAyT4oBgHgl3EQfX_es/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b43b40e71345986dd24a6cdbe5451ec2c8b538f --- /dev/null +++ b/jdAyT4oBgHgl3EQfX_es/content/tmp_files/load_file.txt @@ -0,0 +1,1583 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf,len=1582 +page_content='Sub-Planck structures and sensitivity of the superposed photon-added or photon-subtracted squeezed-vacuum states Naeem Akhtar,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ∗ Jizhou Wu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' † Jia-Xin Peng,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='3 Wu-Ming Liu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 6 and Gao Xianlong1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ‡ 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zhejiang Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jinhua 321004,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China 2Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Southern University of Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shenzhen 518055,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China 3State Key Laboratory of Precision Spectroscopy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Quantum Institute for Light and Atoms,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' East China Normal University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shanghai 200062,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China 4Beijing National Laboratory for Condensed Matter Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Beijing 100190,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China 5School of Physical Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' University of Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Beijing 100190,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China 6Songshan Lake Materials Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dongguan 523808,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Guangdong,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' China (Dated: January 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 2023) The Wigner function of the compass state (a superposition of four coherent states) develops phase- space structures of dimension much less than the Planck scale ℏ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' which are crucial in determining the sensitivity of these states to phase-space displacements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In the present work, we introduce compass- like states that may have connection to the contemporary experiments, which are obtained by either adding photons to or subtracting photons from the superposition of two squeezed-vacuum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We show that, when a significant quantity of photons is added (or subtracted), the Wigner function of these states are shown to have phase-space structures of an area that is substantially smaller than the Planck scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In addition, these states exhibit sensitivity to displacements that is much higher than the standard quantum limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Finally, we show that both the size of the sub-Planck structures and the sensitivity of our states are strongly influenced by the average photon number, with the photon addition case having a higher average photon number leading to the smaller sub-Planck structures and, consequently, being more sensitive to displacement than the photon subtraction case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Our states offer unprecedented resolution to the external perturbations, making them suitable for quantum sensing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' INTRODUCTION Quantum mechanical states can be visualized in the phase space via the Wigner quasiprobability distribu- tion [1–5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The term “Gaussian state” refers to a state having the Gaussian Wigner function [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The coher- ent state [8] is an example of a Gaussian state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function of the coherent state exhibits the Planck limit [9, 10] in the phase space, which is also known as the standard quantum limit (SQL) or shot-noise limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function of certain non-Gaussian states may attain negative values [11–14], indicating that these states are nonclassical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The quantum superposition is the source of intriguing non-classical properties of quan- tum states, such as quantum coherence [11, 15], squeez- ing [16], and entanglement [17–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Non-classical quan- tum states play a significant role in quantum-information processing [20], tests of fundamental of physics [21–23], and applications in sensing and metrology [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Non-classical states are not always non-Gaussian, how- ever, non-classical states can be Gaussian in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For example, a squeezed-vacuum state (SVS) is a com- mon non-classical state, but it possesses a Gaussian Wigner function [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function of the superposition of SVS is non-Gaussian and may have ∗ naeem abbasi@zjnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='cn † wujz3@sustech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='cn (Corresponding author) ‡ gaoxl@zjnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='cn negative amplitudes [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Squeezed quantum states play an important role in performing enhanced quan- tum metrology [16, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Squeezed light has been uti- lized experimentally to carry out improved measure- ments [29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The superpositions of two coherent states with op- posite phases (cat states) also possess non-Gaussian Wigner functions [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Moreover, the superposi- tion of four coherent states, which is known as the “compass state” [33] exhibits nonclassical features in the Wigner function with dimensions far smaller than the SQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The quantum states with sub-Planck structures are found very sensitive to environmental decoherence [34] and have achieved prominent theoretical attentions in quantum metrology [34–38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The connection between sub-Planck structures and teleportation fidelity has been established [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sub-Fourier sensitivity is a classical analogue of the sub-Planck structures [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Compass-like states have been thoroughly investigated in several situa- tions [41–56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Both theoretical [57–62] and experimental study [63–66] have been taken to achieve the controlled generation of such states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In recent years, there has been a lot of focus on sub- tracting photons from or adding photons to the quantum states [67–79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A non-Gaussian state can also be gen- erated by adding or subtracting photons from a Gaus- sian state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For example, when photons are added to or subtracted from the Gaussian SVS, one may ob- tain two non-Gaussian squeezed states that have non- positive Wigner functions [72–75, 77, 79, 80]: photon- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='00195v1 [quant-ph] 31 Dec 2022 2 added squeezed-vacuum states (PASVS) [69] and photon- subtracted squeezed-vacuum states (PSSVS) [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Both PASVS and PSSVS have attracted theoretical interest in quantum metrology [81–83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The first theoretical investigation into the photon- addition operation is accomplished by adding photons to the coherent states [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Later, the photon-addition op- eration was successfully proved in experiments by using a non-degenerate parametric amplifier with a weak cou- pling [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The PSSVS is currently the most successfully experimentally observed non-Gaussian SVS in quantum optics [86, 87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schr¨odinger cat-like states with higher amplitude can be used as qubits in quantum computing or as re- sources for quantum error-correcting coding [88, 89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Conventional methods are unable to produce Schr¨odinger cat-like states with the necessary amplitudes [90–92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Numerous theoretical [93–95] and experimental [96, 97] research involving the photons addition or subtractions from the SVS have been carried out to achieve such states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In the present work, we introduce a few non-Gaussian SVSs that may also hold the properties of the com- pass state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In particular, we show that the Wigner func- tion of the superpositions of two PASVSs (or PSSVSs) exhibit phase-space structures of an area, which vary inversely with the number of photons added (or sub- tracted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' When a large amount of the photons are added to or subtracted from our states the support area of these structures is substantially smaller than that found for coherent states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similar sub-Planck structures are also found in the phase space of the mixed states related to the PASVSs and PSSVSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We demonstrate that the av- erage photon number in the states significantly influences the size of these sub-Planck structures, with photon ad- dition case having higher average photon number leading to smaller sub-Planck structures in the phase space than photon subtraction case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' To investigate the potential applications of these non- Gaussian states in quantum metrology, we analyze the overlap between these states and their slightly shifted analogues [98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The degree to which the state is sen- sitive against perturbations in the phase space can be determined from this overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The sensitivity associ- ated with coherent states cannot be improved by increas- ing the number of photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Techniques using probes pre- pared in such states have the sensitivity at the SQL [99, 100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Here, we show that the sensitivity of our states is much higher than the SQL when the quantity of added (or subtracted) photons is relatively high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Furthermore, our superpositions exhibit this enhanced sensitivity in all phase-space directions, whereas the mixtures only do so for specific displacements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The varying average photon number in the states also contributed to the variation in the sensitivities between the photon addition and sub- traction cases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' it is shown that the photon addition cases have higher sensitivity than the subtracted ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The structure of our paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §II, we review the concept of the sub-Planck structures associ- ated to the compass state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §III, we review the Wigner functions of PASVS and PSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §IV, we introduce our states and analyze their phase space by using the Wigner function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Here, we also discuss the sensitivity of our states against the phase-space perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §V, we provide our conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' THEORY OF SUB-PLANCK STRUCTURES This section provides the background of the sub-Planck structures and is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' §II A introduces the basic concepts that will be used in this article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §II B, we review the sub-Planck structures that build in the phase space of the compass state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' §II C explains the sensitivity to phase-space displacements associated to this compass state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Basic concepts The position operator ˆx and the momentum operator ˆp acts on an infinite-dimensional Hilbert space, forming the so-called Heisenberg-Weyl (HW) algebra hw(1) [101– 103] for a single degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The quantum uncer- tainty principle [9, 10], arising from commutator relations [ˆx, ˆp] = i (with ℏ being scaled to unity throughout) lim- its the size of a phase-space structure [10], for example, represented by the Wigner function [1] for hw(1) algebra and, more generally, by Moyal symbols [104] for other symmetries [102].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For convenience, we use the vector ζ := (x, p)⊤, (1) to represent the position-momentum pair in the follow- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A Schr¨odinger coherent state is a non-spreading wave packet of the quantum harmonic oscillator [8] and is an eigenstate of the annihilation operator: ˆa |α⟩ = α |α⟩ with α ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The coherent states are obtained by dis- placing the vacuum state |0⟩, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=', |α⟩ = ˆD(α) |0⟩ , (2) where ˆD(α) := exp(αˆa† − α∗ˆa), (3) is the displacement operator [103].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The overlap between two coherent states |α⟩ and |β⟩ is [105] |⟨α | β⟩|2 = e−|α|2−|β|2+2β∗α = e−|α−β|2, (4) which implies that two different coherent states are not orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function for a generic quantum state ˆρ is written as an expectation value of the parity kernel [4, 6] Wˆρ (ζ) := tr � ˆρ ˆ∆(α) � , (5) 3 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 1: Wigner distribution of the compass state with (a) x0 = 4 (b) x0 = 8 and (c) x0 = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 10-1 100 101 x0 10-3 10-2 10-1 100 101 102 "x"p FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 2: Variation of the area of the central phase-space structure of the compass state versus x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' where ˆ∆(α) := 2 ˆD(α)ˆΠ ˆD†(α), ˆΠ := (−1)ˆa†ˆa , (6) being the displaced parity operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function for a coherent state is a strictly positive function, and appeared as a Gaussian of the form [5] (we omit the normalization of states and their Wigner functions throughout the paper) G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ±x0, ±p0) = e−(x∓x0)2−(p∓p0)2, (7) where (x0, p0) is the location of the coherent state in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The product of uncertainties of position and momentum for a coherent state has a lower limit ∆x∆p = 1/2 [5, 9, 10, 105], which is also known as the Planck action in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is a common belief that phase-space structures with areas smaller than the Planck scale either do not exist or have no observational consequences for physical quan- tum states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In fact, this is true for all Gaussian states (coherent, squeezed, thermal, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=') [6, 7] and even for other non-Gaussian states like cat states [31, 32] that ex- hibit rapid oscillations in one direction of phase space but an infinite Gaussian profile in the orthogonal direc- tion [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' However, this notion was refuted by Zurek [33], who demonstrated that the Wigner function of compass states develops phase-space structures with dimensions far smaller than the Planck scale, arguing that these structures play a vital role in determining the sensitivity of these states against perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zurek compass state The Zurek compass state [33] is obtained from the su- perposition of the following four coherent states |ψ⟩ := |x0/ √ 2⟩ + |−x0/ √ 2⟩ + |ix0/ √ 2⟩ + |−ix0/ √ 2⟩ , (8) with x0 ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 1 depicts the Wigner function for this compass state for the cases of x0 = 4, 8 and 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Note that we normalize the Wigner functions throughout by using their maximum amplitudes, |Wˆρ(0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function of the compass state (8) can be represented as 4 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 3: Overlap of the compass state with its δα-displaced part with δα = (δx + iδp)/ √ 2: (a) x0 = 4 (b) x0 = 8 and (c) x0 = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' follows W|ψ⟩(ζ) = W◦(ζ) + WΞ(ζ) + W⊞(ζ), (9) where the first term W◦(ζ) :=G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' x0, 0) + G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' −x0, 0) + G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 0, x0)+ G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 0, −x0), (10) represents the Wigner function of four coherent states that appear in the phase space as Gaussian lobes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (9) is WΞ(ζ) := 1 2 � i1,i2=±1 I(i1x, i2p), (11) with I(ζ) := G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' x0/2, x0/2) cos � x0 � x + p − x0 2 � � , (12) reflecting the Gaussian-modulated oscillations that ap- pear far away from the phase-space origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The central pattern resembles a chessboard as shown in the insets of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 1 and is generated by W⊞(ζ) := 1 2G(ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 0, 0) � cos(2x0x) + cos(2x0p) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (13) This pattern consists of tiles with alternate signs (central chessboardlike pattern).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The extension of each tile can be roughly estimated by calculating zeros of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (13), and it is found that it is proportional to x−1 0 in all di- rections of phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As a result, the support area of each tile in the chessboardlike pattern is proportional to x−2 0 as shown in the log-log plot of the central support area versus x0 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 2, which is much smaller than the area of the coherent state for x0 ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Note that the mix- ture of two cat states also contains the same sub-Planck structures that are found in the compass state [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The sub-Planck structures also emerge in the Wigner functions of non-Gaussian states with the SU(1,1) [53] and SU(2) symmetries [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In particular, it has been found that the Wigner function of the superposition of four SU(1,1) (or SU(2)) coherent states also have sub- Planck structures similar to the compass state when rep- resented on the Poincar´e disk [53] (or the sphere [54]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The two-mode bosonic realization of the SU(1,1) im- plies that the sub-Planck structures in the phase space of the SU(1,1) compass state can be associated to the number of photons added to one of the modes of the two-mode squeezed number states [53], and they arise at greater numbers of these added photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The exis- tence of the sub-Planck structures in the Wigner func- tion of the SU(2) compass state can similarly be linked to the angular momentum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' the higher value of the angu- lar momentum causes sub-Planck structures in the phase space [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In the subsequent sections, we will demon- strate how adding or subtracting photons from superpo- sitions related to the one-mode non-Gaussian SVS can also cause the emergence of sub-Planck structures in the phase space of those states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sensitivity of compass state The sensitivity of a quantum state to displacements can be determined by calculating the overlap between it and its slightly displaced version [98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The overlap be- tween a state ˆρ and its displaced version ˆD(δα)ˆρ ˆD†(δα) is Oˆρ(δα) := tr{ˆρ ˆD(δα)ˆρ ˆD†(δα)} = ���⟨ψ| ˆD(δα)|ψ⟩ ��� 2 , (14) where δα ∈ C is an arbitrary displacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Note that the last equality of above expression holds when the state is pure, ˆρ = |ψ⟩⟨ψ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The smaller the displacement δα needs to be in order to bring the overlap to zero, the more sensi- tive the state is claimed to be against displacements [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This overlap results in O|α⟩(δα) = e−|δα|2, (15) for a coherent state |α⟩, indicating that the smallest no- ticeable displacement that vanishes this overlap is above 05 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 4: Wigner distribution of the PASVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 5: Wigner distribution of the PSSVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' the Planck scale, |δα| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is interesting to note that the sensitivity to displacements in coherent states is inde- pendent of the quantity of quanta contained in the state, ¯n = ⟨ˆa†ˆa⟩ = |α|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Therefore, increasing ¯n will not im- prove the sensitivity and is solely limited by the shot noise introduced by vacuum fluctuations [99, 100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We now discuss the sensitivity of the compass state (8) to phase-space displacements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Assuming x0 ≫ 1 and |δα| ≪ 1 , the overlap (14) for this compass state results in O|ψ⟩(δα) = 1 4e− 1 2 |δα|2� cos (x0δx) + cos (x0δp) �2, (16) 6 with δα = δx + iδp, δj ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (17) It can be concluded that O|ψ⟩(δα) becomes zero when either of the conditions is satisfied δx ± δp = 2m + 1 x0 π, m ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (18) As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 3 for O|ψ⟩(δα) of cases when x0 is increased from 4 to 12, the overlap vanishes for the displacements |δα| ∼ x−1 0 and the arbitrary directions in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As a result, it can be inferred that this sensitivity is proportional to x−1 0 and that ¯n = x2 0/2 ties it to the number of excitations ¯n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Therefore, in comparison to coherent states, a compass state with ¯n excitations has shown √¯n-enhanced sensitivity to displacements of any arbitrary directions in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Weak force mea- surements have been performed with Heisenberg-limited sensitivity using compass states [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In contrast, cat states have shown the sensitivity to displacements along the specific direction in the phase space [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It has been found that cat-state mixtures only exhibit this enhanced sensitivity for displacements along particular phase-space directions [53, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hence, cat-state mixtures with sub- Planck structures in the Wigner function do not have the potential for metrology of compass states, for which the additional quantum coherence of the cat-state super- position provided by the second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (9) plays a crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The SU(1,1) and SU(2) compass states have shown the same sensitivity to displacements as their HW counter- parts [53, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The sensitivity of the SU(1,1) compass state can be connected with the amount of the number of photons added to one of the modes of the two-mode squeezed number state, and this sensitivity improves as the quantity of added photons increases [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similarly, the sensitivity of the SU(2) compass state improves as the angular momentum goes higher [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This addition of the photons increases the average photon number in the states, and it can be understood in a way similar to that for compass states of the harmonic oscillator, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=', injecting more photons in the states improves its sensi- tivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' NON-GAUSSIAN SVS The non-Gaussian Wigner functions of the PASVS and PSSVS illustrate the non-Gaussian nature of these states [72–75, 77, 79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In this section, we first provide a brief review of two non-Gaussian SVS, the PASVS and the PSSVS, in §III A and §III B, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' These two states are heavily used in our construction of non- Gaussian states that manifest the sub-Planck structures in §IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner functions of both PASVS and PSSVS are discussed in relation to the amount of photons added or subtracted in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' PASVS First, we review the Wigner function of the PASVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The creation operator ˆa† is repeatedly applied to SVS ˆS(±r) |0⟩ to obtain a single-mode PASVS [69] |ψ± PA⟩ := ˆa†n ˆS(±r) |0⟩ with n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (19) The subscript “PA” is the shorthand for “PASVS”, and we introduce“±” in the squeezing operator ˆS(±r) with the definition [106] ˆS(±r) := exp � ± r 2 � ˆa†2 − ˆa2� � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (20) which allows us to preserve part of the expressions intro- duced in this section for later uses in §IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (5), the Wigner function of PASVS is easily found to be [72, 73, 77, 79] W|ψ± PA⟩(ζ) =exp (χ±) [± sinh(2r)]n π4n n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 [∓2 coth(r)]l l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 ���Hn−l � −i � ±2 coth(r)¯α± ���� 2 , (21) where Hm represents the Hermite polynomial, and χ± := ± sinh(2r) � α∗2 + α2� − 2|α|2 cosh(2r), (22) with ¯α± := α cosh(r) ∓ α∗ sinh(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (23) The non-Gaussian shape of the Wigner function W|ψ+ PA⟩(ζ), which is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 4 for the cases when n is chosen as 10, 15 and 20, indicates that PASVS is a non-Gaussian state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We can clearly see the interference pattern that emerge in the form of an oscillating pattern in the p direction in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As the number of photons n rises, this pattern gets more pronounced (the frequency of the oscillations is increased).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Moreover, the existence of these negative peaks in the Wigner function shows that the PASVS is a non-classical state as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Another indication of the nonclassicality of this state is the squeezing effect in one of the quadratures, which is visible in the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Note that the PASVS is the Gaussian SVS when n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' PSSVS Now, we review the Wigner function of the PSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The PSSVS [74, 75] is obtained by repeatedly applying the annihilation operator ˆa to the SVS as |ψ± PS⟩ := ˆan ˆS(±r) |0⟩ , (24) 7 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 6: Wigner distribution of the pure SPASVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 101 102 n 10-2 "x"p FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 7: Variation of the area of the central phase-space structure versus the photon number n of the SPASVS state with n chosen from 5 to 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' where the subscript “PS” is the shorthand for “PSSVS”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function of this state is also in a non- Gaussian form, and is written as W|ψ± PS⟩(ζ) =exp (χ±) [± sinh(2r)]n π4n n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 [∓2 tanh(r)]l l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 ���Hn−l � −i � ±2 tanh(r)¯α± ���� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (25) We plot the Wigner function W|ψ+ PS⟩(ζ) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 5 with r being 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 and n being 10, 15, and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This Wigner func- tion exhibit the interference pattern around the origin of the phase space and oscillates along the p direction in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As n grows, the frequency of this os- cillating pattern increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The simpliest case n = 0 of the PSSVS corresponds to the Gaussian SVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Another indicator of the non-classical nature of this state is the squeezing effect in one of the quadratures, which is in- dicative of the nonclassicality of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In summary, for non-zero values of n, the Wigner func- tion of PASVS and PSSVS maintains non-Gaussianity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is interesting to note that both PASVS and PSSVS ex- hibit similar phase-space features as cat-like states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The addition or subtraction of photons from the Gaussian SVS has been employed both theoretically [93–95] and experimentally [96, 97] to produce cat-like states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Both PASVS and PSSVS have been found very useful for the quantum metrology [81–83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' When photons are added to or subtracted from the Gaussian SVS, the average photon number of the resulting state grows [82, 83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It has been shown that for the same number of photons applied on the Gaussian SVS, the subsequent PASVS has a higher average photon number than the PSSVS [82, 83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This means that the PASVS has a better potential for metrol- ogy than the PSSVS [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' SUPERPOSITION OF NONGAUSSIAN SVS In this section, we introduce the quantum states of our interest and present their phase-space analysis by using the Wigner function [1–5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The photon-number distribu- tion [27] and the Wigner function [26] have both been used to discuss the nonclassicality in the superpositions 8 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 8: Wigner distribution of the mixed-state SPASVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' of two SVSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Theoretically, a non-linear harmonic oscil- lator can be used to create some specified superpositions of two SVSs [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Here, we focus on the superposition of two Gaussian SVSs with opposite phases given by |ψSSV⟩ := ˆS(r) |0⟩ + ˆS(−r) |0⟩ , (26) with “SSV” in the subscript for the “superposition of SVSs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The Wigner function corresponding to this state exhibit non-Gaussian and non-classical proper- ties [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The addition of n photons to the superposed state (26) leads to the superposition of two photon-added squeezed- vacuum states (SPASVS), that is, |ψSPA⟩ := ˆa†n |ψSSV⟩ = |ψ+ PA⟩ + |ψ− PA⟩ (27) with the subscript “SPA” a shorthand for “SPASVS”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similarly, the subtraction of n photons from the super- position (26) results in the superposition of two photon- subtracted squeezed-vacuum states (SPSVS) of the fol- lowing form: |ψSPS⟩ := ˆan |ψSSV⟩ = |ψ+ PS⟩ + |ψ− PS⟩ , (28) where the subscript “SPS” is the short form of “SPSSVS”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Following subsections cover the discussion about these two superpositions, which are structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §IV A, we discuss Wigner functions corresponding to |ψSPA⟩ and |ψSPS⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Here, we describe how the addition and subtraction of photons lead to the sub-Planck struc- tures in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In §IV B, we discuss the sensi- tivity to displacements associated with these two super- positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Photons addition versus photons subtraction The Wigner function of the SPASVS (27) can be ob- tained by using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (5) as (see Appendix A for detailed derivations) W|SPA⟩(ζ) = 2 Re [IΞ(ζ)] + W⊞(ζ), (29) and is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 6 for the cases when n = 10, 15 and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The first term in (29) IΞ(ζ) := exp (ξ) [−i tanh(2r)]n π4n cosh(r) � 1 + tanh2(r) n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 [−2i coth(r)]l [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 Hn−l [iΩα−] Hn−l � −Ωα∗ + � , (30) provides the interference pattern that appears far away from the phase-space origin, where Ω := � tanh(2r) sinh(r) , (31) and ξ := − tanh(2r) � α2 − α2∗� − 2|α|2 sech(2r), (32) with α± := α∗ sinh(r) ± α cosh(r) (33) being the hyperbolic-rotated α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For our purposes, we concentrate on the second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 29, which contributes to the chessboardlike pattern that is visible at the phase-space origin for n ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This 9 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 9: Wigner distribution of the pure SPSSVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 101 102 n 10-2 "x"p FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 10: Variation of the area of the central phase-space structure versus the photon number n of the SPSSVS state with n chosen from 5 to 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' central interference pattern is equal to the sum of the individual Wigner functions of PASVSs as W⊞(ζ) := W|ψ+ PA⟩(ζ) + W|ψ− PA⟩(ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (34) The extension of a single tile in the chessboardlike pat- tern is inversely proportional to n along any arbitrary direction in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This is demonstrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 6, where we see that as n increases, the support area of a fundamental tile in the chessboardlike pattern de- creases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The area of a fundamental tile can be roughly estimated by calculating the zeros of the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For n ≫ 1, the support area of a fundamental tile may be considerably lower than the area of the coherent state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 7, where we plot the area of the center tile against n using a log-log plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Thus, the sub- Planck structures that Zurek discovered for the compass state [33] are also present in SPASVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The same sub-Planck structures are also contained by following mixed state ˆρPA := |ψ+ PA⟩⟨ψ− PA| + |ψ− PA⟩⟨ψ+ PA| , (35) and its Wigner function, which is the same as the one given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (34), is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similarly, for the SPSSVS (28), the Wigner function is also written into two terms (see Appendix A for detailed derivations): W|SPS⟩(ζ) = 2 Re [IΞ(ζ)] + W⊞(ζ), (36) which is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' With ω := � tanh(2r) cosh(r) , (37) the term that contains IΞ(ζ) := exp (ξ) [i tanh(2r)]n π4n cosh(r) � 1 + tanh2(r) n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 [2i tanh(r)]l [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 Hn−l [−ωα−] Hn−l � −iωα∗ + � (38) causes the interference pattern that manifests as oscil- lating peaks far from the phase-space origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Again, we concentrate on the second term of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (36), which results in the chessboardlike pattern at the phase-space origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 10 (a) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (b) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 (c) 12 8 4 0 4 8 12 x 12 8 4 0 4 8 12 p 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 11: Wigner distribution of the mixed-state SPSSVS with (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Insets represent the central interference pattern of each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This term is the sum of the Wigner functions (25) of PSSVSs, that is, W⊞(ζ) := W|ψ+ PS⟩(ζ) + W|ψ− PS⟩(ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (39) This pattern manifests sub-Planck oscillations around the origin of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is similar to the pattern identified for the case of SPASVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Again, the extension of a fundamental tile can be estimated by calculating zeros of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 9, the extensions of these alternating-sign tiles decrease isotropically as n increases, and the support area of these tiles in the phase is signif- icantly less than the coherent state for n ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This is also shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 10, which is a log-log plot showing the extension of the central tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is interesting to note that for a given r and n, the central tile in the chessboardlike pattern is larger than that of the SPASVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Additionally, we demonstrate that the following mixed state likewise has the same sub-Planck structures ˆρPS := |ψ+ PS⟩⟨ψ− PS| + |ψ− PS⟩⟨ψ+ PS| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (40) Similar to the case of the mixture of PASVSs (35), the Wigner function of ˆρPS shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 11 is identical to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Thus, the photon-addition or photon-subtraction op- erations on the superpositions of the Gaussian SVS may produce the sub-Planck structures in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The average photon number of the resulting states is ac- tually increased by either adding or subtracting photons from the superposition of the Gaussian SVS [82], with the addition of photons producing a higher average photon number than the subtraction of photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This difference in holding the photons number in the states also effects the size of the sub-Planck structures of such states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As an illustration, the photons addition case has demonstrated to hold smaller sub-Planck structures in the phase space than the photons subtraction for the same amount of photons utilized in the Gaussian SVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hence, the idea of the sub-Planck structures connected to our states can be understood in a manner similar to that of the com- pass state [33], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=', a higher average photon number in the states leads to the smaller tiles in the chessboardlike pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In summary, the sub-Planck structures of the compass state are present in the Wigner functions of both SPASVS and SPSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The mixtures associated to PASVSs or PSSVSs likewise contain the same sub-Planck structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Additionally, for the available average photon number, the SPASVS and its associated mixture show smaller sub- Planck structures than their counterparts in the photon- subtracted case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sub-shot noise sensitivity of our states In this subsection, we discuss the susceptibility of our proposed states to phase-space displacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Let us first consider SPASVS (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The overlap (14) for this state un- der the approximation |δα| ≪ 1 and n ≫ 1 leads to (see Appendix A 2 for the detailed derivations) OSPA(δα) = � ⟨ψ+ PA| ˆD(δα) |ψ+ PA⟩ + ⟨ψ− PA| ˆD(δα) |ψ− PA⟩ �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (41) 11 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 12: Overlap of the pure SPASVS state with its δα-displaced part with δα = (δx + iδp)/ √ 2: (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 13: Overlap of the mixed-state SPASVS with its δα-displaced part with δα = (δx + iδp)/ √ 2: (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Each term of this overlap is calculated as ⟨ψ± PA| ˆD(δα) |ψ± PA⟩ =[∓ sinh(2r)]n e−|η±|2/2 4n n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 [∓2coth(r)]lHn−l [Θ±] Hn−l � Θ∗ ± � , (42) where Θ± = i � ±coth(r) 2 η±, (43) and η± = δαcosh(r) ∓ δα∗sinh(r), (44) with δα = δx + iδp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (45) In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 12, we plot this overlap for n=10, 15, and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For the large n, a small displacement |δα| ≪ 1 can turn the SPASVS into an state orthogonal to its original state, and this orthogonality occurs in all phase-space direc- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We have normalized overlaps to their maximum amplitudes, Oˆρ(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Let us now consider the mixture of PASVSs (19), for which the overlap (14) is calculated as OˆρPA(δα) = ���⟨ψ+ PA| ˆD(δα) |ψ+ PA⟩ ��� 2 + ���⟨ψ− PA| ˆD(δα) |ψ− PA⟩ ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (46) We plot this overlap with n=10, 15, and 20 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Again, we see that the overlap OˆρPA(δα) disappears for the displacement |δα| ≪ 1, but unlike the SPASVS, this orthogonality now take place when δx = ±δp in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similarly, overlap (14) for SPSSVS is obtained as OSPS(δα) = � ⟨ψ+ PS| ˆD(δα) |ψ+ PS⟩ + ⟨ψ− PS| ˆD(δα) |ψ− PS⟩ �2 , (47) where ⟨ψ± PS| ˆD(δα) |ψ± PS⟩ =[∓ sinh(2r)]n e−|η±|2/2 4n n � l=0 (n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' )2 l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [(n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ]2 [∓2tanh(r)]lHn−l [θ±] Hn−l � θ∗ ± � , (48) with θ± = i � ±tanh(r) 2 η±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (49) 12 (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 14: Overlap of the pure SPSSVS state with its δα-displaced part with δα = (δx + iδp)/ √ 2: (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (b) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p (c) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 /p 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 15: Overlap of the mixed-state SPSSVS with its δα-displaced part with δα = (δx + iδp)/ √ 2: (a) n = 10 (b) n = 15 and (c) n = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In all cases r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 14, we plot this overlap with n equal to 10, 15, and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The SPSSVS overlap plot exhibits the same behavior as the SPASVS: the overlap disappears in any direction in phase space when |δα| ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The only distinction is that, for the same n and r, the central pattern of the overlap of the SPSSVS is larger than that of the SPASVS, showing that the SPSSVS is less sensitive than the SPASVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Finally, we consider mixtures of PSSVSs (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The overlap (14) for this state leads to OˆρPS(δα) = ���⟨ψ+ PS| ˆD(δα) |ψ+ PS⟩ ��� 2 + ���⟨ψ− PS| ˆD(δα) |ψ− PS⟩ ��� 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (50) In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 15, we plot the overlap OˆρPS(δα) using the same parameter values as that of the SPSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We observe that the overlap of the mixture of the PSSVSs looks similar to the mixture of the PASVSs, with the distinction being that the mixture of PSSVSs appears to be less sensitive for a given number of n and r, which is manifested as the larger chessboardlike pattern in the center of the phase space than that of the mixture of PASVSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In summary, we have demonstrated that the sensitivity associated to our proposed states depends on the quan- tity of photons added (or subtracted), and it drops con- siderably below the sensitivity of the coherent state when there are excessive amount of photons added (or sub- tracted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For both SPASVS and SPSSVS, the enhanced sensitivity is unaffected by the directions of phase-space displacements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' However, for the mixtures related to PASVSs or PSSVSs, this enhancement only takes place in particular phase-space directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This implies that compared to mixed states, our superposition states have more potential for quantum sensing applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' More- over, it has been found that the quantum states associ- ated with photon addition cases are more sensitive than their counterparts of the photon subtraction cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' SUMMARY AND OUTLOOK We have shown that the Wigner function of the SPASVS (or SPSSVS) contains the chessboardlike pat- tern around the origin of the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similar chess- boardlike pattern is also emerged by the mixtures related to PASVSs and PSSVSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The support area of the phase- space structures contained by this chessboardlike pattern varies inversely with the photon number added (or sub- tracted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' When a sizable number of photons are added (or subtracted), the support area of these structures is noticeably smaller than that of the coherent state, and these are the same sub-Planck structures, as shown by compass states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The average photon numbers of our states, which are increased either by photon-addition or photon- 13 subtraction actions on the Gaussian SVS, have an im- pact on the size of the sub-Planck structures in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The sub-Planck structures associated with the SPASVS are smaller than those of the SPSSVS for the same number of photons added or subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This is be- cause the photon-addition operation always leads to the higher average photon number in the resultant states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' The association of the average photon number with the sub-Planck structures in our states is much similar to that of the compass states, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=', higher average photon number in the compass state correspond to the smaller sub-Planck structures in the phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We have demonstrated that the sensitivity of our pro- posed states is noticeably higher than that of the coherent state when a significant number of photons are added (or subtracted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Both the SPASVS and SPSSVS exhibit the enhanced sensitivity, which is independent of the phase- space directions, indicating that they hold more promise for quantum metrology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' In addition, the difference in the sensitivities between the photon addition and subtraction cases is arose from the different average photon numbers in the states;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' photon addition cases are demonstrated to have greater sensitivity than the subtracted cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It is incredibly exciting that sub-Planck structures can possibly build from photons being added to or subtracted from states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' As a result, it will be able to apply a va- riety of ways to engineer compass-like states in associa- tion with contemporary experiments [94–97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' For exam- ple, the theoretical research in [94] shows that subtract- ing a photon from the Gaussian SVS results in an odd Schr¨odinger cat state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Another subsequent theoretical approach introduces the idea of photon subtraction from the Gaussian SVS to produce the compass-like states [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Additionally, theoretical research to construct the cat- like states advocated in [94] is subsequently applied in actual experiments [96, 97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' These illustrations unequiv- ocally demonstrate that it is possible to add or subtract photons from states in both theory and experiments to produce compass-like states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' It may possible that some of these techniques can be modified to produce SPASVS and SPSSVS, which are entirely new research avenues that can be adapted in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ACKNOWLEDGMENTS NA acknowledges the support of postdoctoral fund of the Zhejiang Normal University under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ZC304021937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' GX acknowledges support by the Na- tional Natural Science Foundation of China (Grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 11835011 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 12174346).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' WML acknowledges the support from the National Key R&D Program of China under grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 2021YFA1400900, 2021YFA0718300, 2021YFA1402100, NSFC under grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 61835013, 12174461, 12234012, and Space Application System of China Manned Space Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Appendix A: Wigner functions of SPASVS and SPSSVS This section provides the main steps to drive the Wigner functions of SPASVS and SPSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Derivations of the Wigner function of SPASVS Let us first consider the Wigner function of SPASVS given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' First term of this Wigner function is given by IΞ(ζ) = � ψ+ PA ��� ˆ∆(α) ��� ψ− PA � , (A1) where the alternative form of the displaced parity operator ˆ∆(α) is [77] ˆ∆(α) := 1 π2 e2|α|2 � ∞ −∞ d2βe−2α∗β+2αβ∗ |β⟩⟨−β| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A2) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A1) can be rewritten as IΞ(ζ) = (−1)ne2|α|2 π2 cosh(r) � ∞ −∞ d2β|β|2n exp � − |β|2 − tanh(r) 2 � β2 + β∗2� − 2βα∗ + 2β∗α � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A3) We incorporate the factor |β|2n into a differential equation as IΞ(ζ) = (−1)ne2|α|2 π2 cosh(r) ∂2n ∂sn∂tn � ∞ −∞ d2β exp � − |β|2 − tanh(r) 2 � β2 − β∗2� − 2βα∗ + 2β∗α + sβ + tβ∗ ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A4) 14 Consider the integral formula [107] � ∞ −∞ d2β exp � a|β|2 + bβ + cβ∗ + dβ2 + kβ∗2 � = π √ a2 − 4dk exp �−abc + b2k + c2d a2 − 4dk � , (A5) whose convergent conditions are Re [a ± d ± k] < 0 and Re � (a2−4dk)/a±d±k � < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' By using this integral Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A4) leads to IΞ(ζ) = (−1)neξ π cosh(r) � 1 + tanh2(r) ∂2n ∂sn∂tn exp � tanh(2r) 4 s2 − tanh(2r) 4 t2 + � 1 + tanh2(r) �−1st − 2 cosh(r)sech(2r)α−s − 2 cosh(r)sech(2r)α∗ +t ������ s=t=0 , (A6) with ξ := −(α2 − α∗2) tanh(2r) − 2|α|2sech(2r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A7) It is challenging to solve Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A6) because it has eγst terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' We employ the following sum series [73] to get rid of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' exp(Cs + Dt + Est) = ∞ � l=0 El l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ∂2l ∂Cl∂Dl [exp (Cs + Dt)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A8) Using this formula Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A6) modifies as IΞ(ζ) = (−1)neξ π cosh(r) � 1 + tanh2(r) ∞ � l=0 1 l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 22l � 1 + tanh2(r) �−l cosh2l(r)sech2l(2r) ∂2l ∂α∗l +αl − ∂2n ∂sn∂tn exp �tanh(2r) 4 s2 − tanh(2r) 4 t2 − 2 cosh(r)sech(2r)(α−s + α∗ +t) ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A9) Noticing the generating function of Hermite polynomial Hn(x) = ∂n ∂sn exp � 2xs − s2� �� s=0, (A10) and its recursive relation dl dxl Hn(x) = 2ln!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (n − l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='Hn−l(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A11) The preceding equation can then be simplified in the form of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (30) by applying the relationships (A10) and (A11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Let us now calculate second term of the Wigner function (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This term can be written as W⊞(ζ) = � ψ+ PA ��� ˆ∆(α) ��� ψ+ PA � + � ψ− PA ��� ˆ∆(α) ��� ψ− PA � , (A12) where � ψ± PA ��� ˆ∆(α) ��� ψ± PA � =(−1)n π2 e2|α|2 cosh(r) ∂2n ∂sn∂tn � ∞ −∞ d2β exp � − |β|2 ± 1 2 tanh(r)(β2 + β∗2) − 2βα∗ + 2β∗α + sβ + tβ∗��� s=t=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Using the integral (A5), we get � ψ± PA ��� ˆ∆(α) ��� ψ± PA � =(−1)n π exp � ± sinh(2r)(α∗2 + α2) − 4 cosh2(r)|α|2� ∂2n ∂sn∂tn exp � ± 1 4 sinh(2r)(s2 + t2) + 2 cosh(r)(¯α±s − ¯α∗ ±t) + cosh2(r)st ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A13) Again, use of sum series (A8) eliminates the factors eγst, that is, � ψ± PA ��� ˆ∆(α) ��� ψ± PA � = ∞ � l=0 (−1)l 22ll!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ∂2l ∂ ¯αl ±∂ ¯α∗l ± ∂2n ∂sn∂tn exp � ±sinh(2r) 4 � s2 + t2� + 2 cosh r � ¯α±s − ¯α∗ ±t ������ s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A14) Then, by using the relations (A10) and (A11), the expression (39) is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Derivations of the Wigner function of SPSSVS This section presents the detailed derivation of the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (36), for which the first term gets form as below IΞ(ζ) = � ψ+ PS ��� ˆ∆(α) ��� ψ− PS � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A15) This term is calculated as IΞ(ζ) = 1 π2 e2|α|2 cosh(r) ∂2n ∂sn∂tn exp � − tanh(r) 2 � t2 − s2�� � ∞ −∞ d2β exp � − |β|2 − � tanh(r)t + 2α∗� β − � tanh(r)s − 2α � β∗ − tanh(r) 2 (β2 − β∗2) ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A16) Using the integral (A5), we obtain IΞ(ζ) = eξ π cosh(r) � 1 + tanh2(r) ∂2n ∂sn∂tn exp �tanh(2r) 4 s2 − tanh(2r) 4 t2 + 2sech(2r) sinh(r)(α∗ +s − α−t) + sech(2r) sinh2(r)st ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A17) Now, we eliminate eγst terms by using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A8) IΞ(ζ) = eξ π cosh(r) � 1 + tanh2(r) ∞ � l=0 1 l!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='22lsechl(2r) ∂2l ∂α∗l +∂αl − ∂2 ∂sn∂tn exp �tanh(2r) 4 s2 − tanh(2r) 4 t2 + 2sech(2r) sinh(r)(α∗ +s + α−t) ����� s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A18) Then, using the relations (A10) and (A11) we obtain expression (38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Finally, we derive the second term of the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' This term can be written as W⊞(ζ) = � ψ+ PS ��� ˆ∆(α) ��� ψ+ PS � + � ψ− PS ��� ˆ∆(α) ��� ψ− PS � , (A19) where � ψ± PS ��� ˆ∆(α) ��� ψ± PS � = 1 π exp � ± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2� ∂2n ∂sntn exp � ± 1 4 sinh(2r)(s2 + t2) ± 2 sinh(r)(¯α±t + ¯α∗ ±s) − sinh2(r)st ����� s,t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A20) Again, we use Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A8) to get rid of all eγst factors, obtaining � ψ± PS ��� ˆ∆(α) ��� ψ± PS � = 1 π exp � ± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2� ∞ � l=0 (−1)l 22ll!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' ∂2l ∂ ¯αl ±¯α∗l ± ∂2n ∂sntn exp � ± sinh(2r) 4 � s2 + t2� ± 2 sinh(r) � ¯α±t + ¯α∗ ±s ������ s=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A21) Finally, this equation can be simplified to expression (39) by utilizing the relations (A10) and (A11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' OVERLAPS OF SPASV AND SPSSV In this section, we calculate the overlap (14) of SPASVS and SPSSVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Note that, for n ≫ 1 and |δα| ≪ 1, the contribution of the cross terms between the states to the overlap is negligible, that is, ⟨ψ+ PA| ˆD(δα) |ψ− PA⟩ = 0 and ⟨ψ+ PS| ˆD(δα) |ψ− PS⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A22) 16 First, we drive each term of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' PASV (19) can be rewritten as [73] |ψ± PA⟩ = ˆS(±r) � ˆa† cosh(r) ± ˆa sinh(r) �n |0⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A23) Then, considering relation given by [73] (fˆa + gˆa†) := � − i � fg 2 �n Hn � i � f 2g ˆa + i � g 2f ˆa† � , (A24) which leads to [ˆa† cosh(r) + ˆa sinh(r)]n = � − i � sinh(2r) 4 �n Hn � i � tanh(r) 2 ˆa + i � coth(r) 2 ˆa† � , (A25) [ˆa cosh(r) + ˆa† sinh(r)]n = � − i � sinh(2r) 4 �n Hn � i � tanh(r) 2 ˆa† + i � coth(r) 2 ˆa � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A26) By using these relations, we obtain ⟨ψ± PA| ˆD(δα)|ψ± PA⟩ = � ∓ sinh(2r) 4 �n � 0 ����� Hn � i � ±coth(r) 2 ˆa � ˆD(η±)Hn � i � ±coth(r) 2 ˆa† � ����� 0 � , = � ∓ sinh(2r) 4 �n � ∞ −∞ d2α π exp � − |α|2 2 − α 2 η∗ ± + α∗ 2 η± − |α − η±|2 2 � Hn � i � ±coth(r) 2 α � Hn � i � ±coth(r) 2 (α∗ − η∗ ±) � , (A27) where ˆD(η±) = ˆS†(±r) ˆD(δα) ˆS(±r) with η± = δα cosh(r) ∓ δα∗ sinh(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A28) By using (A10), we get ⟨ψ± PA| ˆD(δα)|ψ± PA⟩ = � ∓ sinh(2r) 4 �n ∂2n ∂τ n∂tn exp � − i � ±2 coth(r) η∗ ±τ � exp � − τ 2 − t2� � ∞ −∞ d2α π exp � − |α|2 2 − α 2 η∗ ± + α∗ 2 η± − |α − η±|2 2 + i � ±2 coth(r) αt + i � ±2 coth(r) α∗τ ����� τ=t=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A29) Using the integral (A5), the previous equation yields ⟨ψ± PA| ˆD(δα)|ψ± PA⟩ = � ∓ sinh(2r) 4 �n exp � − |η±|2 2 � ∂2n ∂τ n∂tn exp � − t2 + i � ±2 coth(r) η±t − τ 2 − i � ±2 coth(r) η∗ ±τ (A30) ∓ 2 coth(r) tτ ����� t=τ=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A31) First, we rid out the factors eγτt from above equation by using (A8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Then, by using (A10) and (A11), the preceding equation is simplified to (42).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Similarly, PSSVS can be rewritten as [73] |ψ± PS⟩ = ˆS(±r) � ˆa cosh(r) ± ˆa† sinh(r) �n |0⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (A32) The overlap ⟨ψ± PS| ˆD(δα)|ψ± PS⟩ = � ∓ sinh(2r) 4 �n � 0 ����� Hn � i � ±tanh(r) 2 ˆa � ˆD(η±)Hn � i � ±tanh(r) 2 ˆa† � ����� 0 � , = � ∓ sinh(2r) 4 �n � ∞ −∞ d2α π exp � − |α|2 2 − α 2 η∗ ± + α∗ 2 η± − |α − η±|2 2 � Hn � i � ±tanh(r) 2 α � Hn � i � ±tanh(r) 2 (α∗ − η∗ ±) � , (A33) 17 can be easily simplified to (48).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wigner, On the quantum correction for thermody- namic equilibrium, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 40, 749 (1932).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gerry and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Knight, Introductory Quantum Op- tics (Cambridge University Press, England, Cambridge, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schleich, Quantum Optics in Phase Space (Wiley- VCH, Weinheim, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rundle and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Everitt, Overview of the phase space formulation of quantum mechanics with applica- tion to quantum technologies, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Quantum Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 4, 2100016 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [5] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Leonhardt, Measuring the quantum state of light, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 22 (Cambridge university press, United Kingdom, 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Navarrete-Benlloch, An Introduction to the Formal- ism of Quantum Information with Continuous Variables (Mor- gan & Claypool/IOP, Bristol, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schumaker, Quantum mechanical pure states with Gaussian wave functions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 135, 317 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [8] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schr¨odinger, Der stetige ¨ubergang von der mikro- zur makromechanik, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 14, 664 (1926).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Robertson, The uncertainty principle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 34, 163 (1929).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wheeler and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zurek, Quantum Theory and Measurement (Princeton University Press, Princeton, NJ, 1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Buˇzek and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Knight, I: Quantum interference, su- perposition states of light, and nonclassical effects (El- sevier, 1995) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 1–158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Walschaers, Non-Gaussian quantum states and where to find them, PRX Quantum 2, 030204 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' de Freitas and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dodonov, Non-Gaussianity of four-photon superpositions of fock states, Quantum Reports 3, 350 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dodonov, ‘Nonclassical’ states in quantum op- tics: a ‘squeezed’ review of the first 75 years, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B: Quantum Semiclassical Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 4, R1 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Streltsov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Adesso, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Plenio, Colloquium: Quantum coherence as a resource, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 89, 041003 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [16] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Drummond and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ficek, Quantum Squeezing (Springer-Verlag, Berlin, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [17] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, Entangled coherent states, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 45, 6811 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [18] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, Erratum: Entangled coherent states [Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 45, 6811 (1992)], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 46, 2966 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [19] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, Review of entangled coherent states, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 45, 244002 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mirrahimi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Leghtas, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Albert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Touzard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schoelkopf, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jiang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Devoret, Dynami- cally protected cat-qubits: a new paradigm for universal quantum computation, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 16, 045014 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bose, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jacobs, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Knight, Scheme to probe the decoherence of a macroscopic object, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 59, 3204 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [22] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Marshall, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Simon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Penrose, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bouwmeester, Towards quantum superpositions of a mirror, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 91, 130401 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [23] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Marshall, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Simon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Penrose, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bouwmeester, Publisher’s note: Towards quan- tum superpositions of a mirror [Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 91, 130401 (2003)], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 91, 159903 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Walther, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Aspelmeyer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ursin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gasparoni, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zeilinger, De Broglie wavelength of a non-local four-photon state, Nature 429, 158 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mitchell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lundeen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Steinberg, Super-resolving phase measurements with a multipho- ton entangled state, Nature 429, 161 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Happ, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Efremov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nha, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schle- ich, Sufficient condition for a quantum state to be gen- uinely quantum non-Gaussian, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 20, 023046 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [27] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, Superposition of two squeezed vacuum states and interference effects, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 39, 4284 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [28] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Giovannetti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lloyd, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Maccone, Quantum- enhanced measurements: Beating the standard quan- tum limit, Science 306, 1330 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [29] A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Physics 7, 962 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [30] Enhancing the sensitivity of the ligo gravitational wave detector by using squeezed states of light, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Physics 7, 962 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [31] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Milburn, Quantum and classical Liouville dynam- ics of the anharmonic oscillator, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 33, 674 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [32] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Yurke and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Stoler, Generating Quantum Mechan- ical Superpositions of Macroscopically Distinguishable States via Amplitude Dispersion, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 57, 13 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [33] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zurek, Sub-Planck structure in phase space and its relevance for quantum decoherence, Nature 412, 712 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [34] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zurek, Decoherence, einselection, and the quan- tum origins of the classical, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 75, 715 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pan and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi, Cat state, sub-Planck structure and weak measurement, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' D 67, 1 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [36] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dalvit, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' de Matos Filho, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Toscano, Quantum metrology at the heisenberg limit with ion trap motional compass states, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 8, 276 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [37] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Toscano, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dalvit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Davidovich, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zurek, Sub-Planck phase-space structures and Heisenberg-limited measurements, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 73, 023803 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ghosh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bera, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Roy, Sub-fourier quantum metrology through bright solitary trains in Bose–Einstein condensate, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 17, 1950019 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Scott and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Caves, Teleportation fidelity as a probe of sub-Planck phase-space structure, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (NY) 323, 2685 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 18 [40] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Praxmeyer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wasylczyk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Radzewicz, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W´odkiewicz, Time-Frequency Domain Analogues of Phase Space Sub-Planck Structures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 98, 063901 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jacquod, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Adagideli, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Beenakker, Decay of the Loschmidt Echo for Quantum States with Sub- Planck-scale Structures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 89, 154103 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [42] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wisniacki, Short-time decay of the Loschmidt echo, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' E 67, 016205 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ghosh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Chiruvelli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Banerji, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pan- igrahi, Mesoscopic superposition and sub-Planck-scale structure in molecular wave packets, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 73, 013411 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [44] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bhatt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vyas, Entanglement-induced sub-Planck phase-space struc- tures, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 78, 034101 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [45] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Stobi´nska, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Milburn, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W´odkiewicz, Wigner function evolution of quantum states in the pres- ence of self-Kerr interaction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 78, 013810 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ghosh, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Roy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Genes, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vitali, Sub-Planck- scale structures in a vibrating molecule in the presence of decoherence, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 79, 052104 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [47] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Roy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ghosh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vitali, Sub- Planck-scale structures in the P¨oschl-teller potential and their sensitivity to perturbations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 80, 052115 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ghosh, Coherent control of mesoscopic superpositions in a diatomic molecule, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 10, 1250014 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [49] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kumari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pan, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi, Sub-Planck structure in a mixed state, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' D 69, 248 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [50] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dodonov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Valverde, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Souza, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Baseia, De- coherence of odd compass states in the phase-sensitive amplifying/dissipating environment, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (NY) 371, 296 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [51] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kumar and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lee, Sensitivity of sub-Planck structures of mesoscopically superposed coherent states to the thermal reservoirs induced decoherence, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 394, 23 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [52] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Howard, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Weinhold, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shahandeh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Combes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vanner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' White, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ring- bauer, Quantum Hypercube States, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 123, 020402 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [53] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Akhtar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Xianlong, Sub-Planck phase-space structure and sensitivity for SU(1,1) com- pass states, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 106, 043704 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [54] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Akhtar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Navarrete- Benlloch, Sub-Planck structures: Analogies between the Heisenberg-Weyl and SU(2) groups, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 103, 053711 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [55] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shukla, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Akhtar, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sanders, Quantum tetrachotomous states: Superposition of four coherent states on a line in phase space, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 99, 063813 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [56] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Panigrahi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=', Compass state: Effect of squeez- ing and displacement on the Fock space, arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='10374 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [57] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Agarwal and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pathak, Mesoscopic superposi- tion of states with sub-Planck structures in phase space, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 70, 053813 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [58] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pathak and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Agarwal, Generation of a super- position of multiple mesoscopic states of radiation in a resonant cavity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 71, 043823 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [59] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Stobi´nska, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Villar, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Leuchs, Generation of Kerr non-Gaussian motional states of trapped ions, Europhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 94, 54002 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [60] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Leghtas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kirchmair, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vlastakis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Devoret, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schoelkopf, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mirrahimi, Deterministic pro- tocol for mapping a qubit to coherent state superposi- tions in a cavity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 87, 042315 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [61] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Govia, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pritchett, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wilhelm, Generating nonclassical states from classical radiation by subtraction measurements, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 16, 045011 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [62] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hastrup, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Neergaard-Nielsen, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ander- sen, Deterministic generation of a four-component opti- cal cat state, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 45, 640 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [63] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ofek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Petrenko, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Heeres, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Reinhold, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Legh- tas, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vlastakis, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Frunzio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Girvin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mirrahimi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Devoret, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Na- ture 536, 441 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [64] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vlastakis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kirchmair, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Leghtas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nigg, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Frunzio, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Girvin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mirrahimi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' De- voret, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Schoelkopf, Deterministically encoding quantum information using 100-photon Schr¨odinger cat states, Science 342, 607 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [65] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lemos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gomes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Walborn, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ribeiro, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Toscano, Experimental observation of quantum chaos in a beam of light, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 3, 2041 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [66] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Austin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Witting, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wyatt, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Walmsley, Measuring sub-Planck structural analogues in chronocyclic phase space, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 283, 855 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [67] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nha and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Carmichael, Proposed test of quantum nonlocality for continuous variables, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 93, 020401 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [68] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Takahashi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Neergaard-Nielsen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Takeuchi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Takeoka, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hayasaka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Furusawa, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sasaki, Entanglement distillation from Gaussian input states, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Photonics 4, 178 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [69] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zhang and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fan, Properties of states generated by excitations on a squeezed vacuum state, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 165, 14 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [70] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hughes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Genoni, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tufarelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Paris, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kim, Quantum non-Gaussianity witnesses in phase space, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 90, 013810 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [71] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Quesne, Completeness of photon-added squeezed vacuum and one-photon states and of photon-added co- herent states on a circle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 288, 241 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [72] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Si, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ji, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jia, Nonclassicality of photon- added squeezed vacuum states, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B 19, 064205 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [73] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hu and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fan, Nonclassicality of photon- added squeezed vacuum and its decoherence in thermal environment, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 57, 1344 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [74] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dey and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nair, Generalized photon-subtracted squeezed vacuum states, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 53, 385305 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [75] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Meng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fan, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B 29, 3141 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [76] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Biswas and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Agarwal, Nonclassicality and de- 19 coherence of photon-subtracted squeezed states, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 75, 032104 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [77] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ma and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Luo, Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B 21, 024203 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [78] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' K¨uhn and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Vogel, Quantum non-Gaussianity and quantification of nonclassicality, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 97, 053823 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [79] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wu, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shuang, Non-Gaussian features from excited squeezed vacuum state, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 345, 86 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [80] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Barnett, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ferenczi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gilson, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Speirits, Statistics of photon-subtracted and photon- added states, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 98, 013809 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [81] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lang and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Caves, Optimal quantum- enhanced interferometry using a laser power source, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 111, 173601 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [82] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Xu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zhang, Quantum in- terferometry via a coherent state mixed with a photon- added squeezed vacuum state, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 444, 102 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [83] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Birrittella and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gerry, Quantum optical in- terferometry via the mixing of coherent and photon- subtracted squeezed vacuum states of light, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B 31, 586 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [84] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Agarwal and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 43, 492 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [85] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zavatta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Viciani, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Bellini, Quantum-to- classical transition with single-photon-added coherent states of light, Science 306, 660 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [86] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wenger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tualle-Brouri, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Grangier, Non- gaussian statistics from individual pulses of squeezed light, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 92, 153601 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [87] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ourjoumtsev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dantan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tualle-Brouri, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Grangier, Increasing entanglement between Gaussian states by coherent photon subtraction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 98, 030502 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [88] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Cochrane, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Milburn, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 59, 2631 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [89] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ralph, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gilchrist, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Milburn, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Munro, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Glancy, Quantum computation with optical co- herent states, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 68, 042319 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [90] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Huang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Le Jeannic, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ruaudel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Verma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Shaw, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Marsili, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nam, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Zeng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Jeong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Filip, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Morin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Laurat, Opti- cal synthesis of large-amplitude squeezed coherent-state superpositions with minimal resources, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 115, 023602 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [91] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sychev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ulanov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pushkina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Richards, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fedorov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lvovsky, Enlargement of optical Schr¨odinger’s cat states, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Photonics 11, 379 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [92] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ulanov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fedorov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sychev, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Grang- ier, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lvovsky, Loss-tolerant state engineering for quantum-enhanced metrology via the reverse hong–ou– mandel effect, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 7, 1 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [93] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Wakui, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Takahashi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Furusawa, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Sasaki, Photon subtracted squeezed states generated with peri- odically poled ktiopo4, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Express 15, 3568 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [94] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Dakna, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Anhut, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Opatrn´y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kn¨oll, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='- G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Welsch, Generating Schr¨odinger-cat-like states by means of conditional measurements on a beam splitter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 55, 3184 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [95] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Takase, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Yoshikawa, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Asavanant, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Endo, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Furusawa, Generation of optical Schr¨odinger cat states by generalized photon subtraction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' A 103, 013710 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [96] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Neergaard-Nielsen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Nielsen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Hettich, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mølmer, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Polzik, Generation of a super- position of odd photon number states for quantum in- formation networks, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 97, 083604 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [97] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Ourjoumtsev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Tualle-Brouri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Laurat, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Grangier, Generating optical Schr¨odinger kittens for quantum information processing, Science 312, 83 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [98] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Audenaert, Comparisons between quantum state distinguishability measures, Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Com- put.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 14, 31 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [99] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Braun, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Adesso, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Benatti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Floreanini, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mar- zolino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mitchell, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Pirandola, Quantum- enhanced measurements without entanglement, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 90, 035006 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [100] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Luis, Quantum-limited metrology with nonlinear de- tection schemes, SPIE Reviews 1, 018006 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [101] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Weyl, The Theory of Groups and Quantum Mechan- ics (Dover, New York, 1950).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [102] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Perelomov, Generalized Coherent States and Their Applications, Theoretical and Mathematical Physics (Springer-Verlag, Berlin, 1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [103] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [104] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Moyal, Quantum mechanics as a statistical theory, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Cambridge Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 45, 99 (1949).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [105] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Gilmore, Properties of coherent states, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Mex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Fis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' 23, 143 (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [106] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Kok and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Lovett, Introduction to Optical Quan- tum Information Processing, 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' (Cambridge Univer- sity Press, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' [107] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} +page_content=' Puri, Mathematical methods of quantum optics (Springer-Verlag, Berlin, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/jdAyT4oBgHgl3EQfX_es/content/2301.00195v1.pdf'} diff --git a/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/2301.03456v1.pdf.txt b/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/2301.03456v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f5cebbeca045a9316b1a773ca2a159c76251a80 --- /dev/null +++ b/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/2301.03456v1.pdf.txt @@ -0,0 +1,1794 @@ +1 +UB3: Best Beam Identification in Millimeter Wave +Systems via Pure Exploration Unimodal Bandits +Debamita Ghosh1, Haseen Rahman2, Manjesh K. Hanawal3, and Nikola Zlatanov4 +1IITB-Monash Research Academy, IIT Bombay, India, email: debamita.ghosh@iitb.ac.in +2MLiONS Lab, IEOR, IIT Bombay, India, email: haseenrahman@gmail.com +3MLiONS Lab, IEOR IIT Bombay, India, email:mhanawal@iitb.ac.in +4Innopolis University, Russia, email: n.zlatanov@innopolis.ru +Abstract—Millimeter wave (mmWave) communications have +a broad spectrum and can support data rates in the order +of gigabits per second, as envisioned in 5G systems. However, +they cannot be used for long distances due to their sensitivity +to attenuation loss. To enable their use in the 5G network, +it requires that the transmission energy be focused in sharp +pencil beams. As any misalignment between the transmitter and +receiver beam pair can reduce the data rate significantly, it is +important that they are aligned as much as possible. To find +the best transmit-receive beam pair, recent beam alignment (BA) +techniques examine the entire beam space, which might result in +a large amount of BA latency. Recent works propose to adaptively +select the beams such that the cumulative reward measured in +terms of received signal strength or throughput is maximized. In +this paper, we develop an algorithm that exploits the unimodal +structure of the received signal strengths of the beams to identify +the best beam in a finite time using pure exploration strategies. +Strategies that identify the best beam in a fixed time slot +are more suitable for wireless network protocol design than +cumulative reward maximization strategies that continuously +perform exploration and exploitation. Our algorithm is named +Unimodal Bandit for Best Beam (UB3) and identifies the best +beam with a high probability in a few rounds. We prove that the +error exponent in the probability does not depend on the number +of beams and show that this is indeed the case by establishing a +lower bound for the unimodal bandits. We demonstrate that UB3 +outperforms the state-of-the-art algorithms through extensive +simulations. Moreover, our algorithm is simple to implement and +has lower computational complexity. +Index Terms—mmWave, Bandit learning, pure exploration +I. INTRODUCTION +There is a growing demand for higher data rates with the +advent of emerging data-intensive applications like virtual +reality, mobile gaming, and HD quality video streaming. The +wireless networks have improved in terms of data rates but +are still constrained by the available bandwidth in the sub-6 +GHz spectrum to meet the data rates required for emerging +applications. The millimeter wave (mmWave) band, with a +spectrum ranging from 30 GHz to 300 GHz, offers an abundant +spectrum and can support data rates of gigabits per second +that are envisioned in 5G networks. Significant efforts in the +standardisation of mmWave systems, such as IEEE 802.11ad +[1], [2] and ongoing IEEE 802.11ay [3], are underway, and +the 5G networks with mmWave systems are on the path of +commercialisation through extensive field trials. +Though mmWave systems offer higher data rates, they +come with a set of challenges—the small wavelengths +of +mmWaves +make +them +suffer +significant +attenuation, +resulting in a rapid deterioration of signal strength. Thus, +unlike traditional terrestrial communication systems, mmWave +communication requires highly directional communication +with energy focused on narrow beams to achieve the required +signal strengths at the receiver. Some challenges in using +mmWave systems in mobile communications are highlighted +in standards [1], [4]. However, on the brighter side, small +wavelengths allow transmission antennas with small form +factors to be packed closely and focus signal energy in specific +directions, forming sharp beams. +The other challenge in mmWave communication is that +transmitter and receiver beams need to be aligned before data +transfer; otherwise, any advantage of high data rates is not +realised. A few degrees of misalignment in the beam directions +between transmitter and receiver can reduce the data rates from +gigabits per second to a few megabits per second, jeopardising +the gain from the high spectrum of mmWave systems [5]–[7]. +This gives rise to the problem of beam alignment (BA), where +one needs to find the best transmitter and receiver beam pair +that provides the best rates. The BA problem is critical to +building better 5G communication networks with mmWave +systems. Our goal in this paper is to learn the best beam pair +in a given number of slots with a high probability. +One naive approach to performing BA is an exhaustive +search of all available beams at the base station (BS) and user +equipment (UE). This strategy does not scale well because it +has the complexity of order O(K2), where K is the number +of beams at BS and UE. The IEEE standard 802.11ad [1] +decouples the BA by performing it in two stages. In the first +stage, the BS uses a quasi-omnidirectional beam while the +UE scans through its beams to identify the best one. In the +next stage, the UE uses a quasi-omnidirectional beam while +the BS scans through its beam to identify the best one. This +search strategy has a complexity that is linear in K. However, +as discussed in [8], [9], this method can still take time in +seconds. +The initial access (IA) phase in 5G mmWave provides a +mechanism to identify beam directions between a BS and UE +[10]–[13]. BSs periodically use the IA phase to discover new +UEs and check if the best beam for already existing UEs has +arXiv:2301.03456v1 [eess.SP] 26 Dec 2022 + +2 +changed [14]. During the IA, BS transmits synchronization +signals that UE can measure and report back the received +signal strengths (RSS). IA can be used to explore and identify +the best pair, as no data is transferred in this phase. Further, +BS can adapt to the non-stationary environment by periodically +rerunning the IA phase, where the periodicity can depend on +the mobility rate and the atmospheric conditions. +We address the BA and user tracking issues in mmWave +using the fixed-budget pure exploration Multi-Armed Bandit +(MAB) framework, where pure exploration is performed +in +the +IA +phase. +The +BA +problem +has +already +been +addressed using the MAB framework, which uses cumulative +regret minimization algorithms that balance exploration and +exploitation to find the best beam pair [7], [15], [16]. However, +the stopping time in these algorithms is random, leading to +the following difficulties: 1) The learning phase may extend +beyond the IA phase and reduce the number of time slots +available for data transfer. 2) Due to continuous exploration, +sub-optimal beams can be used for data transfer, resulting in +outages. To overcome these issues, we complete the learning +phase within a fixed number of time slots (budget) of the IA +phase using adaptive exploration. Moreover, we exploit the +structural properties of the RSS across the beams to accelerate +the learning process. +Several studies validate that the RSS of the beams in +mmWave systems follows a multi-modal structure, with one +peak corresponding to the line-of-sight path and others +corresponding to the non-line-of-sight paths [7], [15]. Often, +there is one dominant peak, and the multi-modal functions can +be treated as unimodal. Bandits with a unimodal structure are +well studied in the literature in the cumulative regret setting +with optimal algorithms [17]–[19]. However, the fixed-budget +pure exploration bandit with unimodal structure is not well +studied, and optimal algorithms are not known. In this work, +we develop a new fixed-budget pure exploration algorithm that +exploits the unimodal structure. The new algorithm is named +Unimodal Bandit for Best Beam (UB3) and is based on the idea +of sequential elimination of sub-optimal beams. UB3 achieves +an error probability of the order of O(log K exp(−T1D2 +L)) +after T1 time slots of IA phase, where DL is the minimum gap +between two successive means of the arms. When no unimodal +structure is assumed (unstructured), the best known achievable +error probability is O(log K exp(−T1/H log K)) [20], where +K is the number of beams and H is the problem-dependent +constant. Thus, by exploiting unimodal structure, we achieve +a better error probability where the error exponent does not +depend on the number of beams, and demonstrate that this +is anticipated by establishing a lower bound for unimodal +bandits. Extensive simulation on realistic wireless networks +demonstrates UB3 identifies the best arm with a probability +more than 95% within 100 time slots for 16 beams, while +the other state-of-the-art algorithms need 500 time slots. This +translates into throughput gains of more than 15% compared +to other algorithms. Moreover, UB3 does not require any +prior knowledge of channel fluctuations. In summary, our +contributions are as follows: +• We set up the problem of beam alignment in mmWave +systems as a fixed-budget pure exploration multi-armed +bandit problem in Sec. II. +• We exploit the unimodal structure of the RSS of the +beams and develop an algorithm named Unimodal Bandit +for Best Beam (UB3) to identify the best beam with a high +probability in fixed time slots or within the IA phase of +the BA in Sec. III. +• We provide an upper bound on the error probability of +UB3 in identifying the best beam and show that the error +exponent does not depend on the number of beams. We +demonstrate that is anticipated by establishing a lower +bound for unimodal bandits in Sec. IV. +• We perform extensive simulations to validate the superior +performance of UB3 compared to other state-of-the-art +algorithms like HOSUB, HBA, LSE and Sequential +Halving in Sec. V. In agreement with the theoretical +bounds, UB3 is not affected by the number of beams. +A. Related Work +As there is growing interest in mmWave systems in +academia and industry, various aspects of mmWave are being +studied. For the recent advances in the mmWave systems, we +refer to surveys [21]–[23]. +Several approaches are proposed to solve the BA problem. +The compressive sensing-based signal processing methods +[24]–[26] utilize the sparse characterization of mmWave to +learn the best beam. They work better when accurate channel +state information is available. [27] proposes an Optimized +Two-Stage Search (OTSS) where a suitable candidate set +of beams is identified in the first stage based on the +received signal profile, and in the second stage, the best +beam from the surviving set is selected with additional +measurements. Codebook-based hierarchical methods are +proposed in [28]–[30] which also require channel state +information for BA. [31], [32] utilizes the location information +to perform fast BA, which is feasible only when the location +information of the UE is available at the BS. [33], [34] use +Kalman filters to detect the angles of arrivals and departures to +track UE. Recently, machine learning [35], and deep learning +[36], [37] methods have been used for BA, which requires +offline training of the models. +Our work is closer to [7], [15], [16], [38] which uses +an online learning approach to optimize the BA problem. +The authors in [7] develop an algorithm named Unimodal +Beam Alignment (UBA) that exploits the unimodal structure +of received power. The algorithm is built on the OSUB +algorithm [17] by adding stopping criteria. The algorithm +assumes that the mean powers are known, and the stopping +criteria is based on these mean powers. The Hierarchical +Beam Alignment (HBA) [15] algorithm also exploits the +unimodal/multimodal structures of beam signal strengths to +narrow down on the optimal beam. HBA has shown better +performance for beam identification than UBA. However, for +T time slots, the computational complexity of HBA is O(T 2), +as in each time slot, the algorithm restarts the search, making +the running time linear in each time slot. Moreover, HBA +requires knowledge of channel fluctuations, which is not +practical. The Hierarchical Optimal Sampling of Unimodal + +3 +Bandits (HOSUB) [38] exploits the benefits of hierarchical +codebooks and the unimodality structure of the beam signal +strengths to achieve fast beam steering. Simulations show +better performance of HOSUB compared to HBA, as well +as a large reduction in computational complexity. However, +the authors in [38] did not provide any theoretical guarantees +on their proposed algorithm. The authors in [16] develop +an algorithm named MAMBA that aims to maximize the +cumulative rate obtained over a period using the Thompson +sampling algorithm named Adaptive Thompson Sampling +(ATS). Unlike the UBA and HBA, the exploration never ends +in ATS and may keep selecting the sub-optimal beams. +Our work develops an online learning algorithm for BA +using a fixed-budget pure exploration setup [20], [39]. We +exploit the unimodal structure of beam RSS to eliminate the +sub-optimal beams and narrow the beam search space quickly. +Fixed-budget pure exploration strategies are more suitable for +the BA problem, as the exploration can be completed in the IA +phase, and no exploration is required during the data transfer, +simplifying the design of protocols. To our knowledge, this +has not been studied in 5G networks with mmWave systems. +II. PROBLEM SETUP +In this section, we discuss the system and channel model +used in mmWave system. We follow the setup and notation +similar to [15]. +A. System Model +We consider a point-to-point mmWave wireless system +between a transmitter, refer as mmWave BS, and a receiver, +refer as mmWave UE, in a static environment as shown in +Fig. 1. We focus on analog beamforming and consider one +ADC with an RF chain that focuses on one direction at a +time. The transmitter has K phased-array antennas, where +each antenna has a phase shift to form a narrow directional +beam. The antennas are evenly spaced by a distance D ≈ +λ/2 forming a uniform linear array, where λ is the carrier +wavelength. As the IEEE 802.11ad can decouple the BA, we +consider that the receiver keeps a quasi-omnidirectional beam +and the transmitter scans over the beam space to identify the +best beam. This is a reasonable assumption due to the small +form factor and fewer antennas on UEs. In the following, +we focus on beam alignment (BA) at the BS side, and the +extension that involves both BS and UE is straightforward. +B. Channel Model +Due to the sparse characteristics of mmWave channel, we +consider Saleh-Valenzuela channel model [40]. Suppose there +are L paths where one is the dominant line-of-sight (LOS) +path and L − 1 non-line-of-sight (NLOS) paths. Let C denote +the set of complex numbers. The channel vector between the +transmitter and the receiver is given by +h = g0a(v0) + +L−1 +� +l=1 +gla(vl) ∈ CK×1 +(1) +RF +Chain +RF +Chain +DAC +ADC +CHANNEL +Beam Scan +Omni-Directional +mmWave +Base Station (BS) +mmWave +User Equipment (UE) +Fig. 1: A point-to-point mmWave Communication System. +where a(v) = +� +ej 2πD +λ +kv : 0 ≤ k ≤ K − 1 +� +∈ CK×1 denote +the vector of sinusoids at spatial angle v, g0 is the channel +gain of LOS path, and gl, 1 ≤ l ≤ L − 1 is the channel gains +of lth NLOS path. v = cos θ denotes the spatial angle of the +channel associated with physical angle θ. As assume that the +channel remains static for a duration T time slots and the +channel vector keeps invariant in the BA process. +Let B +∈ +CK×K denote the unitary discrete Fourier +transform (DFT) of the transmit beam space, where the kth +column corresponds to the kth beam, i.e., +B = [b1, b2, . . . , bK] = +1 +√ +K +[a(w1), a(w2), . . . , a(wK)] +(2) +where wk = +2k−K +K +denotes the spatial angle of the kth +beam. Then, the received signal of kth beam (with receiver +omnidirectional) is given by +yk = +√ +PhHbk + n, +(3) +where n denotes the additive white Gaussian noise with mean +noise power N0W, with noise power density N0 and channel +bandwidth W. We denote the received signal strength (RSS) +of the kth beam as rk = |yk|2 and denotes its mean value +as µk = E [rk]. Let k∗ = arg maxk µk. Then the beam bk∗ +denotes the optimal beam with the best mean RSS. +Definition +1. +(Unimodality): +The +unimodality +structure +indicates that, ∀bk ∈ B, there exist a path such that µ1 < +µ2 < · · · < µk∗ and µk∗ > µK∗+1 > · · · > µK. +For the case when only LOS path is present with channel +gain g and spatial angle v, mean RSS is given as µk = +P g2 +K δ(wk − v) + NoW for all bk ∈ B, where δ(x) = +sin2(KπDx/λ) +sin2(πDx/λ +denotes the antenna directivity function for +angular misalignment x. For bk ∈ B, µk is a function of +angular misalignment wk − v and has unimodal property [15, +Thm. 1]. In the following, we only consider the beams with +the unimodal property as in [7] and later discuss how to extend +our method to the multimodal case involving multiple NLOS +of paths. +Remark 1. We assumed that the Modulation and Coding +Scheme (MCS) on each beam is fixed. However, we can easily +accommodate different MCS on each beam by treating the RSS +as a vector corresponding to MCS and considering the mean +rate as done in [16]. + +4 +Beams +t = T +Exploration Phase (IA) +Data Communication Phase +t = 2T +Exploration Phase (IA) +t=1 +t=T+1 +t=T1 +t=T+T1 +........... +........... +Data Communication Phase +Fig. 2: Beam exploration (IA) phase followed by data transfer phase. +C. Problem Formulation +We assume a slotted system where the length of the IA +phase is T1 time slot. As specified in the 5G standards, we let +the BS rerun IA phase periodically after every T time slot +where T > T1. We assume that during the period T, the +environment is stationary such that the best beam remains the +same. We focus on one period between two successive reruns +of the IA phase and index the time slots in that period as t = 1 +to t = T, refer to Fig. 2. In each time t, the BS can select +one of the beams from set B and obtain as feedback the RSS +at the receiver. The feedback is obtained through ACK/NACK +sent back by the receiver – BS measures the signal strength of +the received ACK/NACK, which gives the RSS at the receiver +[16]. During the IA duration of T1 time slots, no information +signals are transmitted and throughput or error probability is +not a concern. However, during the period of T − T1 data is +transmitted and it is desirable to obtain high throughput in this +period using the best possible beam. We are thus interested in +algorithms that output an optimal beam at the end of T1 time +slots (IA phase). +We model the problem as a fixed-budget pure exploration +multi-armed bandit [20], [41] where the goal is to identify +the optimal arm within a fixed budget with high confidence. +Following the terminology of multi-armed bandits, we refer to +beams as arms. A policy is any strategy that selects an arm in +each time slot given the past observations. Let kt ∈ B denotes +the arm selected by a policy at time t. By playing an arm kt, +the policy observes the feedback rkt which is a noisy RSS. +The choice of kt can depend on the beams selected in the past +and their associated RSS values. We assume that RSS values +observed in each time slot are independently and identically +distributed across the arms and time. The distribution of RSS is +governed by channel fluctuations, such as shadow fading and +the disturbance effect, and follows unknown fixed distributions +within a time period T. However, without loss of generality, +we assume that values of RSS are bounded in some interval. +For a given policy π, let ˆkπ +T1 denote the index of the arm +output by π at the end of T1 time slots. Let Π denote the set of +all policies of pure-exploration that output algorithms within +a fixed budget of T1. Then our goal is to find a policy in Π +that minimizes the probability that the arm output at the end +of T1 is not an optimal arm, i.e., +min +π∈Π Pr +� +bπ +ˆkT1 ̸= bk∗ +� +, +where for each policy, Pr(·) is calculated with respect to the +samples induced by the policy. We note that our criteria is +different from those set in UBA [7] and HBA [15] which +aim to minimize cumulative regret. Though both UBA and +HBA have stopping criteria beyond which they play a fixed +arm, the stopping time can be random, making their practical +implementation challenging. Whereas, the policy considered +by us completes the exploration phase deterministically after +time T1 which makes their implementation easier in a wireless +setup. Fig. 2 depicts the structure of our policy. +III. ALGORITHMS +In +this +section, +we +propose +an +algorithm +named +UB3-Unimodal Bandit for Best Beam that finds the optimal +beam after exploiting the unimodal structure of mean RSS +within T1 time slots. The algorithm is based on the Line +Search Elimination (LSE) algorithm developed in [18], where +the algorithm samples and eliminate arms in multiple phases +till one arm survives after L + 1 phases. The pseudo-code of +UB3 is given in Unimodal Bandit for Best Beam (UB3). It is +parameter free and only takes K and T1 as inputs. +UB3 runs in L+1 phases. Arms are sampled and eliminated +in each phase such that only one arm survives after the L + 1 +phase. We first explain the number of rounds in each phase. +Let Nl, for l = 1, 2, . . . , L+1, denotes the number of samples +in phase l. Then, +Nl = +� +2L−2 +3L−1 T1 +for l = 1, 2 +2L−(l−1) +3L−(l−2) T1 +for l = 3, 4, . . . , L + 1 +(4) +which satisfies that +2 × 2L−2T1 +3L−1 ++ +L+1 +� +l=3 +2L−(l−1)T1 +3L−(l−2) += T1. +(5) +After the first two phases, the number of samples increases by +a factor of 3/2 in each subsequent phase. This increase in the +number of samples helps to distinguish between the empirical +means of the remaining arms, which are likely to be closer. +UB3 works as follows. Let Bl = {b1, b2, . . . , bl} denote the +set of arms available in phase l and jl := |Bl| is the number +of arms in the set Bl. In phase l = 1, 2, . . . L, the algorithm +selects four arms {kM, kA, kB, kN} ∈ Bl, which include the +two extremes and two middle arms uniformly spaced from +them (lines 4-7). Each of the arms is sampled for Nl +4 number +of times (line 8). At the end of the phase, their empirical means + +5 +𝒌𝑴 +𝒌𝑨 +𝒌𝑩 +𝒌𝑵 +𝒙𝒍 +∗ = +𝑪𝒂𝒔𝒆 𝟏 +𝓑𝒍+𝟏 +𝓑𝒍 +𝒌𝑴 +𝒌𝑨 +𝒌𝑩 +𝒌𝑵 +𝒙𝒍 +∗ = +𝑪𝒂𝒔𝒆 𝟐 +𝓑𝒍+𝟏 +𝓑𝒍 +Fig. 3: Different cases of elimination in phase l. +denoted ˆµi (line 9) are obtained as follows: +ˆµl +i = +1 +Nl/4 +Nl/4 +� +s=1 +rl +is, +∀i ∈ {kM, kA, kB, kN} +(6) +where rl +is denotes the sth noisy RSS sample from ith arm in +phase l. Based on these empirical means, we eliminate at most +1/3rd of the number of arms from the remaining set1. More +specifically, if the arms kM or kA has the highest empirical +means, then we eliminate all the arms succeeding kB in the +set Bl (line 11 and 12). Similarly, if the arms kB or kN has +the highest empirical means, then we eliminate all the arms +preceding kA in the set Bl (line 13 and 14). Fig. 3 gives +a pictorial representation of the elimination of arms in two +possible cases. The remaining set of arms are then transferred +to the next phase. In phase L + 1, we are left with three +arms. Each one of them is sampled +NL+1 +3 +number of times +and the one with the highest empirical mean is the output of +the algorithm as the optimal arm (lines 18-23). +Remark 2. Arms between kM & kA or kB & kN are +eliminated in phase, and the arms between kA & kB always +survive. +After phase l = 1, 2, . . . , L, ⌊ 2 +3jl⌋ of the arms survive. For +ease of exposition, we will drop the ⌊⌋ function since this drop +will influence only a few constants in the analysis. Thus, after +the end of L phases there will be three arms as +(2/3)L K = 3 =⇒ L = log2 K/3 +log2 3/2 . +(7) +Therefore, the UB3 outputs the best beam as ˆkL+1 which is +equivalent to bˆkT1 after exploring for T1 time slots. In the next +section, we upper bound the error probability of UB3. +IV. ANALYSIS +In this analysis, we find an upper bound and lower bound +for the probability of best arm elimination for fixed-budget +pure exploration bandit with unimodal structure. We first upper +1If the number of arms in a phase is not a multiple of 4, then less than +1/3rd will be eliminated in that phase. +Unimodal Bandit for Best Beam (UB3) +1: Input: T1 and K. +2: Initialise: B1 = B, j1 ← |B1|. Calculate L from (7). +3: for l = 1 to L do +4: +kM ← First arm of Bl; +5: +kN ← Last arm of Bl; +6: +kA ← ⌈jl/3⌉th arm of Bl; +7: +kB ← ⌊2jl/3⌋th arm of Bl; +8: +Sample each arm in {kM, kA, kB, kN} for Nl +4 number +of times from (4) +9: +Obtain ˆµl +kM , ˆµl +kA, ˆµl +kB, ˆµl +kN by (6). +10: +x∗ +l = +arg max +i∈{kM,kA,kB,kN} +ˆµi. +11: +if x∗ +l == {kM, kA} then +12: +Bl+1 ← {k ∈ Bl : kM ≤ k ≤ kB} Shrink to left +13: +else if x∗ +l == {kB, kN} then +14: +Bl+1 ← {k ∈ Bl : kA ≤ k ≤ kN} Shrink to right +15: +end if +16: +jl+1 ← |Bl+1|; +17: end for +18: for l = L + 1 do +19: +BL+1 = {kM, kA, kN}; +20: +Sample each arm in {kM, kA, kN} for T1 +9 no. of times. +21: +Obtain ˆkL+1 = +arg max +i∈{kM,kA,kN} +ˆµL+1 +i +. +22: end for +23: Output: bˆkT1 = ˆkL+1 +bound the error probability of Unimodal Bandit for Best Beam +(UB3). For analysis, we use the following assumption: +Assumption 1. There exists a constant DL > 0 such that +|µk − µk−1| ≥ DL for 2 ≤ k ≤ K. +We note that this assumption is the same as that used in +from [18, Assumption 3.4] to analyze unimodal bandits in the +regret minimization setting. +A. Upper Bound for Algorithm UB3 +Theorem 1. Let UB3 is run for T1 time slots in L+1 number +of phases, where L = log2 K/3 +log2 3/2 with output ˆkL+1. Then, the +probability that ˆkL+1 output by UB3 is not the best arm after +L + 1 phases is bounded as +P(ˆkL+1 ̸= k∗) ≤ 2 exp +� +−T1 +18D2 +L +� ++ 2 exp +� +−T1K +32 D2 +L +� ++ 2 exp +� +−T1K +72 D2 +L +� ++ 2(L − 2) exp +� +−T1 +16D2 +L +� +. +(8) +Proof. The proof is given in Appendix A. +Observe that the dominant first and last terms in the +upper bound do not depend on K. The error probability +is thus of order O +� +log2 K exp +� +− T1D2 +L +16 +�� +, where the +error exponent term +� +exp +� +− T1D2 +L +16 +�� +does not depend +on K. The Sequential Halving (Seq. Halv.) algorithm is +proposed in [42] for non-unimodal (unstructured) bandits +and provided an upper bound for the probability of not + +6 +choosing the optimal arm. The error probability is shown to +be O +� +log2(K) exp +� +− +T1 +log(K)H2 +�� +. This bound matches with +the lower bound derived in [43] for unstructured bandits up +to multiplicative factor of log2(K), where H2 = max +k̸=k∗ +k +∆2 +k is +the complexity parameter depended upon the sub-optimality +gap. Note that the error exponent in this bound of Seq. Halv. +has log2(K) factor. By exploiting the unimodal property, +we shove off this factor. We next consider the lower +bound for fixed-budget pure exploration with the unimodal +structure which confirms that error exponent should be indeed +independent of number of beams for any optimal algorithm. +B. Lower bound for pure exploration unimodal bandit +A lower bound on the probability of error for the fixed +budget without assuming any structure is established in [43]. +We adapt the proof to include the unimodal structure to derive +a lower bound. To this end, we first define a set of bandit +instances as follows. +Let us consider K arms that follow the unimodal structure. +Let {pk}1≤k≤K be K real numbers in the interval [1/4, 1/2] +with pk∗ = 1 +2 and p1 ≤ p2 ≤ · · · ≤ pk∗−1 ≤ pk∗ ≥ pk∗+1 ≥ +· · · ≥ pK. For any 1 ≤ k ≤ K we consider the distribution νk +to be Bernoulli distribution with mean pk, i.e. νk := Ber(pk). +We consider another distribution ν′ +k as Bernoulli distribution +with mean 1 − pk, i.e., ν′ +k := Ber(1 − pk) with mean 1 − pk. +We define K bandit problem as following. For i +∈ +{1, . . . , K} define the product distributions Gi := νi +1 ⊗ νi +2 ⊗ +· · · ⊗ νi +K where +νi +k := +� +� +� +� +� +νk1{k ̸= i} + ν′ +k1{k = i}, if k ∈ {k∗ − 1, +k∗, k∗ + 1} +νk, otherwise +where 1{A} denotes the indicator function. It is easy to note +that only bandit instances Gi, where i ∈ {k∗ − 1, k∗, k∗ + 1} +satisfy the unimodality structure and the not the others. +Flipping of the reward for all other arms will result in a +non-unimodal problem. Thus unlike [43] we have 3 bandit +problems in the neighbourhood of k∗. +We define dk := pk∗ − pk = 1 +2 − pk, for any 1 ≤ k ≤ K. +Set ∆i +k = di + dk, if k ̸= i and ∆i +i = di, for any i ∈ {k∗ − +1, k∗ + 1} and any k ∈ {1, . . . , K}. Note that {∆i +k}k denotes +the arm gaps of the bandit problem i. We also define for any +i ∈ {k∗ − 1, k∗ + 1} the quantity +¯H(i) := +� +k∈{i−1,i+1} +1 +(∆i +k)2 and ¯h = +� +i∈{k∗−1,k∗+1} +1 +d2 +i ¯H′(i). +Theorem 2 from [43] can be rephrased in this setting as +follows. +Theorem 2. For any bandit strategy that returns the arm ˆkT1 +at time T1, it holds that +max +i∈{k∗−1,k∗+1}Pi(ˆkT1 ̸= i) +≥ 1 +6 exp +� +−60 +T1 +¯H(k∗) − 2 +� +T1 log(18T1) +� +, +(9) +and also +max +i∈{k∗−1,k∗+1}Pi(ˆkT1 ̸= i) +≥ 1 +6 exp +� +−60 +T1 +¯h ¯H(i) − 2 +� +T1 log(18T1) +� +. +(10) +The proof of this theorem follows the lines similar to [43, +Thm. 2] after applying the change of measure rule to on the +restricted set of arms. We skip the details. +Corollary 1. Assume that +T1 ≥ max +� +¯H(k∗), ¯H(i)¯h +�2 4 log(6T1K) +(60)2 +. +For any bandit strategy that returns the arm ˆkT1 at time T1, +it holds that +max +i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 +6 exp +� +−120 +T1 +¯H(k∗) +� +, +and also +max +i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 +6 exp +� +−120 +T1 +¯H(i)¯h +� +. +We can establish a lower bound using this corollary. +Theorem 3. For any unimodal bandit strategy that returns +arm ˆkT1 at time T1, +max +i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 +6 exp +� +−75 T1 +¯H(i) +� +. +(11) +Proof. The proof is given in Appendix B. +We see that unlike in the case of the lower bound found in +[43], the lower bound of the error probability is not dependent +on log2(K). In addition, the complexity factor depends only +on the sub-optimality gap between the optimal arm and its +neighbours. This observation is similar to the lowed bound on +cumulative regret established in [17]. +V. NUMERICAL SIMULATIONS +In this section, we corroborate our theoretical results using +simulations. We first describe the simulation setup with +parameters used and present the results in the following +subsections. +A. Simulation Parameters +We use the IEEE 802.11ad system with parameters as +described in [15] for numerical simulations. The carrier +frequency (f) is set at 60 GHz and the bandwidth is set at +2.16 GHz. The transmit power P = 50 dBm is shared between +K antennas which vary from 16 to 128. For the line of sight +(LOS) path, we have the path loss model as +PL(dB) = −27.5 + 20 log10(f) + 10α log10(d) + χ, (12) +where d is the transmission distance, the path loss exponent α +is taken as 1.74, and χ is the shadow fading component which +follows Normal distribution with zero mean and 2 dB variance. +In (12) f is in MHz and d is in meters. Depending upon the + +7 +Parameter +Value +Carrier frequency (f) +60 Ghz +Bandwidth (W) +2.16 GHz +Noise spectrum density (N0) +−174 dBm/Hz +Shadow fading variance (log-normal σ) +2 dB +Number of beams (N) +16-128 +HBA parameters (ρ1, γ, ζ) +(3, 0.5, 0.1) +Distance considered (d) +(20, 40, 60, 80) m +Path loss exponent +1.74 +TABLE I: Parameters for simulation +beam selected the signal strength varies in [−80, −20] dBm. +The algorithm parameter are kept at ρ1 = 3, γ = 0.5 and +ζ = 0.1. The channel parameters for the simulations are given +in Table I. Simulation results are averaged over 1000 iterations +and confidence intervals are shown (when significant). +We compare the performance of Unimodal Bandit for Best +Beam (UB3) with the following algorithms: +• Sequential Halving (Seq. Halv.) [42]: +This algorithm +is used for pure exploration in non-unimodal bandits for +a fixed T1 time slots. The algorithm was proved to be +optimal [43], and hence a comparison would give the +idea about, how the additional information of unimodality +would improve the performance. +• Linear Search Elimination (LSE) [18]: Although this +algorithm was proposed for continuous arm unimodal +bandit problems, we have considered the algorithm for +fixed T1 time slots and for discrete arms. A comparison of +UB3 with LSE is pertinent as it is a well-known algorithm +for unimodal bandits. +• Hierarchical +Beam +Alignment +(HBA) +[15]: +This +algorithm was shown to have good performance for regret +minimization, when compared to existing algorithms, +considering the prior knowledge of channel fluctuations. +Our comparison with HBA will of throughput comparison +for the period after the best beam has been identified. +• Hierarchical Optimal Sampling of Unimodal Bandits +(HOSUB) [38]: This algorithm exploits the benefits of +hierarchical codebooks and the unimodality of RSS to +achieve the best arm in the fixed T1 time slots. Our +comparison with HOSUB will of throughput comparison +for the period after the best beam has been identified. +We did not include UBA algorithm [7] for comparison +since HBA was shown to have better performance for beam +identification. Also, the ATS algorithm is not compared against +as it is designed to minimize the cumulative regret and does +not stop the exploration process. We note the computational +complexity of complexity HBA scales quadratically in T1 +whereas it is of O(T1) in UB3, where T1 is the duration of IA +phase. In addition, HBA requires prior knowledge of channel +fluctuations, i.e, the variance of the noise parameter, which is +not required in UB3. +B. Comparison with other pure exploration algorithms +We define the probability of error as the probability of not +identifying the best beam after sampling for T1 number of +time slots. We consider T1 as the exploration (IA) phase. We +first compare the probability of error for UB3 algorithm with +LSE and Seq. Halv. which are used for pure exploration. We +compare the probability of error performance of the algorithms +for arm sizes of K = {16, 64, 128}. The probability of error +against the exploration time slots (T1) is shown in Fig. 4. +LSE, which has an equal number of sampling for the arms +in all phases, has the worst probability of error performance +than Seq. Halv.. The solid lines in the figure are for K = 16, +the dashed lines are for K = 64 and the dot-dashed lines +are for K = 128. The comparisons are done for distance of +d = 20, 60 and 80 m. The probability of error increases as we +increase the beam size. However, for a small number of arms, +both Seq. Halv. and UB3 have comparable performance, but as +the number of beams increases, UB3 has a lesser probability +of error compared to Seq. Halv. as evident from the case of +K = 64 and K = 128. However, UB3 can identify the best +beam with a probability of more than 95% within 100 time +slots for 16 number of beams, while the other state-of-the-art +algorithms take need at least 200 time slots for executions. +Note that for Seq. Halv. require at least 200, 400, 900 rounds +for K = 16, 64, 128, respectively, to complete their execution +hence their graph start after that many slots. Moreover, as +distance increases the probability of error of all the algorithms +increases for each beam size. +It is to be noted that even though the minimum time slots +requirement (as a function of K) for LSE is much smaller than +both UB3 and Seq. Halv. for its feasible execution, the number +of samples it runs for arms neighbouring to k∗ is much lesser +resulting in more probability of error. Seq. Halv. needs at least +K log2(K) number of time slots to complete one phase and +has samples for all arms in every phase. Hence, it has much +fewer time slots remaining when the algorithm is executed +in the neighborhood of k∗ as compared to UB3. Thus, the +minimum time slots requirement for UB3 as a function of K +is much lesser than that of Seq. Halv., in addition to having a +better probability of error performance. This demonstrates the +advantage of exploiting the unimodality of the reward function. +C. Comparison of throughput performance +In this subsection we compare the throughput performance +of UB3 with the HBA and HOSUB algorithms. We look at +the mean cumulative throughput, which is defined as the +product of the mean value of the selected beam at the end +of exploration normalized with the mean power of the best +beam and the remaining available time slots, i.e, +Throughput = µnorm +bL+1 × (T − T1), +where T is the total available time slots and T1 is the number +of time slots available for exploration of the best beam. Note +that HBA will not have a fixed T1, and hence we will find +the throughput after the expected exploration time E(T1), +obtained as the average of many runs. Thus the throughput will +be fixed for HBA for a fixed T, while it will vary for varying + +8 +0 +200 +400 +600 +800 +1000 +1200 +1400 +Exploration Phase (T1) +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +Error +UB3, K=16, d=20 +LSE, K=16, d=20 +Seq. Halving, K=16, d=20 +UB3, K=64, d=20 +LSE, K=64, d=20 +Seq. Halving, K=64, d=20 +UB3, K=128, d=20 +LSE, K=128, d=20 +Seq. Halving, K=128, d=20 +(a) Error Probability vs T1, d = 20. +0 +200 +400 +600 +800 +1000 +1200 +1400 +Exploration Phase (T1) +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +Error +UB3, K=16, d=60 +LSE, K=16, d=60 +Seq. Halving, K=16, d=60 +UB3, K=64, d=60 +LSE, K=64, d=60 +Seq. Halving, K=64, d=60 +UB3, K=128, d=60 +LSE, K=128, d=60 +Seq. Halving, K=128, d=60 +(b) Error Probability vs T1, d = 60. +0 +200 +400 +600 +800 +1000 +1200 +1400 +Exploration Phase (T1) +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +Error +UB3, K=16, d=80 +LSE, K=16, d=80 +Seq. Halving, K=16, d=80 +UB3, K=64, d=80 +LSE, K=64, d=80 +Seq. Halving, K=64, d=80 +UB3, K=128, d=80 +LSE, K=128, d=80 +Seq. Halving, K=128, d=80 +(c) Error Probability vs T1, d = 80. +Fig. 4: Error performance of UB3 vs T1 for different no. of beams (K) and distance (d). +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3, K=16, d=20 +HOSUB, K=16, d=20 +HBA, K=16, d=20 +UB3, K=64, d=20 +HOSUB, K=64, d=20 +HBA, K=64, d=20 +UB3, K=128, d=20 +HOSUB, K=128, d=20 +HBA, K=128, d=20 +(a) Throughput vs T1, d = 20. +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +5 +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3, K=16, d=60 +HOSUB, K=16, d=60 +HBA, K=16, d=60 +UB3, K=64, d=60 +HOSUB, K=64, d=60 +HBA, K=64, d=60 +UB3, K=128, d=60 +HOSUB, K=128, d=60 +HBA, K=128, d=60 +(b) Throughput vs T1, d = 60. +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +5 +10 +15 +20 +25 +30 +Cumulative Throughput (in dB) +UB3, K=16, d=80 +HOSUB, K=16, d=80 +HBA, K=16, d=80 +UB3, K=64, d=80 +HOSUB, K=64, d=80 +HBA, K=64, d=80 +UB3, K=128, d=80 +HOSUB, K=128, d=80 +HBA, K=128, d=80 +(c) Throughput vs T1, d = 80. +Fig. 5: Throughput performance of UB3 vs T1 for different no. of beams (K) and d. +20 +40 +60 +80 +Distance (d) +0 +5 +10 +15 +20 +25 +Cumulative Throughput (in dB) +UB3,K=16,T1=500 +HOSUB,K=16,T1=500 +HBA,K=16,T1=500 +(a) Throughput vs d, K = 16, T1 = 500 +20 +40 +60 +80 +Distance (d) +0 +5 +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3,K=64,T1=500 +HOSUB,K=64,T1=500 +HBA,K=64,T1=500 +(b) Throughput vs d, K = 64, T1 = 500 +20 +40 +60 +80 +Distance (d) +0 +5 +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3,K=128,T1=500 +HOSUB,K=128,T1=500 +HBA,K=128,T1=500 +(c) Throughput vs d, K = 128, T1 = 500 +Fig. 6: Throughput performance of UB3 vs d for different no. of beams (K) for T1 = 500. +T1 for UB3 and HOSUB. Fig. 5 compares the cumulative +throughput of UB3, HBA and HOSUB for different K and +distances of d = 20, 60 and 80 m for T = 3000 time slots. +As the number of beams (arms) increases, the beam +becomes narrower, and hence the reward for the best beam also +increases. In that case, HOSUB requires more exploration time +slots to learn the optimal beam, thereby exploiting sub-optimal +beams in the data transmission phase for the given T1 time +slots. On the other hand, for HBA, since the average time +required to find the best arm increases, the average throughput +will decrease as the number of arms increases. This increasing +and decreasing of throughput for HBA is seen in Fig. 5 and +Fig. 6. However, the UB3 algorithm is not much affected by +the number of increases in arms for finding the best arm, and +hence the throughput will only increase with increasing gain +for the best arm. UB3 can improve the throughput by more +than 45% compared to HBA and by more than 15% compared +to HOSUB. This too is evident from both Fig. 5 and Fig. +6. However, the throughput will decrease as we increase the +transmission distance, refer Fig. 6. +Finally, we compare the throughput performance for varying +path loss exponent given as α ∈ {1.74, 1.94, 2.14}, as shown +in Fig. 7. The path loss exponent increases when there are +more barriers; for example when the receiver moves from +outdoor to indoor. The throughput indeed decreases for all +HBA, HOSUB and UB3, but UB3 still outperforms HBA and +HOSUB. +VI. CONCLUSION AND FUTURE WORK +We investigated the problem of beam alignment in mmWave +systems using the multi-armed bandits (MAB). While earlier +works used the cumulative regret minimization setting to learn + +9 +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +Cumulative Throughput (in dB) +UB3,K=16,d=20,path-loss=1.74 +HOSUB,K=16,d=20,path-loss=1.74 +HBA,K=16,d=20,path-loss=1.74 +UB3,K=16,d=20,path-loss=1.94 +HOSUB,K=16,d=20,path-loss=1.94 +HBA,K=16,d=20,path-loss=1.94 +UB3,K=16,d=20,path-loss=2.14 +HOSUB,K=16,d=20,path-loss=2.14 +HBA,K=16,d=20,path-loss=2.14 +(a) Throughput vs T1, K = 16, d = 20. +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +5 +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3,K=64,d=20,path-loss=1.74 +HOSUB,K=64,d=20,path-loss=1.74 +HBA,K=64,d=20,path-loss=1.74 +UB3,K=64,d=20,path-loss=1.94 +HOSUB,K=64,d=20,path-loss=1.94 +HBA,K=64,d=20,path-loss=1.94 +UB3,K=64,d=20,path-loss=2.14 +HOSUB,K=64,d=20,path-loss=2.14 +HBA,K=64,d=20,path-loss=2.14 +(b) Throughput vs T1, K = 64, d = 20. +400 +600 +800 +1000 +1200 +1400 +1600 +Exploration Phase (T1) +5 +10 +15 +20 +25 +30 +35 +Cumulative Throughput (in dB) +UB3,K=128,d=20,path-loss=1.74 +HOSUB,K=128,d=20,path-loss=1.74 +HBA,K=128,d=20,path-loss=1.74 +UB3,K=128,d=20,path-loss=1.94 +HOSUB,K=128,d=20,path-loss=1.94 +HBA,K=128,d=20,path-loss=1.94 +UB3,K=128,d=20,path-loss=2.14 +HOSUB,K=128,d=20,path-loss=2.14 +HBA,K=128,d=20,path-loss=2.14 +(c) Throughput vs T1, K = 128, d = 20. +Fig. 7: Throughput performance of UB3 vs T1 for different path-loss exponent α and d = 20. +the best arm, we used the fixed-budget pure-exploration setting +framework exploiting the unimodal structure of the received +signal strength of the beams. We developed an algorithm +named Unimodal Bandit for Best Beam (UB3) that identified +the best beam with high probability. We gave an upper bound +on the error probability of UB3 and established that it is +optimal. Simulations validated the efficiency of UB3 which can +identify the best beam using a smaller number of explorations +that can translate to improvement in throughput by more than +15% compared to other state-of-art algorithms. Due to its +simple structure, UB3 is easy to implement and comes with a +lower computational complexity – UB3 has a computational +complexity of O(T), whereas it is O(T 2) for HBA [15]. The +UBA algorithm in [7] needs to solve a convex optimization +problem in each time which is expensive. +UB3 works well when only the LOS path is present and +the RSS of beams satisfies the unimodal property. However, +when NLOS paths are present, we are faced with multimodal +functions. UB3 can be adapted to handle the multi-modal +functions by using backtracking ideas proposed in [44]. In +backtracking, eliminated arms are revisited to check if it is +done by mistake and thus will not be stuck in a sub-optimal +set of beams. It is interesting to evaluate the UB3 algorithms +with backtracking on multimodal function and establish its +performance guarantees. +VII. APPENDIX +In this section, we will provide proof of the main results. +A. Proof of Theorem 1 +Proof. UB3 runs for T1 horizon in L + 1 number of phases +that satisfies (5), where L = +log2 K/3 +log2 3/2 and outputs the arm +ˆkL+1. We will now upper bound the probability of error as, +P(ˆkL+1 ̸= bk∗) = +L+1 +� +l=1 +P(bk∗ elim. in l|bk∗ not elim. in < l) +≤ +L+1 +� +l=1 +P(bk∗ elim. in l). +(13) +The best arm is eliminated in phase l in the following cases: +1) bk∗ ∈ {kM, . . . , kA}, and ˆµl +kB or ˆµl +kN is greater than +both ˆµl +xM and ˆµl +kA +bk∗ +bk∗ +kM +kA +jl +3 DL +kB +kN +Case 1 +Case 2 +Fig. 8: Different cases of elimination in any phase l. bk∗ will +not get eliminated if it is in between arms kA and kB. +2) bk∗ ∈ {kB, . . . , kN}, and ˆµl +kM or ˆµl +kA is greater than +both ˆµl +kB and ˆµl +kN +The two cases are illustrated in Fig. 8. From Remark 2, bk∗ +will not get eliminated if bk∗ ∈ {kA, . . . , kB}. However we +will upper bound the probability of error by assuming that +bk∗ will always fall in the above two cases. Notice that Case +1 and Case 2 are symmetrical. Hence we can consider that +bk∗ will always fall in either one of the cases. Without loss of +generality, we consider Case 1. +P(bk∗ elim. in l) ≤ P(bk∗ elim. in l|bk∗ ∈ {kM, . . . , kA}) +P(bk∗ elim. in l) +≤ P(ˆµl +kB > ˆµl +kM and ˆµl +kA|bk∗ ∈ {kM, . . . , kA}) ++ P(ˆµl +kN > ˆµl +kM and ˆµl +kA|bk∗ ∈ {kM, . . . , kA}) +≤ 2P(ˆµl +kB > ˆµl +kM and ˆµl +kA|bk∗ ∈ {kM, . . . , kA}), +(14) +where the last inequality is due to the fact that, for Case 1, +µkB ≥ µkN by unimodality. Now for Case 1, µkA is always +greater than µkB, but µkM may not be greater than µkB. Then, +we can further upper bound (14) as +P(bk∗ elim. in l) ≤ 2P(ˆµl +kB > ˆµl +kA|bk∗ ∈ {kM, .., kA}). +(15) +Applying Hoeffding’s inequality in (15), we have +P(ˆµl +kB > ˆµl +kA) ≤ exp +� +−1 +2 +Nl +4 (∆A,B)2 +� +, +(16) +where ∆A,B = µkA −µkB which is greater than 0 for Case 1. +From Assumption 1, and the fact that there are at least jl +3 arms +between kA and kB, for Case 1 we have, ∆A,B ≥ (jl/3)DL. + +10 +Thus from (14) and (16) we have, +P(bk∗ elim. in l) ≤ 2 exp +� +−Nl +72 +� +jlDL +�2� +. +(17) +Using jl = +� 2 +3 +�l K in (17) we can find the probability of best +arm getting eliminated in phase 1 and 2, phase L + 1, and the +rest of the phases separately. Using (7), we have +P(bk∗ elim. in 1&2) ≤2 exp +� +−T1K +32 D2 +L +� ++ 2 exp +� +−T1K +72 D2 +L +� +. +(18) +For phase L + 1, since the best arm is selected among 3 arms +when each arm is sampled T1/9 times, we have +P(bk∗ elim. in phase L + 1) ≤ 2 exp +� +−T1 +18D2 +L +� +. +(19) +From (17), the error probability for the remaining phases is +P(best arm elim. in phase 3 to phase L) +≤ 2 +L +� +l=3 +exp +� +−T1 +8 +K2 +9 +�2 +3 +�2(l−1) 2L−l+1 +3L−l+2 D2 +L +� +≤ 2 +L +� +l=3 +exp +� +−T1K +48 +�2 +3 +�l +D2 +L +� +≤ 2(L − 2) exp +� +−T1 +16D2 +L +� +. +(20) +By (13), (18), (19) and (20), we obtain the upper bound as +P(ˆkL+1 ̸= bk∗) +≤ 2 exp +� +−T1 +18D2 +L +� ++ 2 exp +� +−T1K +32 D2 +L +� ++ 2 exp +� +−T1K +72 D2 +L +� ++ 2(L − 2) exp +� +−T1 +16D2 +L +� +. +B. Proof of Theorem 3 +Proof. We have, pk = 1 +2 − dk such that pk ∈ [1/4, 1/2] and +follows unimodality and pk∗ = 1 +2. Upper bounding ¯h, we have +¯h = +� +i∈{k∗−1,k∗+1} +1 +d2 +i ¯H(i) += +1 +d2 +k∗−1 ¯H(k∗ − 1) + +1 +d2 +k∗+1 ¯H(k∗ + 1) += (I) + (II). +(21) +We will upper bound (I) and (II), +d2 +k∗−1 ¯H(k∗ − 1) = d2 +k∗−1 +� +k∈{k∗−2,k∗} +1 +(dk∗−1 + dk)2 +Since dk∗ = 0 and dk∗−2 ≥ dk∗−1, we get +d2 +k∗−1 ¯H(k∗ − 1) ≤ 1 + 1 +4 = 5 +4 +(22) +d2 +k∗+1 ¯H(k∗ + 1) = d2 +k∗+1 +� +k∈{k∗,k∗+2} +1 +(dk∗+1 + dk)2 +Since dk∗ = 0 and dk∗+2 ≥ dk∗+1, we get +d2 +k∗+1 ¯H(k∗ + 1) ≤ 1 + 1 +4 = 5 +4. +(23) +By (22) and (23) we get +¯h ≥ 4 +5 + 4 +5 = 8 +5. +Putting the value of ¯h in Corollary we get +=⇒ +max +i∈{k∗−1,k∗+1} Pi(ˆkT ̸= i) ≥ exp +� +−75 T +¯H(i) +� +. +REFERENCES +[1] “IEEE +standard +for +information +technology– +amendment +3: +Enhancements for very high throughput in the 60 GHz band,” +IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as +amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), +pp. 1–628, 2012. +[2] P. Zhou, X. Fang, Y. Fang, Y. Long, R. He, and X. Han, “Enhanced +random access and beam training for millimeter wave wireless local +networks with high user density,” IEEE Transactions on Wireless +Communications, vol. 16, no. 12, pp. 7760–7773, 2017. +[3] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro, and E. W. Knightly, +“Ieee 802.11ay: Next-generation 60 ghz communication for 100 gb/s +wi-fi,” IEEE Communications Magazine, vol. 55, no. 12, pp. 186–192, +2017. +[4] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and +J. C. Widmer, “Ieee 802.11ad: directional 60 ghz communication for +multi-gigabit-per-second wi-fi [invited paper],” IEEE Communications +Magazine, vol. 52, no. 12, pp. 132–141, 2014. +[5] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering with +eyes closed: mm-wave beam steering without in-band measurement,” +in 2015 IEEE Conference on Computer Communications (INFOCOM). +IEEE, 2015, pp. 2416–2424. +[6] I. . W. Group et al., “Ieee 802.11 ad, amendment 3: Enhancements for +very high throughput in the 60 ghz band,” IEEE Stand, vol. 802, 2012. +[7] M. Hashemi, A. Sabharwal, C. Emre Koksal, and N. B. Shroff, “Efficient +beam alignment in millimeter wave systems using contextual bandits,” +in IEEE Conference on Computer Communications (INFOCOM), 2018, +pp. 2393–2401. +[8] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan, “60 ghz +indoor networking through flexible beams: A link-level profiling,” in +Proceedings of the 2015 ACM SIGMETRICS International Conference +on Measurement and Modeling of Computer Systems, 2015, pp. 71–84. +[9] Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson, U. Madhow, B. Y. Zhao, and +H. Zheng, “Demystifying 60ghz outdoor picocells,” in Proceedings of +the 20th annual international conference on Mobile computing and +networking, 2014, pp. 5–16. +[10] C. N. Barati, S. A. Hosseini, M. Mezzavilla, T. Korakis, S. S. Panwar, +S. Rangan, and M. Zorzi, “Initial access in millimeter wave cellular +systems,” IEEE Transactions on Wireless Communications, vol. 15, +no. 12, pp. 7926–7940, 2016. +[11] I. Aykin and M. Krunz, “Efficient beam sweeping algorithms and initial +access protocols for millimeter-wave networks,” IEEE Transactions on +Wireless Communications, vol. 19, no. 4, pp. 2504–2514, 2020. +[12] I. Aykin, B. Akgun, and M. Krunz, “Smartlink: Exploiting channel +clustering effects for reliable millimeter wave communications,” in +IEEE Conference on Computer Communications (INFOCOM), 2019, +pp. 1117–1125. +[13] A. Zhou, T. Wei, X. Zhang, and H. Ma, “Fastnd: Accelerating directional +neighbor discovery for 60-ghz millimeter-wave wireless networks,” +IEEE/ACM Transactions on Networking, vol. 26, no. 5, pp. 2282–2295, +2018. +[14] 3GPP TR 38.802 (v14.2.0), “Study on new radio access technology +physical layer aspects (release 14),” Sep 2017. [Online]. Available: +https://www.3gpp.org/ftp/Specs/archive/38 series/38.802/38802-001.zip +[15] W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, and X. Shen, +“Fast mmwave beam alignment via correlated bandit learning,” IEEE +Transactions on Wireless Communications, vol. 18, no. 12, pp. +5894–5908, 2019. + +11 +[16] I. +Aykin, +B. +Akgun, +M. +Feng, +and +M. +Krunz, +“Mamba: +A +multi-armed bandit framework for beam tracking in millimeter-wave +systems,” in IEEE INFOCOM 2020 - IEEE Conference on Computer +Communications, 2020, pp. 1469–1478. +[17] R. Combes and A. Proutiere, “Unimodal bandits: Regret lower bounds +and optimal algorithms,” in Proceedings of the 31st International +Conference on International Conference on Machine Learning - Volume +32, ser. ICML’14, 2014, p. I–521–I–529. +[18] J. Y. Yu and S. Mannor, “Unimodal bandits,” in Proceedings of the +28th International Conference on International Conference on Machine +Learning, 2011, p. 41–48. +[19] H. Saber, P. M´enard, and O.-A. Maillard, “Forced-exploration free +strategies for unimodal bandits,” arXiv preprint arXiv:2006.16569, 2020. +[20] J.-Y. Audibert, S. Bubeck, and R. Munos, “Best arm identification in +multi-armed bandits.” in COLT. +Citeseer, 2010, pp. 41–53. +[21] A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on +millimeter wave communications for fifth-generation wireless networks: +Feasibility and challenges,” IEEE Access, vol. 8, pp. 62 367–62 414, +2020. +[22] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter +wave communications (mmwave) for 5g: opportunities and challenges,” +Wireless networks, vol. 21, no. 8, pp. 2657–2676, 2015. +[23] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, +“Millimeter wave communication: A comprehensive survey,” IEEE +Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1616–1653, +2018. +[24] Z. Marzi, D. Ramasamy, and U. Madhow, “Compressive channel +estimation and tracking for large arrays in mm-wave picocells,” IEEE +Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. +514–527, 2016. +[25] H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, +and P. Indyk, “Fast millimeter wave beam alignment,” in Proceedings +of the 2018 Conference of the ACM Special Interest Group on Data +Communication. +Association for Computing Machinery, 2018, p. +432–445. +[26] X. Li, J. Fang, H. Duan, Z. Chen, and H. Li, “Fast beam alignment +for millimeter wave communications: A sparse encoding and phaseless +decoding approach,” IEEE Transactions on Signal Processing, vol. 67, +no. 17, pp. 4402–4417, 2019. +[27] M. Li, C. Liu, S. V. Hanly, I. B. Collings, and P. Whiting, “Explore +and eliminate: Optimized two-stage search for millimeter-wave beam +alignment,” IEEE Transactions on Wireless Communications, vol. 18, +no. 9, pp. 4379–4393, 2019. +[28] J. Wang, Z. Lan, C. woo Pyo, T. Baykas, C. sean Sum, M. Rahman, +J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato, “Beam +codebook based beamforming protocol for multi-gbps millimeter-wave +wpan systems,” IEEE Journal on Selected Areas in Communications, +vol. 27, no. 8, pp. 1390–1399, 2009. +[29] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook +design for beamforming training in millimeter-wave communication,” +IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. +3380–3392, 2016. +[30] Y. Shabara, C. E. Koksal, and E. Ekici, “Linear block coding for +efficient beam discovery in millimeter wave communication networks,” +in IEEE Conference on Computer Communications (INFOCOM), 2018, +pp. 2285–2293. +[31] V. Va, T. Shimizu, G. Bansal, and R. W. Heath, “Online learning for +position-aided millimeter wave beam training,” IEEE Access, vol. 7, pp. +30 507–30 526, 2019. +[32] A. Asadi, S. M¨uller, G. H. Sim, A. Klein, and M. Hollick, “Fml: +Fast machine learning for 5g mmwave vehicular communications,” in +IEEE Conference on Computer Communications (INFOCOM), 2018, pp. +1961–1969. +[33] V. Va, H. Vikalo, and R. W. Heath, “Beam tracking for mobile millimeter +wave communication systems,” in IEEE Global Conference on Signal +and Information Processing (GlobalSIP), 2016, pp. 743–747. +[34] C. Zhang, D. Guo, and P. Fan, “Tracking angles of departure and +arrival in a mobile millimeter wave channel,” in 2016 IEEE International +Conference on Communications (ICC), 2016, pp. 1–6. +[35] Y. Heng and J. G. Andrews, “Machine learning-assisted beam alignment +for mmwave systems,” IEEE Transactions on Cognitive Communications +and Networking, vol. 7, no. 4, pp. 1142–1155, 2021. +[36] N. J. Myers, Y. Wang, N. Gonz´alez-Prelcic, and R. W. Heath, “Deep +learning-based beam alignment in mmwave vehicular networks,” in +ICASSP 2020 - 2020 IEEE International Conference on Acoustics, +Speech and Signal Processing (ICASSP), 2020, pp. 8569–8573. +[37] V. Raj, N. Nayak, and S. Kalyani, “Deep reinforcement learning based +blind mmwave mimo beam alignment,” IEEE Transactions on Wireless +Communications, pp. 1–1, 2022. +[38] N. Blinn, J. Boerger, and M. Bloch, “mmwave beam steering with +hierarchical optimal sampling for unimodal bandits,” in ICC 2021-IEEE +International Conference on Communications. +IEEE, 2021, pp. 1–6. +[39] E. Kaufmann, O. Capp´e, and A. Garivier, “On the complexity of +best-arm identification in multi-armed bandit models,” Joural of Machine +Learning Research, vol. 17, no. 1, p. 1–42, January 2016. +[40] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. +Rappaport, and E. Erkip, “Millimeter wave channel modeling and +cellular capacity evaluation,” IEEE journal on selected areas in +communications, vol. 32, no. 6, pp. 1164–1179, 2014. +[41] S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone, “Pac subset +selection in stochastic multi-armed bandits,” in Proceedings of the +29th International Coference on International Conference on Machine +Learning (ICML). +Madison, WI, USA: Omnipress, 2012, p. 227–234. +[42] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in +multi-armed bandits,” in International Conference on Machine Learning. +PMLR, 2013, pp. 1238–1246. +[43] A. Carpentier and A. Locatelli, “Tight (lower) bounds for the fixed +budget best arm identification bandit problem,” in Conference on +Learning Theory. +PMLR, 2016, pp. 590–604. +[44] S. Kunne, L. Maggi, J. Cohen, and X. Xu, “Anytime backtrack unimodal +bandits and applications to cloud computing,” in 2020 IFIP Networking +Conference (Networking). +IEEE, 2020, pp. 82–90. + diff --git a/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/load_file.txt b/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e728248c7cb3cda0a6b1e35b65abefe61238eb0e --- /dev/null +++ b/ktE1T4oBgHgl3EQf0gVV/content/tmp_files/load_file.txt @@ -0,0 +1,969 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf,len=968 +page_content='1 UB3: Best Beam Identification in Millimeter Wave Systems via Pure Exploration Unimodal Bandits Debamita Ghosh1, Haseen Rahman2, Manjesh K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hanawal3, and Nikola Zlatanov4 1IITB-Monash Research Academy, IIT Bombay, India, email: debamita.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='ghosh@iitb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='in 2MLiONS Lab, IEOR, IIT Bombay, India, email: haseenrahman@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='com 3MLiONS Lab, IEOR IIT Bombay, India, email:mhanawal@iitb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='in 4Innopolis University, Russia, email: n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='zlatanov@innopolis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='ru Abstract—Millimeter wave (mmWave) communications have a broad spectrum and can support data rates in the order of gigabits per second, as envisioned in 5G systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, they cannot be used for long distances due to their sensitivity to attenuation loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' To enable their use in the 5G network, it requires that the transmission energy be focused in sharp pencil beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' As any misalignment between the transmitter and receiver beam pair can reduce the data rate significantly, it is important that they are aligned as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' To find the best transmit-receive beam pair, recent beam alignment (BA) techniques examine the entire beam space, which might result in a large amount of BA latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Recent works propose to adaptively select the beams such that the cumulative reward measured in terms of received signal strength or throughput is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In this paper, we develop an algorithm that exploits the unimodal structure of the received signal strengths of the beams to identify the best beam in a finite time using pure exploration strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Strategies that identify the best beam in a fixed time slot are more suitable for wireless network protocol design than cumulative reward maximization strategies that continuously perform exploration and exploitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our algorithm is named Unimodal Bandit for Best Beam (UB3) and identifies the best beam with a high probability in a few rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We prove that the error exponent in the probability does not depend on the number of beams and show that this is indeed the case by establishing a lower bound for the unimodal bandits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We demonstrate that UB3 outperforms the state-of-the-art algorithms through extensive simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Moreover, our algorithm is simple to implement and has lower computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Index Terms—mmWave, Bandit learning, pure exploration I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' INTRODUCTION There is a growing demand for higher data rates with the advent of emerging data-intensive applications like virtual reality, mobile gaming, and HD quality video streaming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The wireless networks have improved in terms of data rates but are still constrained by the available bandwidth in the sub-6 GHz spectrum to meet the data rates required for emerging applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The millimeter wave (mmWave) band, with a spectrum ranging from 30 GHz to 300 GHz, offers an abundant spectrum and can support data rates of gigabits per second that are envisioned in 5G networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Significant efforts in the standardisation of mmWave systems, such as IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad [1], [2] and ongoing IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ay [3], are underway, and the 5G networks with mmWave systems are on the path of commercialisation through extensive field trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Though mmWave systems offer higher data rates, they come with a set of challenges—the small wavelengths of mmWaves make them suffer significant attenuation, resulting in a rapid deterioration of signal strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus, unlike traditional terrestrial communication systems, mmWave communication requires highly directional communication with energy focused on narrow beams to achieve the required signal strengths at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Some challenges in using mmWave systems in mobile communications are highlighted in standards [1], [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, on the brighter side, small wavelengths allow transmission antennas with small form factors to be packed closely and focus signal energy in specific directions, forming sharp beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The other challenge in mmWave communication is that transmitter and receiver beams need to be aligned before data transfer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' otherwise, any advantage of high data rates is not realised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A few degrees of misalignment in the beam directions between transmitter and receiver can reduce the data rates from gigabits per second to a few megabits per second, jeopardising the gain from the high spectrum of mmWave systems [5]–[7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This gives rise to the problem of beam alignment (BA), where one needs to find the best transmitter and receiver beam pair that provides the best rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The BA problem is critical to building better 5G communication networks with mmWave systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our goal in this paper is to learn the best beam pair in a given number of slots with a high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' One naive approach to performing BA is an exhaustive search of all available beams at the base station (BS) and user equipment (UE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This strategy does not scale well because it has the complexity of order O(K2), where K is the number of beams at BS and UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The IEEE standard 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad [1] decouples the BA by performing it in two stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In the first stage, the BS uses a quasi-omnidirectional beam while the UE scans through its beams to identify the best one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In the next stage, the UE uses a quasi-omnidirectional beam while the BS scans through its beam to identify the best one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This search strategy has a complexity that is linear in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, as discussed in [8], [9], this method can still take time in seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The initial access (IA) phase in 5G mmWave provides a mechanism to identify beam directions between a BS and UE [10]–[13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' BSs periodically use the IA phase to discover new UEs and check if the best beam for already existing UEs has arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='03456v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='SP] 26 Dec 2022 2 changed [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' During the IA, BS transmits synchronization signals that UE can measure and report back the received signal strengths (RSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IA can be used to explore and identify the best pair, as no data is transferred in this phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Further, BS can adapt to the non-stationary environment by periodically rerunning the IA phase, where the periodicity can depend on the mobility rate and the atmospheric conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We address the BA and user tracking issues in mmWave using the fixed-budget pure exploration Multi-Armed Bandit (MAB) framework, where pure exploration is performed in the IA phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The BA problem has already been addressed using the MAB framework, which uses cumulative regret minimization algorithms that balance exploration and exploitation to find the best beam pair [7], [15], [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, the stopping time in these algorithms is random, leading to the following difficulties: 1) The learning phase may extend beyond the IA phase and reduce the number of time slots available for data transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2) Due to continuous exploration, sub-optimal beams can be used for data transfer, resulting in outages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' To overcome these issues, we complete the learning phase within a fixed number of time slots (budget) of the IA phase using adaptive exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Moreover, we exploit the structural properties of the RSS across the beams to accelerate the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Several studies validate that the RSS of the beams in mmWave systems follows a multi-modal structure, with one peak corresponding to the line-of-sight path and others corresponding to the non-line-of-sight paths [7], [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Often, there is one dominant peak, and the multi-modal functions can be treated as unimodal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Bandits with a unimodal structure are well studied in the literature in the cumulative regret setting with optimal algorithms [17]–[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, the fixed-budget pure exploration bandit with unimodal structure is not well studied, and optimal algorithms are not known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In this work, we develop a new fixed-budget pure exploration algorithm that exploits the unimodal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The new algorithm is named Unimodal Bandit for Best Beam (UB3) and is based on the idea of sequential elimination of sub-optimal beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 achieves an error probability of the order of O(log K exp(−T1D2 L)) after T1 time slots of IA phase, where DL is the minimum gap between two successive means of the arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' When no unimodal structure is assumed (unstructured), the best known achievable error probability is O(log K exp(−T1/H log K)) [20], where K is the number of beams and H is the problem-dependent constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus, by exploiting unimodal structure, we achieve a better error probability where the error exponent does not depend on the number of beams, and demonstrate that this is anticipated by establishing a lower bound for unimodal bandits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Extensive simulation on realistic wireless networks demonstrates UB3 identifies the best arm with a probability more than 95% within 100 time slots for 16 beams, while the other state-of-the-art algorithms need 500 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This translates into throughput gains of more than 15% compared to other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Moreover, UB3 does not require any prior knowledge of channel fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In summary, our contributions are as follows: We set up the problem of beam alignment in mmWave systems as a fixed-budget pure exploration multi-armed bandit problem in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We exploit the unimodal structure of the RSS of the beams and develop an algorithm named Unimodal Bandit for Best Beam (UB3) to identify the best beam with a high probability in fixed time slots or within the IA phase of the BA in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We provide an upper bound on the error probability of UB3 in identifying the best beam and show that the error exponent does not depend on the number of beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We demonstrate that is anticipated by establishing a lower bound for unimodal bandits in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We perform extensive simulations to validate the superior performance of UB3 compared to other state-of-the-art algorithms like HOSUB, HBA, LSE and Sequential Halving in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In agreement with the theoretical bounds, UB3 is not affected by the number of beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Related Work As there is growing interest in mmWave systems in academia and industry, various aspects of mmWave are being studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For the recent advances in the mmWave systems, we refer to surveys [21]–[23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Several approaches are proposed to solve the BA problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The compressive sensing-based signal processing methods [24]–[26] utilize the sparse characterization of mmWave to learn the best beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' They work better when accurate channel state information is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [27] proposes an Optimized Two-Stage Search (OTSS) where a suitable candidate set of beams is identified in the first stage based on the received signal profile, and in the second stage, the best beam from the surviving set is selected with additional measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Codebook-based hierarchical methods are proposed in [28]–[30] which also require channel state information for BA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [31], [32] utilizes the location information to perform fast BA, which is feasible only when the location information of the UE is available at the BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [33], [34] use Kalman filters to detect the angles of arrivals and departures to track UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Recently, machine learning [35], and deep learning [36], [37] methods have been used for BA, which requires offline training of the models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our work is closer to [7], [15], [16], [38] which uses an online learning approach to optimize the BA problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The authors in [7] develop an algorithm named Unimodal Beam Alignment (UBA) that exploits the unimodal structure of received power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The algorithm is built on the OSUB algorithm [17] by adding stopping criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The algorithm assumes that the mean powers are known, and the stopping criteria is based on these mean powers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The Hierarchical Beam Alignment (HBA) [15] algorithm also exploits the unimodal/multimodal structures of beam signal strengths to narrow down on the optimal beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' HBA has shown better performance for beam identification than UBA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, for T time slots, the computational complexity of HBA is O(T 2), as in each time slot, the algorithm restarts the search, making the running time linear in each time slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Moreover, HBA requires knowledge of channel fluctuations, which is not practical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The Hierarchical Optimal Sampling of Unimodal 3 Bandits (HOSUB) [38] exploits the benefits of hierarchical codebooks and the unimodality structure of the beam signal strengths to achieve fast beam steering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Simulations show better performance of HOSUB compared to HBA, as well as a large reduction in computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, the authors in [38] did not provide any theoretical guarantees on their proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The authors in [16] develop an algorithm named MAMBA that aims to maximize the cumulative rate obtained over a period using the Thompson sampling algorithm named Adaptive Thompson Sampling (ATS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Unlike the UBA and HBA, the exploration never ends in ATS and may keep selecting the sub-optimal beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our work develops an online learning algorithm for BA using a fixed-budget pure exploration setup [20], [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We exploit the unimodal structure of beam RSS to eliminate the sub-optimal beams and narrow the beam search space quickly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fixed-budget pure exploration strategies are more suitable for the BA problem, as the exploration can be completed in the IA phase, and no exploration is required during the data transfer, simplifying the design of protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' To our knowledge, this has not been studied in 5G networks with mmWave systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' PROBLEM SETUP In this section, we discuss the system and channel model used in mmWave system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We follow the setup and notation similar to [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' System Model We consider a point-to-point mmWave wireless system between a transmitter, refer as mmWave BS, and a receiver, refer as mmWave UE, in a static environment as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We focus on analog beamforming and consider one ADC with an RF chain that focuses on one direction at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The transmitter has K phased-array antennas, where each antenna has a phase shift to form a narrow directional beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The antennas are evenly spaced by a distance D ≈ λ/2 forming a uniform linear array, where λ is the carrier wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' As the IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad can decouple the BA, we consider that the receiver keeps a quasi-omnidirectional beam and the transmitter scans over the beam space to identify the best beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This is a reasonable assumption due to the small form factor and fewer antennas on UEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In the following, we focus on beam alignment (BA) at the BS side, and the extension that involves both BS and UE is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Channel Model Due to the sparse characteristics of mmWave channel, we consider Saleh-Valenzuela channel model [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Suppose there are L paths where one is the dominant line-of-sight (LOS) path and L − 1 non-line-of-sight (NLOS) paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let C denote the set of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The channel vector between the transmitter and the receiver is given by h = g0a(v0) + L−1 � l=1 gla(vl) ∈ CK×1 (1) RF Chain RF Chain DAC ADC CHANNEL Beam Scan Omni-Directional mmWave Base Station (BS) mmWave User Equipment (UE) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1: A point-to-point mmWave Communication System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' where a(v) = � ej 2πD λ kv : 0 ≤ k ≤ K − 1 � ∈ CK×1 denote the vector of sinusoids at spatial angle v, g0 is the channel gain of LOS path, and gl, 1 ≤ l ≤ L − 1 is the channel gains of lth NLOS path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' v = cos θ denotes the spatial angle of the channel associated with physical angle θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' As assume that the channel remains static for a duration T time slots and the channel vector keeps invariant in the BA process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let B ∈ CK×K denote the unitary discrete Fourier transform (DFT) of the transmit beam space, where the kth column corresponds to the kth beam, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=', B = [b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , bK] = 1 √ K [a(w1), a(w2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , a(wK)] (2) where wk = 2k−K K denotes the spatial angle of the kth beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then, the received signal of kth beam (with receiver omnidirectional) is given by yk = √ PhHbk + n, (3) where n denotes the additive white Gaussian noise with mean noise power N0W, with noise power density N0 and channel bandwidth W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We denote the received signal strength (RSS) of the kth beam as rk = |yk|2 and denotes its mean value as µk = E [rk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let k∗ = arg maxk µk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then the beam bk∗ denotes the optimal beam with the best mean RSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (Unimodality): The unimodality structure indicates that, ∀bk ∈ B, there exist a path such that µ1 < µ2 < · · · < µk∗ and µk∗ > µK∗+1 > · · · > µK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For the case when only LOS path is present with channel gain g and spatial angle v, mean RSS is given as µk = P g2 K δ(wk − v) + NoW for all bk ∈ B, where δ(x) = sin2(KπDx/λ) sin2(πDx/λ denotes the antenna directivity function for angular misalignment x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For bk ∈ B, µk is a function of angular misalignment wk − v and has unimodal property [15, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In the following, we only consider the beams with the unimodal property as in [7] and later discuss how to extend our method to the multimodal case involving multiple NLOS of paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We assumed that the Modulation and Coding Scheme (MCS) on each beam is fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, we can easily accommodate different MCS on each beam by treating the RSS as a vector corresponding to MCS and considering the mean rate as done in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4 Beams t = T Exploration Phase (IA) Data Communication Phase t = 2T Exploration Phase (IA) t=1 t=T+1 t=T1 t=T+T1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Data Communication Phase Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2: Beam exploration (IA) phase followed by data transfer phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Problem Formulation We assume a slotted system where the length of the IA phase is T1 time slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' As specified in the 5G standards, we let the BS rerun IA phase periodically after every T time slot where T > T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We assume that during the period T, the environment is stationary such that the best beam remains the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We focus on one period between two successive reruns of the IA phase and index the time slots in that period as t = 1 to t = T, refer to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In each time t, the BS can select one of the beams from set B and obtain as feedback the RSS at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The feedback is obtained through ACK/NACK sent back by the receiver – BS measures the signal strength of the received ACK/NACK, which gives the RSS at the receiver [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' During the IA duration of T1 time slots, no information signals are transmitted and throughput or error probability is not a concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, during the period of T − T1 data is transmitted and it is desirable to obtain high throughput in this period using the best possible beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We are thus interested in algorithms that output an optimal beam at the end of T1 time slots (IA phase).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We model the problem as a fixed-budget pure exploration multi-armed bandit [20], [41] where the goal is to identify the optimal arm within a fixed budget with high confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Following the terminology of multi-armed bandits, we refer to beams as arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A policy is any strategy that selects an arm in each time slot given the past observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let kt ∈ B denotes the arm selected by a policy at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' By playing an arm kt, the policy observes the feedback rkt which is a noisy RSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The choice of kt can depend on the beams selected in the past and their associated RSS values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We assume that RSS values observed in each time slot are independently and identically distributed across the arms and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The distribution of RSS is governed by channel fluctuations, such as shadow fading and the disturbance effect, and follows unknown fixed distributions within a time period T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, without loss of generality, we assume that values of RSS are bounded in some interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For a given policy π, let ˆkπ T1 denote the index of the arm output by π at the end of T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let Π denote the set of all policies of pure-exploration that output algorithms within a fixed budget of T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then our goal is to find a policy in Π that minimizes the probability that the arm output at the end of T1 is not an optimal arm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=', min π∈Π Pr � bπ ˆkT1 ̸= bk∗ � , where for each policy, Pr(·) is calculated with respect to the samples induced by the policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We note that our criteria is different from those set in UBA [7] and HBA [15] which aim to minimize cumulative regret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Though both UBA and HBA have stopping criteria beyond which they play a fixed arm, the stopping time can be random, making their practical implementation challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Whereas, the policy considered by us completes the exploration phase deterministically after time T1 which makes their implementation easier in a wireless setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2 depicts the structure of our policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' ALGORITHMS In this section, we propose an algorithm named UB3-Unimodal Bandit for Best Beam that finds the optimal beam after exploiting the unimodal structure of mean RSS within T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The algorithm is based on the Line Search Elimination (LSE) algorithm developed in [18], where the algorithm samples and eliminate arms in multiple phases till one arm survives after L + 1 phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The pseudo-code of UB3 is given in Unimodal Bandit for Best Beam (UB3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' It is parameter free and only takes K and T1 as inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 runs in L+1 phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Arms are sampled and eliminated in each phase such that only one arm survives after the L + 1 phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We first explain the number of rounds in each phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let Nl, for l = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , L+1, denotes the number of samples in phase l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then, Nl = � 2L−2 3L−1 T1 for l = 1, 2 2L−(l−1) 3L−(l−2) T1 for l = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , L + 1 (4) which satisfies that 2 × 2L−2T1 3L−1 + L+1 � l=3 2L−(l−1)T1 3L−(l−2) = T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (5) After the first two phases, the number of samples increases by a factor of 3/2 in each subsequent phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This increase in the number of samples helps to distinguish between the empirical means of the remaining arms, which are likely to be closer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 works as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let Bl = {b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , bl} denote the set of arms available in phase l and jl := |Bl| is the number of arms in the set Bl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In phase l = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' L, the algorithm selects four arms {kM, kA, kB, kN} ∈ Bl, which include the two extremes and two middle arms uniformly spaced from them (lines 4-7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Each of the arms is sampled for Nl 4 number of times (line 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' At the end of the phase, their empirical means 5 𝒌𝑴 𝒌𝑨 𝒌𝑩 𝒌𝑵 𝒙𝒍 ∗ = 𝑪𝒂𝒔𝒆 𝟏 𝓑𝒍+𝟏 𝓑𝒍 𝒌𝑴 𝒌𝑨 𝒌𝑩 𝒌𝑵 𝒙𝒍 ∗ = 𝑪𝒂𝒔𝒆 𝟐 𝓑𝒍+𝟏 𝓑𝒍 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3: Different cases of elimination in phase l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' denoted ˆµi (line 9) are obtained as follows: ˆµl i = 1 Nl/4 Nl/4 � s=1 rl is, ∀i ∈ {kM, kA, kB, kN} (6) where rl is denotes the sth noisy RSS sample from ith arm in phase l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Based on these empirical means, we eliminate at most 1/3rd of the number of arms from the remaining set1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' More specifically, if the arms kM or kA has the highest empirical means, then we eliminate all the arms succeeding kB in the set Bl (line 11 and 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Similarly, if the arms kB or kN has the highest empirical means, then we eliminate all the arms preceding kA in the set Bl (line 13 and 14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3 gives a pictorial representation of the elimination of arms in two possible cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The remaining set of arms are then transferred to the next phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In phase L + 1, we are left with three arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Each one of them is sampled NL+1 3 number of times and the one with the highest empirical mean is the output of the algorithm as the optimal arm (lines 18-23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Arms between kM & kA or kB & kN are eliminated in phase, and the arms between kA & kB always survive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' After phase l = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , L, ⌊ 2 3jl⌋ of the arms survive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For ease of exposition, we will drop the ⌊⌋ function since this drop will influence only a few constants in the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus, after the end of L phases there will be three arms as (2/3)L K = 3 =⇒ L = log2 K/3 log2 3/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (7) Therefore, the UB3 outputs the best beam as ˆkL+1 which is equivalent to bˆkT1 after exploring for T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In the next section, we upper bound the error probability of UB3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' ANALYSIS In this analysis, we find an upper bound and lower bound for the probability of best arm elimination for fixed-budget pure exploration bandit with unimodal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We first upper 1If the number of arms in a phase is not a multiple of 4, then less than 1/3rd will be eliminated in that phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Unimodal Bandit for Best Beam (UB3) 1: Input: T1 and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2: Initialise: B1 = B, j1 ← |B1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Calculate L from (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3: for l = 1 to L do 4: kM ← First arm of Bl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5: kN ← Last arm of Bl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6: kA ← ⌈jl/3⌉th arm of Bl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7: kB ← ⌊2jl/3⌋th arm of Bl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8: Sample each arm in {kM, kA, kB, kN} for Nl 4 number of times from (4) 9: Obtain ˆµl kM , ˆµl kA, ˆµl kB, ˆµl kN by (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 10: x∗ l = arg max i∈{kM,kA,kB,kN} ˆµi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 11: if x∗ l == {kM, kA} then 12: Bl+1 ← {k ∈ Bl : kM ≤ k ≤ kB} Shrink to left 13: else if x∗ l == {kB, kN} then 14: Bl+1 ← {k ∈ Bl : kA ≤ k ≤ kN} Shrink to right 15: end if 16: jl+1 ← |Bl+1|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 17: end for 18: for l = L + 1 do 19: BL+1 = {kM, kA, kN};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 20: Sample each arm in {kM, kA, kN} for T1 9 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' of times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 21: Obtain ˆkL+1 = arg max i∈{kM,kA,kN} ˆµL+1 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 22: end for 23: Output: bˆkT1 = ˆkL+1 bound the error probability of Unimodal Bandit for Best Beam (UB3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For analysis, we use the following assumption: Assumption 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' There exists a constant DL > 0 such that |µk − µk−1| ≥ DL for 2 ≤ k ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We note that this assumption is the same as that used in from [18, Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='4] to analyze unimodal bandits in the regret minimization setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Upper Bound for Algorithm UB3 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let UB3 is run for T1 time slots in L+1 number of phases, where L = log2 K/3 log2 3/2 with output ˆkL+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then, the probability that ˆkL+1 output by UB3 is not the best arm after L + 1 phases is bounded as P(ˆkL+1 ̸= k∗) ≤ 2 exp � −T1 18D2 L � + 2 exp � −T1K 32 D2 L � + 2 exp � −T1K 72 D2 L � + 2(L − 2) exp � −T1 16D2 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (8) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The proof is given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Observe that the dominant first and last terms in the upper bound do not depend on K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The error probability is thus of order O � log2 K exp � − T1D2 L 16 �� , where the error exponent term � exp � − T1D2 L 16 �� does not depend on K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The Sequential Halving (Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=') algorithm is proposed in [42] for non-unimodal (unstructured) bandits and provided an upper bound for the probability of not 6 choosing the optimal arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The error probability is shown to be O � log2(K) exp � − T1 log(K)H2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This bound matches with the lower bound derived in [43] for unstructured bandits up to multiplicative factor of log2(K), where H2 = max k̸=k∗ k ∆2 k is the complexity parameter depended upon the sub-optimality gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Note that the error exponent in this bound of Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' has log2(K) factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' By exploiting the unimodal property, we shove off this factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We next consider the lower bound for fixed-budget pure exploration with the unimodal structure which confirms that error exponent should be indeed independent of number of beams for any optimal algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Lower bound for pure exploration unimodal bandit A lower bound on the probability of error for the fixed budget without assuming any structure is established in [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We adapt the proof to include the unimodal structure to derive a lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' To this end, we first define a set of bandit instances as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let us consider K arms that follow the unimodal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Let {pk}1≤k≤K be K real numbers in the interval [1/4, 1/2] with pk∗ = 1 2 and p1 ≤ p2 ≤ · · · ≤ pk∗−1 ≤ pk∗ ≥ pk∗+1 ≥ · · ≥ pK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For any 1 ≤ k ≤ K we consider the distribution νk to be Bernoulli distribution with mean pk, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' νk := Ber(pk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We consider another distribution ν′ k as Bernoulli distribution with mean 1 − pk, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=', ν′ k := Ber(1 − pk) with mean 1 − pk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We define K bandit problem as following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , K} define the product distributions Gi := νi 1 ⊗ νi 2 ⊗ · · ⊗ νi K where νi k := � � � � � νk1{k ̸= i} + ν′ k1{k = i}, if k ∈ {k∗ − 1, k∗, k∗ + 1} νk, otherwise where 1{A} denotes the indicator function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' It is easy to note that only bandit instances Gi, where i ∈ {k∗ − 1, k∗, k∗ + 1} satisfy the unimodality structure and the not the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Flipping of the reward for all other arms will result in a non-unimodal problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus unlike [43] we have 3 bandit problems in the neighbourhood of k∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We define dk := pk∗ − pk = 1 2 − pk, for any 1 ≤ k ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Set ∆i k = di + dk, if k ̸= i and ∆i i = di, for any i ∈ {k∗ − 1, k∗ + 1} and any k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Note that {∆i k}k denotes the arm gaps of the bandit problem i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We also define for any i ∈ {k∗ − 1, k∗ + 1} the quantity ¯H(i) := � k∈{i−1,i+1} 1 (∆i k)2 and ¯h = � i∈{k∗−1,k∗+1} 1 d2 i ¯H′(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Theorem 2 from [43] can be rephrased in this setting as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For any bandit strategy that returns the arm ˆkT1 at time T1, it holds that max i∈{k∗−1,k∗+1}Pi(ˆkT1 ̸= i) ≥ 1 6 exp � −60 T1 ¯H(k∗) − 2 � T1 log(18T1) � , (9) and also max i∈{k∗−1,k∗+1}Pi(ˆkT1 ̸= i) ≥ 1 6 exp � −60 T1 ¯h ¯H(i) − 2 � T1 log(18T1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (10) The proof of this theorem follows the lines similar to [43, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2] after applying the change of measure rule to on the restricted set of arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We skip the details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Assume that T1 ≥ max � ¯H(k∗), ¯H(i)¯h �2 4 log(6T1K) (60)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For any bandit strategy that returns the arm ˆkT1 at time T1, it holds that max i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 6 exp � −120 T1 ¯H(k∗) � , and also max i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 6 exp � −120 T1 ¯H(i)¯h � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We can establish a lower bound using this corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For any unimodal bandit strategy that returns arm ˆkT1 at time T1, max i∈{k∗−1,k∗+1} Pi(ˆkT1 ̸= i) ≥ 1 6 exp � −75 T1 ¯H(i) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (11) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The proof is given in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We see that unlike in the case of the lower bound found in [43], the lower bound of the error probability is not dependent on log2(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In addition, the complexity factor depends only on the sub-optimality gap between the optimal arm and its neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This observation is similar to the lowed bound on cumulative regret established in [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' NUMERICAL SIMULATIONS In this section, we corroborate our theoretical results using simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We first describe the simulation setup with parameters used and present the results in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Simulation Parameters We use the IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad system with parameters as described in [15] for numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The carrier frequency (f) is set at 60 GHz and the bandwidth is set at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='16 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The transmit power P = 50 dBm is shared between K antennas which vary from 16 to 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' For the line of sight (LOS) path, we have the path loss model as PL(dB) = −27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='5 + 20 log10(f) + 10α log10(d) + χ, (12) where d is the transmission distance, the path loss exponent α is taken as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74, and χ is the shadow fading component which follows Normal distribution with zero mean and 2 dB variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In (12) f is in MHz and d is in meters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Depending upon the 7 Parameter Value Carrier frequency (f) 60 Ghz Bandwidth (W) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='16 GHz Noise spectrum density (N0) −174 dBm/Hz Shadow fading variance (log-normal σ) 2 dB Number of beams (N) 16-128 HBA parameters (ρ1, γ, ζ) (3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='1) Distance considered (d) (20, 40, 60, 80) m Path loss exponent 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 TABLE I: Parameters for simulation beam selected the signal strength varies in [−80, −20] dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The algorithm parameter are kept at ρ1 = 3, γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='5 and ζ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The channel parameters for the simulations are given in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Simulation results are averaged over 1000 iterations and confidence intervals are shown (when significant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We compare the performance of Unimodal Bandit for Best Beam (UB3) with the following algorithms: Sequential Halving (Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=') [42]: This algorithm is used for pure exploration in non-unimodal bandits for a fixed T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The algorithm was proved to be optimal [43], and hence a comparison would give the idea about, how the additional information of unimodality would improve the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Linear Search Elimination (LSE) [18]: Although this algorithm was proposed for continuous arm unimodal bandit problems, we have considered the algorithm for fixed T1 time slots and for discrete arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A comparison of UB3 with LSE is pertinent as it is a well-known algorithm for unimodal bandits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hierarchical Beam Alignment (HBA) [15]: This algorithm was shown to have good performance for regret minimization, when compared to existing algorithms, considering the prior knowledge of channel fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our comparison with HBA will of throughput comparison for the period after the best beam has been identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hierarchical Optimal Sampling of Unimodal Bandits (HOSUB) [38]: This algorithm exploits the benefits of hierarchical codebooks and the unimodality of RSS to achieve the best arm in the fixed T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Our comparison with HOSUB will of throughput comparison for the period after the best beam has been identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We did not include UBA algorithm [7] for comparison since HBA was shown to have better performance for beam identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Also, the ATS algorithm is not compared against as it is designed to minimize the cumulative regret and does not stop the exploration process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We note the computational complexity of complexity HBA scales quadratically in T1 whereas it is of O(T1) in UB3, where T1 is the duration of IA phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In addition, HBA requires prior knowledge of channel fluctuations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e, the variance of the noise parameter, which is not required in UB3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Comparison with other pure exploration algorithms We define the probability of error as the probability of not identifying the best beam after sampling for T1 number of time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We consider T1 as the exploration (IA) phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We first compare the probability of error for UB3 algorithm with LSE and Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' which are used for pure exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We compare the probability of error performance of the algorithms for arm sizes of K = {16, 64, 128}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The probability of error against the exploration time slots (T1) is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' LSE, which has an equal number of sampling for the arms in all phases, has the worst probability of error performance than Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='. The solid lines in the figure are for K = 16, the dashed lines are for K = 64 and the dot-dashed lines are for K = 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The comparisons are done for distance of d = 20, 60 and 80 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The probability of error increases as we increase the beam size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, for a small number of arms, both Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' and UB3 have comparable performance, but as the number of beams increases, UB3 has a lesser probability of error compared to Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' as evident from the case of K = 64 and K = 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, UB3 can identify the best beam with a probability of more than 95% within 100 time slots for 16 number of beams, while the other state-of-the-art algorithms take need at least 200 time slots for executions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Note that for Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' require at least 200, 400, 900 rounds for K = 16, 64, 128, respectively, to complete their execution hence their graph start after that many slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Moreover, as distance increases the probability of error of all the algorithms increases for each beam size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' It is to be noted that even though the minimum time slots requirement (as a function of K) for LSE is much smaller than both UB3 and Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' for its feasible execution, the number of samples it runs for arms neighbouring to k∗ is much lesser resulting in more probability of error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' needs at least K log2(K) number of time slots to complete one phase and has samples for all arms in every phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hence, it has much fewer time slots remaining when the algorithm is executed in the neighborhood of k∗ as compared to UB3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus, the minimum time slots requirement for UB3 as a function of K is much lesser than that of Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=', in addition to having a better probability of error performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This demonstrates the advantage of exploiting the unimodality of the reward function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Comparison of throughput performance In this subsection we compare the throughput performance of UB3 with the HBA and HOSUB algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We look at the mean cumulative throughput, which is defined as the product of the mean value of the selected beam at the end of exploration normalized with the mean power of the best beam and the remaining available time slots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='e, Throughput = µnorm bL+1 × (T − T1), where T is the total available time slots and T1 is the number of time slots available for exploration of the best beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Note that HBA will not have a fixed T1, and hence we will find the throughput after the expected exploration time E(T1), obtained as the average of many runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Thus the throughput will be fixed for HBA for a fixed T, while it will vary for varying 8 0 200 400 600 800 1000 1200 1400 Exploration Phase (T1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='05 Error UB3, K=16, d=20 LSE, K=16, d=20 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=16, d=20 UB3, K=64, d=20 LSE, K=64, d=20 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=64, d=20 UB3, K=128, d=20 LSE, K=128, d=20 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=128, d=20 (a) Error Probability vs T1, d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 0 200 400 600 800 1000 1200 1400 Exploration Phase (T1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='12 Error UB3, K=16, d=60 LSE, K=16, d=60 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=16, d=60 UB3, K=64, d=60 LSE, K=64, d=60 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=64, d=60 UB3, K=128, d=60 LSE, K=128, d=60 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=128, d=60 (b) Error Probability vs T1, d = 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 0 200 400 600 800 1000 1200 1400 Exploration Phase (T1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='12 Error UB3, K=16, d=80 LSE, K=16, d=80 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=16, d=80 UB3, K=64, d=80 LSE, K=64, d=80 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=64, d=80 UB3, K=128, d=80 LSE, K=128, d=80 Seq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Halving, K=128, d=80 (c) Error Probability vs T1, d = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4: Error performance of UB3 vs T1 for different no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' of beams (K) and distance (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3, K=16, d=20 HOSUB, K=16, d=20 HBA, K=16, d=20 UB3, K=64, d=20 HOSUB, K=64, d=20 HBA, K=64, d=20 UB3, K=128, d=20 HOSUB, K=128, d=20 HBA, K=128, d=20 (a) Throughput vs T1, d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 5 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3, K=16, d=60 HOSUB, K=16, d=60 HBA, K=16, d=60 UB3, K=64, d=60 HOSUB, K=64, d=60 HBA, K=64, d=60 UB3, K=128, d=60 HOSUB, K=128, d=60 HBA, K=128, d=60 (b) Throughput vs T1, d = 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 5 10 15 20 25 30 Cumulative Throughput (in dB) UB3, K=16, d=80 HOSUB, K=16, d=80 HBA, K=16, d=80 UB3, K=64, d=80 HOSUB, K=64, d=80 HBA, K=64, d=80 UB3, K=128, d=80 HOSUB, K=128, d=80 HBA, K=128, d=80 (c) Throughput vs T1, d = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5: Throughput performance of UB3 vs T1 for different no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' of beams (K) and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 20 40 60 80 Distance (d) 0 5 10 15 20 25 Cumulative Throughput (in dB) UB3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HOSUB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HBA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 (a) Throughput vs d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' K = 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' T1 = 500 20 40 60 80 Distance (d) 0 5 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HOSUB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HBA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 (b) Throughput vs d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' K = 64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' T1 = 500 20 40 60 80 Distance (d) 0 5 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HOSUB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 HBA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='K=128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='T1=500 (c) Throughput vs d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' K = 128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' T1 = 500 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6: Throughput performance of UB3 vs d for different no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' of beams (K) for T1 = 500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' T1 for UB3 and HOSUB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5 compares the cumulative throughput of UB3, HBA and HOSUB for different K and distances of d = 20, 60 and 80 m for T = 3000 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' As the number of beams (arms) increases, the beam becomes narrower, and hence the reward for the best beam also increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In that case, HOSUB requires more exploration time slots to learn the optimal beam, thereby exploiting sub-optimal beams in the data transmission phase for the given T1 time slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' On the other hand, for HBA, since the average time required to find the best arm increases, the average throughput will decrease as the number of arms increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This increasing and decreasing of throughput for HBA is seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, the UB3 algorithm is not much affected by the number of increases in arms for finding the best arm, and hence the throughput will only increase with increasing gain for the best arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 can improve the throughput by more than 45% compared to HBA and by more than 15% compared to HOSUB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' This too is evident from both Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, the throughput will decrease as we increase the transmission distance, refer Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Finally, we compare the throughput performance for varying path loss exponent given as α ∈ {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14}, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The path loss exponent increases when there are more barriers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' for example when the receiver moves from outdoor to indoor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The throughput indeed decreases for all HBA, HOSUB and UB3, but UB3 still outperforms HBA and HOSUB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' CONCLUSION AND FUTURE WORK We investigated the problem of beam alignment in mmWave systems using the multi-armed bandits (MAB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' While earlier works used the cumulative regret minimization setting to learn 9 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 11 12 13 14 15 16 17 18 19 20 21 Cumulative Throughput (in dB) UB3,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HOSUB,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HBA,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 UB3,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HOSUB,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HBA,K=16,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 UB3,K=16,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HOSUB,K=16,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HBA,K=16,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 (a) Throughput vs T1, K = 16, d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 5 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HOSUB,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HBA,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 UB3,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HOSUB,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HBA,K=64,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 UB3,K=64,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HOSUB,K=64,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HBA,K=64,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 (b) Throughput vs T1, K = 64, d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 400 600 800 1000 1200 1400 1600 Exploration Phase (T1) 5 10 15 20 25 30 35 Cumulative Throughput (in dB) UB3,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HOSUB,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 HBA,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='74 UB3,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HOSUB,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 HBA,K=128,d=20,path-loss=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='94 UB3,K=128,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HOSUB,K=128,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 HBA,K=128,d=20,path-loss=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='14 (c) Throughput vs T1, K = 128, d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7: Throughput performance of UB3 vs T1 for different path-loss exponent α and d = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' the best arm, we used the fixed-budget pure-exploration setting framework exploiting the unimodal structure of the received signal strength of the beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We developed an algorithm named Unimodal Bandit for Best Beam (UB3) that identified the best beam with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We gave an upper bound on the error probability of UB3 and established that it is optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Simulations validated the efficiency of UB3 which can identify the best beam using a smaller number of explorations that can translate to improvement in throughput by more than 15% compared to other state-of-art algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Due to its simple structure, UB3 is easy to implement and comes with a lower computational complexity – UB3 has a computational complexity of O(T), whereas it is O(T 2) for HBA [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' The UBA algorithm in [7] needs to solve a convex optimization problem in each time which is expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 works well when only the LOS path is present and the RSS of beams satisfies the unimodal property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However, when NLOS paths are present, we are faced with multimodal functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 can be adapted to handle the multi-modal functions by using backtracking ideas proposed in [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' In backtracking, eliminated arms are revisited to check if it is done by mistake and thus will not be stuck in a sub-optimal set of beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' It is interesting to evaluate the UB3 algorithms with backtracking on multimodal function and establish its performance guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' APPENDIX In this section, we will provide proof of the main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Proof of Theorem 1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' UB3 runs for T1 horizon in L + 1 number of phases that satisfies (5), where L = log2 K/3 log2 3/2 and outputs the arm ˆkL+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We will now upper bound the probability of error as, P(ˆkL+1 ̸= bk∗) = L+1 � l=1 P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l|bk∗ not elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in < l) ≤ L+1 � l=1 P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (13) The best arm is eliminated in phase l in the following cases: 1) bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kA}, and ˆµl kB or ˆµl kN is greater than both ˆµl xM and ˆµl kA bk∗ bk∗ kM kA jl 3 DL kB kN Case 1 Case 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8: Different cases of elimination in any phase l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' bk∗ will not get eliminated if it is in between arms kA and kB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2) bk∗ ∈ {kB, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kN}, and ˆµl kM or ˆµl kA is greater than both ˆµl kB and ˆµl kN The two cases are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' From Remark 2, bk∗ will not get eliminated if bk∗ ∈ {kA, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kB}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' However we will upper bound the probability of error by assuming that bk∗ will always fall in the above two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Notice that Case 1 and Case 2 are symmetrical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hence we can consider that bk∗ will always fall in either one of the cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Without loss of generality, we consider Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l) ≤ P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l|bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kA}) P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l) ≤ P(ˆµl kB > ˆµl kM and ˆµl kA|bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kA}) + P(ˆµl kN > ˆµl kM and ˆµl kA|bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kA}) ≤ 2P(ˆµl kB > ˆµl kM and ˆµl kA|bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' , kA}), (14) where the last inequality is due to the fact that, for Case 1, µkB ≥ µkN by unimodality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Now for Case 1, µkA is always greater than µkB, but µkM may not be greater than µkB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Then, we can further upper bound (14) as P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l) ≤ 2P(ˆµl kB > ˆµl kA|bk∗ ∈ {kM, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='., kA}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (15) Applying Hoeffding’s inequality in (15), we have P(ˆµl kB > ˆµl kA) ≤ exp � −1 2 Nl 4 (∆A,B)2 � , (16) where ∆A,B = µkA −µkB which is greater than 0 for Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' From Assumption 1, and the fact that there are at least jl 3 arms between kA and kB, for Case 1 we have, ∆A,B ≥ (jl/3)DL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 10 Thus from (14) and (16) we have, P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in l) ≤ 2 exp � −Nl 72 � jlDL �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (17) Using jl = � 2 3 �l K in (17) we can find the probability of best arm getting eliminated in phase 1 and 2, phase L + 1, and the rest of the phases separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Using (7), we have P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in 1&2) ≤2 exp � −T1K 32 D2 L � + 2 exp � −T1K 72 D2 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (18) For phase L + 1, since the best arm is selected among 3 arms when each arm is sampled T1/9 times, we have P(bk∗ elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in phase L + 1) ≤ 2 exp � −T1 18D2 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (19) From (17), the error probability for the remaining phases is P(best arm elim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' in phase 3 to phase L) ≤ 2 L � l=3 exp � −T1 8 K2 9 �2 3 �2(l−1) 2L−l+1 3L−l+2 D2 L � ≤ 2 L � l=3 exp � −T1K 48 �2 3 �l D2 L � ≤ 2(L − 2) exp � −T1 16D2 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (20) By (13), (18), (19) and (20), we obtain the upper bound as P(ˆkL+1 ̸= bk∗) ≤ 2 exp � −T1 18D2 L � + 2 exp � −T1K 32 D2 L � + 2 exp � −T1K 72 D2 L � + 2(L − 2) exp � −T1 16D2 L � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Proof of Theorem 3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' We have, pk = 1 2 − dk such that pk ∈ [1/4, 1/2] and follows unimodality and pk∗ = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Upper bounding ¯h, we have ¯h = � i∈{k∗−1,k∗+1} 1 d2 i ¯H(i) = 1 d2 k∗−1 ¯H(k∗ − 1) + 1 d2 k∗+1 ¯H(k∗ + 1) = (I) + (II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (21) We will upper bound (I) and (II), d2 k∗−1 ¯H(k∗ − 1) = d2 k∗−1 � k∈{k∗−2,k∗} 1 (dk∗−1 + dk)2 Since dk∗ = 0 and dk∗−2 ≥ dk∗−1, we get d2 k∗−1 ¯H(k∗ − 1) ≤ 1 + 1 4 = 5 4 (22) d2 k∗+1 ¯H(k∗ + 1) = d2 k∗+1 � k∈{k∗,k∗+2} 1 (dk∗+1 + dk)2 Since dk∗ = 0 and dk∗+2 ≥ dk∗+1, we get d2 k∗+1 ¯H(k∗ + 1) ≤ 1 + 1 4 = 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' (23) By (22) and (23) we get ¯h ≥ 4 5 + 4 5 = 8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Putting the value of ¯h in Corollary we get =⇒ max i∈{k∗−1,k∗+1} Pi(ˆkT ̸= i) ≥ exp � −75 T ¯H(i) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' REFERENCES [1] “IEEE standard for information technology– amendment 3: Enhancements for very high throughput in the 60 GHz band,” IEEE Std 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad-2012 (Amendment to IEEE Std 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11-2012, as amended by IEEE Std 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ae-2012 and IEEE Std 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11aa-2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1–628, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Long, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' He, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Han, “Enhanced random access and beam training for millimeter wave wireless local networks with high user density,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7760–7773, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Ghasempour, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' da Silva, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Cordeiro, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Knightly, “Ieee 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ay: Next-generation 60 ghz communication for 100 gb/s wi-fi,” IEEE Communications Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 55, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 186–192, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Nitsche, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Cordeiro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Flores, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Knightly, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Perahia, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Widmer, “Ieee 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11ad: directional 60 ghz communication for multi-gigabit-per-second wi-fi [invited paper],” IEEE Communications Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 52, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 132–141, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Nitsche, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Flores, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Knightly, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Widmer, “Steering with eyes closed: mm-wave beam steering without in-band measurement,” in 2015 IEEE Conference on Computer Communications (INFOCOM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IEEE, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2416–2424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [6] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Group et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=', “Ieee 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='11 ad, amendment 3: Enhancements for very high throughput in the 60 ghz band,” IEEE Stand, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 802, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hashemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Sabharwal, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Emre Koksal, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Shroff, “Efficient beam alignment in millimeter wave systems using contextual bandits,” in IEEE Conference on Computer Communications (INFOCOM), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2393–2401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Sur, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Venkateswaran, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhang, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Ramanathan, “60 ghz indoor networking through flexible beams: A link-level profiling,” in Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 71–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Marzi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Nelson, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Madhow, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhao, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zheng, “Demystifying 60ghz outdoor picocells,” in Proceedings of the 20th annual international conference on Mobile computing and networking, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Barati, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hosseini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Mezzavilla, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Korakis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Panwar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Rangan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zorzi, “Initial access in millimeter wave cellular systems,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7926–7940, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [11] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Aykin and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Krunz, “Efficient beam sweeping algorithms and initial access protocols for millimeter-wave networks,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2504–2514, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [12] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Aykin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Akgun, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Krunz, “Smartlink: Exploiting channel clustering effects for reliable millimeter wave communications,” in IEEE Conference on Computer Communications (INFOCOM), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1117–1125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhou, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Wei, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Ma, “Fastnd: Accelerating directional neighbor discovery for 60-ghz millimeter-wave wireless networks,” IEEE/ACM Transactions on Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2282–2295, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [14] 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='802 (v14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='0), “Study on new radio access technology physical layer aspects (release 14),” Sep 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='3gpp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='org/ftp/Specs/archive/38 series/38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='802/38802-001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='zip [15] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Wu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Cheng, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Yang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhuang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Shen, “Fast mmwave beam alignment via correlated bandit learning,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5894–5908, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 11 [16] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Aykin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Akgun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Feng, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Krunz, “Mamba: A multi-armed bandit framework for beam tracking in millimeter-wave systems,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1469–1478.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [17] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Combes and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Proutiere, “Unimodal bandits: Regret lower bounds and optimal algorithms,” in Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' ICML’14, 2014, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' I–521–I–529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Yu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Mannor, “Unimodal bandits,” in Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 41–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [19] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Saber, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' M´enard, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Maillard, “Forced-exploration free strategies for unimodal bandits,” arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='16569, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Audibert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Bubeck, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Munos, “Best arm identification in multi-armed bandits.” in COLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Citeseer, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 41–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Uwaechia and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 62 367–62 414, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Niu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Jin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Su, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Vasilakos, “A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges,” Wireless networks, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2657–2676, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [23] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Qiu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Xia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Arnon, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Chen, “Millimeter wave communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1616–1653, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [24] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Marzi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Ramasamy, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Madhow, “Compressive channel estimation and tracking for large arrays in mm-wave picocells,” IEEE Journal of Selected Topics in Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 514–527, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [25] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hassanieh, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Abari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Rodriguez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Abdelghany, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Katabi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Indyk, “Fast millimeter wave beam alignment,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Association for Computing Machinery, 2018, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 432–445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [26] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Duan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Chen, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Li, “Fast beam alignment for millimeter wave communications: A sparse encoding and phaseless decoding approach,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4402–4417, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hanly, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Collings, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Whiting, “Explore and eliminate: Optimized two-stage search for millimeter-wave beam alignment,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4379–4393, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Lan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' woo Pyo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Baykas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' sean Sum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Rahman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Gao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Funada, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kojima, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Harada, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kato, “Beam codebook based beamforming protocol for multi-gbps millimeter-wave wpan systems,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1390–1399, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Xiao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' He, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Xia, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 3380–3392, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [30] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Shabara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Koksal, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Ekici, “Linear block coding for efficient beam discovery in millimeter wave communication networks,” in IEEE Conference on Computer Communications (INFOCOM), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 2285–2293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [31] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Va, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Shimizu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Bansal, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Heath, “Online learning for position-aided millimeter wave beam training,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 30 507–30 526, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Asadi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' M¨uller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Sim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Klein, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Hollick, “Fml: Fast machine learning for 5g mmwave vehicular communications,” in IEEE Conference on Computer Communications (INFOCOM), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1961–1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [33] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Va, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Vikalo, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Heath, “Beam tracking for mobile millimeter wave communication systems,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 743–747.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [34] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Guo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Fan, “Tracking angles of departure and arrival in a mobile millimeter wave channel,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [35] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Heng and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Andrews, “Machine learning-assisted beam alignment for mmwave systems,” IEEE Transactions on Cognitive Communications and Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1142–1155, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [36] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Myers, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Wang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Gonz´alez-Prelcic, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Heath, “Deep learning-based beam alignment in mmwave vehicular networks,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 8569–8573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [37] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Raj, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Nayak, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kalyani, “Deep reinforcement learning based blind mmwave mimo beam alignment,” IEEE Transactions on Wireless Communications, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1–1, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [38] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Blinn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Boerger, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Bloch, “mmwave beam steering with hierarchical optimal sampling for unimodal bandits,” in ICC 2021-IEEE International Conference on Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [39] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kaufmann, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Capp´e, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Garivier, “On the complexity of best-arm identification in multi-armed bandit models,” Joural of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1–42, January 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Akdeniz, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Samimi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Sun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Rangan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Rappaport, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE journal on selected areas in communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 32, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1164–1179, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kalyanakrishnan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Tewari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Auer, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Stone, “Pac subset selection in stochastic multi-armed bandits,” in Proceedings of the 29th International Coference on International Conference on Machine Learning (ICML).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Madison, WI, USA: Omnipress, 2012, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 227–234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [42] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Karnin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Koren, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Somekh, “Almost optimal exploration in multi-armed bandits,” in International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' PMLR, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 1238–1246.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [43] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Carpentier and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Locatelli, “Tight (lower) bounds for the fixed budget best arm identification bandit problem,” in Conference on Learning Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' PMLR, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 590–604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Kunne, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Maggi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Cohen, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' Xu, “Anytime backtrack unimodal bandits and applications to cloud computing,” in 2020 IFIP Networking Conference (Networking).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} +page_content=' 82–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ktE1T4oBgHgl3EQf0gVV/content/2301.03456v1.pdf'} diff --git a/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/2301.08560v1.pdf.txt b/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/2301.08560v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..54e5b3782af6616f4f904a8fb7455bf780040720 --- /dev/null +++ b/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/2301.08560v1.pdf.txt @@ -0,0 +1,2006 @@ +MODELING AND ANALYSIS OF ENSEMBLE AVERAGE SOLVATION ENERGY AND +SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +YUANZHEN SHAO∗†, ZHAN CHEN∗∗, AND SHAN ZHAO∗∗∗ +Abstract. Variational implicit solvation models (VISM), because of their relatively low computational +cost and satisfactory accuracy, have been widely used in the solvation analysis of biological systems at +molecular level. Central in the construction of VISM is an interface separating the solute and the solvent. +Compared with sharp-interface models, diffuse-interface VISMs have shown some initial success in improving +the efficiency and accuracy of the solvation energy estimation of biomolecules. However, on a theoretical level, +several questions concerning the diffuse-interface VISMs remain open: (1) What is the physical meaning of a +diffuse interface? (2) What energy does a diffuse-interface VISM predict? This work aims at addressing the +above questions. Our research reveals the relationship between a diffuse interface definition and the random +movement of the solute-solvent interface due to thermal fluctuations. Then, we use this diffuse interface +setting to construct a VISM that is capable of capturing ensemble average solvation energy, which is an +experimentally observable quantity in solvation processes. The well-posedness and variational analysis of +the model are further investigated. Our work is the first step towards estimating ensemble average solvation +energy by using diffuse-interface VISMs. +1. Introduction +In the quantitative analysis of biological processes, the complex interactions between the solute and solvent +are typically described by solvation energies (or closely related quantities): the free energy of transferring the +solute (e.g. biomolecules, such as proteins, DNA, RNA) from the vacuum to a solvent environment of interest +(e.g. water at a certain ionic strength). There are two major approaches for solvation energy calculations: +explicit solvent models and implicit solvent models [39]. Explicit models, treating both the solute and the +solvent as individual molecules, are too computationally expensive for large solute-solvent systems, such as +the solvation of macromolecules in ionic environments. In contrast, implicit models, by averaging the effect +of solvent phase as continuum media [1,2,5,6,9,25,38], are much more efficient and thus are able to handle +much larger systems [2,16,27,30,31,33,43,51]. +An inevitable prerequisite for describing the solvation energy in implicit solvent models is an interface +separating the discrete solute and the continuum solvent domains. All of the physical properties related +to solvation processes, including biomolecular surface area, biomolecular cavitation volume, pKa value and +electrostatic free energy, are very sensitive to the interface definition [20, 50, 52]. There are a number of +different surface definitions, which include the van der Waals surface, the solvent excluded surface and the +solvent accessible surface. These surface definitions have found many successful applications in biomolecular +modeling [18,21,32,49]. However, these predetermined interfaces are ad hoc partitions and thus either non- +negligibly overestimate or underestimate the solvation free energies [52]. Moreover, none of them takes into +account the minimization of interfacial free energies during the equilibrium solvation. +Variational implicit solvation models (VISM) stand out as a successful approach to compute the disposition +of an interface separating the solute and the solvent [4,10,12,17,19,56,61]. In a VISM, the desired interface +profile is obtained by optimizing a solvation energy functional coupling the discrete description of the solute +and the continuum description of the solvent in addition to polar and non-polar interactions. However, a +sharp-interface VISM is incapable to describe the randomness of a solute-solvent boundary, which is due +to atom vibrations or thermodynamic fluctuations. Indeed, ions, solute and solvent molecules are not rigid +2020 Mathematics Subject Classification. Primary: 49Q10; Secondary: 35J20; 92C40. +Key words and phrases. Biomolecule solvation, Poisson-Boltzmann, Variational implicit solvation model, Ensemble average +solvation energy. +†Corresponding author. +∗Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA. yshao8@ua.edu. +∗∗Department of Mathematical Sciences, Georgia Southern University, GA, USA. zchen@georgiasouthern.edu. +∗∗∗Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA. szhao@ua.edu. +1 +arXiv:2301.08560v1 [physics.bio-ph] 6 Jan 2023 + +2 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +objects and they undergo small or large conformational changes in real applications. Disregarding this can +cause severe errors in predictions of solvation free energies [42]. This calls for the need of a new notion of +solvent-solute interface, which is known as the diffuse interface. +Arguably, the most extensively used diffuse interface models are: (1) the phase-field based models (PF- +BVISM), cf. [19, 37, 59]; and (2) the geometric flow based models (GFBVISM), cf. [12, 22, 53–55, 58]. For +a solute-solvent system contained in a region Ω ⊂ R3, a typical PFBVISM is a functional defined by a +phase-field variable u : Ω → R, which plays the role of a solute-solvent interface. The Allen-Cahn functional +� +Ω +� +ξ +2|∇u|2 + 1 +ξW(u) +� +dx, where W(x) = 18x2(1 − x)2, is used because it Γ-converges to the area of a sharp +interface as ξ → 0. The diffuse interface in GFBVISM is defined in terms of a transition parameter u : Ω → R, +which takes value 1 in the solute and 0 in the solvent region. The solute-solvent surface area is replaced +by +� +Ω |∇u| dx. By the coarea formula, this integral approximates the mean surface area of the level sets of +a Lipschitz continuous function u, cf. [54]. Numerical simulations show that these diffuse-interface models +can improve the efficiency and accuracy of solvation energy computation [15,37,53,55,57,58]. However, on +a theoretical level, the diffuse interfaces in use were created in an ad hoc way and lack rigorous justifications +of their physical meanings. Hence, a persuasive physical interpretation of the solvation energies predicted +by those diffuse-interface models is still absent. +The key to an effective diffuse interface definition is to understand the source of inaccuracy in sharp- +interface VISMs. A solute-solvent interface is determined by both the solute molecular structure and the +surrounding solvent configuration. Due to thermodynamic fluctuations, when a fixed solute molecular struc- +ture being considered, solvent molecules and ions can still adopt different configurations [3], or equivalently, +from statistical mechanics standpoint, can form various microstates. This implies that the disposition of the +interface is not unique. On the other hand, experimentally observable quantities are ensemble averaged. Us- +ing the energy computed from one microstate (even if the one with minimum energy) to predict the averaged +energy from all microstates is doomed to be inaccurate. Therefore, it is of imminent practical importance +to develop a solvation model capable of calculating ensemble average solvation energy with thermodynamic +fluctuations being taken into account. +It is the first goal of this study to develop a VISM for ensemble average solvation energy. In Section 2, +we show that the ensemble average of various solvation energy components (e.g. the biomolecular surface +areas, cavity volumes and electrostatic free energies) can be rigorously derived if the diffuse-interface profile +u : Ω → [0, 1] is constructed so that u(x) represents the probability of a point x ∈ Ω found in the solute phase +among all microstates in the grand canonical ensemble under consideration. For the first time in literature, +the physical meaning of a diffuse interface will be illuminated and in turn the energy predicted by the +corresponding diffuse-interface model will be justified in this work. It is worthwhile to point out that one of +the grand challenges of calculating the ensemble average solvation energy is how to determine the Boltzmann +weight of each microstate, without which an effective sampling of different solvation states is impossible. +Our new ensemble average VISM (2.19) bypasses the above difficulty by encoding the Boltzmann weight +information to the argument u and thus is capable of directly capturing the ensemble averaged information. +The second goal of this work is to discuss the computational models for capturing the global minimum of +(2.19). Unlike most energy variational models, what plays a central role in many applications of VISMs [13,60] +is the minimum value of the solvation energy functional (i.e. the solvation energy) but not the dynamical +processes generated by the functional (e.g. the gradient flow). For example, the calculation of the binding +affinity for computational drug design [7, 40], which measures how strong a ligand (e.g. drug) binds to a +biomolecule (e.g. protein), consists of the computation of solvation energies of the protein and ligand separ- +ately and then as a complex. Unfortunately, the VISMs in use, no matter sharp or diffuse interface, except +for GFBVISM, all have non-convex structures. Consequently, the corresponding computational models only +calculate their local minima [19, 37, 45, 59]. +Further challenges arise in our new VISM, which is a total +variation based model with a two-sided obstacle 0 ≤ u ≤ 1 and a computational domain of complex shape. +The conventional Euler-Lagrange approach to similar but simpler problems, e.g. Rudin-Osher-Fatemi mod- +els [46], faces several challenges. First, with the presence of the obstacle, on a heuristic level with sufficiently +smooth minimizer u and functional, one expects the first variations of (2.19) with respect to u to take the +form of a variational inequality, or equivalently, of a 1−Laplacian type equation involving a measure sup- +ported on the coincidence sets {u = 0} and {u = 1}. Unfortunately, both the functional and the minimizer +fail to enjoy the required smoothness. Second, the computational models of total variation problems are + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +3 +usually studied by certain regularization, e.g. non-parametric minimal surface equations. However, it is +well known that the solutions of non-parametric minimal surface equations may admit jump discontinuities +along the boundary unless the boundary satisfies certain geometric conditions [29,41]. Such conditions are +unrealistic for most biomolecules due to their complex shapes. The possible presence of jump discontinuities +may become a source of inaccuracy in numerical simulations. In Section 3, we will develop a novel approach +to regularize (2.19), which enables us to relax the two-sided obstacle and avoid boundary jump discontinuity. +Most importantly, the first variations of the regularized problems can be rigorously derived, which generates +a system of elliptic differential equations that has a unique solution – the global minimizer of the regularized +problem. This paves the way for the numerical implementations of our new ensemble average VISM, which +will be investigated in several subsequent papers. +The rest of this paper is organized as follows. In Section 2, we develop a new VISM for the ensemble average +solvation energy. In Section 3, we study regularizations of our new ensemble average energy functional and +conduct variational analysis of the regularized problems. In Section 4, we compare our new model with some +existing diffuse-interface VISMs. Some technical lemmas are collected in Appendix A. In Appendix B, we +provide some justifications for the robustness of our new models. Finally, in Section 5, we draw conclusions. +2. Ensemble Averaged Solvation Energy +List of Notations: Given any open sets U and Ω, U ⋐ Ω means that U ⊂ Ω and U stands for the closure +of U. We denote by LN and HN−1 the N−dimensional Lebesgue measure and the (N − 1)−dimensional +Hausdorff measure, respectively. For any 1 ≤ p ≤ ∞, p′ is the H¨older conjugate of p. The phrase l.s.c is the +abbreviation of lower semi-continuous. +2.1. A Sharp Interface VISM. We consider a solute-solvent system with a fixed biomolecular structure +contained in a bounded Lipschitz domain Ω ⊆ R3 using the grand canonical ensemble. Hence, the chemical +potential, temperature and volume of the system are kept constant. Suppose that the solute atoms are +centered at x1, · · · , xNm and there are Nc ion species in Ω. Assume that the system undergoes K microstates, +labelled by k = 1, 2, · · · , K. +Microstate k occurs with a probability pk, in which the solute occupies a +Caccioppoli subset Dk ⋐ Ω, or equivalently, Uk = Ω \ Dk is the solvent region. See Figure 1(A) for an +illustration. By our assumption, � +k∈K pk = 1. For notational brevity, we put K = {1, 2, · · · , K}. +(a) +(b) +Figure 1. (A) Illustration of the microstate k: Dk is the solute region; Uk is the solvent region; (B) +Domain decomposition for a grand canonical ensemble: +Ωi is the region occupied by the solute in all +microstates; Ωs denotes the region occupied by the solvent in all microstates; Ωt denotes the transition +region where 0 ≤ u ≤ 1. +We define the sample space S to be the set of all distributions (of ions and solvent molecules) in the grand +canonical ensemble. Then S = � +k∈K +Sk, where Sk is the sample space of all distributions in microstate k. The +following random variables will be used throughout. +• Z : S → K indicates the microstate that a distribution belongs to. +• Cj(x) : S → R+ is the (number) concentration of the j-th ion species at x ∈ Ω in a given distribution. + +Solvent +Z +Soluteu=0 +>n>0 +Solvent +2 +Solute +o4 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +In microstate k, for every fixed x ∈ Ω, the (number) concentration of the j-th ion species at x can be +represented by +ck +j (x) = E(Cj(x)|Z = k). +Here E(Cj(x)|Z = k) represents the conditional expectation of the random variable Cj(x) (with fixed x) +given Z = k. In this article, we treat the solute atoms as hard spheres. More precisely, we consider the atom +centered at xi, i = 1, · · · , Nm, as a sphere of radius σi > 0, i.e., B(xi, σi), for which the solvent molecules +and the ions cannot enter. On the other hand, the solvent and ion concentrations are the same as their bulk +concentrations in regions sufficiently far away from the solute. As a consequence, such regions cannot be +contained in the solute phase in any microstate. Based on these observations, we may assume that there are +two open Lipschitz subsets, Ωi and Ωe, of Ω with �Nm +i=1 B(xi, σi) ⊂ Ωi ⋐ Ω \ Ωe and ∂Ω ⊂ ∂Ωe such that +Ωi ⊂ Dk ⊂ Ω \ Ωe. +(2.1) +By Assumption (2.1), all ion species are located outside Ωi. Let Ωt := Ω \ +� +Ωi ∪ Ωe +� +be the transition region +in microstate k. In addition, we define Σ1 = ∂Ωi and Σ0 = ∂Ωe \ ∂Ω. See Figure 1(B) for an illustration. +The hydrophobicity of the amino acids in the biomolecule varies from position to position. To account +for this phenomenon, we introduce a positive variable surface tension function θ ∈ C1(Ωt). Without loss of +generality, we may extend θ to be a function in C1(Ω), still denoted by θ, such that +θ0 ≤ θ(x) ≤ θ1, +x ∈ Ω +for some constants 0 < θ0 < θ1. By [8, Lemma 1] +� +Ω +θ(x)d|Df(x)| = sup +�� +Ω +f(x)∇ · (θ(x)φ(x)) dx : φ ∈ C1 +c (Ω; R3), ∥φ∥∞ ≤ 1 +� +. +It is clear that, for any f ∈ BV (Ω) with f ≡ 0 in Ωe and f ≡ 1 in Ωi, the value of +� +Ω θ(x)d|Df(x)| is +independent of how θ is extended outside Ωt. +As proposed in [22,23], the solvation free energy in microstate k predicted by a sharp-interface VISM is +the minimum value of the following energy functional +E(χDk) = Inp(χDk) + Ip(χDk, ψ), +where ψ : Ω → R is the electrostatic potential. The two components Inp and Ip are termed the nonpolar and +polar portion of the solvation energy, respectively. Σ = ∂Dk is considered as the solute-solvent interface. For +every fixed Dk, ψ = ψχDk is chosen to maximize Ip(χDk, ψ) among all ψ taking a predetermined Dirichlet +boundary value ψD on ∂Ω. It seems to be a little counterintuitive that ψ maximizes the polar energy instead +of minimizing it. An explanation of this fact can be found in [9] for the case ψD = 0. +The nonpolar solvation energy consists of three parts: +Inp(χDk) = +� +Ω +θd|DχDk| + PhVol(Dk) + +� +Uk +ρsU vdW(x) dx. +When θ ≡ γ for some constant γ > 0, the first term reduces to γPer(Dk; Ω) with Per(Dk; Ω) being the +perimeter (in Ω) of the biomolecule region Dk. This term measures the disruption of intermolecular and/or +intramolecular bonds that occurs when a surface is created. In addition, Vol(Dk) represents the volume of +Dk; Ph is the (constant) hydrodynamic pressure. Therefore, PhVol(Dk) is the mechanical work of creating +the biomolecular size vacuum in the solvent. In the last integral, ρs is the (constant) solvent bulk density; +and U vdW represents the Lennard-Jones potential [52]; as such U vdW ∈ C∞(Ω \ {x1, · · · , xNm}). +Currently, one of the most widely-used polar solvation models is the Poisson-Boltzmann (PB) theory +[1,26,27,31,33]. In the framework of classical PB theory, the polar energy is expressed as +Ip(χDk, ψ) = +� +Dk +� +ρ(x)ψ(x) − ϵp +2 |∇ψ(x)|2� +dx − +� +Uk +� +�ϵs +2 |∇ψ(x)|2 + β−1 +Nc +� +j=1 +c∞ +j (e−βqjψ(x) − 1) +� +� dx, (2.2) +where ρ is an L∞-approximation of the solute partial charges supported in �Nm +i=1 B(xi, σi). ϵp and ϵs are the +dielectric constants of the solute and the solvent, respectively. Usually, ϵp ≈ 1 for the protein and ϵs ≈ 80 +for the water. qj is the charge of ion species j, j = 1, 2, · · · , Nc, and β = 1/kBT, where kB is the Boltzmann + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +5 +constant, T is the (constant) absolute temperature. c∞ +j +is the (constant) bulk concentration of the j−th +ionic species. For notational brevity, we put +B(s) = β−1 +� +� +Nc +� +j=1 +c∞ +j +� +e−βsqj − 1 +� +� +� . +In addition, we assume the charge neutrality condition +Nc +� +j=1 +c∞ +j qj = 0. +(2.3) +It is important to observe that B(0) = 0 and, by (2.3), B′(0) = 0 and B′(±∞) = ±∞. Further, B′′(s) > 0. +We thus conclude that B(0) = min +s∈RB(s) and B is strictly convex. +Remark 2.1. A closer look into the derivation of (2.2) will help us to understand the physical meanings of ψ +and Ip. In the PB theory, in every microstate k, the mean electrostatic potential ψ (among all distributions +in microstate k) satisfies the fundamental equation of electrostatics, the Poisson equation: +−∇ · [(ϵχDk + ϵsχUk)∇ψ] = ρ + +Nc +� +j=1 +qjck +j +in A. +(2.4) +The average (number) concentration, ck +j , of the j-th ion speices in microstate k, can be derived by minimizing +the Helmholtz free energy for the fixed solute-solvent interface ∂Dk. +The Helmholtz free energy H in +microstate k is expressed as Hk = Ek − TSk, cf. [26, 36], where E is the internal energy, S is the entropy. +The subscript k is to indicate that the corresponding quantity is defined in microstate k. Here +Ek = +� +Dk +� +ρψ − ϵp +2 |∇ψ|2� +dx + +� +Uk +� +� +Nc +� +j=1 +qjck +j ψ − ϵs +2 |∇ψ|2 − +Nc +� +j=1 +µjck +j +� +� dx, +(2.5) +where µj is the chemical potential of the j-th ion species so that c∞ +j = eβµj, and +−TSk = β−1 +� +Uk +Nc +� +j=1 +ck +j +� +ln(ck +j ) − 1 +� +dx. +Hk is an “averaged” quantity because Ek is obtained by averaging the internal energy over all distributions in +microstate k. Setting the first variation of Hk with respect to ck +j to be zero gives the Boltzmann distribution +ck +j (x) = χUk(x)c∞ +j e−βqjψ(x). +(2.6) +Plugging (2.6) back into the expression of Hk yields +Hk = +� +Dk +� +ρ(x)ψ(x) − ϵp +2 |∇ψ(x)|2� +dx − +� +Uk +� +�ϵs +2 |∇ψ(x)|2 + β−1 +Nc +� +j=1 +c∞ +j e−βqjψ(x) +� +� dx. +(2.7) +Since the polar energy equals zero when ψ vanishes everywhere, following [48], a constant term +β−1 +� +Uk +Nc +� +j=1 +c∞ +j dx +(2.8) +should be added to (2.7), which yields the polar energy (2.2) in microstate k. +Note that +Nc +� +j=1 +qjck +j = +−χUkB′(ψ). Plugging this expression into (2.4) shows that ψ solves the PB equation: +∇ · ((ϵpχDk + ϵsχUk)∇ψ) − χUkB′(ψ) + ρ = 0 +in Ω +in microstate k, in the admissible set +A = {ψ ∈ H1(Ω) : ψ|∂Ω = ψD} +for some ψD ∈ W 1,∞(Ω). +(2.9) +Consequently, ψ maximizes Ip(χDk, ·) in A. + +6 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +To sum up, in the framework of the PB theory, when deriving ensemble average polar solvation energy, +one should use the mean electrostatic potential ψ among all microstates. Consequently, instead of directly +ensemble averaging Ip, one should optimize the Helmholtz free energy, which is obtained by averaging the +internal energy among all micrstates. +2.2. Modeling of Ensemble Average Solvation Energy. +2.2.1. Ensemble Average Bulk Energies. The argument we use to define the ensemble average solvation +energy functional is +u = +� +k∈K +pkχDk. +As such, u(x) represents the probability of x ∈ Ω found in the solute phase among all microstates. Figure 1(B) +shows the range of u in different regions. The definition of u enforces the following physical constraints +u(x) ∈ [0, 1] +for a.a. x ∈ Ω +(2.10) +and +u = 1 +a.e. in Ωi +and +u = 0 +a.e. in Ωe. +(2.11) +Then the admissible set for u is defined as +X = {u ∈ BV (Ω) : u satisfies Constraints (2.10) and (2.11)}. +The first step of constructing the ensemble average solvation energy functional is to derive formulas for +ensemble average bulk energy contributions. Assume f ∈ L1(Ω) is the energy density function of some bulk +energy F, that is, the energy F stored in a region E ⊂ Ω equals +� +E f(x) dx. +Proposition 2.2. The ensemble average bulk energies can be computed as follows +⟨Fi⟩ := +� +k∈K +pk +� +Dk +f dx = +� +Ω +uf dx +and +⟨Fe⟩ := +� +k∈K +pk +� +Uk +f dx = +� +Ω +(1 − u)f dx. +Proof. The proof is straightforward. Indeed, we will only check the equality for ⟨Fi⟩. +⟨Fi⟩ = +� +k∈K +pk +� +Dk +f dx = +� +Ω +� +k∈K +pkχDkf dx = +� +Ω +uf dx. +□ +2.2.2. Ensemble Average Polar Energy. Following the discussion in Remark 2.1, in the classic PB theory, +we will use the mean electrostatic potential ψ among all possible distributions (in all microstates) to derive +the “average” polar energy. Let cj be the mean ion concentration of the j-th ion species among all possible +distributions (in all microstates), i.e. cj(x) = E(Cj(x)). Then +cj(x) = E[E(Cj(x)|Z = k)] = +� +k∈K +pkck +j (x). +(2.12) +Because +E[ϵpχDk(x) + ϵsχUk(x)] = u(x)ϵp + (1 − u(x))ϵs =: ϵ(u)(x), +ϵ(u) can be regarded as the “mean” dielectric coefficient. Now the PB theory suggests that ψ ∈ A solves +−∇ · [ϵ(u)∇ψ] = ρ + +Nc +� +j=1 +qjcj +in Ω. +To derive the Boltzmann distribution that gives cj, we first compute the ensemble average of E, cf. (2.5), +by using Proposition 2.2 and (2.12) +⟨E⟩ = +� +k∈K +pkEk = +� +Ω +� +�ρψ + +Nc +� +j=1 +qjcjψ − ϵ(u) +2 |∇ψ|2 − +Nc +� +j=1 +µjcj +� +� dx. +However, the entropy cannot be ensemble averaged by using Sk. Instead, by the definition of entropy +−TS = β−1 +� +{u<1} +Nc +� +j=1 +cj [ln(cj) − 1] dx. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +7 +The domain of integration {u < 1} is due to the fact that cj vanishes identically in {u = 1}. Setting the +first variation of the Helmholtz free energy H = ⟨E⟩ − ST with respect to cj to be zero yields +cj = χ{u<1}c∞ +j e−βqjψ. +(2.13) +After plugging (2.13) into the expression of H, as in (2.8), the constant term +β−1 +� +Ω +χ{u<1} +Nc +� +j=1 +c∞ +j dx +(2.14) +needs to be added to H to adjust the reference state of the zero energy in the grand canonical ensemble +under consideration. Finally, we arrive at ensemble average polar energy +Ip(u, ψ) = H + β−1 +� +Ω +χ{u<1} +Nc +� +j=1 +c∞ +j dx = +� +Ω +� +ρψ − ϵ(u) +2 |∇ψ|2 − χ{u<1}B(ψ) +� +dx. +(2.15) +On the other hand, replacing cj in (2.4) by (2.13) shows that ψ ∈ A solves +∇ · [ϵ(u)∇ψ] − χ{u<1}B′(ψ) + ρ = 0 +in Ω. +(2.16) +Hence, ψ maximizes Ip(u, ·) in A for any fixed u ∈ X. +Remark 2.3. Although, for every fixed j, there can be multiple choices of ck +j that minimize H, any such +choice gives rise to (2.13) by means of (2.12). To see this, we set the first variation of H with respect to ck +j +to be zero and infer that cj = c∞ +j e−βqjψ in Uk. Going through all k, one readily get (2.13). +2.2.3. Ensemble Average Interfacial Energies. Based on Formulation (2.15), one can define +L(u, ψu) = ⟨Inp(χDk)⟩ + Ip(u, ψu), +where ψu maximizes Ip(u, ·) in A. It only remains to calculate the ensemble average of interfacial energy +contributions. Before doing that, we will first state a technical lemma. +Lemma 2.4. Let {Dk}k∈K be a family of Caccioppoli sets with Dk ⋐ Ω and pk ∈ [0, 1] with � +k∈K pk = 1. +Then for each ε > 0, there exists another family { �Dk}k∈K of Caccioppoli sets satisfying �Dk ⋐ Ω and +H2(∂∗ �Dk ∩ ∂∗ �Dj) = 0, +∀k, j ∈ K, k ̸= j, +(2.17) +with ∂∗D being the reduced boundary of a Caccioppoli set D, such that +|L(u, ψu) − L(�u, ψ�u)| < ε, +u = +� +k∈K +pkχDk and �u = +� +k∈K +pkχ � +Dk. +Here, for every v ∈ X, ψv maximizes Ip(v, ·) in A. +Proof. In view of Lemma A.2, it suffices to construct a family of Caccioppoli sets {Dk,j}∞ +j=1 satisfying +Assumption (2.17) such that +lim +n→∞ ∥χDk − χDk,n∥1 = 0, +lim +n→∞ +� +Ω +θd|DχDk,n| = +� +Ω +θd|DχDk|. +(2.18) +Following the proof of Lemma A.3, we can show that there exists a family of smooth functions {fk,n}∞ +n=1 +such that 0 ≤ fk,j ≤ 1 a.e. in Ω and +lim +j→∞ ∥χDk − fk,j∥1 = 0, +lim +j→∞ +� +Ω +θd|Dfk,j| = +� +Ω +θd|DχDk|. +By the Sard’s Theorem, there exists some S ⊂ (0, 1) with L1((0, 1) \ S) = 0 such that, for all t ∈ S, the +super-level set Et +k,j = {fk,j > t} has a smooth boundary. The coarea formula implies that +� +Ω +θd|DχDk| = lim +j→∞ +� +Ω +θd|Dfk,j| = lim +j→∞ +� 1 +0 +� +Ω +θd|DχEt +k,j| dt ≥ +� 1 +0 +lim inf +j→∞ +� +Ω +θd|DχEt +k,j| dt. +Therefore, for some t ∈ S, +lim inf +j→∞ +� +Ω +θd|DχEt +k,j| ≤ +� +Ω +θd|DχDk|. + +8 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +Pick the subsequence {jn}∞ +n=1 such that +lim inf +j→∞ +� +Ω +θd|DχEt +k,j| = lim +n→∞ +� +Ω +θd|DχEt +k,jn |. +On the other hand, we can infer from the Chebyshev’s Theorem that +L3(Et +k,jn \ Dk) ≤ 1 +t ∥fk,jn − χDk∥1, +L3(Dk \ Et +k,jn) ≤ +1 +1 − t∥fk,jn − χDk∥1. +This implies that +lim +n→∞ ∥χEt +k,jn − χDk∥1 = 0. +Therefore, it follows from [8, Corollary 1] that �Dk,n = Et +k,jn satisfies (2.18) with Dk,n replaced by �Dk,n. +Assume that H2(∂χ � +Dk,n ∩ ∂χ � +Dj,n) > 0 for some k, j ∈ K and k ̸= j. Since ∂ �Dk,n is C2, there exists +some a > 0 such that ∂ �Dk,n has a tubular neighborhood Ba(∂ �Dk,n) of width a > 0, cf. [28, Exercise 2.11] +and [34, Remark 3.1]. Denote by ν the outward unit normal of �Dk,n pointing into Ω \ �Dk,n. Then the map +defined by +Λ : ∂ �Dk,n × (−a, a) → R3 : (x, r) �→ x + rν(x), +is a C1-diffeomorphism. Let Γr := Λ(∂ �Dk,n, r). Then, for every i ∈ K, there are at most countably many +r ∈ (−a, a) such that H2(Γr ∩ ∂χ � +Di,n) > 0. Hence we can find r ∈ (−a, a) sufficiently close to 0 such that +H2(Γr ∩ ∂χ � +Di,n) = 0, +∀i ∈ K +and Γr ⊂ Ωt and +���χDk,n − χ � +Dk,n +��� +1 + +���� +� +Ω +θd|DχDk,n| − +� +Ω +θd|Dχ � +Dk,n| +���� < 1/n, +where Dk,n is the region enclosed by Γr. Modifying all �Dk,n, k ∈ K, in such a way yields a family of smooth +sets {Dk,n}k∈K satisfying Assumption (2.17) and (2.18). +□ +The above lemma tells us that, for any grand canonical ensemble, we can slightly modify the solute regions +{Dk}k∈K to fulfil (2.17) so that the changes in the corresponding solvation energy is “infinitesimally” small. +Hence, we can always assume that {Dk}k∈K satisfies (2.17). +Proposition 2.5. Assume that {Dk}k∈K satisfies (2.17). Then +� +Ω +θ d|Du| = +� +k∈K +pk +� +Ω +θ d|DχEk|. +Proof. By the De Giorgi’s structure theorem, cf. [24, Theorem 5.7.2], χDk are 2-rectifiable, i.e. there exist +Borel sets Fk and C1-functions gk,n : Uk,n → R3, Uk,n ⊂ R2 compact, such that ∥∂Dk∥(Fk) = 0 and +∂∗Dk = Fk ∪ +∞ +� +n=1 +gk,n(Uk,n). +Pick arbitrary ε > 0. For every k ∈ K, we can find Nk = Nk(ε) such that +∥∂Dk∥(Ω ∩ +∞ +� +n=Nk+1 +gk,n(Uk,n)) ≤ +ε +Kθ1pk +. +Recall K = |K|. Therefore, we obtain compact sets +Gk,ε := +Nk(ε) +� +n=1 +gk,n(Uk,n), +k ∈ K, +and +Gε := +� +k∈K +Gk,ε. +By the definition of the reduced boundary, the unit normal ν exists everywhere on Gε. By the Urysohn’s +Lemma, there exists a continuous function φ : R3 → R3 such that φ|Gε = ν. Restricting φ on Ω and applying +Stone-Weierstrass, we can find a smooth function φε : Ω :→ R3 such that +∥φε − φ∥L∞(Gε) < ε. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +9 +Then, in a neighborhood H ⋐ Ω of Gε, we have |φε| > 1/2. Pick h ∈ C∞ +0 (Ω; [0, 1]) in such that h ≡ 1 in H. +Setting ψε(x) = h(x) φε(x) +|φε(x)|, it is an easy task to check that +1 ≥ ψε(x) · ν(x) ≥ 1 − ε +1 + ε, +x ∈ Gε. +By [8, Lemma 1], we can estimate +� +Ω +θ d|Du| ≥ +� +Ω +(θψε) · dDu = +� +k∈K +pk +� +Ω +θψε · DχDk dx = +� +k∈K +pk +� +Gk,ε +θψε · DχDk dx − ε +≥ +� +k∈K +pk(1 − ε) +1 + ε +� +Gk,ε +θ d|DχDk| − ε +≥ +� +k∈K +pk(1 − ε) +1 + ε +�� +Ω +θ d|DχDk| − +� +Ω\Gk,ε +θ d|DχDk| +� +− ε += +� +k∈K +pk(1 − ε) +1 + ε +� +Ω +θ d|DχDk| − 2ε − ε2 +1 + ε . +Since ε is arbitrary, we have +� +Ω +θ d|Du| ≥ +� +k∈K +pk +� +Ω +θ d|DχDk|. +The inverse inequality is obvious. We have thus proved the assertion. +□ +2.2.4. Total Energy Functional. Based on Propositions 2.2 and 2.5, the ensemble average nonpolar energy +is given by +Inp(u) := ⟨Inp(χDk)⟩ = +� +Ω +θd|Du| + +� +Ω +� +Phu + ρs(1 − u)U vdW� +dx. +Using Formulation (2.15) for the polar energy, we can define the ensemble average total solvation energy as +the minimum value of +E(u) = +� +Ω +θd|Du| + +� +Ω +� +Phu + ρs(1 − u)U vdW� +dx + +� +Ω +� +ρψ − ϵ(u) +2 |∇ψ|2 − χ{u<1}B(ψ) +� +dx +(2.19) +in X and ψ = ψu is determined via the generalized PB equation (2.16); or equivalently, we seek the value of +L(u, ψ) = Inp(u) + Ip(u, ψ) +evaluated at its saddle points in X × A. +Note that Constraint (2.11) is defined in terms of Ωi and Ωe. In Appendix B, we will justify the robustness +of (2.19) by showing that its minimum value depends continuously on Ωi and Ωe in a proper topology. +2.3. Analysis of Ensemble Average Solvation Energy. +Theorem 2.6. E has a global minimizer in X. +Proof. We infer from Lemma A.1 that +Ip(u, ψu) ≥ −ϵs∥ψu∥2 +H1 − (∥B(ψu)∥∞ + ∥ρ∥∞∥ψu∥∞) Vol(Ω) ≥ C +(2.20) +for some C independent of u ∈ X. Here and in the sequel, for any u ∈ X, ψu always denotes the solution of +(2.16). Therefore, E is bounded from below and we can pick up a minimizing sequence {˜un}∞ +n=1 ⊂ X of E. +However, E is not l.s.c. in X. To prove the existence of a minimizer, we will use a relaxation technique. For +m ∈ N, we define +Lm(u, ψ) = Inp(u) + +� +Ω +� +ρψ − ϵ(u) +2 |∇ψ|2 − (1 − u)1/(2m+1)B(ψ) +� +dx +and +Em(u) = Lm(u, ψu,m), +where ψu,m ∈ A solves +∇ · [ϵ(u)∇ψ] − (1 − u)1/(2m+1)B′(ψ) + ρ = 0 +in Ω. + +10 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +Note that ψu,m is the unique maximizer of Lm(u, ·) in A. Easy computations show that Em is strictly convex +and l.s.c. in X with respect to convergence in L1(Ω) in view of [8, Corollary 1]. By the direct method of +calculus of variation, Em has a unique minimizer um in X. Set +M = inf +u∈X E(u), +Mm = Em(um). +Claim 1: +lim +m→∞ Mm = M. +Proof of Claim 1. We first show that Mm is monotonically decreasing and Mm ≥ M. Indeed, +Mm ≥ Lm(um, ψum) ≥ L(um, ψum) ≥ M, +where ψum is the solution of (3.1) with u = um, and similarly +Mm ≥ Lm(um, ψum+1,m+1) ≥ Lm+1(um, ψum+1,m+1) ≥ Mm+1. +Given any ε > 0, for sufficiently large n +M ≤ E(˜un) ≤ M + ε. +On the other hand, since, for any fixed u ∈ X, +lim +m→∞ ∥(1 − u)1/(2m+1) − χ{u<1}∥1 = 0, Lemma A.2 implies +that +M ≤ Em(˜un) ≤ M + 2ε +(2.21) +for sufficiently large n and m. The arbitrariness of ε shows that lim +m→∞ Mm = M. +■ +(2.21) and Lemma A.1 imply that ∥um∥BV is uniformly bounded and, by [24, Theorem 5.2.3.4], there +exists a subsequence of {um}∞ +m=1, not relabelled, such that as m → ∞ +um → u0 +in L1(Ω) +for some u0 ∈ X. Then for any m ∈ N, by [8, Lemma 2] +Mm ≥ Lm(um, ψu0) ≥ L(um, ψu0) ≥ L(u0, ψu0) ≥ M. +In view of Claim 1, pushing m → ∞ shows that u0 is a minimizer of E. +□ +Remark 2.7. Note that the convexity of E implies that any local minimizer of E must be global. +3. A regularization approach to solvation energy calculatiion +3.1. Regularization by p-energy. Regularization is a popular approach in the derivation of computational +models of non-differentiable functionals like E. Here we will develop a p-energy regularization approach based +on our previous work [14, 47]. In particular, this approach enables us to relax the two-sided obstacle, i.e. +Constraint (2.10), in the variational analysis. +In the rest of this section, we will assume U vdW ∈ C∞(Ω \ �Nm +i=1 B(xi, σi), R−). This can be realized by +taking U vdW as the attractive part of Lennard-Jones potential [52]. Note that this assumption is reasonable +in the solvation analysis of real-world macromolecules since u ≡ 1 in Ωi. The L-J potential can be divided +into attractive and repulsive parts in different ways. For instance, we can take a Weeks-Chandler-Andersen +(WCA) decomposition based on the original WCA theory [35]. +Define pn = +2n +2n−1 for n ∈ N. We are interested in sufficiently large n so that pn ∈ (1, ϵs/(ϵs − ϵp)). Denote +the set of all such n by N. Let +Inp;n(u) = γ +� +Ω +|∇u|pn dx + +� +Ω +� +Phupn + ρs(1 − upn)U vdW� +dx. +For the polar portion, due to the extra non-differentiable term χ{u<1}, we will consider the regularization of +Em in view of Claim 1 in the proof of Theorem 2.6. More precisely, define +Ip;m,n(u, ψ) = +� +Ω +� +ρψ − 1 +2ϵn(u)|∇ψ|2 − (pn − upn)1/(2m+1)B(ψ) +� +dx, +where ϵn(u) = ϵpupn + ϵs(1 − upn). We seek to minimize +Em,n(u) = Inp;n(u) + Ip;m,n(u, ψu;m,n), + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +11 +in the admissible sets +Xn = {u ∈ W 1,pn(Ω) : |u|pn ≤ pn a.e. in Ω +and u satisfies Constraint (2.11)}, +where ψu;m,n ∈ A solves +∇ · (ϵn(u)∇ψ) − (pn − upn)1/(2m+1)B′(ψ) + ρ = 0 +in Ω. +(3.1) +Define +Lm,n(u, ψ) = Inp;n(u) + Ip;m,n(u, ψ). +Then by Lemma A.1, it is not hard to check that u is a global minimizer of Em,n in Xn iff (u, ψu;m,n) is a +saddle point of Lm,n in Xn × A, where ψu;m,n solves (3.1). See [14, Theorem 6.3] for a related problem. +Theorem 3.1. For every n ∈ N and m ∈ N, Em,n has a unique minimizer in Xn, which actually belongs to +X. +Proof. To show the lower semi-continuity of Em,n in Xn, we first observe that +Qn(w) = +� +Ω +(θ|∇w|pn + Phupn) dx, +w ∈ Wn := {w ∈ W 1,pn(Ω) : w satisfies Constraint (2.11)}, +is an equivalent norm of Wn. Therefore, Qn is weakly l.s.c. in Wn, which further implies that Em,n is weakly +l.s.c. in Xn in view of Lemma A.2. The existence and uniqueness of a minimizer of Em,n can be proved by +the direct method of calculus of variation and the strict convexity of Em,n. +It remains to show that the minimizer umin;m,n of Em,n in Xn indeed belongs to X. Let ψmin;m,n be the +solution to (3.1) with u = umin;m,n. If L3({umin;m,n > 1} ∪ {umin;m,n < 0}) > 0, define +¯umin;m,n(x) = +� +� +� +� +� +1, +if umin;m,n(x) > 1, +0, +if umin;m,n(x) < 0, +umin;m,n(x), +elsewhere. +Then ¯umin;m,n ∈ X ∩ Xn; and direct computations show that +Lm,n(¯umin;m,n, ψmin;m,n) < Lm,n(umin;m,n, ψmin;m,n). +A contradiction. Hence, umin;m,n ∈ X. +□ +3.2. Asymptotic behaviour of the regularized energy. When n ∈ N, let umin;m,n be the unique +minimizer of Em,n in Xn. The following theorem establishes the asymptotic behavior of Em,n(umin;m,n). +Theorem 3.2. Assume that Σi ∈ C2, i = 0, 1. As n → ∞, umin;m,n converges to a minimizer of E in Lp(Ω) +for any 1 ≤ p < ∞ and weak∗ in BV (Ω). Moreover, lim +n→∞ Em,n(umin;m,n) = min +u∈X Em(u). +Proof. The constants Ci in this proof are independent of n. First, fix arbitrary v ∈ Xn, we have +Em,n(umin;m,n) ≤ Em,n(v) ≤ +� +Ω +θ|∇v|pn dx + 2PhVol(Ω \ Ωi) − +� +Ωt +ρsU vdW dx + ∥ψv∥∞∥ρ∥∞Vol(Ωi) ≤ C1, +where ψv ∈ A solves (3.1) with u = v. A similar computation as in (2.20) shows that +C1 ≥ Em,n(umin;m,n) ≥ +� +Ω +θ|∇umin;m,n|pn dx + Ph∥umin;m,n∥pn +pn + +� +Ω\Ωi +ρsU vdW dx + Ip;m,n(umin;m,n, ψmin;m,n) +≥ +�� +Ω +θd|Dumin;m,n| +�pn �� +Ω +θ dx +�1−pn ++ Ph∥umin;m,n∥pn +1 (Vol(Ω))1−pn + C2, +(3.2) +where ψmin;m,n ∈ A solves (3.1) with u = umin;m,n. We thus infer from (3.2) that +∥umin;m,n∥W 1,1 = ∥umin;m,n∥BV ≤ C3. +Then [24, Theorem 5.2.3.4] implies that for any subsequence of {umin;m,n}∞ +k=1, there exists a further sub- +sequence, not relabelled, converging to some u0 ∈ X in L1(Ω) and weak∗ in BV (Ω). The Riesz-Thorin +interpolation theorem then implies that umin;m,n → u0 in Lp(Ω) for all p ∈ [1, ∞) as n → ∞. Further, it +follows from [8, Corollary 1], (3.2) and Lemma A.2 that +Em(u0) ≤ lim inf +n→∞ Em,n(umin;m,n). + +12 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +On the other hand, for sufficiently large j ∈ N, we define +wj(x) = +� +� +� +� +� +1, +x ∈ Ωi;j +0, +x ∈ Ωe;j +u0(x), +elsewhere, +where Ωl;j := {x ∈ Ω : dist(x, Ωl) < 1/j} with l ∈ {i, e}. We will show that +lim sup +n→∞ Em,n(umin;m,n) ≤ Em(wj). +(3.3) +Lemma A.3 implies that we can find a sequence {wj,h}∞ +h=1 such that wj,h ∈ C∞(Ω) ∩ Xn for all n and +wj,i → wj in L1(Ω) +and +� +Ω +θd|Dwj,h| → +� +Ω +θd|Dwj| +as h → ∞. +Since umin;m,n minimizes Em,n in Xn ⊃ C∞(Ω) ∩ Xn, we have +Em,n(umin;m,n) ≤ Em,n(wj,h). +Pushing n → ∞, the dominated convergence theorem implies that +lim sup +n→∞ Em,n(umin;m,n) ≤ Em(wj,h). +Then Lemmas A.2 and A.3 immediately yield (3.3). Now Lemmas A.2 and A.4 imply that +lim sup +n→∞ Em,n(umin;m,n) ≤ Em(u0). +(3.4) +Let umin be a global minimizer of Em. It is important to notice that the proof of (3.4) actually holds for any +element of X, in particular umin. Hence +Em(umin) ≥ lim +n→∞ Em,n(umin;m,n) = Em(u0) ≥ Em(umin). +Therefore, u0 is indeed a global minimizer of Em. +□ +The following conclusion of Theorem 3.2 can be easily obtained in view of Claim 1 in the proof of +Theorem 2.6. +Corollary 3.3. Under the conditions of Theorem 3.2, +lim +m→∞ lim +n→∞ Em,n(umin;m,n) = min +u∈X E(u). +Remark 3.4. It seems to be more natural to use non-parametric minimal surface type functionals to regularize +Em. For example, when θ ≡ γ, one may consider the following regularization of (2.19) +Eε(u) = γ +� +Ω +� +ε + |∇u|2 dx + +� +Ω +� +Phupn + ρs(1 − upn)U vdW� +dx + Ip;m,n(u, ψu) +with ε > 0, where ψu ∈ A solves (3.1). However, the minimizer of Eε may admit jump discontinuous along +Σi unless Ωt satisfies certain geometric conditions, e.g. the mean curvature of Σi is large enough. See [29,41] +for instance. Such geometric conditions are unrealistic for most biomolecules due to their complex shapes. +The possible presence of jump discontinuities may become a source of inaccuracy in numerical simulations. +3.3. Critical Points of the regularized energy. Let umin;m,n be the minimizer of Em,n in Xn and +ψmin;m,n ∈ A be the solution of (3.1) with u = umin;m,n. Since umin;m,n ∈ X, given any φ ∈ C∞ +0 (Ωt), for +sufficiently small ε > 0, whenever t ∈ (−ε, ε), umin;m,n + tφ ∈ Xn. We thus have +lim +t→0 +Lm,n(umin;m,n + tφ, ψmin;m,n) − Lm,n(umin;m,n, ψmin;m,n) +t += 0. +This implies that umin;m,n solves +∇ · +� +θ|∇u|pn−2∇u +� +− upn−1Vm,n(u, ψ) = 0 +in Ωt +in the weak sense. Here +Vm,n(u, ψ) = Ph − ρsU vdW + +B(ψ) +(2m + 1)(upn − pn)2m/(2m+1) + ϵs − ϵp +2 +|∇ψ|2. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +13 +Combining with (3.1), (umin;m,n, ψmin;m,n) is a weak solution to the following system +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +∇ · (ϵn(u)∇ψ) + (pn − upn)1/(2m+1) +Nc +� +j=1 +c∞ +j qje−βψqj + ρ = 0 +in +Ω; +ψ = ψD +on +∂Ω; +∇ · +� +θ|∇u|pn−2∇u +� +− upn−1Vm,n(u, ψ) = 0 +in +Ωt; +u = 1 +in +Ωi ∪ Σ1; +u = 0 +in +Ωe ∪ Σ0 +(3.5) +in ˚ +Xn × A, where +˚ +Xn = {u ∈ W 1,pn(Ω) : |u|pn < pn a.e. in Ω +and +u satisfies Constraint (2.11)}. +We are interested in the case of sufficiently large n and m. +Theorem 3.5. (3.5) has a unique solution (u, ψ) in ˚ +Xn × A, which actually belongs to X × A. +Proof. (i) Let Cm,n be the set of all solutions of (3.5) in ˚ +Xn × A. Assume that (u, ψ) ∈ Cm,n. Then +−∇ · +� +θ|∇u|pn−2∇u +� += −upn−1Vm,n(u, ψ) +in Ωt +(3.6) +in the distributional sense. +Since ∇ · +� +θ|∇u|pn−2∇u +� +∈ W −1,p′ +n(Ωt), it follows that upn−1Vm,n(u, ψ) ∈ +W −1,p′ +n(Ωt). Note that u− := min{u, 0} ∈ W 1,pn +0 +(Ωt). Multiplying both sides of (3.6) by u− and integrating +over Ωt yield +0 ≤ +� +Ωt +θ|∇u−|pn dx = − +� +Ωt +|u−|pnVm,n(u, ψ) dx ≤ 0 +because Vm,n(u, ψ) ≥ 0. This shows that u− = 0 a.e. in Ωt and thus 0 ≤ u a.e. in Ωt. For the essential +upper bound of u, we consider w = 1 − u, which weakly solves +−∇ · +� +θ|∇w|pn−2∇w +� += (1 − w)pn−1Vm,n(u, ψ) +in Ωt. +Following the argument above, one has for w− ∈ W 1,pn +0 +(Ωt) that +0 ≤ +� +Ωt +θ|∇w−|pn dx = +� +Ωt +(1 − w)pn−1w−Vm,n(u, ψ) dx ≤ 0. +This implies that w− = 0 a.e. in Ωt and thus u ≤ 1 a.e. in Ωt. Therefore, (u, ψ) ∈ X × A. +(ii) Suppose that (v, ψv), (u, ψu) ∈ Cm,n satisfy +Lm,n(v, ψv) < Lm,n(u, ψu). +Since v − u ∈ W 1,pn +0 +(Ωt) ∩ L∞(Ωt), we have +� +Ωt +� +θ|∇u|pn−2∇u · ∇(v − u) + upn−1V (ψu)(v − u) +� +dx = 0. +(3.7) +By Lemma A.1, it holds that +Lm,n(v, ψu) ≤ Lm,n(v, ψv) < Lm,n(u, ψu). +Put h = Lm,n(v, ψu) − Lm,n(u, ψu) < 0. Note that ˚ +Xn is convex in W 1,pn(Ω). Put +J(t) = (1 − t)u + tv ∈ ˚ +Xn, +t ∈ [0, 1]. +Then by the convexity of Lm,n(·, ·) in its first argument, +Lm,n(J(t), ψu) − Lm,n(u, ψu) ≤ (1 − t)Lm,n(u, ψu) + tLm,n(v, ψu) − Lm,n(u, ψu) ≤ th < 0 +for all t ∈ (0, 1). Dividing both sides by t and pushing t → 0+ in the above inequality yield +pn +� +Ωt +� +θ|∇u|pn−2∇u · ∇(v − u) + upn−1Vm,n(u, ψu)(v − u) +� +dx ≤ h < 0. +A contradiction to (3.7). +We thus infer that Lm,n(·, ·) is constant on Cm,n. +From the uniqueness of a +minimizer of Em,n in Xn, we infer that (u, ψu) = (v, ψv). +□ + +14 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +4. A comparison with GFBVISM +It is of both theoretical and practical importance to understand the difference between the proposed +model (2.19) and the existing VISMs. In this section, we will compare (2.19) with a closely related solvation +model, geometric-flow based VISM (GFBVISM), whose original formulation [11] reads as +E(2)(u) = Inp(u) + I(2) +p (u, ψ), +(4.1) +where +I(2) +p (u, ψ) = +� +Ω +� +ρψ − ϵ(u) +2 |∇ψ|2 − (1 − u)B(ψ) +� +dx, +(4.2) +and ψ ∈ A solves +∇ · [ϵ(u)∇ψ] − (1 − u)B′(ψ) + ρ = 0 +in Ω. +(4.3) +Although (2.19) shares some common feature with GFBVISM, they differ in several fundamental aspects. +First, (4.1) was introduced in an ad hoc way to create a transition region between the solute and solvent +without an explanation of the physical meanings of the transition parameter u and the predicted energy. +Second, Constraints (2.10) and (2.11) are absent in the original formulation of GFBVISM [11]. Without +these two conditions, GFBVISM may admit non-physical minimizers, e.g. u is trivial or u < 0. +Third and most importantly, the proposed model corrects the derivation of the ensemble average polar +energy. Due to Proposition 2.2, one may guess that I(2) +p +approximates the ensemble average polar energy. +However, Formulation (4.2) is questionable in the sense that it is derived from an erroneous “entropy” +formulation. To see this, on a heuristic level, one can ensemble average the entropy and obtain +−T⟨S⟩ = −T +� +k∈K +pkSk = β−1 � +k∈K +pk +� +Ω +Nc +� +j=1 +ck +j +� +ln(ck +j ) − 1 +� +dx +and +⟨H⟩ := ⟨E⟩ − T⟨S⟩. +In view of Remark 2.3, we put the first variations of ⟨H⟩ with respect to all ck +j to be zero. This gives (2.6). +It follows from (2.12) that +cj(x) = +� +k∈K +pkck +j (x) = +� +k∈K +pkχUk(x)ck +j (x) = (1 − u(x))c∞ +j e−βqjψ(x). +(4.4) +Plugging (4.4) into (2.4) yields (4.3). Using the expression (4.4) of cj in ⟨H⟩ and adding a constant term +β−1 �Nc +j=1 c∞ +j +� +Ω(1 − u)dx to adjust the state of zero energy as in (2.14) give the polar energy formulation +(4.2). However, from a statistical mechanics point of view, the choice of the “entropy” ⟨S⟩ and “Helmholtz +free energy” ⟨H⟩ in the above derivation are incorrect. Therefore, the polar energy formulation (2.15) is +more physical than (4.2). +5. Conclusion +Diffuse-interface variational implicit solvation models (VISM) have achieved great success in solvation +energy calculations. In contrast, on a theoretical level, several questions concerning the diffuse-interface +VISMs remain open: (1) What is the physical meaning of a diffuse interface? +(2) What energy does a +diffuse-interface VISM predict? In this paper, a novel diffuse-interface VISM is introduced and analyzed. +Based on statistical mechanics and geometric measure theory, we show that the diffuse interface profile u(x) +represents the probability of a point x ∈ Ω found in the solute phase among all microstates in the grand +canonical ensemble under consideration and the new VISM is capable of capturing the ensemble average +solvation energy, the experimentally observable energy in solvation processes. +The significance of the work is multi-fold. First, it illuminates the physical meaning of a diffuse interface +in VISM and unveils the relationship between VISM and ensemble average solvation energy. Second, in the +routine calculation of the ensemble average solvation energy, one needs to carry out molecular dynamics (MD) +simulations to obtain thousands of solute-solvent configures (snapshots) and perform energy calculations for +each snapshot. +By rigorously modeling the impact of conformational changes in the solvent media, the +proposed model will reproduce the ensemble average solvation energy by means of one diffuse-interface +configuration, which is expected to be significantly faster than ensemble averaging the energies computed +from thousands of snapshots. Last but not least, the modeling paradigm in this work seems to be applicable +to a large variety of multi-scale problems with both interfacial and bulky energy components. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +15 +A new computational model is proposed to capture the global minimum of the ensemble average VISM. +The robustness of the model is justified by verifying the continuous dependence of the predicted energy on +the model constraints. Numerical implementations based on the proposed computational model and further +theoretical analysis of the new VISM will be conducted in a series of future works. +Appendix A. Some Technical Lemma +The following two lemmas can be obtained by following the proofs of [14, Propositions 3.1 and 3.2]. +Lemma A.1. Assume that a, b, c ∈ L∞(Ω) satisfy +0 < L0 ≤ a ≤ L1, +0 ≤ b ≤ L2, +∥c∥∞ ≤ L3 +(A.1) +for some constants Li. Then the functional +G(ψ) = +� +Ω +�a +2|∇ψ|2 + bB(ψ) − cψ +� +dx +has a unique minimizer ψ ∈ A for every ψD ∈ W 1,∞(Ω), c.f. (2.9), or equivalently, ψ weakly solves +� +∇ · (a∇ψ) − bB′(ψ) + c = 0 +in +Ω; +ψ = ψD +on +∂Ω. +Moreover, for some constant C∞ depending only on Li and ψD +∥ψ∥H1 + ∥ψ∥∞ ≤ C∞. +Lemma A.2. Let an, bn, c ∈ L∞(Ω) satisfy (A.1), n = 0, 1, · · · . Assume that ψn is the unique minimizer of +Gn(ψ) = +� +Ω +�an +2 |∇ψ|2 + bnB(ψ) − cψ +� +dx +in A for some ψD ∈ W 1,∞(Ω). If an → a0 and bn → b0 in L1(Ω) as n → ∞, then +ψn → ψ0 +in H1(Ω), +and +lim +n→∞ Gn(ψn) = G0(ψ0). +Assuming that Σi ∈ C2, i = 0, 1. For sufficiently large j ∈ N, we define +Ωl;j := {x ∈ Ω : dis(x, Ωl) < 1/j}, +l ∈ {i, e}, +and +Yj := {u ∈ X : u ≡ 1 in Ωi;j +and +u ≡ 0 in Ωe;j}. +Lemma A.3. For every f ∈ Yj, there exists a sequence {fn}∞ +n=1 ⊂ C∞(Ω) satisfying Constraints (2.10) +and (2.11) such that as n → ∞ +fn → f in L1(Ω) +and +� +Ω +θd|Dfn(x)| → +� +Ω +θd|Df(x)|. +Proof. For any δ > 0, let ηδ be a positive Friedrichs mollifying kernel. For any n ∈ N, we choose εn > 0 +so small that fn := ηεn ∗ f satisfies Constrain (2.11) and ∥fn − f∥1 ≤ 1/n. Constraint (2.10) is obviously +fulfilled by fn. Thus, lim +n→∞ ∥fn − f∥1 = 0. +[8, Corollary 1] implies that +� +Ω θd|Df(x)| ≤ lim inf +n→∞ +� +Ω θd|Dfn(x)|. Extending f to be identically zero outside +Ω, we can consider f as an element in BV (R3). For any φ ∈ C1 +0(Ω) with ∥φ∥∞ ≤ 1, we have +� +Ω +fn∇ · (θφ) dx = +� +Ω +(ηεn ∗ f) ∇ · (θφ) dx = +� +Ω +f∇ · [ηεn ∗ (θφ)] dx = +� +Ω +f∇ · +� +θ +�ηεn ∗ (θφ) +θ +�� +dx +≤ ∥(ηεn ∗ θ)/θ∥L∞(Ω) +� +Ω +θd|Df(x)|. +Here (ηεn ∗ θ)(x) = +� +Ω ηεn(x − y)θ(y) dy for x ∈ Ω. Taking supremum over all such φ, we derive that +� +Ω +θd|Dfn(x)| ≤ ∥(ηεn ∗ θ)/θ∥L∞(Ω) +� +Ω +θd|Df(x)|. +By the uniform continuity of θ, it is not a hard task to verify that lim +n→∞ ∥(ηεn ∗ θ)/θ∥L∞(Ω) = 1. Therefore, +the above inequality implies that lim sup +n→∞ +� +Ω θd|Dfn(x)| ≤ +� +Ω θd|Df(x)|. +□ + +16 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +Lemma A.4. For every f ∈ X, we define {fj}∞ +j=1 ⊂ BV (Ω) by +fj(x) = +� +� +� +� +� +1, +x ∈ Ωi;j +0, +x ∈ Ωe;j +f(x), +elsewhere. +Then fj → f in L1(Ω) and +� +Ω θd|Dfj(x)| → +� +Ω θd|Df(x)| as j → ∞. +Proof. The proof for fj → f in L1(Ω) is straightforward. So we will only show the second part. In the rest +of the proof, it is assumed that i ∈ {0, 1}. Denote by νΣi the outward pointing (into Ωt) unit normal of Σi. +Following the proof of Lemma 2.4, the map +Λi : Σi × (−a, a) → R3 : (x, r) �→ x + rνΣi(x) +is a C1-diffeomorphism for sufficiently small a > 0; and Σi,r := Λi(Σi, r) is a C1-hypersurface, whose outward +unit normal is denoted by νi,r. In particular, νi,0 = νΣi. We define the orientation of Σi,r in such a way that +νi,r are continuous vector fields. By the inverse function theorem, there exist two maps Pi ∈ C1(Ba(Σi), Σi) +and di ∈ C1(Ba(Σi), (−a, a)), where Pi is the nearest point projection onto Σi and di is the signed distance +to Σi with di(x) > 0 for x ∈ Ba(Σi) ∩ Ωt. Note that di is indeed C2, see [44] for example. We can define +two C1-vector fields Vi : Ba(Σi) → R3 by +Vi(x) = νi,di(x)(x). +For any r ∈ (0, a), put Ui,r := Br(Σi)∩Ωt. Due to the trace theorem of BV -functions, cf. [24, Theorem 5.3.1], +we have for all f ∈ X that +� +Ui,r +f∇ · (θVi) dx + +� +Ui,r +(θVi) · d[Df] = +� +Σi,r +θTrf dH2 − +� +Σi +θTrf dH2. +Here Trf is the trace of f|Ui,r on ∂Ui,r; and [Df] is the vector-valued measure for the gradient of f. +Pushing r → 0+ above yields that +lim +r→0+ +� +Σi,r +θTrf dH2 = +� +Σi +θTrf dH2. +(A.2) +[8, Lemma 1] implies that +� +Ω θd|Df(x)| ≤ lim inf +j→∞ +� +Ω θd|Dfj(x)|. Observe that ∂Ωi;j = Σ1,1/j and ∂Ωe;j\∂Ω = +Σ0,1/j for sufficiently large j. Denote by �Trf the trace of f|Ωt\(U0,r∪U1,r) on ∂ [Ωt \ (U0,r ∪ U1,r)]. For any +u ∈ X, we will show +� +Ω +θd|Du(x)| = +� +Ωt\(U0,r∪U1,r) +θd|Du(x)| + +� +i=0,1 +� +Ui,r +θd|Du(x)| ++ +� +i=0,1 +� +Σi +θ|i − Tru| dH2 + +� +i=0,1 +� +Σi,r +θ +���Tru − �Tru +��� dH2. +(A.3) +Indeed, for any φ ∈ C1 +c (Ω) with ∥φ∥∞ ≤ 1, +� +Ω +u∇ · (θφ) = − +� +Ωt\(U0,r∪U1,r) +(θφ) · d[Du] − +� +i=0,1 +� +Ui,r +(θφ) · d[Du] − (−1)i � +i=0,1 +� +Σi +θ(i − Tru)φ · νΣi dH2 +− (−1)i � +i=0,1 +� +Σi,r +θ(Tru − �Tru)φ · νi,r dH2 +≤ +� +Ωt\(U0,r∪U1,r) +θd|Du(x)| + +� +i=0,1 +� +Ui,r +θd|Du(x)| + +� +i=0,1 +� +Σi +θ|i − Tru| dH2 ++ +� +i=0,1 +� +Σi,r +θ +���Tru − �Tru +��� dH2. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +17 +Taking supremum over all φ ∈ C1 +c (Ω) with ∥φ∥∞ ≤ 1 shows that the LHS of (A.3) is less than or equal to +the RHS. To show the equality in (A.3), note that +� +i=0,1 +� +Σi +(θφ) · d[Du] + +� +i=0,1 +� +Σi,r +(θφ) · d[Du] =(−1)i � +i=0,1 +� +Σi +θ(i − Tru)φ · νΣi dH2 ++ (−1)i � +i=0,1 +� +Σi,r +θ(Tru − �Tru)φ · νi,r dH2. +Taking φ ∈ C1 +c (Ω) with ∥φ∥∞ ≤ 1 such that φ = (−1)i+1Vi in U i,r, we can infer from the above equality +that +� +i=0,1 +� +Σi +θd|Du| + +� +i=0,1 +� +Σi,r +θd|Du| ≥ +� +i=0,1 +� +Σi +θ|i − Tru| dH2 + +� +i=0,1 +� +Σi,r +θ +���Tru − �Tru +��� dH2. +Therefore, the other direction of the inequality in (A.3) holds and (A.3) is valid. This implies that +� +Ω +θd|Dfj(x)| − +� +Ω +θd|Df(x)| = +� +i=0,1 +�� +Σi,1/j +θ|i − �T1/jf| dH2 − +� +Σi +θ|i − T1/jf| dH2 − +� +Ui,1/j +θd|Df(x)| +� +− +� +i=0,1 +�� +Σi,1/j +θ +���T1/jf − �T1/jf +��� dH2 +� +≤ +� +i=0,1 +�� +Σi,1/j +θ|i − T1/jf| dH2 − +� +Σi +θ|i − T1/jf| dH2 − +� +Ui,1/j +θd|Df(x)| +� +. +From (A.2), we infer that +lim +j→∞ +�� +Σi,1/j +θ|i − T1/jf| dH2 − +� +Σi +θ|i − T1/jf| dH2 − +� +Ui,1/j +θd|Df(x)| +� += 0. +This implies that lim sup +j→∞ +� +Ω θd|Dfj(x)| ≤ +� +Ω θd|Df(x)|. +□ +Appendix B. Continuous dependence on Ωi and Ωe +Assume that {�Ωi;n}∞ +n=1 and {�Ωe;n}∞ +n=1 are two sequences of Lipschitz subdomains in Ω with +Nm +� +j=1 +B(xj, σj) ⊂ �Ωi;n ⋐ Ω \ �Ωe;n +and +∂Ω ⊂ ∂�Ωe;n. +We consider the family of energy functionals �En defined by replacing Ωi and Ωe by �Ωi;n and �Ωe;n in E, +respectively. The corresponding admissible sets are +� +Xn = {u ∈ BV (Ω) : 0 ≤ u ≤ 1 a.e. in Ω +and +u = 1 a.e. in �Ωi;n and u = 0 a.e. in �Ωe;n}. +Then for each n, there is a unique minimizer �umin,n of �En in � +Xn. +The lemma below can be proved by following the proof of [14, Theorem 4.2] line by line. +Lemma B.1. Assume that {�Ωi;n}∞ +n=1 and {�Ωe;n}∞ +n=1 satisfy �Ωi;n ⊆ Ωi and �Ωe;n ⊆ Ωe. Suppose further that +χ�Ωi;n → χΩi +and +χ�Ωe;n → χΩe +in L1(Ω) +as n → ∞. +Then, lim +n→∞ +�En(�umin,n) = E(umin), where umin is a minimizer of E. +Recall that the Hausdorff metric on compact subsets K ⊂ R3 is defined by +dH(K1, K2) = max{ sup +x∈K1 +d(x, K2), sup +x∈K2 +d(x, K1)}. +Given a closed surface Σ in R3, its normal bundle is given by +NΣ = {(q, νΣ(q)) : q ∈ Σ} ⊂ R3 × R3, + +18 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +where νΣ(q) is the outward unit normal of Σ at q ∈ Σ. When {�Ωi;n}∞ +n=1 and {�Ωe;n}∞ +n=1 approximate Ωi and +Ωe from the exterior, the following counterpart of Lemma B.1 holds. +Lemma B.2. Suppose that Σj ∈ C2, j = 0, 1. Assume that {�Ωi;n}∞ +n=1 and {�Ωe;n}∞ +n=1 are C1 and +Ωi ⊆ �Ωi;n +and +Ωe ⊆ �Ωe;n. +Let Σ1;n = ∂�Ωi;n and Σ0;n = ∂�Ωe;n \ ∂Ω. Suppose further that +lim +n→∞ dH(NΣ1;n, NΣ1) = lim +n→∞ dH(NΣ0;n, NΣ0) = 0. +Then, lim +n→∞ +�En(�umin,n) = E(umin), where umin is a minimizer of E. +Proof. It suffices to consider the case Ωe = �Ωe;n. The proof for the general situation is similar. Following +the proof of Proposition 2.5 and Lemma A.4, the map +Λ : Σ1 × (−a, a) → R3 : (q, r) �→ q + rνΣ1(q) +is a C1-diffeomorphism for some a > 0, where the outward unit normal νΣ1 points into Ωt. Σr := Λ(Σ1, r) is +a C1-hypersurface, whose outward unit normal is denoted by νr. By [44, Section 4.3], for sufficiently large +n, there exist ρn ∈ C1(Σ1) with 0 ≤ ρn ≤ a such that Σ1;n is the image of the following C1-diffeomorphism +Ψρn : Σ1 → R3 : q �→ q + ρn(q)νΣ1(q). +Let rn := ∥ρn∥∞. Then lim +n→∞ rn = 0. For sufficiently large n ∈ N, we define +un(x) = +� +1, +x ∈ Ωn, +umin(x), +elsewhere, +where Ωn is the region enclosed by Σrn. Since un ∈ � +Xn and �umin,n ∈ X, we have +E(umin) ≤ �En(�umin,n) ≤ E(un). +(B.1) +From a slight variant of Lemma A.4, we learn that as n → ∞ +un → umin +in L1(Ω) +and +� +Ω +θd|Dun| → +� +Ω +θd|Dumin|. +The dominated convergence theorem and Lemma A.2 give lim +n→∞ E(un) = E(umin). Then the asserted state- +ment follows by pushing n → ∞ in (B.1). +□ +Theorem B.3. Suppose that Σj ∈ C2, j = 0, 1. +Assume that {�Ωi;n}∞ +n=1 and {�Ωe;n}∞ +n=1 are C1. +Let +Σ1;n = ∂�Ωi;n and Σ0;n = ∂�Ωe;n \ ∂Ω. Suppose further that +lim +n→∞ dH(NΣ1;n, NΣ1) = lim +n→∞ dH(NΣ0;n, NΣ0) = 0. +Then, lim +n→∞ +�En(�umin,n) = E(umin), where umin is a minimizer of E. +Proof. As in the above proof, we only consider the case that Ωe = �Ωe;n. It again follows from [44, Section 4.3] +that, for sufficiently large n, Σ1;n can be expressed as a C1−normal graph over Σ1 with height function +ρn ∈ C1(Σ1, (−a, a)). Let rn = ∥ρn∥∞. Following the notations in the proof of Lemma B.2, we define +Σ±rn := Λ(Σ1, ±rn) and Ω± +n to be the region enclosed by Σ±rn, respectively. We introduce �E± +n as defined +by replacing Ωi by Ω± +n , respectively. Their corresponding minimizers are denoted by u± +min,n. Then +�E− +n (u− +min,n) ≤ �En(�umin,n) ≤ �E+ +n (u+ +min,n). +From Lemmas B.1 and B.2, we learn that lim +n→∞ +�E− +n (u− +min,n) = lim +n→∞ +�E+ +n (u+ +min,n) = E(umin). +□ +Acknowledgements +The research of Zhao was supported in part by the National Science Foundation (NSF) grant DMS- +2110914. The research of Chen was supported in part by the National Science Foundation (NSF) grant +DMS-1818748. + +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +19 +References +[1] N. A. Baker. Improving implicit solvent simulations: +a Poisson-centric view. Current Opinion in Structural Biology, +15(2):137–43, 2005. +[2] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. Electrostatics of nanosystems: Application to +microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98(18):10037–10041, 2001. +[3] P. Ball. How to keep dry in water. Nature, 423(6935):25–26, May 2003. +[4] P. W. Bates, G. W. Wei, and S. Zhao. Minimal molecular surfaces and their applications. Journal of Computational +Chemistry, 29(3):380–91, 2008. +[5] A. H. Boschitsch and M. O. Fenley. Hybrid boundary element and finite difference method for solving the nonlinear +Poisson-Boltzmann equation. Journal of Computational Chemistry, 25(7):935–955, 2004. +[6] W. M. Botello-Smith, X. Liu, Q. Cai, Z. Li, H. Zhao, and R. Luo. Numerical poisson–boltzmann model for continuum +membrane systems. Chemical Physics Letters, 555:274–281, 2013. +[7] R. C. Braga, V. M. Alves, A. C. Silva, M. N. Nascimento, F. C. Silva, L. M. Liao, and C. H. Andrade. Virtual screening +strategies in medicinal chemistry: the state of the art and current challenges. Curr Top Med Chem, 14(16):1899–1912, +2014. +[8] G. Carlier and M. Comte. On a weighted total variation minimization problem. J. Funct. Anal., 250(1):214–226, 2007. +[9] J. Che, J. Dzubiella, B. Li, and J. A. McCammon. Electrostatic free energy and its variations in implicit solvent models. +The Journal of Physical Chemistry B, 112(10):3058–3069, 2008. PMID: 18275182. +[10] C. J. Chen, R. Saxena, and G. W. Wei. Differential geometry based multiscale models for virus formation and evolution. +Int. J. Biomed. Imaging, 2010(308627), 2010. +[11] Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation model I: Eulerian formulation. J. Comput. +Phys., 229(22):8231–8258, 2010. +[12] Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models I: Eulerian formulation. J. Comput. +Phys., 229:8231–8258, 2010. +[13] Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models II: Lagrangian formulation. J. Math. +Biol., 63:1139–1200, 2010. +[14] Z. Chen and Y. Shao. A new approach to constrained total variation solvation models and the study of solute-solvent +interface profiles. Comput. Math. Appl., 130:119–136, 2023. +[15] Z. Chen and G. W. Wei. Differential geometry based solvation models III: Quantum formulation. J. Chem. Phys., +135:1941108, 2011. +[16] Z. Chen, S. Zhao, J. Chun, D. G. Thomas, N. A. Baker, P. W. Bates, and G. W. Wei. Variational approach for nonpolar +solvation analysis. The Journal of Chemical Physics, 137(8):084101, 2012. +[17] L. T. Cheng, J. Dzubiella, A. J. McCammon, and B. Li. Application of the level-set method to the implicit solvation of +nonpolar molecules. Journal of Chemical Physics, 127(8), 2007. +[18] P. B. Crowley and A. Golovin. Cation-pi interactions in protein-protein interfaces. Proteins: Structure, Function, and +Bioinformatics, 59(2):231–239, 2005. +[19] S. Dai, B. Li, and J. Lu. Convergence of phase-field free energy and boundary force for molecular solvation. Arch. Ration. +Mech. Anal., 227(1):105–147, 2018. +[20] F. Dong and H. X. Zhou. Electrostatic contribution to the binding stability of protein-protein complexes. Proteins, 65(1):87– +102, 2006. +[21] A. I. Dragan, C. M. Read, E. N. Makeyeva, E. I. Milgotina, M. E. Churchill, C. Crane-Robinson, and P. L. Privalov. DNA +binding and bending by HMG boxes: Energetic determinants of specificity. Journal of Molecular Biology, 343(2):371–393, +2004. +[22] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. Coupling hydrophobicity, dispersion, and electrostatics in continuum +solvent models. Phys. Rev. Lett., 96:087802, Mar 2006. +[23] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. Coupling nonpolar and polar solvation free energies in implicit +solvent models. The Journal of Chemical Physics, 124(8):084905, 2006. +[24] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC +Press, Boca Raton, FL, 1992. +[25] M. Feig and C. L. Brooks III. Recent advances in the development and application of implicit solvent models in biomolecule +simulations. Curr Opin Struct Biol., 14:217 – 224, 2004. +[26] F. Fogolari and J. M. Briggs. On the variational approach to poisson–boltzmann free energies. Chemical Physics Letters, +281(1):135–139, 1997. +[27] F. Fogolari, A. Brigo, and H. Molinari. The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural +biology. Journal of Molecular Recognition, 15(6):377–92, 2002. +[28] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Math- +ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, +1983. +[29] E. Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathematics. Birkh¨auser +Verlag, Basel, 1984. +[30] J. A. Grant, B. T. Pickup, M. T. Sykes, C. A. Kitchen, and A. Nicholls. The Gaussian Generalized Born model: application +to small molecules. Physical Chemistry Chemical Physics, 9:4913–22, 2007. +[31] P. Grochowski and J. Trylska. Continuum molecular electrostatics, salt effects and counterion binding. a review of the +Poisson-Boltzmann theory and its modifications. Biopolymers, 89(2):93–113, 2007. + +20 +ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS +[32] L. A. Kuhn, M. A. Siani, M. E. Pique, C. L. Fisher, E. D. Getzoff, and J. A. Tainer. The interdependence of protein +surface topography and bound water molecules revealed by surface accessibility and fractal density measures. Journal of +Molecular Biology, 228(1):13–22, 1992. +[33] G. Lamm. The Poisson-Boltzmann equation. In K. B. Lipkowitz, R. Larter, and T. R. Cundari, editors, Reviews in +Computational Chemistry, pages 147–366. John Wiley and Sons, Inc., Hoboken, N.J., 2003. +[34] J. LeCrone, Y. Shao, and G. Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. +Discrete Contin. Dyn. Syst. Ser. S, 13(12):3503–3524, 2020. +[35] R. M. Levy, L. Y. Zhang, E. Gallicchio, and A. K. Felts. On the nonpolar hydration free energy of proteins: surface +area and continuum solvent models for the solute-solvent interaction energy. Journal of the American Chemical Society, +125(31):9523–9530, 2003. +[36] B. Li. Minimization of electrostatic free energy and the poisson–boltzmann equation for molecular solvation with implicit +solvent. SIAM Journal on Mathematical Analysis, 40(6):2536–2566, 2009. +[37] B. Li and Y. Liu. Diffused solute-solvent interface with Poisson-Boltzmann electrostatics: free-energy variation and sharp- +interface limit. SIAM J. Appl. Math., 75(5):2072–2092, 2015. +[38] C. Li, L. Li, J. Zhang, and E. Alexov. Highly efficient and exact method for parallelization of grid-based algorithms and +its implementation in delphi. Journal of Computational Chemistry, 33(24):1960–1966, 2012. +[39] L. Li, C. Li, Z. Zhang, and E. Alexov. On the dielectric “constant” of proteins: Smooth dielectric function for macromolec- +ular modeling and its implementation in delphi. Journal of Chemical Theory and Computation, 9(4):2126–2136, 2013. +PMID: 23585741. +[40] E. Lionta, G. Spyrou, D. K. Vassilatis, and Z. Cournia. Structure-based virtual screening for drug discovery: principles, +applications and recent advances. Curr Top Med Chem, 14(16):1923–1938, 2014. +[41] M. Miranda. Un principio di massimo forte per le frontiere minimali e una sua applicazione alla risoluzione del problema +al contorno per l’equazione delle superfici di area minima. Rend. Sem. Mat. Univ. Padova, 45:355–366, 1971. +[42] D. L. Mobley, K. A. Dill, and J. D. Chodera. Treating entropy and conformational changes in implicit solvent simulations +of small molecules. The Journal of Physical Chemistry B, 112(3):938–946, 2008. PMID: 18171044. +[43] J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, and A. Onufriev. Generalized Born model with a simple, robust +molecular volume correction. Journal of Chemical Theory and Computation, 3(1):159–69, 2007. +[44] J. Pr¨uss and G. Simonett. On the manifold of closed hypersurfaces in Rn. Discrete Contin. Dyn. Syst., 33(11-12):5407–5428, +2013. +[45] C. G. Ricci, B. Li, L. Cheng, J. Dzubiella, and J. A. McCammon. Tailoring the variational implicit solvent method for +new challenges: Biomolecular recognition and assembly. Frontiers in Molecular Biosciences, 5:13, 2018. +[46] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. volume 60, pages 259–268. +1992. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). +[47] Y. Shao, E. Hawkins, K. Wang, and Z. Chen. A constrained variational model of biomolecular solvation and its numerical +implementation. Comput. Math. Appl., 107:17–28, 2022. +[48] K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear poisson-boltzmann equation. The +Journal of Physical Chemistry, 94(19):7684–7692, Sep 1990. +[49] R. S. Spolar, J. H. Ha, and M. T. Record Jr. Hydrophobic effect in protein folding and other noncovalent processes involving +proteins. Proceedings of the National Academy of Sciences of the United States of America, 86(21):8382–8385, 1989. +[50] J. M. J. Swanson, J. Mongan, and J. A. McCammon. Limitations of atom-centered dielectric functions in implicit solvent +models. Journal of Physical Chemistry B, 109(31):14769–72, 2005. +[51] H. Tjong and H. X. Zhou. GBr6NL: A generalized Born method for accurately reproducing solvation energy of the nonlinear +Poisson-Boltzmann equation. Journal of Chemical Physics, 126:195102, 2007. +[52] J. A. Wagoner and N. A. Baker. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion +and volume terms. Proceedings of the National Academy of Sciences of the United States of America, 103(22):8331–6, 2006. +[53] B. Wang and G. W. Wei. Parameter optimization in differential geometry based solvation models. The Journal of chemical +physics, 143(13):134119, 2015. +[54] G. W. Wei. Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72(6):1562–1622, Aug 2010. +[55] G. W. Wei and N. A Baker. Differential geometry-based solvation and electrolyte transport models for biomolecular +modeling: a review. In Many-Body Effects and Electrostatics in Biomolecules, pages 435–480. Jenny Stanford Publishing, +2016. +[56] G. W. Wei, Y. H. Sun, Y. C. Zhou, and M. Feig. Molecular multiresolution surfaces. arXiv:math-ph/0511001v1, pages 1 – +11, 2005. +[57] G. W. Wei, Q. Zheng, Z. Chen, and K.n Xia. Variational multiscale models for charge transport. siam REVIEW, 54(4):699– +754, 2012. +[58] S. Zhao. Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis. International +Journal for Numerical Methods in Biomedical Engineering, 27(12):1964–1981, 2011. +[59] Y. Zhao, Y. Kwan, J. Che, B. Li, and J. A. McCammon. Phase-field approach to implicit solvation of biomolecules with +coulomb-field approximation. The Journal of chemical physics, 139(2):024111, 2013. +[60] S. Zhou, K. E. Rogers, C. A. F. de Oliveira, R. Baron, L. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Variational +implicit-solvent modeling of host–guest binding: +A case study on cucurbit[7]uril—. Journal of Chemical Theory and +Computation, 9(9):4195–4204, Sep 2013. +[61] Y. Zhou. On curvature driven rotational diffusion of proteins on membrane surfaces. SIAM Journal on Applied Mathem- +atics, 80(1):359–381, 2020. + diff --git a/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/load_file.txt b/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1d5ef733fbc46e5ac5f134a336945ee01c784c58 --- /dev/null +++ b/ltFAT4oBgHgl3EQfbx2O/content/tmp_files/load_file.txt @@ -0,0 +1,1479 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf,len=1478 +page_content='MODELING AND ANALYSIS OF ENSEMBLE AVERAGE SOLVATION ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS YUANZHEN SHAO∗†, ZHAN CHEN∗∗, AND SHAN ZHAO∗∗∗ Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Variational implicit solvation models (VISM), because of their relatively low computational cost and satisfactory accuracy, have been widely used in the solvation analysis of biological systems at molecular level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Central in the construction of VISM is an interface separating the solute and the solvent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Compared with sharp-interface models, diffuse-interface VISMs have shown some initial success in improving the efficiency and accuracy of the solvation energy estimation of biomolecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, on a theoretical level, several questions concerning the diffuse-interface VISMs remain open: (1) What is the physical meaning of a diffuse interface?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2) What energy does a diffuse-interface VISM predict?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This work aims at addressing the above questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Our research reveals the relationship between a diffuse interface definition and the random movement of the solute-solvent interface due to thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then, we use this diffuse interface setting to construct a VISM that is capable of capturing ensemble average solvation energy, which is an experimentally observable quantity in solvation processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The well-posedness and variational analysis of the model are further investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Our work is the first step towards estimating ensemble average solvation energy by using diffuse-interface VISMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Introduction In the quantitative analysis of biological processes, the complex interactions between the solute and solvent are typically described by solvation energies (or closely related quantities): the free energy of transferring the solute (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' biomolecules, such as proteins, DNA, RNA) from the vacuum to a solvent environment of interest (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' water at a certain ionic strength).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' There are two major approaches for solvation energy calculations: explicit solvent models and implicit solvent models [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Explicit models, treating both the solute and the solvent as individual molecules, are too computationally expensive for large solute-solvent systems, such as the solvation of macromolecules in ionic environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In contrast, implicit models, by averaging the effect of solvent phase as continuum media [1,2,5,6,9,25,38], are much more efficient and thus are able to handle much larger systems [2,16,27,30,31,33,43,51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' An inevitable prerequisite for describing the solvation energy in implicit solvent models is an interface separating the discrete solute and the continuum solvent domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' All of the physical properties related to solvation processes, including biomolecular surface area, biomolecular cavitation volume, pKa value and electrostatic free energy, are very sensitive to the interface definition [20, 50, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' There are a number of different surface definitions, which include the van der Waals surface, the solvent excluded surface and the solvent accessible surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' These surface definitions have found many successful applications in biomolecular modeling [18,21,32,49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, these predetermined interfaces are ad hoc partitions and thus either non- negligibly overestimate or underestimate the solvation free energies [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Moreover, none of them takes into account the minimization of interfacial free energies during the equilibrium solvation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Variational implicit solvation models (VISM) stand out as a successful approach to compute the disposition of an interface separating the solute and the solvent [4,10,12,17,19,56,61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In a VISM, the desired interface profile is obtained by optimizing a solvation energy functional coupling the discrete description of the solute and the continuum description of the solvent in addition to polar and non-polar interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, a sharp-interface VISM is incapable to describe the randomness of a solute-solvent boundary, which is due to atom vibrations or thermodynamic fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Indeed, ions, solute and solvent molecules are not rigid 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Primary: 49Q10;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Secondary: 35J20;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 92C40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Biomolecule solvation, Poisson-Boltzmann, Variational implicit solvation model, Ensemble average solvation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' †Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ∗Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' yshao8@ua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ∗∗Department of Mathematical Sciences, Georgia Southern University, GA, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' zchen@georgiasouthern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ∗∗∗Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' szhao@ua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='08560v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='bio-ph] 6 Jan 2023 2 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS objects and they undergo small or large conformational changes in real applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Disregarding this can cause severe errors in predictions of solvation free energies [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This calls for the need of a new notion of solvent-solute interface, which is known as the diffuse interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Arguably, the most extensively used diffuse interface models are: (1) the phase-field based models (PF- BVISM), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [19, 37, 59];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' and (2) the geometric flow based models (GFBVISM), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [12, 22, 53–55, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For a solute-solvent system contained in a region Ω ⊂ R3, a typical PFBVISM is a functional defined by a phase-field variable u : Ω → R, which plays the role of a solute-solvent interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Allen-Cahn functional � Ω � ξ 2|∇u|2 + 1 ξW(u) � dx, where W(x) = 18x2(1 − x)2, is used because it Γ-converges to the area of a sharp interface as ξ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The diffuse interface in GFBVISM is defined in terms of a transition parameter u : Ω → R, which takes value 1 in the solute and 0 in the solvent region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The solute-solvent surface area is replaced by � Ω |∇u| dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the coarea formula, this integral approximates the mean surface area of the level sets of a Lipschitz continuous function u, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Numerical simulations show that these diffuse-interface models can improve the efficiency and accuracy of solvation energy computation [15,37,53,55,57,58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, on a theoretical level, the diffuse interfaces in use were created in an ad hoc way and lack rigorous justifications of their physical meanings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence, a persuasive physical interpretation of the solvation energies predicted by those diffuse-interface models is still absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The key to an effective diffuse interface definition is to understand the source of inaccuracy in sharp- interface VISMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A solute-solvent interface is determined by both the solute molecular structure and the surrounding solvent configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Due to thermodynamic fluctuations, when a fixed solute molecular struc- ture being considered, solvent molecules and ions can still adopt different configurations [3], or equivalently, from statistical mechanics standpoint, can form various microstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that the disposition of the interface is not unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the other hand, experimentally observable quantities are ensemble averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Us- ing the energy computed from one microstate (even if the one with minimum energy) to predict the averaged energy from all microstates is doomed to be inaccurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, it is of imminent practical importance to develop a solvation model capable of calculating ensemble average solvation energy with thermodynamic fluctuations being taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It is the first goal of this study to develop a VISM for ensemble average solvation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Section 2, we show that the ensemble average of various solvation energy components (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' the biomolecular surface areas, cavity volumes and electrostatic free energies) can be rigorously derived if the diffuse-interface profile u : Ω → [0, 1] is constructed so that u(x) represents the probability of a point x ∈ Ω found in the solute phase among all microstates in the grand canonical ensemble under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For the first time in literature, the physical meaning of a diffuse interface will be illuminated and in turn the energy predicted by the corresponding diffuse-interface model will be justified in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It is worthwhile to point out that one of the grand challenges of calculating the ensemble average solvation energy is how to determine the Boltzmann weight of each microstate, without which an effective sampling of different solvation states is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Our new ensemble average VISM (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) bypasses the above difficulty by encoding the Boltzmann weight information to the argument u and thus is capable of directly capturing the ensemble averaged information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The second goal of this work is to discuss the computational models for capturing the global minimum of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Unlike most energy variational models, what plays a central role in many applications of VISMs [13,60] is the minimum value of the solvation energy functional (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' the solvation energy) but not the dynamical processes generated by the functional (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' the gradient flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For example, the calculation of the binding affinity for computational drug design [7, 40], which measures how strong a ligand (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' drug) binds to a biomolecule (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' protein), consists of the computation of solvation energies of the protein and ligand separ- ately and then as a complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Unfortunately, the VISMs in use, no matter sharp or diffuse interface, except for GFBVISM, all have non-convex structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Consequently, the corresponding computational models only calculate their local minima [19, 37, 45, 59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Further challenges arise in our new VISM, which is a total variation based model with a two-sided obstacle 0 ≤ u ≤ 1 and a computational domain of complex shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The conventional Euler-Lagrange approach to similar but simpler problems, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Rudin-Osher-Fatemi mod- els [46], faces several challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' First, with the presence of the obstacle, on a heuristic level with sufficiently smooth minimizer u and functional, one expects the first variations of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) with respect to u to take the form of a variational inequality, or equivalently, of a 1−Laplacian type equation involving a measure sup- ported on the coincidence sets {u = 0} and {u = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Unfortunately, both the functional and the minimizer fail to enjoy the required smoothness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Second, the computational models of total variation problems are ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 3 usually studied by certain regularization, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' non-parametric minimal surface equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, it is well known that the solutions of non-parametric minimal surface equations may admit jump discontinuities along the boundary unless the boundary satisfies certain geometric conditions [29,41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Such conditions are unrealistic for most biomolecules due to their complex shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The possible presence of jump discontinuities may become a source of inaccuracy in numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Section 3, we will develop a novel approach to regularize (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19), which enables us to relax the two-sided obstacle and avoid boundary jump discontinuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Most importantly, the first variations of the regularized problems can be rigorously derived, which generates a system of elliptic differential equations that has a unique solution – the global minimizer of the regularized problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This paves the way for the numerical implementations of our new ensemble average VISM, which will be investigated in several subsequent papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Section 2, we develop a new VISM for the ensemble average solvation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Section 3, we study regularizations of our new ensemble average energy functional and conduct variational analysis of the regularized problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Section 4, we compare our new model with some existing diffuse-interface VISMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Some technical lemmas are collected in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Appendix B, we provide some justifications for the robustness of our new models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Finally, in Section 5, we draw conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ensemble Averaged Solvation Energy List of Notations: Given any open sets U and Ω, U ⋐ Ω means that U ⊂ Ω and U stands for the closure of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We denote by LN and HN−1 the N−dimensional Lebesgue measure and the (N − 1)−dimensional Hausdorff measure, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any 1 ≤ p ≤ ∞, p′ is the H¨older conjugate of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The phrase l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='c is the abbreviation of lower semi-continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A Sharp Interface VISM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We consider a solute-solvent system with a fixed biomolecular structure contained in a bounded Lipschitz domain Ω ⊆ R3 using the grand canonical ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence, the chemical potential, temperature and volume of the system are kept constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose that the solute atoms are centered at x1, · · · , xNm and there are Nc ion species in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that the system undergoes K microstates, labelled by k = 1, 2, · · · , K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Microstate k occurs with a probability pk, in which the solute occupies a Caccioppoli subset Dk ⋐ Ω, or equivalently, Uk = Ω \\ Dk is the solvent region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' See Figure 1(A) for an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By our assumption, � k∈K pk = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For notational brevity, we put K = {1, 2, · · · , K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (a) (b) Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (A) Illustration of the microstate k: Dk is the solute region;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Uk is the solvent region;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (B) Domain decomposition for a grand canonical ensemble: Ωi is the region occupied by the solute in all microstates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ωs denotes the region occupied by the solvent in all microstates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ωt denotes the transition region where 0 ≤ u ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We define the sample space S to be the set of all distributions (of ions and solvent molecules) in the grand canonical ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then S = � k∈K Sk, where Sk is the sample space of all distributions in microstate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The following random variables will be used throughout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Z : S → K indicates the microstate that a distribution belongs to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cj(x) : S → R+ is the (number) concentration of the j-th ion species at x ∈ Ω in a given distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Solvent Z Soluteu=0 >n>0 Solvent 2 Solute o4 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS In microstate k, for every fixed x ∈ Ω, the (number) concentration of the j-th ion species at x can be represented by ck j (x) = E(Cj(x)|Z = k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here E(Cj(x)|Z = k) represents the conditional expectation of the random variable Cj(x) (with fixed x) given Z = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In this article, we treat the solute atoms as hard spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' More precisely, we consider the atom centered at xi, i = 1, · · · , Nm, as a sphere of radius σi > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', B(xi, σi), for which the solvent molecules and the ions cannot enter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the other hand, the solvent and ion concentrations are the same as their bulk concentrations in regions sufficiently far away from the solute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' As a consequence, such regions cannot be contained in the solute phase in any microstate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Based on these observations, we may assume that there are two open Lipschitz subsets, Ωi and Ωe, of Ω with �Nm i=1 B(xi, σi) ⊂ Ωi ⋐ Ω \\ Ωe and ∂Ω ⊂ ∂Ωe such that Ωi ⊂ Dk ⊂ Ω \\ Ωe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) By Assumption (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1), all ion species are located outside Ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let Ωt := Ω \\ � Ωi ∪ Ωe � be the transition region in microstate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In addition, we define Σ1 = ∂Ωi and Σ0 = ∂Ωe \\ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' See Figure 1(B) for an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The hydrophobicity of the amino acids in the biomolecule varies from position to position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To account for this phenomenon, we introduce a positive variable surface tension function θ ∈ C1(Ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Without loss of generality, we may extend θ to be a function in C1(Ω), still denoted by θ, such that θ0 ≤ θ(x) ≤ θ1, x ∈ Ω for some constants 0 < θ0 < θ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By [8, Lemma 1] � Ω θ(x)d|Df(x)| = sup �� Ω f(x)∇ · (θ(x)φ(x)) dx : φ ∈ C1 c (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' R3), ∥φ∥∞ ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It is clear that, for any f ∈ BV (Ω) with f ≡ 0 in Ωe and f ≡ 1 in Ωi, the value of � Ω θ(x)d|Df(x)| is independent of how θ is extended outside Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' As proposed in [22,23], the solvation free energy in microstate k predicted by a sharp-interface VISM is the minimum value of the following energy functional E(χDk) = Inp(χDk) + Ip(χDk, ψ), where ψ : Ω → R is the electrostatic potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The two components Inp and Ip are termed the nonpolar and polar portion of the solvation energy, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Σ = ∂Dk is considered as the solute-solvent interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For every fixed Dk, ψ = ψχDk is chosen to maximize Ip(χDk, ψ) among all ψ taking a predetermined Dirichlet boundary value ψD on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It seems to be a little counterintuitive that ψ maximizes the polar energy instead of minimizing it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' An explanation of this fact can be found in [9] for the case ψD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The nonpolar solvation energy consists of three parts: Inp(χDk) = � Ω θd|DχDk| + PhVol(Dk) + � Uk ρsU vdW(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' When θ ≡ γ for some constant γ > 0, the first term reduces to γPer(Dk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ω) with Per(Dk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ω) being the perimeter (in Ω) of the biomolecule region Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This term measures the disruption of intermolecular and/or intramolecular bonds that occurs when a surface is created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In addition, Vol(Dk) represents the volume of Dk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ph is the (constant) hydrodynamic pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, PhVol(Dk) is the mechanical work of creating the biomolecular size vacuum in the solvent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In the last integral, ρs is the (constant) solvent bulk density;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' and U vdW represents the Lennard-Jones potential [52];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' as such U vdW ∈ C∞(Ω \\ {x1, · · · , xNm}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Currently, one of the most widely-used polar solvation models is the Poisson-Boltzmann (PB) theory [1,26,27,31,33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In the framework of classical PB theory, the polar energy is expressed as Ip(χDk, ψ) = � Dk � ρ(x)ψ(x) − ϵp 2 |∇ψ(x)|2� dx − � Uk � �ϵs 2 |∇ψ(x)|2 + β−1 Nc � j=1 c∞ j (e−βqjψ(x) − 1) � � dx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) where ρ is an L∞-approximation of the solute partial charges supported in �Nm i=1 B(xi, σi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ϵp and ϵs are the dielectric constants of the solute and the solvent, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Usually, ϵp ≈ 1 for the protein and ϵs ≈ 80 for the water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' qj is the charge of ion species j, j = 1, 2, · · · , Nc, and β = 1/kBT, where kB is the Boltzmann ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 5 constant, T is the (constant) absolute temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' c∞ j is the (constant) bulk concentration of the j−th ionic species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For notational brevity, we put B(s) = β−1 � � Nc � j=1 c∞ j � e−βsqj − 1 � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In addition, we assume the charge neutrality condition Nc � j=1 c∞ j qj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) It is important to observe that B(0) = 0 and, by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3), B′(0) = 0 and B′(±∞) = ±∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Further, B′′(s) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We thus conclude that B(0) = min s∈RB(s) and B is strictly convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A closer look into the derivation of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) will help us to understand the physical meanings of ψ and Ip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In the PB theory, in every microstate k, the mean electrostatic potential ψ (among all distributions in microstate k) satisfies the fundamental equation of electrostatics, the Poisson equation: −∇ · [(ϵχDk + ϵsχUk)∇ψ] = ρ + Nc � j=1 qjck j in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) The average (number) concentration, ck j , of the j-th ion speices in microstate k, can be derived by minimizing the Helmholtz free energy for the fixed solute-solvent interface ∂Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Helmholtz free energy H in microstate k is expressed as Hk = Ek − TSk, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [26, 36], where E is the internal energy, S is the entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The subscript k is to indicate that the corresponding quantity is defined in microstate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here Ek = � Dk � ρψ − ϵp 2 |∇ψ|2� dx + � Uk � � Nc � j=1 qjck j ψ − ϵs 2 |∇ψ|2 − Nc � j=1 µjck j � � dx, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5) where µj is the chemical potential of the j-th ion species so that c∞ j = eβµj, and −TSk = β−1 � Uk Nc � j=1 ck j � ln(ck j ) − 1 � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hk is an “averaged” quantity because Ek is obtained by averaging the internal energy over all distributions in microstate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Setting the first variation of Hk with respect to ck j to be zero gives the Boltzmann distribution ck j (x) = χUk(x)c∞ j e−βqjψ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6) Plugging (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6) back into the expression of Hk yields Hk = � Dk � ρ(x)ψ(x) − ϵp 2 |∇ψ(x)|2� dx − � Uk � �ϵs 2 |∇ψ(x)|2 + β−1 Nc � j=1 c∞ j e−βqjψ(x) � � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7) Since the polar energy equals zero when ψ vanishes everywhere, following [48], a constant term β−1 � Uk Nc � j=1 c∞ j dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='8) should be added to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7), which yields the polar energy (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) in microstate k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that Nc � j=1 qjck j = −χUkB′(ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Plugging this expression into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) shows that ψ solves the PB equation: ∇ · ((ϵpχDk + ϵsχUk)∇ψ) − χUkB′(ψ) + ρ = 0 in Ω in microstate k, in the admissible set A = {ψ ∈ H1(Ω) : ψ|∂Ω = ψD} for some ψD ∈ W 1,∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='9) Consequently, ψ maximizes Ip(χDk, ·) in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 6 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS To sum up, in the framework of the PB theory, when deriving ensemble average polar solvation energy, one should use the mean electrostatic potential ψ among all microstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Consequently, instead of directly ensemble averaging Ip, one should optimize the Helmholtz free energy, which is obtained by averaging the internal energy among all micrstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Modeling of Ensemble Average Solvation Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ensemble Average Bulk Energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The argument we use to define the ensemble average solvation energy functional is u = � k∈K pkχDk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' As such, u(x) represents the probability of x ∈ Ω found in the solute phase among all microstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Figure 1(B) shows the range of u in different regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The definition of u enforces the following physical constraints u(x) ∈ [0, 1] for a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' x ∈ Ω (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10) and u = 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωi and u = 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11) Then the admissible set for u is defined as X = {u ∈ BV (Ω) : u satisfies Constraints (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The first step of constructing the ensemble average solvation energy functional is to derive formulas for ensemble average bulk energy contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume f ∈ L1(Ω) is the energy density function of some bulk energy F, that is, the energy F stored in a region E ⊂ Ω equals � E f(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The ensemble average bulk energies can be computed as follows ⟨Fi⟩ := � k∈K pk � Dk f dx = � Ω uf dx and ⟨Fe⟩ := � k∈K pk � Uk f dx = � Ω (1 − u)f dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The proof is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Indeed, we will only check the equality for ⟨Fi⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ⟨Fi⟩ = � k∈K pk � Dk f dx = � Ω � k∈K pkχDkf dx = � Ω uf dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ensemble Average Polar Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Following the discussion in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1, in the classic PB theory, we will use the mean electrostatic potential ψ among all possible distributions (in all microstates) to derive the “average” polar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let cj be the mean ion concentration of the j-th ion species among all possible distributions (in all microstates), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' cj(x) = E(Cj(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then cj(x) = E[E(Cj(x)|Z = k)] = � k∈K pkck j (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='12) Because E[ϵpχDk(x) + ϵsχUk(x)] = u(x)ϵp + (1 − u(x))ϵs =: ϵ(u)(x), ϵ(u) can be regarded as the “mean” dielectric coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Now the PB theory suggests that ψ ∈ A solves −∇ · [ϵ(u)∇ψ] = ρ + Nc � j=1 qjcj in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To derive the Boltzmann distribution that gives cj, we first compute the ensemble average of E, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5), by using Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='12) ⟨E⟩ = � k∈K pkEk = � Ω � �ρψ + Nc � j=1 qjcjψ − ϵ(u) 2 |∇ψ|2 − Nc � j=1 µjcj � � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, the entropy cannot be ensemble averaged by using Sk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Instead, by the definition of entropy −TS = β−1 � {u<1} Nc � j=1 cj [ln(cj) − 1] dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 7 The domain of integration {u < 1} is due to the fact that cj vanishes identically in {u = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Setting the first variation of the Helmholtz free energy H = ⟨E⟩ − ST with respect to cj to be zero yields cj = χ{u<1}c∞ j e−βqjψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='13) After plugging (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='13) into the expression of H, as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='8), the constant term β−1 � Ω χ{u<1} Nc � j=1 c∞ j dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='14) needs to be added to H to adjust the reference state of the zero energy in the grand canonical ensemble under consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Finally, we arrive at ensemble average polar energy Ip(u, ψ) = H + β−1 � Ω χ{u<1} Nc � j=1 c∞ j dx = � Ω � ρψ − ϵ(u) 2 |∇ψ|2 − χ{u<1}B(ψ) � dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='15) On the other hand, replacing cj in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='13) shows that ψ ∈ A solves ∇ · [ϵ(u)∇ψ] − χ{u<1}B′(ψ) + ρ = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='16) Hence, ψ maximizes Ip(u, ·) in A for any fixed u ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Although, for every fixed j, there can be multiple choices of ck j that minimize H, any such choice gives rise to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='13) by means of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To see this, we set the first variation of H with respect to ck j to be zero and infer that cj = c∞ j e−βqjψ in Uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Going through all k, one readily get (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ensemble Average Interfacial Energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Based on Formulation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='15), one can define L(u, ψu) = ⟨Inp(χDk)⟩ + Ip(u, ψu), where ψu maximizes Ip(u, ·) in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It only remains to calculate the ensemble average of interfacial energy contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Before doing that, we will first state a technical lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let {Dk}k∈K be a family of Caccioppoli sets with Dk ⋐ Ω and pk ∈ [0, 1] with � k∈K pk = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then for each ε > 0, there exists another family { �Dk}k∈K of Caccioppoli sets satisfying �Dk ⋐ Ω and H2(∂∗ �Dk ∩ ∂∗ �Dj) = 0, ∀k, j ∈ K, k ̸= j, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17) with ∂∗D being the reduced boundary of a Caccioppoli set D, such that |L(u, ψu) − L(�u, ψ�u)| < ε, u = � k∈K pkχDk and �u = � k∈K pkχ � Dk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here, for every v ∈ X, ψv maximizes Ip(v, ·) in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In view of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2, it suffices to construct a family of Caccioppoli sets {Dk,j}∞ j=1 satisfying Assumption (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17) such that lim n→∞ ∥χDk − χDk,n∥1 = 0, lim n→∞ � Ω θd|DχDk,n| = � Ω θd|DχDk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='18) Following the proof of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3, we can show that there exists a family of smooth functions {fk,n}∞ n=1 such that 0 ≤ fk,j ≤ 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ω and lim j→∞ ∥χDk − fk,j∥1 = 0, lim j→∞ � Ω θd|Dfk,j| = � Ω θd|DχDk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the Sard’s Theorem, there exists some S ⊂ (0, 1) with L1((0, 1) \\ S) = 0 such that, for all t ∈ S, the super-level set Et k,j = {fk,j > t} has a smooth boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The coarea formula implies that � Ω θd|DχDk| = lim j→∞ � Ω θd|Dfk,j| = lim j→∞ � 1 0 � Ω θd|DχEt k,j| dt ≥ � 1 0 lim inf j→∞ � Ω θd|DχEt k,j| dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, for some t ∈ S, lim inf j→∞ � Ω θd|DχEt k,j| ≤ � Ω θd|DχDk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 8 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS Pick the subsequence {jn}∞ n=1 such that lim inf j→∞ � Ω θd|DχEt k,j| = lim n→∞ � Ω θd|DχEt k,jn |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the other hand, we can infer from the Chebyshev’s Theorem that L3(Et k,jn \\ Dk) ≤ 1 t ∥fk,jn − χDk∥1, L3(Dk \\ Et k,jn) ≤ 1 1 − t∥fk,jn − χDk∥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that lim n→∞ ∥χEt k,jn − χDk∥1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, it follows from [8, Corollary 1] that �Dk,n = Et k,jn satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='18) with Dk,n replaced by �Dk,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that H2(∂χ � Dk,n ∩ ∂χ � Dj,n) > 0 for some k, j ∈ K and k ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since ∂ �Dk,n is C2, there exists some a > 0 such that ∂ �Dk,n has a tubular neighborhood Ba(∂ �Dk,n) of width a > 0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [28, Exercise 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11] and [34, Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Denote by ν the outward unit normal of �Dk,n pointing into Ω \\ �Dk,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then the map defined by Λ : ∂ �Dk,n × (−a, a) → R3 : (x, r) �→ x + rν(x), is a C1-diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let Γr := Λ(∂ �Dk,n, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then, for every i ∈ K, there are at most countably many r ∈ (−a, a) such that H2(Γr ∩ ∂χ � Di,n) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence we can find r ∈ (−a, a) sufficiently close to 0 such that H2(Γr ∩ ∂χ � Di,n) = 0, ∀i ∈ K and Γr ⊂ Ωt and ���χDk,n − χ � Dk,n ��� 1 + ���� � Ω θd|DχDk,n| − � Ω θd|Dχ � Dk,n| ���� < 1/n, where Dk,n is the region enclosed by Γr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Modifying all �Dk,n, k ∈ K, in such a way yields a family of smooth sets {Dk,n}k∈K satisfying Assumption (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ The above lemma tells us that, for any grand canonical ensemble, we can slightly modify the solute regions {Dk}k∈K to fulfil (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17) so that the changes in the corresponding solvation energy is “infinitesimally” small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence, we can always assume that {Dk}k∈K satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that {Dk}k∈K satisfies (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then � Ω θ d|Du| = � k∈K pk � Ω θ d|DχEk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the De Giorgi’s structure theorem, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [24, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2], χDk are 2-rectifiable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' there exist Borel sets Fk and C1-functions gk,n : Uk,n → R3, Uk,n ⊂ R2 compact, such that ∥∂Dk∥(Fk) = 0 and ∂∗Dk = Fk ∪ ∞ � n=1 gk,n(Uk,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pick arbitrary ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For every k ∈ K, we can find Nk = Nk(ε) such that ∥∂Dk∥(Ω ∩ ∞ � n=Nk+1 gk,n(Uk,n)) ≤ ε Kθ1pk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Recall K = |K|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, we obtain compact sets Gk,ε := Nk(ε) � n=1 gk,n(Uk,n), k ∈ K, and Gε := � k∈K Gk,ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the definition of the reduced boundary, the unit normal ν exists everywhere on Gε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the Urysohn’s Lemma, there exists a continuous function φ : R3 → R3 such that φ|Gε = ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Restricting φ on Ω and applying Stone-Weierstrass, we can find a smooth function φε : Ω :→ R3 such that ∥φε − φ∥L∞(Gε) < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 9 Then, in a neighborhood H ⋐ Ω of Gε, we have |φε| > 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pick h ∈ C∞ 0 (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [0, 1]) in such that h ≡ 1 in H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Setting ψε(x) = h(x) φε(x) |φε(x)|, it is an easy task to check that 1 ≥ ψε(x) · ν(x) ≥ 1 − ε 1 + ε, x ∈ Gε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By [8, Lemma 1], we can estimate � Ω θ d|Du| ≥ � Ω (θψε) · dDu = � k∈K pk � Ω θψε · DχDk dx = � k∈K pk � Gk,ε θψε · DχDk dx − ε ≥ � k∈K pk(1 − ε) 1 + ε � Gk,ε θ d|DχDk| − ε ≥ � k∈K pk(1 − ε) 1 + ε �� Ω θ d|DχDk| − � Ω\\Gk,ε θ d|DχDk| � − ε = � k∈K pk(1 − ε) 1 + ε � Ω θ d|DχDk| − 2ε − ε2 1 + ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since ε is arbitrary, we have � Ω θ d|Du| ≥ � k∈K pk � Ω θ d|DχDk|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The inverse inequality is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We have thus proved the assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Total Energy Functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Based on Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5, the ensemble average nonpolar energy is given by Inp(u) := ⟨Inp(χDk)⟩ = � Ω θd|Du| + � Ω � Phu + ρs(1 − u)U vdW� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Using Formulation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='15) for the polar energy, we can define the ensemble average total solvation energy as the minimum value of E(u) = � Ω θd|Du| + � Ω � Phu + ρs(1 − u)U vdW� dx + � Ω � ρψ − ϵ(u) 2 |∇ψ|2 − χ{u<1}B(ψ) � dx (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) in X and ψ = ψu is determined via the generalized PB equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='16);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' or equivalently, we seek the value of L(u, ψ) = Inp(u) + Ip(u, ψ) evaluated at its saddle points in X × A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11) is defined in terms of Ωi and Ωe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Appendix B, we will justify the robustness of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) by showing that its minimum value depends continuously on Ωi and Ωe in a proper topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Analysis of Ensemble Average Solvation Energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' E has a global minimizer in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We infer from Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1 that Ip(u, ψu) ≥ −ϵs∥ψu∥2 H1 − (∥B(ψu)∥∞ + ∥ρ∥∞∥ψu∥∞) Vol(Ω) ≥ C (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='20) for some C independent of u ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here and in the sequel, for any u ∈ X, ψu always denotes the solution of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, E is bounded from below and we can pick up a minimizing sequence {˜un}∞ n=1 ⊂ X of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, E is not l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To prove the existence of a minimizer, we will use a relaxation technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For m ∈ N, we define Lm(u, ψ) = Inp(u) + � Ω � ρψ − ϵ(u) 2 |∇ψ|2 − (1 − u)1/(2m+1)B(ψ) � dx and Em(u) = Lm(u, ψu,m), where ψu,m ∈ A solves ∇ · [ϵ(u)∇ψ] − (1 − u)1/(2m+1)B′(ψ) + ρ = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 10 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS Note that ψu,m is the unique maximizer of Lm(u, ·) in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Easy computations show that Em is strictly convex and l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in X with respect to convergence in L1(Ω) in view of [8, Corollary 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the direct method of calculus of variation, Em has a unique minimizer um in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Set M = inf u∈X E(u), Mm = Em(um).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Claim 1: lim m→∞ Mm = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof of Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We first show that Mm is monotonically decreasing and Mm ≥ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Indeed, Mm ≥ Lm(um, ψum) ≥ L(um, ψum) ≥ M, where ψum is the solution of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) with u = um, and similarly Mm ≥ Lm(um, ψum+1,m+1) ≥ Lm+1(um, ψum+1,m+1) ≥ Mm+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Given any ε > 0, for sufficiently large n M ≤ E(˜un) ≤ M + ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the other hand, since, for any fixed u ∈ X, lim m→∞ ∥(1 − u)1/(2m+1) − χ{u<1}∥1 = 0, Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 implies that M ≤ Em(˜un) ≤ M + 2ε (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='21) for sufficiently large n and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The arbitrariness of ε shows that lim m→∞ Mm = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ■ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='21) and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1 imply that ∥um∥BV is uniformly bounded and, by [24, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4], there exists a subsequence of {um}∞ m=1, not relabelled, such that as m → ∞ um → u0 in L1(Ω) for some u0 ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then for any m ∈ N, by [8, Lemma 2] Mm ≥ Lm(um, ψu0) ≥ L(um, ψu0) ≥ L(u0, ψu0) ≥ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In view of Claim 1, pushing m → ∞ shows that u0 is a minimizer of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that the convexity of E implies that any local minimizer of E must be global.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A regularization approach to solvation energy calculatiion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Regularization by p-energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Regularization is a popular approach in the derivation of computational models of non-differentiable functionals like E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here we will develop a p-energy regularization approach based on our previous work [14, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In particular, this approach enables us to relax the two-sided obstacle, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10), in the variational analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In the rest of this section, we will assume U vdW ∈ C∞(Ω \\ �Nm i=1 B(xi, σi), R−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This can be realized by taking U vdW as the attractive part of Lennard-Jones potential [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that this assumption is reasonable in the solvation analysis of real-world macromolecules since u ≡ 1 in Ωi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The L-J potential can be divided into attractive and repulsive parts in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For instance, we can take a Weeks-Chandler-Andersen (WCA) decomposition based on the original WCA theory [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Define pn = 2n 2n−1 for n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We are interested in sufficiently large n so that pn ∈ (1, ϵs/(ϵs − ϵp)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Denote the set of all such n by N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let Inp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n(u) = γ � Ω |∇u|pn dx + � Ω � Phupn + ρs(1 − upn)U vdW� dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For the polar portion, due to the extra non-differentiable term χ{u<1}, we will consider the regularization of Em in view of Claim 1 in the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' More precisely, define Ip;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(u, ψ) = � Ω � ρψ − 1 2ϵn(u)|∇ψ|2 − (pn − upn)1/(2m+1)B(ψ) � dx, where ϵn(u) = ϵpupn + ϵs(1 − upn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We seek to minimize Em,n(u) = Inp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n(u) + Ip;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(u, ψu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n), ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 11 in the admissible sets Xn = {u ∈ W 1,pn(Ω) : |u|pn ≤ pn a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ω and u satisfies Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11)}, where ψu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ A solves ∇ · (ϵn(u)∇ψ) − (pn − upn)1/(2m+1)B′(ψ) + ρ = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) Define Lm,n(u, ψ) = Inp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n(u) + Ip;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(u, ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then by Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1, it is not hard to check that u is a global minimizer of Em,n in Xn iff (u, ψu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) is a saddle point of Lm,n in Xn × A, where ψu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n solves (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' See [14, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3] for a related problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For every n ∈ N and m ∈ N, Em,n has a unique minimizer in Xn, which actually belongs to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To show the lower semi-continuity of Em,n in Xn, we first observe that Qn(w) = � Ω (θ|∇w|pn + Phupn) dx, w ∈ Wn := {w ∈ W 1,pn(Ω) : w satisfies Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11)}, is an equivalent norm of Wn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, Qn is weakly l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Wn, which further implies that Em,n is weakly l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Xn in view of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The existence and uniqueness of a minimizer of Em,n can be proved by the direct method of calculus of variation and the strict convexity of Em,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It remains to show that the minimizer umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n of Em,n in Xn indeed belongs to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n be the solution to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) with u = umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' If L3({umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n > 1} ∪ {umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n < 0}) > 0, define ¯umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(x) = � � � � � 1, if umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(x) > 1, 0, if umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(x) < 0, umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(x), elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then ¯umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ X ∩ Xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' and direct computations show that Lm,n(¯umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) < Lm,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence, umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Asymptotic behaviour of the regularized energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' When n ∈ N, let umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n be the unique minimizer of Em,n in Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The following theorem establishes the asymptotic behavior of Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that Σi ∈ C2, i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' As n → ∞, umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n converges to a minimizer of E in Lp(Ω) for any 1 ≤ p < ∞ and weak∗ in BV (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Moreover, lim n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) = min u∈X Em(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The constants Ci in this proof are independent of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' First, fix arbitrary v ∈ Xn, we have Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≤ Em,n(v) ≤ � Ω θ|∇v|pn dx + 2PhVol(Ω \\ Ωi) − � Ωt ρsU vdW dx + ∥ψv∥∞∥ρ∥∞Vol(Ωi) ≤ C1, where ψv ∈ A solves (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) with u = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A similar computation as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='20) shows that C1 ≥ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≥ � Ω θ|∇umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n|pn dx + Ph∥umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n∥pn pn + � Ω\\Ωi ρsU vdW dx + Ip;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≥ �� Ω θd|Dumin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n| �pn �� Ω θ dx �1−pn + Ph∥umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n∥pn 1 (Vol(Ω))1−pn + C2, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) where ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ A solves (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) with u = umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We thus infer from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) that ∥umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n∥W 1,1 = ∥umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n∥BV ≤ C3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then [24, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4] implies that for any subsequence of {umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n}∞ k=1, there exists a further sub- sequence, not relabelled, converging to some u0 ∈ X in L1(Ω) and weak∗ in BV (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Riesz-Thorin interpolation theorem then implies that umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n → u0 in Lp(Ω) for all p ∈ [1, ∞) as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Further, it follows from [8, Corollary 1], (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 that Em(u0) ≤ lim inf n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 12 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS On the other hand, for sufficiently large j ∈ N, we define wj(x) = � � � � � 1, x ∈ Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j 0, x ∈ Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j u0(x), elsewhere, where Ωl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j := {x ∈ Ω : dist(x, Ωl) < 1/j} with l ∈ {i, e}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We will show that lim sup n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≤ Em(wj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3 implies that we can find a sequence {wj,h}∞ h=1 such that wj,h ∈ C∞(Ω) ∩ Xn for all n and wj,i → wj in L1(Ω) and � Ω θd|Dwj,h| → � Ω θd|Dwj| as h → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n minimizes Em,n in Xn ⊃ C∞(Ω) ∩ Xn, we have Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≤ Em,n(wj,h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pushing n → ∞, the dominated convergence theorem implies that lim sup n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≤ Em(wj,h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then Lemmas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3 immediately yield (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Now Lemmas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4 imply that lim sup n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) ≤ Em(u0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) Let umin be a global minimizer of Em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It is important to notice that the proof of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) actually holds for any element of X, in particular umin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hence Em(umin) ≥ lim n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) = Em(u0) ≥ Em(umin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, u0 is indeed a global minimizer of Em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ The following conclusion of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 can be easily obtained in view of Claim 1 in the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Under the conditions of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2, lim m→∞ lim n→∞ Em,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) = min u∈X E(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It seems to be more natural to use non-parametric minimal surface type functionals to regularize Em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For example, when θ ≡ γ, one may consider the following regularization of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) Eε(u) = γ � Ω � ε + |∇u|2 dx + � Ω � Phupn + ρs(1 − upn)U vdW� dx + Ip;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n(u, ψu) with ε > 0, where ψu ∈ A solves (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, the minimizer of Eε may admit jump discontinuous along Σi unless Ωt satisfies certain geometric conditions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' the mean curvature of Σi is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' See [29,41] for instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Such geometric conditions are unrealistic for most biomolecules due to their complex shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The possible presence of jump discontinuities may become a source of inaccuracy in numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Critical Points of the regularized energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n be the minimizer of Em,n in Xn and ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ A be the solution of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) with u = umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n ∈ X, given any φ ∈ C∞ 0 (Ωt), for sufficiently small ε > 0, whenever t ∈ (−ε, ε), umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n + tφ ∈ Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We thus have lim t→0 Lm,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n + tφ, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) − Lm,n(umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n solves ∇ · � θ|∇u|pn−2∇u � − upn−1Vm,n(u, ψ) = 0 in Ωt in the weak sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here Vm,n(u, ψ) = Ph − ρsU vdW + B(ψ) (2m + 1)(upn − pn)2m/(2m+1) + ϵs − ϵp 2 |∇ψ|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 13 Combining with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1), (umin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n, ψmin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='m,n) is a weak solution to the following system � � � � � � � � � � � � � � � � � � � � � ∇ · (ϵn(u)∇ψ) + (pn − upn)1/(2m+1) Nc � j=1 c∞ j qje−βψqj + ρ = 0 in Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ψ = ψD on ∂Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ∇ · � θ|∇u|pn−2∇u � − upn−1Vm,n(u, ψ) = 0 in Ωt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' u = 1 in Ωi ∪ Σ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' u = 0 in Ωe ∪ Σ0 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5) in ˚ Xn × A, where ˚ Xn = {u ∈ W 1,pn(Ω) : |u|pn < pn a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ω and u satisfies Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We are interested in the case of sufficiently large n and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5) has a unique solution (u, ψ) in ˚ Xn × A, which actually belongs to X × A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (i) Let Cm,n be the set of all solutions of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5) in ˚ Xn × A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that (u, ψ) ∈ Cm,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then −∇ · � θ|∇u|pn−2∇u � = −upn−1Vm,n(u, ψ) in Ωt (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6) in the distributional sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since ∇ · � θ|∇u|pn−2∇u � ∈ W −1,p′ n(Ωt), it follows that upn−1Vm,n(u, ψ) ∈ W −1,p′ n(Ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that u− := min{u, 0} ∈ W 1,pn 0 (Ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Multiplying both sides of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6) by u− and integrating over Ωt yield 0 ≤ � Ωt θ|∇u−|pn dx = − � Ωt |u−|pnVm,n(u, ψ) dx ≤ 0 because Vm,n(u, ψ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This shows that u− = 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωt and thus 0 ≤ u a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For the essential upper bound of u, we consider w = 1 − u, which weakly solves −∇ · � θ|∇w|pn−2∇w � = (1 − w)pn−1Vm,n(u, ψ) in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Following the argument above, one has for w− ∈ W 1,pn 0 (Ωt) that 0 ≤ � Ωt θ|∇w−|pn dx = � Ωt (1 − w)pn−1w−Vm,n(u, ψ) dx ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that w− = 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωt and thus u ≤ 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, (u, ψ) ∈ X × A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (ii) Suppose that (v, ψv), (u, ψu) ∈ Cm,n satisfy Lm,n(v, ψv) < Lm,n(u, ψu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since v − u ∈ W 1,pn 0 (Ωt) ∩ L∞(Ωt), we have � Ωt � θ|∇u|pn−2∇u · ∇(v − u) + upn−1V (ψu)(v − u) � dx = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7) By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1, it holds that Lm,n(v, ψu) ≤ Lm,n(v, ψv) < Lm,n(u, ψu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Put h = Lm,n(v, ψu) − Lm,n(u, ψu) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that ˚ Xn is convex in W 1,pn(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Put J(t) = (1 − t)u + tv ∈ ˚ Xn, t ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then by the convexity of Lm,n(·, ·) in its first argument, Lm,n(J(t), ψu) − Lm,n(u, ψu) ≤ (1 − t)Lm,n(u, ψu) + tLm,n(v, ψu) − Lm,n(u, ψu) ≤ th < 0 for all t ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dividing both sides by t and pushing t → 0+ in the above inequality yield pn � Ωt � θ|∇u|pn−2∇u · ∇(v − u) + upn−1Vm,n(u, ψu)(v − u) � dx ≤ h < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A contradiction to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We thus infer that Lm,n(·, ·) is constant on Cm,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' From the uniqueness of a minimizer of Em,n in Xn, we infer that (u, ψu) = (v, ψv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ 14 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A comparison with GFBVISM It is of both theoretical and practical importance to understand the difference between the proposed model (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) and the existing VISMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In this section, we will compare (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) with a closely related solvation model, geometric-flow based VISM (GFBVISM), whose original formulation [11] reads as E(2)(u) = Inp(u) + I(2) p (u, ψ), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) where I(2) p (u, ψ) = � Ω � ρψ − ϵ(u) 2 |∇ψ|2 − (1 − u)B(ψ) � dx, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) and ψ ∈ A solves ∇ · [ϵ(u)∇ψ] − (1 − u)B′(ψ) + ρ = 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) Although (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='19) shares some common feature with GFBVISM, they differ in several fundamental aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' First, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) was introduced in an ad hoc way to create a transition region between the solute and solvent without an explanation of the physical meanings of the transition parameter u and the predicted energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Second, Constraints (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11) are absent in the original formulation of GFBVISM [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Without these two conditions, GFBVISM may admit non-physical minimizers, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' u is trivial or u < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Third and most importantly, the proposed model corrects the derivation of the ensemble average polar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Due to Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2, one may guess that I(2) p approximates the ensemble average polar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, Formulation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) is questionable in the sense that it is derived from an erroneous “entropy” formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To see this, on a heuristic level, one can ensemble average the entropy and obtain −T⟨S⟩ = −T � k∈K pkSk = β−1 � k∈K pk � Ω Nc � j=1 ck j � ln(ck j ) − 1 � dx and ⟨H⟩ := ⟨E⟩ − T⟨S⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In view of Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3, we put the first variations of ⟨H⟩ with respect to all ck j to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This gives (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It follows from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='12) that cj(x) = � k∈K pkck j (x) = � k∈K pkχUk(x)ck j (x) = (1 − u(x))c∞ j e−βqjψ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) Plugging (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) yields (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Using the expression (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4) of cj in ⟨H⟩ and adding a constant term β−1 �Nc j=1 c∞ j � Ω(1 − u)dx to adjust the state of zero energy as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='14) give the polar energy formulation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' However, from a statistical mechanics point of view, the choice of the “entropy” ⟨S⟩ and “Helmholtz free energy” ⟨H⟩ in the above derivation are incorrect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, the polar energy formulation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='15) is more physical than (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Conclusion Diffuse-interface variational implicit solvation models (VISM) have achieved great success in solvation energy calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In contrast, on a theoretical level, several questions concerning the diffuse-interface VISMs remain open: (1) What is the physical meaning of a diffuse interface?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2) What energy does a diffuse-interface VISM predict?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In this paper, a novel diffuse-interface VISM is introduced and analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Based on statistical mechanics and geometric measure theory, we show that the diffuse interface profile u(x) represents the probability of a point x ∈ Ω found in the solute phase among all microstates in the grand canonical ensemble under consideration and the new VISM is capable of capturing the ensemble average solvation energy, the experimentally observable energy in solvation processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The significance of the work is multi-fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' First, it illuminates the physical meaning of a diffuse interface in VISM and unveils the relationship between VISM and ensemble average solvation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Second, in the routine calculation of the ensemble average solvation energy, one needs to carry out molecular dynamics (MD) simulations to obtain thousands of solute-solvent configures (snapshots) and perform energy calculations for each snapshot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By rigorously modeling the impact of conformational changes in the solvent media, the proposed model will reproduce the ensemble average solvation energy by means of one diffuse-interface configuration, which is expected to be significantly faster than ensemble averaging the energies computed from thousands of snapshots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Last but not least, the modeling paradigm in this work seems to be applicable to a large variety of multi-scale problems with both interfacial and bulky energy components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 15 A new computational model is proposed to capture the global minimum of the ensemble average VISM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The robustness of the model is justified by verifying the continuous dependence of the predicted energy on the model constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Numerical implementations based on the proposed computational model and further theoretical analysis of the new VISM will be conducted in a series of future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Some Technical Lemma The following two lemmas can be obtained by following the proofs of [14, Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that a, b, c ∈ L∞(Ω) satisfy 0 < L0 ≤ a ≤ L1, 0 ≤ b ≤ L2, ∥c∥∞ ≤ L3 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) for some constants Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then the functional G(ψ) = � Ω �a 2|∇ψ|2 + bB(ψ) − cψ � dx has a unique minimizer ψ ∈ A for every ψD ∈ W 1,∞(Ω), c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='9), or equivalently, ψ weakly solves � ∇ · (a∇ψ) − bB′(ψ) + c = 0 in Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ψ = ψD on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Moreover, for some constant C∞ depending only on Li and ψD ∥ψ∥H1 + ∥ψ∥∞ ≤ C∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let an, bn, c ∈ L∞(Ω) satisfy (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1), n = 0, 1, · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that ψn is the unique minimizer of Gn(ψ) = � Ω �an 2 |∇ψ|2 + bnB(ψ) − cψ � dx in A for some ψD ∈ W 1,∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' If an → a0 and bn → b0 in L1(Ω) as n → ∞, then ψn → ψ0 in H1(Ω), and lim n→∞ Gn(ψn) = G0(ψ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assuming that Σi ∈ C2, i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For sufficiently large j ∈ N, we define Ωl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j := {x ∈ Ω : dis(x, Ωl) < 1/j}, l ∈ {i, e}, and Yj := {u ∈ X : u ≡ 1 in Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j and u ≡ 0 in Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For every f ∈ Yj, there exists a sequence {fn}∞ n=1 ⊂ C∞(Ω) satisfying Constraints (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11) such that as n → ∞ fn → f in L1(Ω) and � Ω θd|Dfn(x)| → � Ω θd|Df(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any δ > 0, let ηδ be a positive Friedrichs mollifying kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any n ∈ N, we choose εn > 0 so small that fn := ηεn ∗ f satisfies Constrain (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='11) and ∥fn − f∥1 ≤ 1/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Constraint (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='10) is obviously fulfilled by fn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Thus, lim n→∞ ∥fn − f∥1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [8, Corollary 1] implies that � Ω θd|Df(x)| ≤ lim inf n→∞ � Ω θd|Dfn(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Extending f to be identically zero outside Ω, we can consider f as an element in BV (R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any φ ∈ C1 0(Ω) with ∥φ∥∞ ≤ 1, we have � Ω fn∇ · (θφ) dx = � Ω (ηεn ∗ f) ∇ · (θφ) dx = � Ω f∇ · [ηεn ∗ (θφ)] dx = � Ω f∇ · � θ �ηεn ∗ (θφ) θ �� dx ≤ ∥(ηεn ∗ θ)/θ∥L∞(Ω) � Ω θd|Df(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here (ηεn ∗ θ)(x) = � Ω ηεn(x − y)θ(y) dy for x ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Taking supremum over all such φ, we derive that � Ω θd|Dfn(x)| ≤ ∥(ηεn ∗ θ)/θ∥L∞(Ω) � Ω θd|Df(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the uniform continuity of θ, it is not a hard task to verify that lim n→∞ ∥(ηεn ∗ θ)/θ∥L∞(Ω) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, the above inequality implies that lim sup n→∞ � Ω θd|Dfn(x)| ≤ � Ω θd|Df(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ 16 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For every f ∈ X, we define {fj}∞ j=1 ⊂ BV (Ω) by fj(x) = � � � � � 1, x ∈ Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j 0, x ∈ Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j f(x), elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then fj → f in L1(Ω) and � Ω θd|Dfj(x)| → � Ω θd|Df(x)| as j → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The proof for fj → f in L1(Ω) is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' So we will only show the second part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In the rest of the proof, it is assumed that i ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Denote by νΣi the outward pointing (into Ωt) unit normal of Σi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Following the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4, the map Λi : Σi × (−a, a) → R3 : (x, r) �→ x + rνΣi(x) is a C1-diffeomorphism for sufficiently small a > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' and Σi,r := Λi(Σi, r) is a C1-hypersurface, whose outward unit normal is denoted by νi,r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In particular, νi,0 = νΣi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We define the orientation of Σi,r in such a way that νi,r are continuous vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By the inverse function theorem, there exist two maps Pi ∈ C1(Ba(Σi), Σi) and di ∈ C1(Ba(Σi), (−a, a)), where Pi is the nearest point projection onto Σi and di is the signed distance to Σi with di(x) > 0 for x ∈ Ba(Σi) ∩ Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Note that di is indeed C2, see [44] for example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We can define two C1-vector fields Vi : Ba(Σi) → R3 by Vi(x) = νi,di(x)(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any r ∈ (0, a), put Ui,r := Br(Σi)∩Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Due to the trace theorem of BV -functions, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [24, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1], we have for all f ∈ X that � Ui,r f∇ · (θVi) dx + � Ui,r (θVi) · d[Df] = � Σi,r θTrf dH2 − � Σi θTrf dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Here Trf is the trace of f|Ui,r on ∂Ui,r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' and [Df] is the vector-valued measure for the gradient of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pushing r → 0+ above yields that lim r→0+ � Σi,r θTrf dH2 = � Σi θTrf dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2) [8, Lemma 1] implies that � Ω θd|Df(x)| ≤ lim inf j→∞ � Ω θd|Dfj(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Observe that ∂Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j = Σ1,1/j and ∂Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='j\\∂Ω = Σ0,1/j for sufficiently large j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Denote by �Trf the trace of f|Ωt\\(U0,r∪U1,r) on ∂ [Ωt \\ (U0,r ∪ U1,r)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For any u ∈ X, we will show � Ω θd|Du(x)| = � Ωt\\(U0,r∪U1,r) θd|Du(x)| + � i=0,1 � Ui,r θd|Du(x)| + � i=0,1 � Σi θ|i − Tru| dH2 + � i=0,1 � Σi,r θ ���Tru − �Tru ��� dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) Indeed, for any φ ∈ C1 c (Ω) with ∥φ∥∞ ≤ 1, � Ω u∇ · (θφ) = − � Ωt\\(U0,r∪U1,r) (θφ) · d[Du] − � i=0,1 � Ui,r (θφ) · d[Du] − (−1)i � i=0,1 � Σi θ(i − Tru)φ · νΣi dH2 − (−1)i � i=0,1 � Σi,r θ(Tru − �Tru)φ · νi,r dH2 ≤ � Ωt\\(U0,r∪U1,r) θd|Du(x)| + � i=0,1 � Ui,r θd|Du(x)| + � i=0,1 � Σi θ|i − Tru| dH2 + � i=0,1 � Σi,r θ ���Tru − �Tru ��� dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 17 Taking supremum over all φ ∈ C1 c (Ω) with ∥φ∥∞ ≤ 1 shows that the LHS of (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) is less than or equal to the RHS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' To show the equality in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3), note that � i=0,1 � Σi (θφ) · d[Du] + � i=0,1 � Σi,r (θφ) · d[Du] =(−1)i � i=0,1 � Σi θ(i − Tru)φ · νΣi dH2 + (−1)i � i=0,1 � Σi,r θ(Tru − �Tru)φ · νi,r dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Taking φ ∈ C1 c (Ω) with ∥φ∥∞ ≤ 1 such that φ = (−1)i+1Vi in U i,r, we can infer from the above equality that � i=0,1 � Σi θd|Du| + � i=0,1 � Σi,r θd|Du| ≥ � i=0,1 � Σi θ|i − Tru| dH2 + � i=0,1 � Σi,r θ ���Tru − �Tru ��� dH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Therefore, the other direction of the inequality in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) holds and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3) is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that � Ω θd|Dfj(x)| − � Ω θd|Df(x)| = � i=0,1 �� Σi,1/j θ|i − �T1/jf| dH2 − � Σi θ|i − T1/jf| dH2 − � Ui,1/j θd|Df(x)| � − � i=0,1 �� Σi,1/j θ ���T1/jf − �T1/jf ��� dH2 � ≤ � i=0,1 �� Σi,1/j θ|i − T1/jf| dH2 − � Σi θ|i − T1/jf| dH2 − � Ui,1/j θd|Df(x)| � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' From (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2), we infer that lim j→∞ �� Σi,1/j θ|i − T1/jf| dH2 − � Σi θ|i − T1/jf| dH2 − � Ui,1/j θd|Df(x)| � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' This implies that lim sup j→∞ � Ω θd|Dfj(x)| ≤ � Ω θd|Df(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Continuous dependence on Ωi and Ωe Assume that {�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 and {�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 are two sequences of Lipschitz subdomains in Ω with Nm � j=1 B(xj, σj) ⊂ �Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n ⋐ Ω \\ �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and ∂Ω ⊂ ∂�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We consider the family of energy functionals �En defined by replacing Ωi and Ωe by �Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n in E, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The corresponding admissible sets are � Xn = {u ∈ BV (Ω) : 0 ≤ u ≤ 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in Ω and u = 1 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in �Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and u = 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' in �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then for each n, there is a unique minimizer �umin,n of �En in � Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The lemma below can be proved by following the proof of [14, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2] line by line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that {�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 and {�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 satisfy �Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n ⊆ Ωi and �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n ⊆ Ωe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose further that χ�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n → χΩi and χ�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n → χΩe in L1(Ω) as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then, lim n→∞ �En(�umin,n) = E(umin), where umin is a minimizer of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Recall that the Hausdorff metric on compact subsets K ⊂ R3 is defined by dH(K1, K2) = max{ sup x∈K1 d(x, K2), sup x∈K2 d(x, K1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Given a closed surface Σ in R3, its normal bundle is given by NΣ = {(q, νΣ(q)) : q ∈ Σ} ⊂ R3 × R3, 18 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS where νΣ(q) is the outward unit normal of Σ at q ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' When {�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 and {�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 approximate Ωi and Ωe from the exterior, the following counterpart of Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose that Σj ∈ C2, j = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that {�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 and {�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 are C1 and Ωi ⊆ �Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and Ωe ⊆ �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let Σ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n = ∂�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and Σ0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n = ∂�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n \\ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose further that lim n→∞ dH(NΣ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n, NΣ1) = lim n→∞ dH(NΣ0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n, NΣ0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then, lim n→∞ �En(�umin,n) = E(umin), where umin is a minimizer of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It suffices to consider the case Ωe = �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The proof for the general situation is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Following the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='5 and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4, the map Λ : Σ1 × (−a, a) → R3 : (q, r) �→ q + rνΣ1(q) is a C1-diffeomorphism for some a > 0, where the outward unit normal νΣ1 points into Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Σr := Λ(Σ1, r) is a C1-hypersurface, whose outward unit normal is denoted by νr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' By [44, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3], for sufficiently large n, there exist ρn ∈ C1(Σ1) with 0 ≤ ρn ≤ a such that Σ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n is the image of the following C1-diffeomorphism Ψρn : Σ1 → R3 : q �→ q + ρn(q)νΣ1(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let rn := ∥ρn∥∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then lim n→∞ rn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' For sufficiently large n ∈ N, we define un(x) = � 1, x ∈ Ωn, umin(x), elsewhere, where Ωn is the region enclosed by Σrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Since un ∈ � Xn and �umin,n ∈ X, we have E(umin) ≤ �En(�umin,n) ≤ E(un).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1) From a slight variant of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='4, we learn that as n → ∞ un → umin in L1(Ω) and � Ω θd|Dun| → � Ω θd|Dumin|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The dominated convergence theorem and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2 give lim n→∞ E(un) = E(umin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then the asserted state- ment follows by pushing n → ∞ in (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose that Σj ∈ C2, j = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assume that {�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 and {�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n}∞ n=1 are C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let Σ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n = ∂�Ωi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n and Σ0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n = ∂�Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n \\ ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Suppose further that lim n→∞ dH(NΣ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n, NΣ1) = lim n→∞ dH(NΣ0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n, NΣ0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then, lim n→∞ �En(�umin,n) = E(umin), where umin is a minimizer of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' As in the above proof, we only consider the case that Ωe = �Ωe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' It again follows from [44, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='3] that, for sufficiently large n, Σ1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n can be expressed as a C1−normal graph over Σ1 with height function ρn ∈ C1(Σ1, (−a, a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Let rn = ∥ρn∥∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Following the notations in the proof of Lemma B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2, we define Σ±rn := Λ(Σ1, ±rn) and Ω± n to be the region enclosed by Σ±rn, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' We introduce �E± n as defined by replacing Ωi by Ω± n , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Their corresponding minimizers are denoted by u± min,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Then �E− n (u− min,n) ≤ �En(�umin,n) ≤ �E+ n (u+ min,n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' From Lemmas B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='1 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='2, we learn that lim n→∞ �E− n (u− min,n) = lim n→∞ �E+ n (u+ min,n) = E(umin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' □ Acknowledgements The research of Zhao was supported in part by the National Science Foundation (NSF) grant DMS- 2110914.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The research of Chen was supported in part by the National Science Foundation (NSF) grant DMS-1818748.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS 19 References [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Improving implicit solvent simulations: a Poisson-centric view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Current Opinion in Structural Biology, 15(2):137–43, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Sept, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Joseph, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Holst, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Electrostatics of nanosystems: Application to microtubules and the ribosome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences, 98(18):10037–10041, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' How to keep dry in water.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Nature, 423(6935):25–26, May 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Bates, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Minimal molecular surfaces and their applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Computational Chemistry, 29(3):380–91, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Boschitsch and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Fenley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Computational Chemistry, 25(7):935–955, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [6] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Botello-Smith, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhao, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Luo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Numerical poisson–boltzmann model for continuum membrane systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chemical Physics Letters, 555:274–281, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Braga, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Alves, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Silva, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Nascimento, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Silva, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Liao, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Andrade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Virtual screening strategies in medicinal chemistry: the state of the art and current challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Curr Top Med Chem, 14(16):1899–1912, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Carlier and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Comte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On a weighted total variation minimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 250(1):214–226, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Che, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Electrostatic free energy and its variations in implicit solvent models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of Physical Chemistry B, 112(10):3058–3069, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' PMID: 18275182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Saxena, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based multiscale models for virus formation and evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Biomed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Imaging, 2010(308627), 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [11] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based solvation model I: Eulerian formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 229(22):8231–8258, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [12] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based solvation models I: Eulerian formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 229:8231–8258, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [13] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based solvation models II: Lagrangian formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 63:1139–1200, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [14] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Shao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A new approach to constrained total variation solvation models and the study of solute-solvent interface profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 130:119–136, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based solvation models III: Quantum formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 135:1941108, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [16] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Thomas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Bates, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Variational approach for nonpolar solvation analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of Chemical Physics, 137(8):084101, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Application of the level-set method to the implicit solvation of nonpolar molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Chemical Physics, 127(8), 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Crowley and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Golovin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cation-pi interactions in protein-protein interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proteins: Structure, Function, and Bioinformatics, 59(2):231–239, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dai, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Convergence of phase-field free energy and boundary force for molecular solvation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Arch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 227(1):105–147, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [20] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dong and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Electrostatic contribution to the binding stability of protein-protein complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proteins, 65(1):87– 102, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dragan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Read, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Makeyeva, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Milgotina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Churchill, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Crane-Robinson, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Privalov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' DNA binding and bending by HMG boxes: Energetic determinants of specificity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Molecular Biology, 343(2):371–393, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Swanson, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 96:087802, Mar 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Swanson, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Coupling nonpolar and polar solvation free energies in implicit solvent models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of Chemical Physics, 124(8):084905, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [24] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Evans and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Gariepy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Measure theory and fine properties of functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Studies in Advanced Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' CRC Press, Boca Raton, FL, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Feig and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Brooks III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Recent advances in the development and application of implicit solvent models in biomolecule simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Curr Opin Struct Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 14:217 – 224, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [26] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Fogolari and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Briggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the variational approach to poisson–boltzmann free energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chemical Physics Letters, 281(1):135–139, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [27] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Fogolari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Brigo, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Molinari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Molecular Recognition, 15(6):377–92, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [28] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Gilbarg and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Trudinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Elliptic partial differential equations of second order, volume 224 of Grundlehren der Math- ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Springer-Verlag, Berlin, second edition, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [29] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Giusti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Birkh¨auser Verlag, Basel, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Grant, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pickup, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Sykes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Kitchen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Nicholls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Gaussian Generalized Born model: application to small molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Physical Chemistry Chemical Physics, 9:4913–22, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Grochowski and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Trylska.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Continuum molecular electrostatics, salt effects and counterion binding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' a review of the Poisson-Boltzmann theory and its modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Biopolymers, 89(2):93–113, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 20 ENSEMBLE AVERAGE ENERGY AND SOLUTE-SOLVENT INTERFACIAL FLUCTUATIONS [32] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Kuhn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Siani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pique, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Fisher, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Getzoff, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Tainer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Molecular Biology, 228(1):13–22, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [33] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lamm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Poisson-Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lipkowitz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Larter, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cundari, editors, Reviews in Computational Chemistry, pages 147–366.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' John Wiley and Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', Hoboken, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' LeCrone, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Shao, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Simonett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The surface diffusion and the Willmore flow for uniformly regular hypersurfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Discrete Contin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' S, 13(12):3503–3524, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Levy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Gallicchio, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Felts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of the American Chemical Society, 125(31):9523–9530, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [36] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Minimization of electrostatic free energy and the poisson–boltzmann equation for molecular solvation with implicit solvent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' SIAM Journal on Mathematical Analysis, 40(6):2536–2566, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [37] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Diffused solute-solvent interface with Poisson-Boltzmann electrostatics: free-energy variation and sharp- interface limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 75(5):2072–2092, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [38] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhang, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Alexov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in delphi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Computational Chemistry, 33(24):1960–1966, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [39] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhang, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Alexov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the dielectric “constant” of proteins: Smooth dielectric function for macromolec- ular modeling and its implementation in delphi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Chemical Theory and Computation, 9(4):2126–2136, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' PMID: 23585741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [40] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Lionta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Spyrou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Vassilatis, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cournia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Structure-based virtual screening for drug discovery: principles, applications and recent advances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Curr Top Med Chem, 14(16):1923–1938, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Miranda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Un principio di massimo forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l’equazione delle superfici di area minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Rend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Padova, 45:355–366, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [42] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Mobley, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dill, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chodera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Treating entropy and conformational changes in implicit solvent simulations of small molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of Physical Chemistry B, 112(3):938–946, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' PMID: 18171044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [43] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Mongan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Simmerling, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Case, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Onufriev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Generalized Born model with a simple, robust molecular volume correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Chemical Theory and Computation, 3(1):159–69, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [44] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pr¨uss and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Simonett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On the manifold of closed hypersurfaces in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Discrete Contin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 33(11-12):5407–5428, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [45] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ricci, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Tailoring the variational implicit solvent method for new challenges: Biomolecular recognition and assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Frontiers in Molecular Biosciences, 5:13, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [46] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Rudin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Osher, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Fatemi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Nonlinear total variation based noise removal algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' volume 60, pages 259–268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [47] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Shao, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hawkins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A constrained variational model of biomolecular solvation and its numerical implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=', 107:17–28, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [48] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Sharp and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Honig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Calculating total electrostatic energies with the nonlinear poisson-boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of Physical Chemistry, 94(19):7684–7692, Sep 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [49] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Spolar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Ha, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Record Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Hydrophobic effect in protein folding and other noncovalent processes involving proteins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America, 86(21):8382–8385, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Swanson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Mongan, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Limitations of atom-centered dielectric functions in implicit solvent models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Physical Chemistry B, 109(31):14769–72, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [51] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Tjong and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' GBr6NL: A generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Chemical Physics, 126:195102, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wagoner and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America, 103(22):8331–6, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [53] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wang and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Parameter optimization in differential geometry based solvation models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of chemical physics, 143(13):134119, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [54] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry based multiscale models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Bulletin of Mathematical Biology, 72(6):1562–1622, Aug 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [55] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A Baker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' In Many-Body Effects and Electrostatics in Biomolecules, pages 435–480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Jenny Stanford Publishing, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [56] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Sun, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhou, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Feig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Molecular multiresolution surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' arXiv:math-ph/0511001v1, pages 1 – 11, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [57] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Wei, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Chen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content='n Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Variational multiscale models for charge transport.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' siam REVIEW, 54(4):699– 754, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [58] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' International Journal for Numerical Methods in Biomedical Engineering, 27(12):1964–1981, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [59] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Kwan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Che, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Phase-field approach to implicit solvation of biomolecules with coulomb-field approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' The Journal of chemical physics, 139(2):024111, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [60] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Rogers, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' de Oliveira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Baron, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Cheng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Dzubiella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' McCammon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Variational implicit-solvent modeling of host–guest binding: A case study on cucurbit[7]uril—.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Journal of Chemical Theory and Computation, 9(9):4195–4204, Sep 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' [61] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' On curvature driven rotational diffusion of proteins on membrane surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} +page_content=' SIAM Journal on Applied Mathem- atics, 80(1):359–381, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFAT4oBgHgl3EQfbx2O/content/2301.08560v1.pdf'} diff --git a/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/2301.00915v1.pdf.txt b/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/2301.00915v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3d004389fdfa2c128231718f0f77e435270205a0 --- /dev/null +++ b/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/2301.00915v1.pdf.txt @@ -0,0 +1,1866 @@ +Entanglement and work statistics in the driven open system +He Wang1, 2 and Jin Wang3, ∗ +1College of Physics, Jilin University, +Changchun 130021, China +2State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, +Changchun 130021, China. +3Department of Chemistry and of Physics and Astronomy, Stony Brook University, Stony Brook, +NY 11794-3400, USA +We study the entanglement and work statistics in a driven two-qubit system. The regulation +of periodic driving has much more versatility and universality in contrast to reservoir engineering +in static systems. We found the quasi-steady state entanglement can be amplified effectively by +the external drive in certain parameter regimes. The drive extends the range of temperatures or +temperature differences at which entanglement can emerge. From the view of the effective Hamil- +tonian, the addition of the driving alters the inter-qubit coupling and system-bath coupling, which +are crucial in determining the quasi-steady state. The work statistics are also investigated. The +driven system, as a continuous quantum thermal machine, output work continuously and steadily +at the quasi-steady state. There is a distinct operation of modes and corresponding performance +by changing driving. It can also be understood that the drive changes the effective Hamiltonian, +and further the modes of energy exchanges between the system and the baths as well as the work +reservoir. +∗ jin.wang.1@stonybrook.edu +arXiv:2301.00915v1 [quant-ph] 3 Jan 2023 + +2 +I. +INTRODUCTION +For the past few years, the periodically driven quantum system has drawn much attention. This has been a result +of experimental advances in state-of-the-art laser technology, which makes it implementable in the lab. In accordance +with the Floquet theorem [1] and the follow-up theoretical developments [2, 3], physical characteristics of the driven +system are primarily understood by the so-called effective Hamiltonian, which reflects the periodic driving. Periodic +driving largely extends the controllability of the systems since time as a new control dimension is introduced. It gets +rid of the down-to-earth difficulty of reservoir engineering in static systems that the parameter is hard to change once +the material is prepared. By designing a suitable driving protocol, one can engineer the effective Hamiltonian, which +empowers us to have desirable properties and functionalities of the physical systems. Coherent control through periodic +driving (often known as Floquet engineering) has become a commonly used tool in quantum control, which has been +used to realize topologically nontrivial systems [4–7], nonequilibrium phase transitions [8, 9], artificial gauge fields +[10–12], and discrete time crystals [13, 14]. Additionally, it comes into play in the coherent destruction of tunneling +[15, 16] and the manipulation of spin-orbit coupling [17, 18], etc. Meanwhile, significant progress has been made +toward the experimental realization of small-scale thermal machines where fluctuations play a significant role. The +thermal machines in the quantum regime have been realized on several platforms [19–26]. Specific examples include a +quantum absorption refrigerator with trapped ions [27], quantum heat engines using an ensemble of nitrogen-vacancy +centers [28]. Continuous thermal machines [29] do not require intermittent couplings and decouplings between the +working fluid and the baths, which are particularly challenging to implement at microscopic scales, in contrast to their +reciprocating counterparts. As a result, they have greater experimental relevance. Continuous thermal machines are +typically implemented by a periodic modulation of the system Hamiltonian, which drives the system to a periodic +quasi-steady state in general. The temporal driving methods may drive small systems in nonequilibrium quasi-steady +states with far greater versatility and universality than the static manipulation methods, which hinge on steady +nonequilibrium sources such as temperature bias, chemical potential difference, etc.[30]. +A real system is always inevitably influenced by its surroundings and this can lead to the system’s decoherence +eventually. +The environmental effect plays a crucial role in the evolution of the system [31]. +How to confront +dissipation and decoherence is a fundamental challenge in quantum technology. It has been shown that the dissipation +can be effectively suppressed by the formation of the Floquet bound state under temporal driving [32–34]. +The +scheme to generate a maximally entangled state and then protect it based on Floquet engineering is also proposed +[33, 35]. However, the entanglement of the nonequilibrium quasi-steady state still lacks of investigations based on +our knowledge. Indeed, the balance of the periodic driving and dissipation can yield a variety of nonequilibrium +steady states and phase transitions in various systems including cavity-QED systems [36, 37], cold atoms [38, 39], +ideal Bose gases [40–42], and so on. A natural question is raised: Is entanglement in the quasi-steady state? Can we +enhance it with Floquet engineering? The answer is positive. The entanglement can be magnified significantly by +the befitting driving. The system can become entangled in a wider range of temperatures or temperature differences +as a result of the drive. From the standpoint of effective Hamiltonian, the existing driving gives rise to the change +of inter-qubit coupling and system-bath coupling, as well as further, modifies steady state entanglement. The work +statistics of the open system are also of interest. The net flow from the baths to the system disappears when the static +system approaches the steady state. When certain external driving is applied, the system can operate continually and +steadily as a continuous quantum thermal machine. The different drivings contribute to the various modes of energy +exchanges between the system and the baths as well as the work reservoir (energy source of the external agent which +modulates the system) in the quasi-steady state, which bring about the thermal machine with numerous operation of +modes. We quantify the performance efficiency of different operation modes, which is bounded by the Carnot limit +in general. +The rest of the paper is organized as follows. In Section II, we introduce our model. We then derive a generalized +master equation by means of double-projective measurement protocol and Floquet theory. In Section III, the quasi- +steady state entanglement is studied. In Section IV, we investigate the work statistics at a quasi-steady state. Finally, +we draw our conclusions in Section V. +II. +THEORETICAL FRAMEWORK +To start, we first introduce the model we studied. The system is composed of a pair of interacting qubits, and each +qubit couples to its own bosonic bath with a certain temperature. Meanwhile, the system is driven by external field + +3 +control. The sketch of the model is shown in Fig.1. The Hamiltonian of the whole system is +H +H +H = H +H +HS(t) + H +H +HB + H +H +HSB += +� +i=A,B +ωi + Di(t) +2 +σσσi +z + λ(σσσA ++σσσB +− + σσσA +−σσσB ++) + +� +i=A,B +� +k +ω2 +ikaaa† +ikaaaik + +� +i=A,B +σσσi +x +� +k +cccikxxxik, +(1) +where σσσi +z are Pauli matrices for the i-th qubit, it reads σσσA +z = σσσz +�III for the A qubit or σσσB +z = III �σσσz for the B qubit. +ωi is the energy spacing of the i-th qubit. Di(t) is the external field control. λ measures the coupling interaction +between two qubits. aaa† +ik(aaaik) is the creation (annihilation) operator of k-th bosonic mode in i-th bath and satisfies the +commute relation [aaaik,aaa† +i′k′] = δii′δkk′I. The cik are coupling constants that describe the coupling of the i-th qubit +to its own reservoir modes aaaik. To fully characterize the interaction between the system and baths, we need to define +the spectral density of the baths, which follows +Ji(ω) = π +2 +� +k +c2 +ik +ωik +δ(ω − ωik) +(2) +A structure-less spectral density (e.g. linear form +di +ω0 ω) typically empowers a Markovian treatment of the reservoirs +due to the fast decay of its associated correlation functions, while a more structured spectral density (e.g. strongly +peaked around a frequency +diγω +(ω2−ω2res)2+γ2ω2 ) requires a more involved treatment [43]. In this paper, we simply take a +structure-less spectral density Ji(ω) = di +ω0 ω into consideration. +FIG. 1. +A sketch of the model. There are two interacting qubits, which are coupled with individual baths as well. The qubit +A is driven by the external field. +The drives Di(t) may be any time-dependent function, but we only take into account an easily implementable drive +scheme: a monochromatic drive with frequency ωL and amplitude K only acts on the qubit A, i.e., DA(t) = K cos ωLt +and DB(t) = 0. +Note that the total Hamiltonian is periodic in time. One can take advantage of the Floquet theorem to solve a +time-periodic Schr¨odinger equation i∂t|ψr(t)⟩ = H +H +HS(t)|ψr(t)⟩, where H +H +HS(t) = H +H +HS(t+T) = � +k eik ωLtH +H +Hk, with period +T = +2π +ωL . A solution to this Schr¨odinger equation is given by Floquet states |ψr(t)⟩ = e−iεrt|r(t)⟩, where εr are +called quasienergies and |r(t)⟩ = |r(t + T)⟩ are Floquet modes. The existence of Floquet states in time-periodically +driven systems follows from the Floquet theorem in a similar way to the existence of Bloch states in spatially periodic +systems [1, 2]. We also mention that there is a similar Floquet theorem for open systems in [44, 45]. In Appendix.A, +we review more details on the Floquet theory. +To study the heat statistics of the driven system, we follow the full counting statistics formalism in [43, 46, 47]. The +heat moments are expediently described in terms of the characteristic function G(χ) = +� +d∆E e−iχ∆Ep(∆E), which +is based on double-projective measurement of the environment. With the help of conditional probability p(E1; E0), +which one measured the energy of environment E = E0 at time t0, and a follow-up measurement gave E1 at time t1, +and the probability p(E0) to measure E0 at time t0, the probability distribution function for the heat energy exchange +∆E to be transported to the reservoir between times t = t0 and t = t1 can be expressed as +p(∆E, t) = +� +E1,E0 +δ(E1 − E0 − ∆E)p(E1; E0)p(E0). +(3) +Taking account into the projective operator PPP Em and its property PPP EmPPP En = δmnPPP Em, we have +p(E1, E0) = Tr[PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0UUU †(t)PPP E1] += Tr[UUU †(t)PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0]. +(4) + +4 +The generating function is given by +G(χ, t) = +� +d∆E e−iχ∆Ep(∆E) += +� +d∆E e−iχ∆E � +E1,E0 +δ(E1 − E0 − ∆E)p(E1; E0)p(E0) += +� +E1,E0 +p(E1; E0)p(E0)e−iχ∆E +(5) +Assume the initial total density matrix ρρρtot(0) = ρρρS(0) ⊗ ρρρB(0) to be factorized into the system density matrix +ρρρS(0) and the thermalized environment density matrix ρρρB(0) = e−βH +H +HB/Z, where Z is the partition function of the +environment. Particularly, this assumption indicates that all projectors PPP Em commute with ρρρ(0), ensuring that the +dynamics of the reservoir are unaffected by the initial measurement of the observable. +By the use of e−iχH +H +HB = +� +Em PPP Eme−iχEm, we have +G(χ, t) = +� +E1,E0 +Tr[UUU †(t)PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0]e−iχ∆E += Tr[UUU †(t) +� +E1 +PPP E1e−iχE1UUU(t) +� +E0 +PPP E0eiχE0ρρρtot(0)] += Tr[UUU †(t)e−iχH +H +HBUUU(t)eiχH +H +HBρρρtot(0)] += Tr[UUU(χ, t)ρρρtot(0)UUU †(−χ, t)] += Tr[ρρρtot(χ, t)], +(6) +where UUU(χ, t) = e−iχH +H +HB/2UUU(t)eiχH +H +HB/2 and ρρρtot(χ, t) = UUU(χ, t)ρρρtot(0)UUU †(−χ, t). It enables us to compute the statistics +of the energy transferred between the system and reservoir by straightforward differentiation +⟨∆En⟩ = − +∂n +∂(iχ)n G(χ)|χ=0. +(7) +Utilize the modified time evolution operator UUU(χ, t) and modified density matrix ρρρtot(χ, t), and assume that the +coupling between the system and baths are weak enough such that the Born–Markov approximation is valid. We +derive a generalized Markov master equation without secular approximation +∂tρρρ(χ, t) = LLL(χ, t)ρρρ(χ, t) += −i [H +H +HS(t),ρρρ(χ, t)] +− +� +{i=1,2;ω;n} +ei∆ω,nt{Ji(∆ω,n)Ni(∆ω,n)SSSi,ω,n(t)SSSiρρρ(χ, t) +− Ji(∆ω,n) [1 + Ni(∆ω,n)]SSSiρρρ(χ, t)SSSi,ω,n(t)ei∆i,ω,nχ +− Ji(∆ω,n)Ni(∆ω,n)SSSi,ω,n(t)ρρρ(χ, t)SSSie−i∆i,ω,nχ ++ Ji(∆ω,n) [1 + Ni(∆ω,n)]ρρρ(χ, t)SSSi,ω,n(t)SSSi}, +(8) +where SSS1 = σσσA +x and SSS2 = σσσB +x , ∆ω,n = ω + nωL and SSSi,ω,n(t) = +�� T +0 +dt +T ⟨r(t)|SSSi e−inωlt|r′(t)⟩ +� +|r(t)⟩⟨r′(t)| such that +ω = εr − εr′. εr is quasi-energy in the first Brillouin zone and |r(t)⟩ corresponds to Floquet modes. Ji(ω) and Ni(ω) +are the spectral density and Bose distribution for the i-th baths respectively. The details are in Appendix.B. Similar +master equations have been derived in different research backgrounds [43, 47, 51, 52]. +III. +ENTANGLEMENT IN THE DRIVEN OPEN SYSTEM +In this section, we will study the entanglement in the quasi-steady state of the driven open system. Note that due +to the periodicity of the Floquet modes |r(t)⟩, the superoperator LLL(χ, t) also has the same periodicity. The evolution + +5 +of the system can be computed just by setting χ = 0 in Eqn. (8), +∂tρρρ(t) = − i [H +H +H(t),ρρρ(t)] − +� +{i=1,2;ω;n} +einωLtJi(∆ω,n){Ni(∆ω,n) [SSSiSSSi,ω,n(t)ρρρ(t) − SSSi,ω,n(t)ρρρ(t)SSSi] ++ [1 + Ni(∆i,ω,n)] [ρρρ(t)SSSi,ω,n(t)SSSi − SSSiρρρ(t)SSSi,ω,n(t)]}. +(9) +Assuming that in the long-time limit the density matrix ρρρ(t) is time-periodic with the same period as the Floquet +modes, in the extended space this equation has the form +�� +k +TTT k ⊗ LLLk − iωLFFF z +� +⃗ρρρ = 0 , +(10) +with ⃗ρρρ a vector containing all Fourier components of ρρρ(t). The definition of TTT k and FFF z can be found in Appendix.A. +Therefore, one can numerically obtain a quasi-steady state by truncating the basis of the temporal space. The number +of basis should be as large enough as possible to ensure that the result converges. For general two qubits state ρρρ, +the entanglement can be quantified using the concurrence, which is defined as C = max {0, λ1 − λ2 − λ3 − λ4} in +bare basis, where {λ1, λ2, λ3, λ4} are the square roots of the eigenvalues of √ρρρ(σσσy ⊗ σσσy)ρρρ∗(σσσy ⊗ σσσy)√ρρρ sorted in a +descending order [53]. +FIG. 2. +Entanglement varies w.r.t. (a) the temperatures of baths, (b) the driving amplitude K in one period, and (c) the +driving frequency ωL in one period. The reservoir temperatures are T1 = 0.5 and T2 = 0.1 in (a) and (b). And the driving +frequency ωL = 0.5 for (b) and the driving amplitude K = 0.5 for (c). Other parameters are d1 = d2 = 0.001, ω01 = ω02 = 1. +The coupling strength between two qubits is λ = 0.25, and the energy gaps of the qubits are ω1 = ω2 = 0.5. +We first consider what happened provided that K = 0, i.e., there is no external driving. This is the case shown in +Fig.2(a), which comprises both equilibrium and nonequilibrium scenarios. The steady-state entanglement only survives +in a limited temperature range. The steady-state entanglement varies non-monotonically with both temperatures +or temperature differences. +With rising temperatures or temperature differences, the entanglement grows, then +diminishes, and finally vanishes. A similar phenomenon has been found in [54], which can be phenomenologically +explained by the competition between coherence and populations. The system has the same period as the external field +when it is driven by an external field. The equilibrium/nonequilibrium steady state is replaced with a nonequilibrium +quasi-steady state. The entanglement of the nonequilibrium quasi-steady state changes non-monotonically with the +driving amplitude. If the driving amplitude is low, entanglement does not exist. If the amplitude is tuned higher, one +may be able to harvest more entanglement at certain time slices. Particularly, the entanglement covers the most time +in one period when K ∼ 0.5 as shown in Fig.2(b). The entanglement of the nonequilibrium quasi-steady state also +varies non-monotonically with the driving frequency in Fig.2(c). The entanglement disappears if the driving frequency +is less. One may harvest larger entanglement at some time slices if one tunes the driving frequency properly. The +entanglement lasts longest in one period when ωL ∼ 0.5, which is resonant with the qubit. +Indeed, the nonequilibrium quasi-steady state is a result of the competition between periodic driving and dissipa- +tion. Provided that the drive is weak, the dissipation dominates the quasi-steady state. But the quasi-steady state +has periodicity as well. This case is depicted in Fig.3(a,d). Despite being weak, driving still changes the system +significantly. Entanglement even survives at high temperatures or high-temperature differences. Entanglement is +visibly enhanced and lasts for the majority of one period if the driving amplitude is comparative with the energy +gap of the qubit in Fig.3(b,e). Too dramatic driving can also be damaging to the entanglement of the quasi-steady +state, as seen in Fig.3(c,f), where the driving dominates the quasi-steady state. The behavior of the entanglement is +sensitive to temperature changes or variances, therefore the influence of the baths is still considerable. + +(b) +(c) +(a) +0.8 +0.8 +0.08 +0.8 +0.8 +0.8 +0.6 +0.6 +0.06 +0.6 +0.6 +0.6 +K +0.4 +0.4 +0.04 +0.4 +0.4 +0.4 +0.2 +0.02 +0.2 +0.2 +0.2 +0.2 +0.01 +0.01 +0.01 +0 +0 +0.010.20.40.60.8 +0.2 +0.4 +0.6 +0.8 +0.2 +0.4 +0.6 +0.8 +1 +1 +0 +0 +t/S6 +FIG. 3. +Variation of entanglement w.r.t temperatures in (a ∼ c) and temperature differences in (d∼f) with the driving +frequency ωL = 0.5, where K = 0.05, 0.5, 5 for (a, d), (b, e), (c, f) respectively. ∆T = T1 − T2 and T1 increases from 0.01. Other +parameters are the same as Fig.2. +Similar behaviors also happen when we choose different driving frequencies. A driving frequency that is too strong or +too weak will be not helpful to harvest more entanglement. When the frequency is low, the harvesting entanglement is +considerable only at relatively low temperatures or temperature differences depicted in Fig.4(a,d). Under the Floquet- +Magnus expansion approximation [49, 50], the effective system Hamiltonian is H +H +Heff ≈ H +H +H0 + � +n>0 +[H +H +Hn,H +H +H−n] +nωL ++ O(ω2 +L) +in high frequency regime, where H +H +Hn is the n-th Fourier component of the system Hamiltonian. One can verify that +H +H +Heff ≈ H +H +H0 in our setting. As a result, when the driving frequency is so high that the system has no time to respond +to the external driving, the quasi-steady state entanglement behavior is very similar to that of steady state without +driving, as shown in Fig.4(c,f). When the frequency is in the middle value, the drive is quite effective at improving +the entanglement shown in Fig.4(b,e). +The behavior in the low and medium frequency regime can also be somewhat understood by the effective Hamilto- +nian. Using the flow equation approach [3], we obtain the effective system plus system-reservoirs interaction Hamil- +tonian (rather than the sole system Hamiltonian) +H +H +HS +eff + H +H +HSB +eff = ωA +2 σσσA +z + ωB +2 σσσB +z + λJ0(K/ωL)(σσσ1 ++σσσ2 +− + σσσ1 +−σσσ2 ++) + J0(K/ωL)σσσA +x BBBA + σσσB +x BBBB, +(11) +where J0(x) is the first kind Bessel function and BBBi = � +K cikxxxik are the reservoir coupling operators. The derivation +details of Eqn. 11 is in Appendix.C. The drive affects both the system-reservoirs coupling and the inter-qubit coupling. +Note that J0(0) = 1, we may conclude that the effective Hamiltonian is equal to the original Hamiltonian when the +frequency ωL is set to a very high value and the amplitude K is fixed at a certain finite value, which conforms with +the conclusion we got above. Similar to this, when the frequency ωL is set to a finite value and K is made to be +extremely small, the effective Hamiltonian is identical to the original Hamiltonian as well. Therefore, the effect of the +drive is not remarkable in the two kinds of limits. This, however, is not the story for K/ωL being finite. First, the +change of the inter-qubit coupling modifies the eigenenergy of the bare system, resulting in an effect on the population +distribution at the steady state. Second, the change of system-reservoirs coupling alters the dissipative effect of the +environment and further changes the steady coherence. |J0(s)| ≤ 1 indicates that the dissipative effect of one of the + +(a) +(b) +(c) +0.7 +0.07 +0.3 +0.6 +0.8 +0.8 +0.8 +0.06 +0.25 +0.5 +0.05 +0.6 +0.6 +0.6 +0.2 +0.4 +0.04 +T +0.15 +0.3 +0.4 +0.03 +0.4 +0.4 +0.1 +0.2 +0.02 +0.2 +0.2 +0.2 +0.05 +0.1 +0.01 +0.01 +0.01 +0.01 +0 +0 +0 +0 +0.2 +0.2 +0.4 +0.6 +0.8 +¥0.4 +0.6 +0.8 +0.2 +0.4 +0.6 +0.8 +1 +0 +1 +7 +0 +1/ +1/4 ++ / 2元 +(f) +(d) +(e) +0.7 +0.08 +0.3 +0.6 +0.8 +0.8 +0.8 +0.25 +0.5 +0.06 +0.6 +0.6 +0.6 +0.2 +△T +0.4 +0.04 +0.15 +0.3 +0.4 +0.4 +0.4 +0.1 +0.2 +0.02 +0.2 +0.2 +0.2 +0.05 +0.1 +0.01 +0 +0.01 +0.01 +0 +0 +0.2 +0.40.60.8 +0.2 +0.4 +0.6 +0.8 +0.2 +0.4 +1 +0 +0.6 +0.8 +1 +0 +0 +t/2 +t/ 2 +T37 +FIG. 4. +Variation of entanglement w.r.t temperatures in (a ∼ c) and temperature differences in (d∼f) with the driving +amplitude K = 0.5, where ωL = 0.05, 0.5, 5 for (a, d), (b, e), (c, f) respectively. ∆T = T1 − T2 and T1 increases from 0.01. Other +parameters are the same as Fig.2. +baths is weakened and the inter-qubit interaction that induces entanglement within the system diminishes as well. The +end result is generated by the combination of these two effects. However, we point out that the effective Hamiltonian +is unable to provide a master equation to propagate the system. The reason is also clear: the effective Hamiltonian +can only describe the stroboscopic time evolution, it can not support a continuous time master equation. However, +as we have seen, the effective Hamiltonian still offers certain perspectives for comprehending evolution. +IV. +WORK STATISTICS IN THE DRIVEN OPEN SYSTEM +We investigate work statistics of the driven open system in this section. Using the counting field and its responding +generalized master equation, the heat flow from the ith bath to the system is obtained by +˙Qi(t) = −∂t ⟨H +H +HBi⟩ = Tr {(∂iχLLLi(χ, t)) · ρρρ(χ, t)} |χ=0 += +� +{ω;n} +einωLt +Tr{−Ji(∆ω,n) [1 + Ni(∆ω,n)] ∆ω,nSSSiρρρ(t)SSSi,ω,n(t) ++ Ji(∆ω,n)Ni(∆ω,n)∆ω,nSSSi,ω,n(t)ρρρ(t)SSSi}. +(12) +The heat flow, we define, is positive if it flows from the bath to the system. The system must abide by the energy +balance at the quasi-steady state, which means ˙QA + ˙QB + ˙W=0. In Fig.5, we plot the variations of the heat flow and +workflow with respect to the amplitude K in (a) and to the frequency in (b). If there is no drive, the system relaxes +to the nonequilibrium steady state, and the net flow from the reservoirs to the system vanishes, which also hints that +extracted work ˙Wnd = 0. By varying the driving amplitude, the heat flow from bath B is always negative while the +heat flow from bath-A drops from a specific positive value to a certain negative value. The combination of the change +of ˙QA and ˙QB determines the ˙W. As a result, one may classify thermal operation regimes into three modes in K +parameter space in Fig.5(a). When K ∈ (0.01, 0.18) roughly, ˙QA > 0, ˙QB < 0, and ˙W < 0, the system operates as a + +(a) +(c) +(b) +1 +10.7 +0.7 +0.08 +0.6 +0.6 +0.8 +0.8 +0.8 +0.06 +0.5 +0.5 +0.6 +0.6 +0.6 +0.4 +0.4 +T +0.04 +0.3 +0.3 +0.4 +0.4 +0.4 +0.2 +0.2 +0.02 +0.2 +0.2 +0.2 +0.1 +0.1 +0.01 +0.01 +0.01 +0 +0 +0 +0.4 +0.2 +0.4 +0.6 +0.8 +0.6 +0.8 +0.2 +0.6 +0.8 +0 +0 +1 +7 +1 +0 +1/4 +t/ +(d) +(f) +(e) +1 +0.7 +0.08 +0.7 +0.6 +0.8 +0.8 +0.6 +0.8 +0.06 +0.5 +0.5 +0.6 +0.6 +0.6 +0.4 +△T +0.4 +0.04 +0.3 +0.3 +0.4 +0.4 +0.4 +0.2 +0.2 +0.02 +0.2 +0.2 +0.2 +0.1 +0.1 +0.01 +0.01 +0.01 +0 +0 +0 +0.2 +0.40.60.8 +0.2 +0.4 +0.6 +0.8 +0.2 +0.4 +0 +0.6 +0.8 +0 +1 +1 +0 +t/ +t/ +t/ 2元8 +FIG. 5. +Variation of mean heat flow and work flow w.r.t the driving amplitude K in (a) and w.r.t. the driving frequency ωL +in (b). Variation of performance of operation modes w.r.t the driving amplitude K in (c) and w.r.t. the driving frequency ωL +in (d). ωL = 0.5 in (a,c), and K = 0.05 in (b,d). TA = 1 and TB = 0.01. Other parameters are the same as Fig.2. +heat engine. Additionally, there is a transition region, K ∈ (0.18, 0.35) approximately, ˙QA > 0, ˙QB < 0, and ˙W > 0, +this operation mode of the system serves no useful purpose. When K > 0.35, the system functions as a heat pump. +Similarly, there are three regimes of thermal operations in ωL parameter space in Fig.5(b). There is a small region +around ωL = 0.5, ˙QA > 0, ˙QB < 0, and +˙W < 0, the system functions as a heat engine. After going through the +narrow transition regime, the system operates as a heat pump when deviates ωL = 0.5 significantly. We also quantify +the performance of different operation modes. The efficiency of the heat engine is measured by | ˙W/ ˙QA| ≤ η and that +of heat pump as | ˙QA/ ˙W| ≤ η−1, where η = 1 − TB +TA = 0.99 is Carnot bound in this case. We can verify that both the +engine and heat pump are bounded by the Carnot limit in Fig.5(c,d). As the amplitude grows, the engine’s efficiency +increases before declining. and the heat pump becomes more efficient. The efficiency of both the heat pump and the +engine fluctuates non-monotonically as a function of frequency. +FIG. 6. +Variation of mean heat flow and work flow w.r.t the temperature in (a) and Variation of performance of operation +modes in (b). ωL = 0.5 and K = 0.05 in (a,b). TA = TB + ∆T and TB = 0.01. Other parameters are the same as Fig.2. + +(b) +(a) +X10-4 +6 ,×10-4 +10 +4 +M- +QA +5 +QB +Wnd +0 +0 +-2 +-5 +-4 +0.2 +0.3 +0.44 +0.52 +0.56 +0.1 +0.4 +0.5 +0.6 +0.01 +0.4 +0.48 +K +(d) +(c) +0.8 +0.6 +-- engine +- heat pump +0.5 +0.6 +0.4E +0.3 +0.4 +0.2 +0.2 +0.1 +0 +0.01 +0.1 +0.4 +0.44 +0.52 +0.56 +0.2 +0.3 +0.4 +0.5 +0.48 +0.6 +K(b) +(a) +X10-4 +6 ,×10-4 +10 +4 +M- +QA +5 +QB +Wnd +0 +0 +-2 +-5 +-4 +0.2 +0.3 +0.44 +0.52 +0.56 +0.1 +0.4 +0.5 +0.6 +0.01 +0.4 +0.48 +K +(d) +(c) +0.8 +0.6 +-- engine +- heat pump +0.5 +0.6 +0.4E +0.3 +0.4 +0.2 +0.2 +0.1 +0 +0.01 +0.1 +0.4 +0.44 +0.52 +0.56 +0.2 +0.3 +0.4 +0.5 +0.48 +0.6 +K(a) +(b) +0.5 +M- +QA +0.4 +2 +QB +Wn +0.3 +0.2 +0.1 +-1 +engine + heat pump +-2 +0 +0.2 +0.4 +0.6 +0.2 +0.4 +0.6 +0.8 +0 +0 +0.8 +1 +△T +△T(a) +(b) +0.5 +M- +QA +0.4 +2 +QB +Wn +0.3 +0.2 +0.1 +-1 +engine + heat pump +-2 +0 +0.2 +0.4 +0.6 +0.2 +0.4 +0.6 +0.8 +0 +0 +0.8 +1 +△T +△T9 +We can also gain some insights into the reason why the system exhibits distinct operation modes and various +performances when we regulate the driving from the perspective of the effective Hamiltonian. The change of inter- +qubits coupling and the system-reservoirs coupling re-determines the heat flow and furthermore leads to output work +being modified. The heat flow is also changed directly by controlling temperature difference. If the drive is fixed, the +system displays various operation modes as the temperature difference changes. When the temperature difference is +less, the system performs as a heat pump; after passing through a transition region, the system behaves as a heat +engine at higher temperature differences. This is depicted in Fig.6(a). The performance efficiency of the heat pump is +lowered as the temperature difference increases, on the contrary, that of the engine increases as illustrated in Fig.6(b). +V. +CONCLUSION +In conclusion, we computed the nonequilibrium quasi-steady state entanglement within the two-qubit system by +deriving a generalized master equation. We have better control over the system with external field regulation. The +system may harvest more entanglement from the reservoirs compared with the static system. The driven system +can be entangled even at high temperatures or temperature differences in contrast to the system without driving. +We try to get to the bottom of why the driven system behaves differently from the static system from the effective +Hamiltonian. The introduced driving modifies the inter-qubit coupling and system-reservoirs coupling. The total +effect influences the quasi-steady state. We also investigate the work statistics in the driven open system. Changing +the drive frequency or amplitude, the system will have different modes of operation, e.g., heat pump and engine or +others. Their performances related to the heat flow from the reservoirs to the system can be changed by modifying +driving and temperature differences. +As it stands, our model is likely to be realizable with state-of-the-art laser +technology and quantum simulation platforms. Further optimization of the model parameters may relax experimental +requirements. +Appendix A: Floquet Theory and the Extended Space +We give a more detailed introduction to Floquet theory in this section [2, 43]. Consider a time-periodic Hamiltonian +H +H +HS(t) = H +H +HS(t + T) = � +k eik ωLtH +H +Hk, with period T = +2π +ωL , according to Floquet theory, a solution to Schr¨odinger +equation i∂t|ψr(t)⟩ = H +H +HS(t)|ψr(t)⟩ is given by Floquet states |ψr(t)⟩ = e−iεrt|r(t)⟩, where εr are dubbed as quasiener- +gies and |r(t)⟩ = |r(t + T)⟩ are Floquet modes (states). Similar to the way Bloch states exist in spatially periodic +systems, the existence of Floquet states in time-periodically driven systems comes from the Floquet theorem. [1, 2]. +We also mention that there is a similar Floquet theorem for open systems in [44, 45]. +One can ignore the micromotion and focus on the time evolution in a stroboscopic fashion in steps of the driving +period T as long as the dynamics we studied over a time span that is long compared to a single driving period. Such +a stroboscopic time evolution is governed by the time-independent Floquet Hamiltonian H +H +HF +t0, which is defined in a +way that it generates the time evolution over one period, +exp +� +− iTH +H +HF +t0 +� += UUU(t0 + T, t0). +(A1) +and can be expressed like +H +H +HF +t0 = +� +r +εr|r(t0)⟩⟨r(t0)|. +(A2) +The parametric dependence on the initial time t0 is periodic, H +H +HF +t0+T = H +H +HF +t0, and related to the micromotion. One +can construct a Floquet Hamiltonian for a different initial time t′ +0 by applying a unitary transformation, H +H +HF +t′ +0 = +UUU †(t0, t′ +0)H +H +HF +t0UUU(t0, t′ +0), on a Floquet Hamiltonian H +H +HF +t0 obtained for the initial time t0. It is difficult to obtain the +Floquet Hamiltonian in general, however, various methods are developed based on high-frequency expansion [2, 49, 50] +or others [3]. +We can introduce a unitary operator that describes the periodic time dependence of the Floquet modes, i.e., the +micromotion. The corresponding two-point micromotion operator can be defined by +PPP(t2, t1) = +� +r +|r(t2)⟩⟨r(t1)| +(A3) + +10 +as a result of its construction, it is periodic in both arguments, PPP(t2 + T, t1) = PPP(t2, t1 + T) = PPP(t2, t1), and evolves +the Floquet modes in time, +|r(t2)⟩ = PPP(t2, t1)|r(t1)⟩. +(A4) +The Floquet Hamiltonian and the micromotion operator can be written down immediately using Eqn.A2 and +Eqn.A3 if the Floquet states and their quasienergies are known by diagonalizing the time evolution operator over +one period. One can then write out the time evolution operator using the Floquet Hamiltonian and the micromotion +operator as +UUU(t2, t1) = e−i(t2−t1)H +H +HF +t2PPP(t2, t1) = PPP(t2, t1)e−i(t2−t1)H +H +HF +t1 . +(A5) +From the above analysis, we can see that quasienergies and Floquet modes are extremely crucial for the evolution +of the driven system. We show how to solve them numerically in the following. The Floquet modes are time-periodic +and form a complete basis. To find them one solves the eigenvalue problem +(H +H +HS(t) − i∂t) |r(t)⟩ = εr|r(t)⟩. +(A6) +The periodicity of the Floquet modes enables us to map the eigenvalue problem to a time-independent one in +an extended Hilbert space, also known as Sambe space [48]. To do this, an infinite-dimensional space with integer +quantum numbers is introduced. Its basis is given by +HT = {. . . , | − 3⟩, | − 2⟩, | − 1⟩, |0⟩, |1⟩, |2⟩, |3⟩ . . .} . +(A7) +There are two operators TTT k and FFF z in Sambe space, which are defined as +TTT k|m⟩ = |m + k⟩, +FFF z|m⟩ = m|m⟩. +(A8) +Combining the basis denoted by HS = {|φ1⟩, |φ2⟩, |φ3⟩ . . . |φK⟩} for the quantum system living in original Hilbert +space HS, one can construt the basis of the extended Hilbert space, +H = HT ⊗ HS = +� +|n, φ⟩⟩ |n ∈ Z, i ∈ {1, . . . , K} +� +, +(A9) +with the scalar product ⟨⟨u|v⟩⟩ = 1 +T +� T +0 dt⟨u(t)|v(t)⟩ = ⟨u(t)|v(t)⟩ in the extended space. We have denoted vectors in +the Sambe space by a double ket notation |r⟩⟩, which corresponds to |r(t)⟩ in HS. Moreover, a periodic time-dependent +operator OOO(t) = � +k OOOkeiωLt in extended space is expressed as +OOOext = +� +k +TTT k ⊗ OOOk. +(A10) +With the above definitions, we rewrite the operator QQQ = H +H +H(t) − i∂t and solve eigenvalue problem in extended space +as +QQQext = +� +k +TTT k ⊗ H +H +Hk + ωLFFF z ⊗ 111 +−→ +QQQext|rm⟩⟩ = εrm|rm⟩⟩, +(A11) +where H +H +Hk are the Fourier components of the Hamiltonian H +H +H(t). Note that εr is periodic with period ωL because +|r(t)⟩eimωLt is also the eigenstate of Eqn.A6 with eigenvalue εrm = εr + mωl. This is the reason why the eigenstates +and quasienergies have been denoted with an additional index m in the extended space. The complete set of solutions +of the quasienergies eigenvalue problem Eqn.A6 contains a lot of redundant information. All Floquet states of the +system can, thus, be constructed, for example, from those Floquet modes whose quasienergies lie in a single Brillouin +zone of the ωL periodic quasienergy spectrum. From now on we will denote Floquet modes in the extended space just +by |r⟩⟩, assuming that all lie in the same Brillouin zone. +One can re-formulate the evolution of any operator with the help of The Floquet modes. Take into account an + +11 +arbitrary operator SSS. +SSS(t) = UUU †(t)SSSUUU(t) += (PPP(t, 0)e−itH +H +HF +0 )†SSSPPP(t, 0)e−itH +H +HF +0 += eitH +H +HF +0 PPP †(t, 0)SSSPPP(t, 0)e−itH +H +HF +0 += +� +r +eitεr|r(0)⟩⟨r(0)| +� +m +|m(0)⟩⟨m(t)|SSS +� +r′ +|r′(t)⟩⟨r′(0)| +� +m′ +e−itεm′ |m′(0)⟩⟨m′(0)| += +� +r,r′ +eit(εr−εr′)⟨r(t)|SSS|r′(t)⟩|r(0)⟩⟨r′(0)| += +� +ω,n +eit(ω+nωL)SSSω,n. +(A12) +where SSSω,n = +�� T +0 +dt +T ⟨r(t)|S e−inωlt|r′(t)⟩ +� +|r(0)⟩⟨r′(0)| and εr − εr′ = ω. +Due to the periodicity of the Floquet +modes |r(t)⟩(|r′(t)⟩), we can perform the Fourier transform, i.e. ⟨r(t)|SSS|r′(t)⟩|r(0)⟩⟨r′(0)| = � +k einωLtSSSω,n, where +SSSω,n = +�� T +0 +dt +T ⟨r(t)|S e−inωlt|r′(t)⟩ +� +|r(0)⟩⟨r′(0)|. In extended space, using Eqn.A8 this is easily computed by +� T +0 +dt +T ⟨r(t)|SSS e−inωLt|r′(t)⟩ = ⟨⟨r|TTT −n ⊗ SSS|r⟩⟩. +(A13) +It is now straightforward to obtain a master equation for a driven open quantum system thanks to decomposition +Eqn.A12. +Appendix B: The derivation of the Generalized Master Equation +The total Hamiltonian, including system and reservoir is H +H +Htot = H +H +HS(t) + H +H +HB + H +H +HSB and we assume an initial +factorizing state of the form ρρρtot(0) = ρρρ(0) ⊗ ρρρB, with ρρρB ∼ e−βH +H +HB. Define the modified density matrix +ρρρtot(χ, t) = UUU(χ, t)ρρρtot(0)UUU †(−χ, t), +(B1) +with total (system plus reservoirs) initial density matrix ρρρtot(0) and modified evolution operator UUU(χ, t) = +e−iχH +H +HB/2UUU(t)eiχH +H +HB/2, where UUU(t) is the evolution operator corresponding to Hamiltonian H +H +H. +The variable χ is +usually referred to as the counting field. The evolution of operator ρρρtot(χ, t) is given by +∂tρρρtot(χ, t) = −i [H +H +H(χ, t)ρρρtot(χ, t) − ρρρtot(χ, t)H +H +H(−χ, t)] . +(B2) +Taking the trace over the reservoir degrees of freedom we define +ρρρ(χ, t) = TrB {ρρρtot(χ, t)} . +(B3) +Note that the total density matrix and the reduced density matrix of our system are both recovered by setting χ = 0. +Transform Eqn. B2 into the interaction picture by ˜AAA(t) = UUU † +0(t)AAAUUU 0(t), with UUU 0(t) the evolution operator associated +to Hamiltonian H +H +H0(t) = H +H +HS(t) + H +H +HB. And considering the standard Born–Markov approximations [31], we obtain +∂t˜ρρρ(χ, t) = − +� ∞ +0 +dsTrB{ ˜H +H +HI(χ, t) ˜H +H +HI(χ, t − s)˜ρρρ(χ, t)ρρρB − ˜H +H +HI(χ, t)˜ρρρ(χ, t)ρρρB ˜H +H +HI(−χ, t − s) +− ˜H +H +HI(χ, t − s)˜ρρρ(χ, t)ρρρB ˜H +H +HI(−χ, t) + ˜ρρρ(χ, t)ρρρB ˜H +H +HI(−χ, t − s) ˜H +H +HI(−χ, t)}. +(B4) +We take the interaction Hamiltonian with the form H +H +HSB = SSS ⊗BBB = SSS ⊗� +k ckxxxk and define the correlation function +C(χ, t) ≡ ⟨ ˜BBB(χ, t)BBB⟩ = TrB +� +˜BBB(χ, t)BBBρρρB +� +. Using the fact that +� +˜BBB(χ, t) ˜BBB(ξ, s) +� += +� +˜BBB(χ − ξ, t − s)BBB +� +, we have +∂t˜ρρρ(χ, t) = − +� ∞ +0 +ds{C(0, s)˜SSS(t)˜SSS(t − s)˜ρρρ(χ, t) − C(−2χ, −s)˜SSS(t)˜ρρρ(χ, t)˜SSS(t − s) +− C(−2χ, s)˜SSS(t − s)˜ρρρ(χ, t)˜SSS(t) + C(0, −s)˜ρρρ(χ, t)˜SSS(t − s)˜SSS(t)}. +(B5) + +12 +The correlation functions can actually be written as +C(−2χ, t) =TrB(eiχH +H +HBeitH +H +HBBBBe−itH +H +HBe−iχH +H +HBBBBρρρB) +=TrB(eiχH +H +HBeitH +H +HB � +k +ckxxxke−itH +H +HBe−iχH +H +HB � +k′ +c′ +kxxx′ +kρρρB) +=TrB(eiχH +H +HBeitH +H +HB � +k +ck +� +ℏ +2mω (ˆaaak + ˆaaa† +k)e−itH +H +HBe−iχH +H +HB � +k′ +c′ +k +� +ℏ +2mω (ˆaaak′ + ˆaaa† +k′)ρρρB) +(B6) +Set ℏ = m = 1 and use ˆaaa† +k(t) = eitH +H +HBˆaaa† +ke−itH +H +HB = ˆaaa† +keiwkt and ˆaaak(t) = eitH +H +HBˆaaake−itH +H +HB = ˆaaake−iwkt. +We derive +⟨ˆaaak(t)ˆaaak′(t′)⟩ = ⟨ˆaaa† +k(t)ˆaaa† +k′(t′)⟩ = 0, ⟨ˆaaa† +k(t)ˆaaak′(t′)⟩ = δk,k′eiωk(t−t′)N(ωk), and ⟨ˆaaak(t)ˆaaa† +k′(t′)⟩ = δk,k′e−iωk(t−t′)(N(ωk) + +1). Going on the derivation, +C(−2χ, t) =TrB(eiχH +H +HBeitH +H +HB � +k +ck +� +ℏ +2mωk +(ˆaaak + ˆaaa† +k)e−itH +H +HBe−iχH +H +HB � +k′ +c′ +k +� +ℏ +2mωk +(ˆaaak′ + ˆaaa† +k′)ρρρB) += +� +k,k′ +ckc′ +k +2ωk +TrB(eiχH +H +HBeitH +H +HB(ˆaaak + ˆaaa† +k)e−itH +H +HBe−iχH +H +HB(ˆaaak′ + ˆaaa† +k′)ρρρB) += +� +k,k′ +ckc′ +k +2ωk +TrB((ˆaaake−iωk(t+χ) + ˆaaa† +keiωk(t+χ))(ˆaaak′ + ˆaaa† +k′)ρρρB) += +� +k +c2 +k +2ωk +[(N(ωk) + 1)e−iωk(t+χ) + N(ωk)eiωk(t+χ)] += +� ∞ +0 +dωJ(ω)[(N(ω) + 1)e−iω(t+χ) + N(ω)eiω(t+χ)] +(B7) +N(−ω) = +1 +e−βω−1 = −(1 + +1 +e−βω−1), let ω′ = −ω, in the meanwhile, we extend J(ω) to negative values of ω via +J(−ω) = −J(ω). +� ∞ +0 +dωJ(ω)N(ω)eiω(t+χ) += +� ∞ +0 +d(−ω′)J(−ω′)N(−ω′)e−iω′(t+χ) += − +� −∞ +0 +dω′(−J(ω′))(−(N(ω′) + 1))e−iω′(t+χ) += +� 0 +−∞ +dω′J(ω′)(N(ω′) + 1)e−iω′(t+χ) += +� 0 +−∞ +dωJ(ω)(N(ω) + 1)e−iω(t+χ) +(B8) +Thus, C(−2χ, t) = +� ∞ +−∞ dωJ(ω)(N(ω) + 1)e−iω(t+χ). +In the interaction picture, ˜SSS(t) = UUU †(t, 0)SSSUUU(t, 0), where +UUU(t1, t0) = ⃗TTTe−i +� t1 +t0 dτH +H +HS(τ). Replace them into the above equation and transform the equation back to Schr¨odinger’s +picture through UUU(t, 0) acting on the left side and UUU †(t, 0) acting on the right side of the equation, we obtain +iH +H +HS(t)ρρρ(χ, t) + ∂tρρρ(χ, t) + ρρρ(χ, t)(−iH +H +HS(t)) = +− +� ∞ +0 +ds{C(0, s)SSSUUU(t, t − s)SSSUUU †(t, t − s)ρρρ(χ, t) +− C(−2χ, −s)SSSρρρ(χ, t)UUU(t, t − s)SSSUUU †(t, t − s) +− C(−2χ, s)UUU(t, t − s)SSSUUU †(t, t − s)ρρρ(χ, t)SSS ++ C(0, −s)ρρρ(χ, t)UUU(t, t − s)SSSUUU †(t, t − s)SSS} +(B9) +By using Floquet theorem, UUU(t, t0) = � +r exp(−iεr(t − t0))|r(t)⟩⟨r(t0)|, + +13 +∂tρρρ(χ, t) = −i[H +H +HS(t),ρρρ(χ, t)] +− +� ∞ +0 +ds{C(0, s)SSS +� +r +exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS +� +r′ +exp(iεr′s)|r′(t − s)⟩⟨r′(t)|ρρρ(χ, t) +− C(−2χ, −s)SSSρρρ(χ, t) +� +r +exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS +� +r′ +exp(iεr′s)|r′(t − s)⟩⟨r′(t)| +− C(−2χ, s) +� +r +exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS +� +r′ +exp(iεr′s)|r′(t − s)⟩⟨r′(t)|ρρρ(χ, t)SSS ++ C(0, −s)ρρρ(χ, t) +� +r +exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS +� +r′ +exp(iεr′s)|r′(t − s)⟩⟨r′(t)|SSS} += −i[H +H +HS(t),ρρρ(χ, t)] +− +� +ω +� ∞ +0 +ds{C(0, s)SSS exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|ρρρ(χ, t) +− C(−2χ, −s)SSSρρρ(χ, t) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| +− C(−2χ, s) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|ρρρ(χ, t)SSS ++ C(0, −s)ρρρ(χ, t) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|SSS} +(B10) +⟨r(t − s)|SSS|r′(t − s)⟩ is periodic with periodicity T due to the periodicity of the Floquet mode |r(t − s)⟩, we can take +Fourier transform on it, +SSSω,n = +�� T +0 +d(t − s) +T +⟨r(t − s)|SSS e−inωL(t−s)|r′(t − s)⟩ +� +|r(t)⟩⟨r′(t)|. +(B11) +Therefore, ⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| = � +n einωL(t−s)SSSω,n. Use C(−2χ, t) = 1 +π +� ∞ +−∞ dωe−iω(χ+t)J(ω) [1 + Nω] +and ⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| = � +n einωL(t−s)SSSω,n, we arrive at +∂tρρρ(χ, t) = −i[H +H +HS(t),ρρρ(χ, t)] +− +� +n,ω +einωlt +� ∞ +0 +ds{C(0, s)SSS exp(−i(ω + nωL)s)SSSω,nρρρ(χ, t) +− C(−2χ, −s)SSSρρρ(χ, t) exp(−i(ω + nωL)s)SSSω,n +− C(−2χ, s) exp(−i(ω + nωL)s)SSSω,nρρρ(χ, t)SSS ++ C(0, −s)ρρρ(χ, t) exp(−i(ω + nωL)s)SSSω,nSSS} +− i[H +H +HS(t),ρρρ(χ, t)] += − +� +n,ω +{einωLt 1 +π +� ∞ +−∞ +dω′ +� ∞ +0 +dse−i(ω′+(ω+nωL))sJ(ω′) [1 + Nω′]SSSSSSω,nρρρ(χ, t) +− 1 +π +� ∞ +−∞ +dω′ +� ∞ +0 +dse−iω′χei(ω′−(ω+nωL))sJ(ω′) [1 + Nω′]SSSρρρ(χ, t)SSSω,n +− 1 +π +� ∞ +−∞ +dω′ +� ∞ +0 +dse−iω′χe−i(ω′+(ω+nωL))sJ(ω′) [1 + Nω′]SSSω,nρρρ(χ, t)SSS ++ 1 +π +� ∞ +−∞ +dω′ +� ∞ +0 +dsei(ω′−(ω+nωL))sJ(ω′) [1 + Nω′]ρρρ(χ, t)SSSω,nSSS} +(B12) +With the help of +� ∞ +0 +ds eiωs = πδ(ω) + i P 1 +ω and disregarding the principal value P term, J(−ω) = −J(ω), and +1 + N(−ω) = 1 + +1 +e−βω−1 = +1 +1−eβω = −N(ω). We get the generalized master equation finally. + +14 +∂tρρρ(χ, t) = −i[H +H +HS(t),ρρρ(χ, t)] +− +� +n,ω +einωlt{J(∆ω,n) +� +N∆ω,n +� +SSSSSSω,nρρρ(χ, t) +− e−i∆ω,nχJ(∆ω,n) +� +1 + N∆ω,n +� +SSSρρρ(χ, t)SSSω,n +− ei∆ω,nχJ(∆ω,n) +� +N∆ω,n +� +SSSω,nρρρ(χ, t)SSS ++ J(∆ω,n) +� +1 + N∆ω,n +� +ρρρ(χ, t)SSSω,nSSS} +(B13) +Appendix C: Derivation of the effective system plus system-reservoirs interaction Hamiltonian through flow +equation approach +In this section, we derive the effective system plus system-reservoirs interaction Hamiltonian through flow equation +approach [3]. The method takes advantage of infinitesimal unitary transformation steps, from which renormalization- +group–like flow equations are derived to derive the effective Hamiltonian. The flow equation is +dH +H +H(s, t) +ds += −VVV (s, t) + i +� t +0 +dt1[VVV (s, t1),H +H +H(s, t)], +(C1) +where s is the flow parameter, H +H +H(s, t) and VVV (s, t) are total Hamiltonian and its time-dependent part respectively. It +should be noted that the family of Hamiltonians H +H +H(s, t) represents an interpolation between a starting Hamiltonian +H +H +H(0, t) and a final Hamiltonian H +H +H(∞, t). Here, H +H +H(∞, t) is the Floquet Hamiltonian H +H +HF if VVV (∞, t) = 0. We set +appropriate boundary conditions by enforcing that s = 0 corresponds to the initial unchanged Hamiltonian. H +H +H(s, t) +can be expressed as a sum of linear operators with coefficients ci(s, t), H +H +H(s, t) = � +i ci(s, t)OOOi. The OOOi operators are +nothing other than kinetic and potential energy terms appearing in a Hamiltonian. Note that the set of operators +may include both the original operators and new terms generated from the commutator in Eqn.C1. The coefficients +ci(s, t) describe the coupling constants (strength) of these terms. In this representation, Eqn.C1 can be written in a +numerically tractable form, +dci(s, t) +dt += −gi(t, [cj(s, t′)]), +t′ ∈ [0, T]. +(C2) +In [3], Michael Vogl et al. put forward a more analytically tractable equation, which set s = 0 only for the terms +VVV (s, t). +dH +H +H(s, t) +ds += −VVV (0, t) + i +� t +0 +dt1[VVV (0, t1),H +H +H(s, t)], +(C3) +This corresponds to removing the original time-dependent part VVV (s, t) from the Hamiltonian via the rotating frame +transformation e−i +� t +0 dtVVV (t) while generating other new time dependences. To ensure that this approximation actually +corresponds to the aforementioned unitary transformation, we also need to restrict s ∈ [0, 1] rather than the previous +s ∈ [0, ∞). The effective time-independent Hamiltonian is then given by H +H +Heff = � +i ci(1, t)OOOi, where ci(1, t) = +1 +T +� T +0 ci(1, t)dt, if we are only interested in stroboscopic dynamics. +We now derive the effective Hamiltonian for the model we studied. The system plus system-reservoirs interaction +Hamiltonian is +H +H +HS(t) + H +H +HSB = ωA + K cos (ωLt) +2 +σσσA +z + ωB +2 σσσB +z + λ(σσσ1 ++σσσ2 +− + σσσ1 +−σσσ2 ++) + σσσA +x BBBA + σσσB +x BBBB, +(C4) +where BBBi = � +K cikxxxik is reservoirs coupling operators and VVV (0, t) = K cos (ωLt) +2 +σσσA +z in this case. We make the ansatz +H +H +H(s, t) = C1(s)σσσA +z + C2(s)σσσB +z + C3(s)σσσ1 ++σσσ2 +− + C4(s)σσσ1 +−σσσ2 ++ + C5(s)σσσA +x BBBA + C6(s)σσσB +x BBBB + C7(s)σσσA +y BBBA, +(C5) + +15 +and then find the flow equation is +dC1(s) +ds += −K cos (ωLt) +2 +dC2(s) +ds += 0 +dC3(s) +ds += iKC3(s) +ωL +sin (ωLt) +dC4(s) +ds += −iKC4(s) +ωL +sin (ωLt) +dC5(s) +ds += KC7(s) +ωL +sin (ωLt) +dC6(s) +ds += 0 +dC7(s) +ds += −KC5(s) +ωL +sin (ωLt) +(C6) +with the initial condition +C1(0) = K cos (ωLt) + ωA +2 +C2(0) = ωB +2 +C3(0) = λ +C4(0) = λ +C5(0) = 1 +C6(0) = 1 +C7(0) = 0 +(C7) +Their solutions are +C1(s) = 1 +2(ωA + K cos(ωLt) − Ks cos(ωLt)) +C2(s) = ωB +2 +C3(s) = λe +iKs sin(ωLt) +ωL +C4(s) = λe +−iKs sin(ωLt) +ωL +C5(s) = cos(Ks sin(ωLt)/ωL) +C6(s) = 1 +C7(s) = − sin(Ks sin(ωLt)/ωL) +(C8) +After taking an average over one period and set s = 1, we end up with the effective time-independent Hamiltonian +H +H +HS +eff + H +H +HSB +eff = ωA +2 σσσA +z + ωB +2 σσσB +z + λJ0(K/ωL)(σσσ1 ++σσσ2 +− + σσσ1 +−σσσ2 ++) + J0(K/ωL)σσσA +x BBBA + σσσB +x BBBB, +(C9) +[1] Jon H. Shirley, Solution of the Schr¨odinger Equation with a Hamiltonian Periodic in Time, Phys. Rev. 138 B979 (1965). +[2] Andr´e Eckardt and Egidijus Anisimovas, High-frequency approximation for periodically driven quantum systems from a +Floquet-space perspective, New J. Phys 17 093039 (2015). +[3] Michael Vogl, Pontus Laurell, Aaron D. Barr, and Gregory A. Fiete, Flow Equation Approach to Periodically Driven +Quantum Systems, Phys. Rev. X 9 021037 (2019). +[4] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79 081406 (2009). +[5] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, +Phys. Rev. B 82 235114 (2010). + +16 +[6] Tian-Shi Xiong, Jiangbin Gong, and Jun-Hong An, Towards large-chern-number topological phases by periodic quenching, +Phys. Rev. B 93 184306 (2016). +[7] Hui Liu, Tian-Shi Xiong, Wei Zhang, and Jun-Hong An, Floquet engineering of exotic topological phases in systems of cold +atoms, Phys. Rev. A 100 023622 (2019). +[8] A. Eckardt, C. Weiss, and M. Holthaus, Superfluid-insulator transition in a periodically driven optical lattice, Phys. Rev. +Lett. 95 260404 (2005). +[9] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Nonequilibrium quantum phase transitions in the Dicke model, +Phys. Rev. Lett. 108 043003 (2012). +[10] M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y. A. Chen, and I. Bloch, Experimental realization of strong effective +magnetic fields in an optical lattice, Phys. Rev. Lett. 107 255301 (2011). +[11] A. Bermudez, T. Schaetz, and D. Porras, Synthetic gauge fields for vibrational excitations of trapped ions, Phys. Rev. Lett. +107 150501 (2011). +[12] J. Struck, C. Olschl¨ager, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Wind- +passinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett. 108 225304 +(2012). +[13] D. V. Else, B. Bauer, and C. Nayak, Floquet Time Crystals, Phys. Rev. Lett. 117 090402 (2016). +[14] Andreu Riera-Campeny, Maria Moreno-Cardoner, and Anna Sanpera, Time crystallinity in open quantum systems, Quan- +tum 4 270 (2020). +[15] F. Grossmann, T. Dittrich, P. Jung, and P. H¨anggi, Coherent destruction of tunneling, Phys. Rev. Lett. 67 516 (1991). +[16] Jose M. Gomez Llorente and Jes´us Plata, Tunneling control in a two-level system, Phys Rev A. 45 R6958(R) (1992). +[17] Victor Galitski, Ian B. Spielman, Spin–orbit coupling in quantum gases, Nature 494 49–54 (2013). +[18] J. Struck, J. Simonet, and K. Sengstock, Spin-orbit coupling in periodically driven optical lattices, Nature 90 031601(R) +(2014). +[19] J. P. S. Peterson, T. B. Batalhao, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental +Characterization of a Spin Quantum Heat Engine , Phys. Rev. Lett. 123 240601 (2019). +[20] J. P. Pekola and I. M. Khaymovich,, Thermodynamics in single-electron circuits and superconducting qubits, Annu.Rev. +Condens. Matter Phys. 10 193 (2019). +[21] A. Ronzani, B. Karimi, J. Senior, Y. C. Chang, J. T. Peltonen, C. Chen, and J. P. Pekola, Tunable photonic heat transport +in a quantum heat valve, Nat. Phys. 14 991 (2018). +[22] A. Dechant, N. Kiesel, and E. Lutz, All-Optical Nanomechanical Heat Engine, Phys. Rev. Lett. 114 183602 (2015). +[23] C. Urgell, W. Yang, S. L. De Bonis, C. Samanta, M. J.Esplandiu, Q. Dong, Y. Jin, and A. Bachtold, Cooling and self- +oscillation in a nanotube electromechanical resonator,, Nat.Phys. 16 32 (2020). +[24] J. P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, A thermoelectric +heat engine with ultracold atoms, Science 342 713 (2013). +[25] O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E. Lutz,Single-Ion Heat Engine at Maximum +Power, Phys. Rev. Lett. 109 203006 (2012). +[26] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, +Science 352 325 (2016). +[27] Gleb Maslennikov, Shiqian Ding, Roland Habl¨utzel, Jaren Gan, Alexandre Roulet, Stefan Nimmrichter, Jibo Dai, Valerio +Scarani, Dzmitry Matsukevich, Quantum absorption refrigerator with trapped ions, Nat. Commun. 10 202 (2019). +[28] James Klatzow, Jonas N. Becker, Patrick M. Ledingham, Christian Weinzetl, Krzysztof T. Kaczmarek, Dylan J. Saunders, +Joshua Nunn, Ian A. Walmsley, Raam Uzdin, and Eilon Poem, Experimental Demonstration of Quantum Effects in the +Operation of Microscopic Heat Engines, Phys. Rev. Lett. 122 110601 (2019). +[29] Sourav Bhattacharjee, Amit Dutta, Quantum thermal machines and batteries, Eur. Phys. J. B 94 239 (2021). +[30] Wang Zi, Ren Jie, Nonequilibrium thermal transport and thermodynamic geometry in periodically driven systems, Acta +Physica Sinica 70 230503 (2021). +[31] Breuer, H. P., and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2006). +[32] Chong Chen, Jun-Hong An, Hong-Gang Luo, C. P. Sun, and C. H. Oh, Floquet control of quantum dissipation in spin +chains, Phys. Rev. A, 91 052122 (2015). +[33] W L Yang, W L Song, Jun-Hong An, M Feng, D Suter, and Jiangfeng Du, Floquet engineering to entanglement protection +of distant nitrogen vacancy centers, New J. Phys., 21 013007 (2019). +[34] Si-Yuan Bai and Jun-Hong An, Floquet engineering to reactivate a dissipative quantum battery, Phys. Rev. A, 102 060201 +(2020). +[35] Wan-Lu Song, Jia-Bin You, J.K. Xu, W.L. Yang, and Jun-Hong An, Floquet Engineering of Two Weakly Coupled Super- +conducting Flux Qubits, Phys. Rev. Applied, 14 054049 (2020). +[36] T. Shirai, T. Mori, and S. Miyashita, Novel symmetry-broken phase in a driven cavity system in the thermodynamic limit, +J. Phys. B At. Mol. Opt. Phys., 47 025501 (2014). +[37] M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V. Gorshkov, R. M. Wilson, and M. F. Maghrebi, Emergent equilibrium +in many-body optical bistability, Phys.Rev. A , 95 043826 (2017). +[38] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. B¨uchler, and P. Zoller, Quantum states and phases in driven open +quantum systems with cold atoms, Nat. Phys., 4 878-883 (2008). +[39] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Topology by dissipation in atomic quantum wires, Nat. Phys., 7 971–977 +(2011). +[40] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt, Generalized Bose-Einstein condensation into multiple states + +17 +in driven-dissipative systems, Phys. Rev. Lett., 111 240405 (2013). +[41] D. Vorberg, W. Wustmann, H. Schomerus, R. Ketzmerick, and A. Eckardt, Nonequilibrium steady states of ideal bosonic +and fermionic quantum gases, Phys.Rev. E, 92 062119 (2015). +[42] A. Schnell, R. Ketzmerick, and A. Eckardt, On the number of Bose-selected modes in driven-dissipative ideal Bose gases, +Phys. Rev. E, 97 032136 (2018). +[43] Sebastian Restrepo, Javier Cerrillo, Philipp Strasberg and Gernot Schaller, From quantum heat engines to laser cooling: +Floquet theory beyond the Born–Markov approximation, New J. Phys., 20 053063 (2018). +[44] C. M. Dai, Z. C. Shi, and X. X. Yi, Floquet theorem with open systems and its applications, Phys. Rev. A , 93 032121 +(2016). +[45] Tatsuhiko N. Ikeda and Masahiro Sato, General description for nonequilibrium steady states in periodically driven dissi- +pative quantum systems, Sci. Adv., 6 eabb4019 (2020). +[46] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and +counting statistics in quantum systems, Rev. Mod. Phys., 81 1665 (2009). +[47] S Gasparinetti, P Solinas, A Braggio and M Sassetti, Heat-exchange statistics in driven open quantum systems, New J. +Phys., 161 115001 (2014). +[48] Hideo Sambe, Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field, Phys. Rev. A, 7 +2203 (1973). +[49] Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Communications on Pure and +Applied Mathematics, 7 649-673 (1954). +[50] Takahiro Mikami, Sota Kitamura, Kenji Yasuda, Naoto Tsuji, Takashi Oka, and Hideo Aoki, Brillouin-Wigner theory for +high-frequency expansion in periodically driven systems: Application to Floquet topological insulators, Phys. Rev. B , 93 +144307 (2016). +[51] Mihail Silaev, Tero T. Heikkil¨a, and Pauli Virtanen, Lindblad-equation approach for the full counting statistics of work and +heat in driven quantum systems, Phys. Rev. E, 90 022103 (2014). +[52] Z. Nafari Qaleh and A. T. Rezakhani, Enhancing energy transfer in quantum systems via periodic driving: Floquet master +equations, Phys. Rev. A, 105 012208 (2022). +[53] Horodecki R., Horodecki P., Horodecki M., Horodecki,K., Quantum entanglement, Rev. Mod. Phys. 81 865 (2009). +[54] Zhihai Wang, Wei Wu, and Jin Wang, Steady-state entanglement and coherence of two coupled qubits in equilibrium and +nonequilibrium environments, Phys. Rev. A 99 042320 (2019). + diff --git a/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/load_file.txt b/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c05c7e6786c5e92a86dacbfcb2f12527f1c3ddc0 --- /dev/null +++ b/mNAyT4oBgHgl3EQf_vq9/content/tmp_files/load_file.txt @@ -0,0 +1,1259 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf,len=1258 +page_content='Entanglement and work statistics in the driven open system He Wang1, 2 and Jin Wang3, ∗ 1College of Physics, Jilin University, Changchun 130021, China 2State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130021, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 3Department of Chemistry and of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3400, USA We study the entanglement and work statistics in a driven two-qubit system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The regulation of periodic driving has much more versatility and universality in contrast to reservoir engineering in static systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We found the quasi-steady state entanglement can be amplified effectively by the external drive in certain parameter regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The drive extends the range of temperatures or temperature differences at which entanglement can emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' From the view of the effective Hamil- tonian, the addition of the driving alters the inter-qubit coupling and system-bath coupling, which are crucial in determining the quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The work statistics are also investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The driven system, as a continuous quantum thermal machine, output work continuously and steadily at the quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' There is a distinct operation of modes and corresponding performance by changing driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It can also be understood that the drive changes the effective Hamiltonian, and further the modes of energy exchanges between the system and the baths as well as the work reservoir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ∗ jin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1@stonybrook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='edu arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='00915v1 [quant-ph] 3 Jan 2023 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' INTRODUCTION For the past few years, the periodically driven quantum system has drawn much attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This has been a result of experimental advances in state-of-the-art laser technology, which makes it implementable in the lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In accordance with the Floquet theorem [1] and the follow-up theoretical developments [2, 3], physical characteristics of the driven system are primarily understood by the so-called effective Hamiltonian, which reflects the periodic driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Periodic driving largely extends the controllability of the systems since time as a new control dimension is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It gets rid of the down-to-earth difficulty of reservoir engineering in static systems that the parameter is hard to change once the material is prepared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' By designing a suitable driving protocol, one can engineer the effective Hamiltonian, which empowers us to have desirable properties and functionalities of the physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Coherent control through periodic driving (often known as Floquet engineering) has become a commonly used tool in quantum control, which has been used to realize topologically nontrivial systems [4–7], nonequilibrium phase transitions [8, 9], artificial gauge fields [10–12], and discrete time crystals [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Additionally, it comes into play in the coherent destruction of tunneling [15, 16] and the manipulation of spin-orbit coupling [17, 18], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Meanwhile, significant progress has been made toward the experimental realization of small-scale thermal machines where fluctuations play a significant role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The thermal machines in the quantum regime have been realized on several platforms [19–26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Specific examples include a quantum absorption refrigerator with trapped ions [27], quantum heat engines using an ensemble of nitrogen-vacancy centers [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Continuous thermal machines [29] do not require intermittent couplings and decouplings between the working fluid and the baths, which are particularly challenging to implement at microscopic scales, in contrast to their reciprocating counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' As a result, they have greater experimental relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Continuous thermal machines are typically implemented by a periodic modulation of the system Hamiltonian, which drives the system to a periodic quasi-steady state in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The temporal driving methods may drive small systems in nonequilibrium quasi-steady states with far greater versatility and universality than the static manipulation methods, which hinge on steady nonequilibrium sources such as temperature bias, chemical potential difference, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A real system is always inevitably influenced by its surroundings and this can lead to the system’s decoherence eventually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The environmental effect plays a crucial role in the evolution of the system [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' How to confront dissipation and decoherence is a fundamental challenge in quantum technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It has been shown that the dissipation can be effectively suppressed by the formation of the Floquet bound state under temporal driving [32–34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The scheme to generate a maximally entangled state and then protect it based on Floquet engineering is also proposed [33, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' However, the entanglement of the nonequilibrium quasi-steady state still lacks of investigations based on our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Indeed, the balance of the periodic driving and dissipation can yield a variety of nonequilibrium steady states and phase transitions in various systems including cavity-QED systems [36, 37], cold atoms [38, 39], ideal Bose gases [40–42], and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A natural question is raised: Is entanglement in the quasi-steady state?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Can we enhance it with Floquet engineering?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The answer is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The entanglement can be magnified significantly by the befitting driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system can become entangled in a wider range of temperatures or temperature differences as a result of the drive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' From the standpoint of effective Hamiltonian, the existing driving gives rise to the change of inter-qubit coupling and system-bath coupling, as well as further, modifies steady state entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The work statistics of the open system are also of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The net flow from the baths to the system disappears when the static system approaches the steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When certain external driving is applied, the system can operate continually and steadily as a continuous quantum thermal machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The different drivings contribute to the various modes of energy exchanges between the system and the baths as well as the work reservoir (energy source of the external agent which modulates the system) in the quasi-steady state, which bring about the thermal machine with numerous operation of modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We quantify the performance efficiency of different operation modes, which is bounded by the Carnot limit in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In Section II, we introduce our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We then derive a generalized master equation by means of double-projective measurement protocol and Floquet theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In Section III, the quasi- steady state entanglement is studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In Section IV, we investigate the work statistics at a quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Finally, we draw our conclusions in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' THEORETICAL FRAMEWORK To start, we first introduce the model we studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system is composed of a pair of interacting qubits, and each qubit couples to its own bosonic bath with a certain temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Meanwhile, the system is driven by external field 3 control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The sketch of the model is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The Hamiltonian of the whole system is H H H = H H HS(t) + H H HB + H H HSB = � i=A,B ωi + Di(t) 2 σσσi z + λ(σσσA +σσσB − + σσσA −σσσB +) + � i=A,B � k ω2 ikaaa† ikaaaik + � i=A,B σσσi x � k cccikxxxik, (1) where σσσi z are Pauli matrices for the i-th qubit, it reads σσσA z = σσσz �III for the A qubit or σσσB z = III �σσσz for the B qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ωi is the energy spacing of the i-th qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Di(t) is the external field control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' λ measures the coupling interaction between two qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' aaa† ik(aaaik) is the creation (annihilation) operator of k-th bosonic mode in i-th bath and satisfies the commute relation [aaaik,aaa† i′k′] = δii′δkk′I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The cik are coupling constants that describe the coupling of the i-th qubit to its own reservoir modes aaaik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' To fully characterize the interaction between the system and baths, we need to define the spectral density of the baths, which follows Ji(ω) = π 2 � k c2 ik ωik δ(ω − ωik) (2) A structure-less spectral density (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' linear form di ω0 ω) typically empowers a Markovian treatment of the reservoirs due to the fast decay of its associated correlation functions, while a more structured spectral density (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' strongly peaked around a frequency diγω (ω2−ω2res)2+γ2ω2 ) requires a more involved treatment [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In this paper, we simply take a structure-less spectral density Ji(ω) = di ω0 ω into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A sketch of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' There are two interacting qubits, which are coupled with individual baths as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The qubit A is driven by the external field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The drives Di(t) may be any time-dependent function, but we only take into account an easily implementable drive scheme: a monochromatic drive with frequency ωL and amplitude K only acts on the qubit A, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', DA(t) = K cos ωLt and DB(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Note that the total Hamiltonian is periodic in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can take advantage of the Floquet theorem to solve a time-periodic Schr¨odinger equation i∂t|ψr(t)⟩ = H H HS(t)|ψr(t)⟩, where H H HS(t) = H H HS(t+T) = � k eik ωLtH H Hk, with period T = 2π ωL .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A solution to this Schr¨odinger equation is given by Floquet states |ψr(t)⟩ = e−iεrt|r(t)⟩, where εr are called quasienergies and |r(t)⟩ = |r(t + T)⟩ are Floquet modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The existence of Floquet states in time-periodically driven systems follows from the Floquet theorem in a similar way to the existence of Bloch states in spatially periodic systems [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We also mention that there is a similar Floquet theorem for open systems in [44, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A, we review more details on the Floquet theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' To study the heat statistics of the driven system, we follow the full counting statistics formalism in [43, 46, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The heat moments are expediently described in terms of the characteristic function G(χ) = � d∆E e−iχ∆Ep(∆E), which is based on double-projective measurement of the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' With the help of conditional probability p(E1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E0), which one measured the energy of environment E = E0 at time t0, and a follow-up measurement gave E1 at time t1, and the probability p(E0) to measure E0 at time t0, the probability distribution function for the heat energy exchange ∆E to be transported to the reservoir between times t = t0 and t = t1 can be expressed as p(∆E, t) = � E1,E0 δ(E1 − E0 − ∆E)p(E1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E0)p(E0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (3) Taking account into the projective operator PPP Em and its property PPP EmPPP En = δmnPPP Em, we have p(E1, E0) = Tr[PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0UUU †(t)PPP E1] = Tr[UUU †(t)PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (4) 4 The generating function is given by G(χ, t) = � d∆E e−iχ∆Ep(∆E) = � d∆E e−iχ∆E � E1,E0 δ(E1 − E0 − ∆E)p(E1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E0)p(E0) = � E1,E0 p(E1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E0)p(E0)e−iχ∆E (5) Assume the initial total density matrix ρρρtot(0) = ρρρS(0) ⊗ ρρρB(0) to be factorized into the system density matrix ρρρS(0) and the thermalized environment density matrix ρρρB(0) = e−βH H HB/Z, where Z is the partition function of the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Particularly, this assumption indicates that all projectors PPP Em commute with ρρρ(0), ensuring that the dynamics of the reservoir are unaffected by the initial measurement of the observable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' By the use of e−iχH H HB = � Em PPP Eme−iχEm, we have G(χ, t) = � E1,E0 Tr[UUU †(t)PPP E1UUU(t)PPP E0ρρρtot(0)PPP E0]e−iχ∆E = Tr[UUU †(t) � E1 PPP E1e−iχE1UUU(t) � E0 PPP E0eiχE0ρρρtot(0)] = Tr[UUU †(t)e−iχH H HBUUU(t)eiχH H HBρρρtot(0)] = Tr[UUU(χ, t)ρρρtot(0)UUU †(−χ, t)] = Tr[ρρρtot(χ, t)], (6) where UUU(χ, t) = e−iχH H HB/2UUU(t)eiχH H HB/2 and ρρρtot(χ, t) = UUU(χ, t)ρρρtot(0)UUU †(−χ, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It enables us to compute the statistics of the energy transferred between the system and reservoir by straightforward differentiation ⟨∆En⟩ = − ∂n ∂(iχ)n G(χ)|χ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (7) Utilize the modified time evolution operator UUU(χ, t) and modified density matrix ρρρtot(χ, t), and assume that the coupling between the system and baths are weak enough such that the Born–Markov approximation is valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We derive a generalized Markov master equation without secular approximation ∂tρρρ(χ, t) = LLL(χ, t)ρρρ(χ, t) = −i [H H HS(t),ρρρ(χ, t)] − � {i=1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n} ei∆ω,nt{Ji(∆ω,n)Ni(∆ω,n)SSSi,ω,n(t)SSSiρρρ(χ, t) − Ji(∆ω,n) [1 + Ni(∆ω,n)]SSSiρρρ(χ, t)SSSi,ω,n(t)ei∆i,ω,nχ − Ji(∆ω,n)Ni(∆ω,n)SSSi,ω,n(t)ρρρ(χ, t)SSSie−i∆i,ω,nχ + Ji(∆ω,n) [1 + Ni(∆ω,n)]ρρρ(χ, t)SSSi,ω,n(t)SSSi}, (8) where SSS1 = σσσA x and SSS2 = σσσB x , ∆ω,n = ω + nωL and SSSi,ω,n(t) = �� T 0 dt T ⟨r(t)|SSSi e−inωlt|r′(t)⟩ � |r(t)⟩⟨r′(t)| such that ω = εr − εr′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' εr is quasi-energy in the first Brillouin zone and |r(t)⟩ corresponds to Floquet modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ji(ω) and Ni(ω) are the spectral density and Bose distribution for the i-th baths respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The details are in Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Similar master equations have been derived in different research backgrounds [43, 47, 51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ENTANGLEMENT IN THE DRIVEN OPEN SYSTEM In this section, we will study the entanglement in the quasi-steady state of the driven open system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Note that due to the periodicity of the Floquet modes |r(t)⟩, the superoperator LLL(χ, t) also has the same periodicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The evolution 5 of the system can be computed just by setting χ = 0 in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (8), ∂tρρρ(t) = − i [H H H(t),ρρρ(t)] − � {i=1,2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n} einωLtJi(∆ω,n){Ni(∆ω,n) [SSSiSSSi,ω,n(t)ρρρ(t) − SSSi,ω,n(t)ρρρ(t)SSSi] + [1 + Ni(∆i,ω,n)] [ρρρ(t)SSSi,ω,n(t)SSSi − SSSiρρρ(t)SSSi,ω,n(t)]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (9) Assuming that in the long-time limit the density matrix ρρρ(t) is time-periodic with the same period as the Floquet modes, in the extended space this equation has the form �� k TTT k ⊗ LLLk − iωLFFF z � ⃗ρρρ = 0 , (10) with ⃗ρρρ a vector containing all Fourier components of ρρρ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The definition of TTT k and FFF z can be found in Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Therefore, one can numerically obtain a quasi-steady state by truncating the basis of the temporal space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The number of basis should be as large enough as possible to ensure that the result converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' For general two qubits state ρρρ, the entanglement can be quantified using the concurrence, which is defined as C = max {0, λ1 − λ2 − λ3 − λ4} in bare basis, where {λ1, λ2, λ3, λ4} are the square roots of the eigenvalues of √ρρρ(σσσy ⊗ σσσy)ρρρ∗(σσσy ⊗ σσσy)√ρρρ sorted in a descending order [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Entanglement varies w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (a) the temperatures of baths, (b) the driving amplitude K in one period, and (c) the driving frequency ωL in one period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The reservoir temperatures are T1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 and T2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 in (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' And the driving frequency ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 for (b) and the driving amplitude K = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 for (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Other parameters are d1 = d2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='001, ω01 = ω02 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The coupling strength between two qubits is λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='25, and the energy gaps of the qubits are ω1 = ω2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We first consider what happened provided that K = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', there is no external driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This is the case shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2(a), which comprises both equilibrium and nonequilibrium scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The steady-state entanglement only survives in a limited temperature range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The steady-state entanglement varies non-monotonically with both temperatures or temperature differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' With rising temperatures or temperature differences, the entanglement grows, then diminishes, and finally vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A similar phenomenon has been found in [54], which can be phenomenologically explained by the competition between coherence and populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system has the same period as the external field when it is driven by an external field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The equilibrium/nonequilibrium steady state is replaced with a nonequilibrium quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The entanglement of the nonequilibrium quasi-steady state changes non-monotonically with the driving amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' If the driving amplitude is low, entanglement does not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' If the amplitude is tuned higher, one may be able to harvest more entanglement at certain time slices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Particularly, the entanglement covers the most time in one period when K ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The entanglement of the nonequilibrium quasi-steady state also varies non-monotonically with the driving frequency in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The entanglement disappears if the driving frequency is less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One may harvest larger entanglement at some time slices if one tunes the driving frequency properly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The entanglement lasts longest in one period when ωL ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, which is resonant with the qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Indeed, the nonequilibrium quasi-steady state is a result of the competition between periodic driving and dissipa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Provided that the drive is weak, the dissipation dominates the quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' But the quasi-steady state has periodicity as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This case is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3(a,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Despite being weak, driving still changes the system significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Entanglement even survives at high temperatures or high-temperature differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Entanglement is visibly enhanced and lasts for the majority of one period if the driving amplitude is comparative with the energy gap of the qubit in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3(b,e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Too dramatic driving can also be damaging to the entanglement of the quasi-steady state, as seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3(c,f), where the driving dominates the quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The behavior of the entanglement is sensitive to temperature changes or variances, therefore the influence of the baths is still considerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (b) (c) (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 1 1 0 0 t/S6 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Variation of entanglement w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t temperatures in (a ∼ c) and temperature differences in (d∼f) with the driving frequency ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, where K = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, 5 for (a, d), (b, e), (c, f) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ∆T = T1 − T2 and T1 increases from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Other parameters are the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Similar behaviors also happen when we choose different driving frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A driving frequency that is too strong or too weak will be not helpful to harvest more entanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When the frequency is low, the harvesting entanglement is considerable only at relatively low temperatures or temperature differences depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4(a,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Under the Floquet- Magnus expansion approximation [49, 50], the effective system Hamiltonian is H H Heff ≈ H H H0 + � n>0 [H H Hn,H H H−n] nωL + O(ω2 L) in high frequency regime, where H H Hn is the n-th Fourier component of the system Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can verify that H H Heff ≈ H H H0 in our setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' As a result, when the driving frequency is so high that the system has no time to respond to the external driving, the quasi-steady state entanglement behavior is very similar to that of steady state without driving, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4(c,f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When the frequency is in the middle value, the drive is quite effective at improving the entanglement shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4(b,e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The behavior in the low and medium frequency regime can also be somewhat understood by the effective Hamilto- nian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Using the flow equation approach [3], we obtain the effective system plus system-reservoirs interaction Hamil- tonian (rather than the sole system Hamiltonian) H H HS eff + H H HSB eff = ωA 2 σσσA z + ωB 2 σσσB z + λJ0(K/ωL)(σσσ1 +σσσ2 − + σσσ1 −σσσ2 +) + J0(K/ωL)σσσA x BBBA + σσσB x BBBB, (11) where J0(x) is the first kind Bessel function and BBBi = � K cikxxxik are the reservoir coupling operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The derivation details of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 11 is in Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The drive affects both the system-reservoirs coupling and the inter-qubit coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Note that J0(0) = 1, we may conclude that the effective Hamiltonian is equal to the original Hamiltonian when the frequency ωL is set to a very high value and the amplitude K is fixed at a certain finite value, which conforms with the conclusion we got above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Similar to this, when the frequency ωL is set to a finite value and K is made to be extremely small, the effective Hamiltonian is identical to the original Hamiltonian as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Therefore, the effect of the drive is not remarkable in the two kinds of limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This, however, is not the story for K/ωL being finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' First, the change of the inter-qubit coupling modifies the eigenenergy of the bare system, resulting in an effect on the population distribution at the steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Second, the change of system-reservoirs coupling alters the dissipative effect of the environment and further changes the steady coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' |J0(s)| ≤ 1 indicates that the dissipative effect of one of the (a) (b) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='04 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 ¥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 1 0 1 7 0 1/ 1/4 + / 2元 (f) (d) (e) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 △T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 1 0 0 t/2 t/ 2 T37 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Variation of entanglement w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t temperatures in (a ∼ c) and temperature differences in (d∼f) with the driving amplitude K = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, where ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, 5 for (a, d), (b, e), (c, f) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ∆T = T1 − T2 and T1 increases from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Other parameters are the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' baths is weakened and the inter-qubit interaction that induces entanglement within the system diminishes as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The end result is generated by the combination of these two effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' However, we point out that the effective Hamiltonian is unable to provide a master equation to propagate the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The reason is also clear: the effective Hamiltonian can only describe the stroboscopic time evolution, it can not support a continuous time master equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' However, as we have seen, the effective Hamiltonian still offers certain perspectives for comprehending evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' WORK STATISTICS IN THE DRIVEN OPEN SYSTEM We investigate work statistics of the driven open system in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Using the counting field and its responding generalized master equation, the heat flow from the ith bath to the system is obtained by ˙Qi(t) = −∂t ⟨H H HBi⟩ = Tr {(∂iχLLLi(χ, t)) · ρρρ(χ, t)} |χ=0 = � {ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n} einωLt Tr{−Ji(∆ω,n) [1 + Ni(∆ω,n)] ∆ω,nSSSiρρρ(t)SSSi,ω,n(t) + Ji(∆ω,n)Ni(∆ω,n)∆ω,nSSSi,ω,n(t)ρρρ(t)SSSi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (12) The heat flow, we define, is positive if it flows from the bath to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system must abide by the energy balance at the quasi-steady state, which means ˙QA + ˙QB + ˙W=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, we plot the variations of the heat flow and workflow with respect to the amplitude K in (a) and to the frequency in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' If there is no drive, the system relaxes to the nonequilibrium steady state, and the net flow from the reservoirs to the system vanishes, which also hints that extracted work ˙Wnd = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' By varying the driving amplitude, the heat flow from bath B is always negative while the heat flow from bath-A drops from a specific positive value to a certain negative value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The combination of the change of ˙QA and ˙QB determines the ˙W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' As a result, one may classify thermal operation regimes into three modes in K parameter space in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When K ∈ (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='18) roughly, ˙QA > 0, ˙QB < 0, and ˙W < 0, the system operates as a (a) (c) (b) 1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0 0 1 7 1 0 1/4 t/ (d) (f) (e) 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 △T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0 1 1 0 t/ t/ t/ 2元8 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Variation of mean heat flow and work flow w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t the driving amplitude K in (a) and w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' the driving frequency ωL in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Variation of performance of operation modes w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t the driving amplitude K in (c) and w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' the driving frequency ωL in (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 in (a,c), and K = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05 in (b,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' TA = 1 and TB = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Other parameters are the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' heat engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Additionally, there is a transition region, K ∈ (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='18, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='35) approximately, ˙QA > 0, ˙QB < 0, and ˙W > 0, this operation mode of the system serves no useful purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When K > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='35, the system functions as a heat pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Similarly, there are three regimes of thermal operations in ωL parameter space in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' There is a small region around ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5, ˙QA > 0, ˙QB < 0, and ˙W < 0, the system functions as a heat engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' After going through the narrow transition regime, the system operates as a heat pump when deviates ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We also quantify the performance of different operation modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The efficiency of the heat engine is measured by | ˙W/ ˙QA| ≤ η and that of heat pump as | ˙QA/ ˙W| ≤ η−1, where η = 1 − TB TA = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='99 is Carnot bound in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We can verify that both the engine and heat pump are bounded by the Carnot limit in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5(c,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' As the amplitude grows, the engine’s efficiency increases before declining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' and the heat pump becomes more efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The efficiency of both the heat pump and the engine fluctuates non-monotonically as a function of frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Variation of mean heat flow and work flow w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='t the temperature in (a) and Variation of performance of operation modes in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ωL = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 and K = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='05 in (a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' TA = TB + ∆T and TB = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Other parameters are the same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (b) (a) X10-4 6 ,×10-4 10 4 M- QA 5 QB Wnd 0 0 2 5 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='48 K (d) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 -- engine heat pump 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 K(b) (a) X10-4 6 ,×10-4 10 4 M- QA 5 QB Wnd 0 0 2 5 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='48 K (d) (c) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 -- engine heat pump 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 K(a) (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 M- QA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 2 QB Wn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 1 engine heat pump 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 1 △T △T(a) (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='5 M- QA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 2 QB Wn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='1 1 engine heat pump 2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='8 1 △T △T9 We can also gain some insights into the reason why the system exhibits distinct operation modes and various performances when we regulate the driving from the perspective of the effective Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The change of inter- qubits coupling and the system-reservoirs coupling re-determines the heat flow and furthermore leads to output work being modified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The heat flow is also changed directly by controlling temperature difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' If the drive is fixed, the system displays various operation modes as the temperature difference changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' When the temperature difference is less, the system performs as a heat pump;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' after passing through a transition region, the system behaves as a heat engine at higher temperature differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The performance efficiency of the heat pump is lowered as the temperature difference increases, on the contrary, that of the engine increases as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' CONCLUSION In conclusion, we computed the nonequilibrium quasi-steady state entanglement within the two-qubit system by deriving a generalized master equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We have better control over the system with external field regulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system may harvest more entanglement from the reservoirs compared with the static system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The driven system can be entangled even at high temperatures or temperature differences in contrast to the system without driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We try to get to the bottom of why the driven system behaves differently from the static system from the effective Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The introduced driving modifies the inter-qubit coupling and system-reservoirs coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The total effect influences the quasi-steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We also investigate the work statistics in the driven open system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Changing the drive frequency or amplitude, the system will have different modes of operation, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', heat pump and engine or others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Their performances related to the heat flow from the reservoirs to the system can be changed by modifying driving and temperature differences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' As it stands, our model is likely to be realizable with state-of-the-art laser technology and quantum simulation platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Further optimization of the model parameters may relax experimental requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Appendix A: Floquet Theory and the Extended Space We give a more detailed introduction to Floquet theory in this section [2, 43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Consider a time-periodic Hamiltonian H H HS(t) = H H HS(t + T) = � k eik ωLtH H Hk, with period T = 2π ωL , according to Floquet theory, a solution to Schr¨odinger equation i∂t|ψr(t)⟩ = H H HS(t)|ψr(t)⟩ is given by Floquet states |ψr(t)⟩ = e−iεrt|r(t)⟩, where εr are dubbed as quasiener- gies and |r(t)⟩ = |r(t + T)⟩ are Floquet modes (states).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Similar to the way Bloch states exist in spatially periodic systems, the existence of Floquet states in time-periodically driven systems comes from the Floquet theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We also mention that there is a similar Floquet theorem for open systems in [44, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can ignore the micromotion and focus on the time evolution in a stroboscopic fashion in steps of the driving period T as long as the dynamics we studied over a time span that is long compared to a single driving period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Such a stroboscopic time evolution is governed by the time-independent Floquet Hamiltonian H H HF t0, which is defined in a way that it generates the time evolution over one period, exp � − iTH H HF t0 � = UUU(t0 + T, t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A1) and can be expressed like H H HF t0 = � r εr|r(t0)⟩⟨r(t0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A2) The parametric dependence on the initial time t0 is periodic, H H HF t0+T = H H HF t0, and related to the micromotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can construct a Floquet Hamiltonian for a different initial time t′ 0 by applying a unitary transformation, H H HF t′ 0 = UUU †(t0, t′ 0)H H HF t0UUU(t0, t′ 0), on a Floquet Hamiltonian H H HF t0 obtained for the initial time t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It is difficult to obtain the Floquet Hamiltonian in general, however, various methods are developed based on high-frequency expansion [2, 49, 50] or others [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We can introduce a unitary operator that describes the periodic time dependence of the Floquet modes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', the micromotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The corresponding two-point micromotion operator can be defined by PPP(t2, t1) = � r |r(t2)⟩⟨r(t1)| (A3) 10 as a result of its construction, it is periodic in both arguments, PPP(t2 + T, t1) = PPP(t2, t1 + T) = PPP(t2, t1), and evolves the Floquet modes in time, |r(t2)⟩ = PPP(t2, t1)|r(t1)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A4) The Floquet Hamiltonian and the micromotion operator can be written down immediately using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A2 and Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A3 if the Floquet states and their quasienergies are known by diagonalizing the time evolution operator over one period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can then write out the time evolution operator using the Floquet Hamiltonian and the micromotion operator as UUU(t2, t1) = e−i(t2−t1)H H HF t2PPP(t2, t1) = PPP(t2, t1)e−i(t2−t1)H H HF t1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A5) From the above analysis, we can see that quasienergies and Floquet modes are extremely crucial for the evolution of the driven system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We show how to solve them numerically in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The Floquet modes are time-periodic and form a complete basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' To find them one solves the eigenvalue problem (H H HS(t) − i∂t) |r(t)⟩ = εr|r(t)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A6) The periodicity of the Floquet modes enables us to map the eigenvalue problem to a time-independent one in an extended Hilbert space, also known as Sambe space [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' To do this, an infinite-dimensional space with integer quantum numbers is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Its basis is given by HT = {.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' , | − 3⟩, | − 2⟩, | − 1⟩, |0⟩, |1⟩, |2⟩, |3⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A7) There are two operators TTT k and FFF z in Sambe space, which are defined as TTT k|m⟩ = |m + k⟩, FFF z|m⟩ = m|m⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A8) Combining the basis denoted by HS = {|φ1⟩, |φ2⟩, |φ3⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' |φK⟩} for the quantum system living in original Hilbert space HS, one can construt the basis of the extended Hilbert space, H = HT ⊗ HS = � |n, φ⟩⟩ |n ∈ Z, i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' , K} � , (A9) with the scalar product ⟨⟨u|v⟩⟩ = 1 T � T 0 dt⟨u(t)|v(t)⟩ = ⟨u(t)|v(t)⟩ in the extended space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We have denoted vectors in the Sambe space by a double ket notation |r⟩⟩, which corresponds to |r(t)⟩ in HS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Moreover, a periodic time-dependent operator OOO(t) = � k OOOkeiωLt in extended space is expressed as OOOext = � k TTT k ⊗ OOOk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A10) With the above definitions, we rewrite the operator QQQ = H H H(t) − i∂t and solve eigenvalue problem in extended space as QQQext = � k TTT k ⊗ H H Hk + ωLFFF z ⊗ 111 −→ QQQext|rm⟩⟩ = εrm|rm⟩⟩, (A11) where H H Hk are the Fourier components of the Hamiltonian H H H(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Note that εr is periodic with period ωL because |r(t)⟩eimωLt is also the eigenstate of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A6 with eigenvalue εrm = εr + mωl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' This is the reason why the eigenstates and quasienergies have been denoted with an additional index m in the extended space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The complete set of solutions of the quasienergies eigenvalue problem Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A6 contains a lot of redundant information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' All Floquet states of the system can, thus, be constructed, for example, from those Floquet modes whose quasienergies lie in a single Brillouin zone of the ωL periodic quasienergy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' From now on we will denote Floquet modes in the extended space just by |r⟩⟩, assuming that all lie in the same Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' One can re-formulate the evolution of any operator with the help of The Floquet modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Take into account an 11 arbitrary operator SSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' SSS(t) = UUU †(t)SSSUUU(t) = (PPP(t, 0)e−itH H HF 0 )†SSSPPP(t, 0)e−itH H HF 0 = eitH H HF 0 PPP †(t, 0)SSSPPP(t, 0)e−itH H HF 0 = � r eitεr|r(0)⟩⟨r(0)| � m |m(0)⟩⟨m(t)|SSS � r′ |r′(t)⟩⟨r′(0)| � m′ e−itεm′ |m′(0)⟩⟨m′(0)| = � r,r′ eit(εr−εr′)⟨r(t)|SSS|r′(t)⟩|r(0)⟩⟨r′(0)| = � ω,n eit(ω+nωL)SSSω,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A12) where SSSω,n = �� T 0 dt T ⟨r(t)|S e−inωlt|r′(t)⟩ � |r(0)⟩⟨r′(0)| and εr − εr′ = ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Due to the periodicity of the Floquet modes |r(t)⟩(|r′(t)⟩), we can perform the Fourier transform, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ⟨r(t)|SSS|r′(t)⟩|r(0)⟩⟨r′(0)| = � k einωLtSSSω,n, where SSSω,n = �� T 0 dt T ⟨r(t)|S e−inωlt|r′(t)⟩ � |r(0)⟩⟨r′(0)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In extended space, using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A8 this is easily computed by � T 0 dt T ⟨r(t)|SSS e−inωLt|r′(t)⟩ = ⟨⟨r|TTT −n ⊗ SSS|r⟩⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (A13) It is now straightforward to obtain a master equation for a driven open quantum system thanks to decomposition Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='A12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Appendix B: The derivation of the Generalized Master Equation The total Hamiltonian, including system and reservoir is H H Htot = H H HS(t) + H H HB + H H HSB and we assume an initial factorizing state of the form ρρρtot(0) = ρρρ(0) ⊗ ρρρB, with ρρρB ∼ e−βH H HB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Define the modified density matrix ρρρtot(χ, t) = UUU(χ, t)ρρρtot(0)UUU †(−χ, t), (B1) with total (system plus reservoirs) initial density matrix ρρρtot(0) and modified evolution operator UUU(χ, t) = e−iχH H HB/2UUU(t)eiχH H HB/2, where UUU(t) is the evolution operator corresponding to Hamiltonian H H H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The variable χ is usually referred to as the counting field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The evolution of operator ρρρtot(χ, t) is given by ∂tρρρtot(χ, t) = −i [H H H(χ, t)ρρρtot(χ, t) − ρρρtot(χ, t)H H H(−χ, t)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (B2) Taking the trace over the reservoir degrees of freedom we define ρρρ(χ, t) = TrB {ρρρtot(χ, t)} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (B3) Note that the total density matrix and the reduced density matrix of our system are both recovered by setting χ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Transform Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B2 into the interaction picture by ˜AAA(t) = UUU † 0(t)AAAUUU 0(t), with UUU 0(t) the evolution operator associated to Hamiltonian H H H0(t) = H H HS(t) + H H HB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' And considering the standard Born–Markov approximations [31], we obtain ∂t˜ρρρ(χ, t) = − � ∞ 0 dsTrB{ ˜H H HI(χ, t) ˜H H HI(χ, t − s)˜ρρρ(χ, t)ρρρB − ˜H H HI(χ, t)˜ρρρ(χ, t)ρρρB ˜H H HI(−χ, t − s) − ˜H H HI(χ, t − s)˜ρρρ(χ, t)ρρρB ˜H H HI(−χ, t) + ˜ρρρ(χ, t)ρρρB ˜H H HI(−χ, t − s) ˜H H HI(−χ, t)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (B4) We take the interaction Hamiltonian with the form H H HSB = SSS ⊗BBB = SSS ⊗� k ckxxxk and define the correlation function C(χ, t) ≡ ⟨ ˜BBB(χ, t)BBB⟩ = TrB � ˜BBB(χ, t)BBBρρρB � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Using the fact that � ˜BBB(χ, t) ˜BBB(ξ, s) � = � ˜BBB(χ − ξ, t − s)BBB � , we have ∂t˜ρρρ(χ, t) = − � ∞ 0 ds{C(0, s)˜SSS(t)˜SSS(t − s)˜ρρρ(χ, t) − C(−2χ, −s)˜SSS(t)˜ρρρ(χ, t)˜SSS(t − s) − C(−2χ, s)˜SSS(t − s)˜ρρρ(χ, t)˜SSS(t) + C(0, −s)˜ρρρ(χ, t)˜SSS(t − s)˜SSS(t)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (B5) 12 The correlation functions can actually be written as C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) =TrB(eiχH H HBeitH H HBBBBe−itH H HBe−iχH H HBBBBρρρB) =TrB(eiχH H HBeitH H HB � k ckxxxke−itH H HBe−iχH H HB � k′ c′ kxxx′ kρρρB) =TrB(eiχH H HBeitH H HB � k ck � ℏ 2mω (ˆaaak + ˆaaa† k)e−itH H HBe−iχH H HB � k′ c′ k � ℏ 2mω (ˆaaak′ + ˆaaa† k′)ρρρB) (B6) Set ℏ = m = 1 and use ˆaaa† k(t) = eitH H HBˆaaa† ke−itH H HB = ˆaaa† keiwkt and ˆaaak(t) = eitH H HBˆaaake−itH H HB = ˆaaake−iwkt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We derive ⟨ˆaaak(t)ˆaaak′(t′)⟩ = ⟨ˆaaa† k(t)ˆaaa† k′(t′)⟩ = 0, ⟨ˆaaa† k(t)ˆaaak′(t′)⟩ = δk,k′eiωk(t−t′)N(ωk), and ⟨ˆaaak(t)ˆaaa† k′(t′)⟩ = δk,k′e−iωk(t−t′)(N(ωk) + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Going on the derivation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) =TrB(eiχH H HBeitH H HB � k ck � ℏ 2mωk (ˆaaak + ˆaaa† k)e−itH H HBe−iχH H HB � k′ c′ k � ℏ 2mωk (ˆaaak′ + ˆaaa† k′)ρρρB) = � k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='k′ ckc′ k 2ωk TrB(eiχH H HBeitH H HB(ˆaaak + ˆaaa† k)e−itH H HBe−iχH H HB(ˆaaak′ + ˆaaa† k′)ρρρB) = � k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='k′ ckc′ k 2ωk TrB((ˆaaake−iωk(t+χ) + ˆaaa† keiωk(t+χ))(ˆaaak′ + ˆaaa† k′)ρρρB) = � k c2 k 2ωk [(N(ωk) + 1)e−iωk(t+χ) + N(ωk)eiωk(t+χ)] = � ∞ 0 dωJ(ω)[(N(ω) + 1)e−iω(t+χ) + N(ω)eiω(t+χ)] (B7) N(−ω) = 1 e−βω−1 = −(1 + 1 e−βω−1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' let ω′ = −ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' in the meanwhile,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we extend J(ω) to negative values of ω via J(−ω) = −J(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' � ∞ 0 dωJ(ω)N(ω)eiω(t+χ) = � ∞ 0 d(−ω′)J(−ω′)N(−ω′)e−iω′(t+χ) = − � −∞ 0 dω′(−J(ω′))(−(N(ω′) + 1))e−iω′(t+χ) = � 0 −∞ dω′J(ω′)(N(ω′) + 1)e−iω′(t+χ) = � 0 −∞ dωJ(ω)(N(ω) + 1)e−iω(t+χ) (B8) Thus, C(−2χ, t) = � ∞ −∞ dωJ(ω)(N(ω) + 1)e−iω(t+χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In the interaction picture, ˜SSS(t) = UUU †(t, 0)SSSUUU(t, 0), where UUU(t1, t0) = ⃗TTTe−i � t1 t0 dτH H HS(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Replace them into the above equation and transform the equation back to Schr¨odinger’s picture through UUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 0) acting on the left side and UUU †(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 0) acting on the right side of the equation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we obtain iH H HS(t)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) + ∂tρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) + ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)(−iH H HS(t)) = − � ∞ 0 ds{C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s)SSSUUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)SSSUUU †(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)UUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)SSSUUU †(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s) − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s)UUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)SSSUUU †(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)UUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)SSSUUU †(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t − s)SSS} (B9) By using Floquet theorem,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' UUU(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t0) = � r exp(−iεr(t − t0))|r(t)⟩⟨r(t0)|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 13 ∂tρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) = −i[H H HS(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)] − � ∞ 0 ds{C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s)SSS � r exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS � r′ exp(iεr′s)|r′(t − s)⟩⟨r′(t)|ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) � r exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS � r′ exp(iεr′s)|r′(t − s)⟩⟨r′(t)| − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s) � r exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS � r′ exp(iεr′s)|r′(t − s)⟩⟨r′(t)|ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) � r exp(−iεrs)|r(t)⟩⟨r(t − s)|SSS � r′ exp(iεr′s)|r′(t − s)⟩⟨r′(t)|SSS} = −i[H H HS(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)] − � ω � ∞ 0 ds{C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s)SSS exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) exp(−iωs)⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)|SSS} (B10) ⟨r(t − s)|SSS|r′(t − s)⟩ is periodic with periodicity T due to the periodicity of the Floquet mode |r(t − s)⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we can take Fourier transform on it,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n = �� T 0 d(t − s) T ⟨r(t − s)|SSS e−inωL(t−s)|r′(t − s)⟩ � |r(t)⟩⟨r′(t)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (B11) Therefore, ⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| = � n einωL(t−s)SSSω,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Use C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) = 1 π � ∞ −∞ dωe−iω(χ+t)J(ω) [1 + Nω] and ⟨r(t − s)|SSS|r′(t − s)⟩|r(t)⟩⟨r′(t)| = � n einωL(t−s)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we arrive at ∂tρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) = −i[H H HS(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)] − � n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ω einωlt � ∞ 0 ds{C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s)SSS exp(−i(ω + nωL)s)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) exp(−i(ω + nωL)s)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n − C(−2χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' s) exp(−i(ω + nωL)s)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + C(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' −s)ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) exp(−i(ω + nωL)s)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nSSS} − i[H H HS(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)] = − � n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ω {einωLt 1 π � ∞ −∞ dω′ � ∞ 0 dse−i(ω′+(ω+nωL))sJ(ω′) [1 + Nω′]SSSSSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − 1 π � ∞ −∞ dω′ � ∞ 0 dse−iω′χei(ω′−(ω+nωL))sJ(ω′) [1 + Nω′]SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n − 1 π � ∞ −∞ dω′ � ∞ 0 dse−iω′χe−i(ω′+(ω+nωL))sJ(ω′) [1 + Nω′]SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + 1 π � ∞ −∞ dω′ � ∞ 0 dsei(ω′−(ω+nωL))sJ(ω′) [1 + Nω′]ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nSSS} (B12) With the help of � ∞ 0 ds eiωs = πδ(ω) + i P 1 ω and disregarding the principal value P term,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' J(−ω) = −J(ω),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' and 1 + N(−ω) = 1 + 1 e−βω−1 = 1 1−eβω = −N(ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We get the generalized master equation finally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 14 ∂tρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) = −i[H H HS(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)] − � n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ω einωlt{J(∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n) � N∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n � SSSSSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) − e−i∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nχJ(∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n) � 1 + N∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n � SSSρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n − ei∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nχJ(∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n) � N∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n � SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSS + J(∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n) � 1 + N∆ω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='n � ρρρ(χ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t)SSSω,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='nSSS} (B13) Appendix C: Derivation of the effective system plus system-reservoirs interaction Hamiltonian through flow equation approach In this section,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we derive the effective system plus system-reservoirs interaction Hamiltonian through flow equation approach [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The method takes advantage of infinitesimal unitary transformation steps, from which renormalization- group–like flow equations are derived to derive the effective Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The flow equation is dH H H(s, t) ds = −VVV (s, t) + i � t 0 dt1[VVV (s, t1),H H H(s, t)], (C1) where s is the flow parameter, H H H(s, t) and VVV (s, t) are total Hamiltonian and its time-dependent part respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' It should be noted that the family of Hamiltonians H H H(s, t) represents an interpolation between a starting Hamiltonian H H H(0, t) and a final Hamiltonian H H H(∞, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Here, H H H(∞, t) is the Floquet Hamiltonian H H HF if VVV (∞, t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We set appropriate boundary conditions by enforcing that s = 0 corresponds to the initial unchanged Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' H H H(s, t) can be expressed as a sum of linear operators with coefficients ci(s, t), H H H(s, t) = � i ci(s, t)OOOi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The OOOi operators are nothing other than kinetic and potential energy terms appearing in a Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Note that the set of operators may include both the original operators and new terms generated from the commutator in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The coefficients ci(s, t) describe the coupling constants (strength) of these terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' In this representation, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C1 can be written in a numerically tractable form, dci(s, t) dt = −gi(t, [cj(s, t′)]), t′ ∈ [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (C2) In [3], Michael Vogl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' put forward a more analytically tractable equation, which set s = 0 only for the terms VVV (s, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' dH H H(s, t) ds = −VVV (0, t) + i � t 0 dt1[VVV (0, t1),H H H(s, t)], (C3) This corresponds to removing the original time-dependent part VVV (s, t) from the Hamiltonian via the rotating frame transformation e−i � t 0 dtVVV (t) while generating other new time dependences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' To ensure that this approximation actually corresponds to the aforementioned unitary transformation, we also need to restrict s ∈ [0, 1] rather than the previous s ∈ [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The effective time-independent Hamiltonian is then given by H H Heff = � i ci(1, t)OOOi, where ci(1, t) = 1 T � T 0 ci(1, t)dt, if we are only interested in stroboscopic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We now derive the effective Hamiltonian for the model we studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' The system plus system-reservoirs interaction Hamiltonian is H H HS(t) + H H HSB = ωA + K cos (ωLt) 2 σσσA z + ωB 2 σσσB z + λ(σσσ1 +σσσ2 − + σσσ1 −σσσ2 +) + σσσA x BBBA + σσσB x BBBB, (C4) where BBBi = � K cikxxxik is reservoirs coupling operators and VVV (0, t) = K cos (ωLt) 2 σσσA z in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' We make the ansatz H H H(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' t) = C1(s)σσσA z + C2(s)σσσB z + C3(s)σσσ1 +σσσ2 − + C4(s)σσσ1 −σσσ2 + + C5(s)σσσA x BBBA + C6(s)σσσB x BBBB + C7(s)σσσA y BBBA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='(C5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='and then find the flow equation is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC1(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= −K cos (ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC2(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC3(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= iKC3(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='sin (ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC4(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= −iKC4(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='sin (ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC5(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= KC7(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='sin (ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC6(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='dC7(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ds ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='= −KC5(s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='sin (ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='(C6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='with the initial condition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C1(0) = K cos (ωLt) + ωA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C2(0) = ωB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C3(0) = λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C4(0) = λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C5(0) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C6(0) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C7(0) = 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='(C7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Their solutions are ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C1(s) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2(ωA + K cos(ωLt) − Ks cos(ωLt)) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C2(s) = ωB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C3(s) = λe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='iKs sin(ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C4(s) = λe ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='−iKs sin(ωLt) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='ωL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C5(s) = cos(Ks sin(ωLt)/ωL) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C6(s) = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='C7(s) = − sin(Ks sin(ωLt)/ωL) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='(C8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='After taking an average over one period and set s = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' we end up with the effective time-independent Hamiltonian H H HS eff + H H HSB eff = ωA 2 σσσA z + ωB 2 σσσB z + λJ0(K/ωL)(σσσ1 +σσσ2 − + σσσ1 −σσσ2 +) + J0(K/ωL)σσσA x BBBA + σσσB x BBBB,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' (C9) [1] Jon H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Shirley, Solution of the Schr¨odinger Equation with a Hamiltonian Periodic in Time, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 138 B979 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [2] Andr´e Eckardt and Egidijus Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys 17 093039 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [3] Michael Vogl, Pontus Laurell, Aaron D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Barr, and Gregory A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Fiete, Flow Equation Approach to Periodically Driven Quantum Systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' X 9 021037 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Oka and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Aoki, Photovoltaic Hall effect in graphene, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B 79 081406 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kitagawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Berg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rudner, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Demler, Topological characterization of periodically driven quantum systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B 82 235114 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 16 [6] Tian-Shi Xiong, Jiangbin Gong, and Jun-Hong An, Towards large-chern-number topological phases by periodic quenching, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B 93 184306 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [7] Hui Liu, Tian-Shi Xiong, Wei Zhang, and Jun-Hong An, Floquet engineering of exotic topological phases in systems of cold atoms, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A 100 023622 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Eckardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Weiss, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Holthaus, Superfluid-insulator transition in a periodically driven optical lattice, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 95 260404 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [9] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Bastidas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Emary, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Regler, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Brandes, Nonequilibrium quantum phase transitions in the Dicke model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 108 043003 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Aidelsburger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Atala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Nascimbene, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Trotzky, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Chen, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 107 255301 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Bermudez, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Schaetz, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Porras, Synthetic gauge fields for vibrational excitations of trapped ions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 107 150501 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Struck, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Olschl¨ager, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Weinberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Hauke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Simonet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Eckardt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lewenstein, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Sengstock, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Wind- passinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 108 225304 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Else, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Bauer, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Nayak, Floquet Time Crystals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 117 090402 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [14] Andreu Riera-Campeny, Maria Moreno-Cardoner, and Anna Sanpera, Time crystallinity in open quantum systems, Quan- tum 4 270 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [15] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Grossmann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Dittrich, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Jung, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' H¨anggi, Coherent destruction of tunneling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 67 516 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [16] Jose M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Gomez Llorente and Jes´us Plata, Tunneling control in a two-level system, Phys Rev A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 45 R6958(R) (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [17] Victor Galitski, Ian B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Spielman, Spin–orbit coupling in quantum gases, Nature 494 49–54 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Struck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Simonet, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Sengstock, Spin-orbit coupling in periodically driven optical lattices, Nature 90 031601(R) (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Peterson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Batalhao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Herrera, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Souza, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Sarthour, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Oliveira, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Serra, Experimental Characterization of a Spin Quantum Heat Engine , Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 123 240601 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Pekola and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Khaymovich,, Thermodynamics in single-electron circuits and superconducting qubits, Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 10 193 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ronzani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Karimi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Senior, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Chang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Peltonen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Chen, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Pekola, Tunable photonic heat transport in a quantum heat valve, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 14 991 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Dechant, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kiesel, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lutz, All-Optical Nanomechanical Heat Engine, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 114 183602 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Urgell, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' De Bonis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Samanta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Esplandiu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Dong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Jin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Bachtold, Cooling and self- oscillation in a nanotube electromechanical resonator,, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 16 32 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Brantut, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Grenier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Meineke, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Stadler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Krinner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kollath, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Esslinger, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Georges, A thermoelectric heat engine with ultracold atoms, Science 342 713 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [25] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Abah, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Roßnagel, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Jacob, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Deffner, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Schmidt-Kaler, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Singer, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lutz,Single-Ion Heat Engine at Maximum Power, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 109 203006 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Roßnagel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Dawkins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Tolazzi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Abah, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lutz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Schmidt-Kaler, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Singer, A single-atom heat engine, Science 352 325 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [27] Gleb Maslennikov, Shiqian Ding, Roland Habl¨utzel, Jaren Gan, Alexandre Roulet, Stefan Nimmrichter, Jibo Dai, Valerio Scarani, Dzmitry Matsukevich, Quantum absorption refrigerator with trapped ions, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 10 202 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [28] James Klatzow, Jonas N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Becker, Patrick M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ledingham, Christian Weinzetl, Krzysztof T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kaczmarek, Dylan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Saunders, Joshua Nunn, Ian A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Walmsley, Raam Uzdin, and Eilon Poem, Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 122 110601 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [29] Sourav Bhattacharjee, Amit Dutta, Quantum thermal machines and batteries, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B 94 239 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [30] Wang Zi, Ren Jie, Nonequilibrium thermal transport and thermodynamic geometry in periodically driven systems, Acta Physica Sinica 70 230503 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [31] Breuer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [32] Chong Chen, Jun-Hong An, Hong-Gang Luo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Sun, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Oh, Floquet control of quantum dissipation in spin chains, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A, 91 052122 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [33] W L Yang, W L Song, Jun-Hong An, M Feng, D Suter, and Jiangfeng Du, Floquet engineering to entanglement protection of distant nitrogen vacancy centers, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 21 013007 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [34] Si-Yuan Bai and Jun-Hong An, Floquet engineering to reactivate a dissipative quantum battery, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A, 102 060201 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [35] Wan-Lu Song, Jia-Bin You, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Yang, and Jun-Hong An, Floquet Engineering of Two Weakly Coupled Super- conducting Flux Qubits, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Applied, 14 054049 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [36] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Shirai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Mori, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Miyashita, Novel symmetry-broken phase in a driven cavity system in the thermodynamic limit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 47 025501 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Foss-Feig, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Niroula, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Young, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Hafezi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Gorshkov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Wilson, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Maghrebi, Emergent equilibrium in many-body optical bistability, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A , 95 043826 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Diehl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Micheli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kantian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Kraus, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B¨uchler, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Zoller, Quantum states and phases in driven open quantum systems with cold atoms, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 4 878-883 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Diehl, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rico, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Baranov, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Zoller, Topology by dissipation in atomic quantum wires, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 7 971–977 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [40] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Vorberg, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Wustmann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ketzmerick, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Eckardt, Generalized Bose-Einstein condensation into multiple states 17 in driven-dissipative systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 111 240405 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Vorberg, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Wustmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Schomerus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ketzmerick, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Eckardt, Nonequilibrium steady states of ideal bosonic and fermionic quantum gases, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E, 92 062119 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Schnell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ketzmerick, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Eckardt, On the number of Bose-selected modes in driven-dissipative ideal Bose gases, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E, 97 032136 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [43] Sebastian Restrepo, Javier Cerrillo, Philipp Strasberg and Gernot Schaller, From quantum heat engines to laser cooling: Floquet theory beyond the Born–Markov approximation, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 20 053063 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Dai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Shi, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Yi, Floquet theorem with open systems and its applications, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A , 93 032121 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [45] Tatsuhiko N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Ikeda and Masahiro Sato, General description for nonequilibrium steady states in periodically driven dissi- pative quantum systems, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 6 eabb4019 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [46] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 81 1665 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [47] S Gasparinetti, P Solinas, A Braggio and M Sassetti, Heat-exchange statistics in driven open quantum systems, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', 161 115001 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [48] Hideo Sambe, Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A, 7 2203 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [49] Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics, 7 649-673 (1954).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [50] Takahiro Mikami, Sota Kitamura, Kenji Yasuda, Naoto Tsuji, Takashi Oka, and Hideo Aoki, Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' B , 93 144307 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [51] Mihail Silaev, Tero T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Heikkil¨a, and Pauli Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' E, 90 022103 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [52] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Nafari Qaleh and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rezakhani, Enhancing energy transfer in quantum systems via periodic driving: Floquet master equations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A, 105 012208 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [53] Horodecki R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', Horodecki P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', Horodecki M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', Horodecki,K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=', Quantum entanglement, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' 81 865 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' [54] Zhihai Wang, Wei Wu, and Jin Wang, Steady-state entanglement and coherence of two coupled qubits in equilibrium and nonequilibrium environments, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} +page_content=' A 99 042320 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf'} diff --git a/mtAyT4oBgHgl3EQflPh9/vector_store/index.faiss b/mtAyT4oBgHgl3EQflPh9/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d4fece032137d00f715049e0da63792cca92cbb3 --- /dev/null +++ b/mtAyT4oBgHgl3EQflPh9/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e801b98c61d0f42d013b79d96904de06a255dce7bc3a5f67e1e1673918c32616 +size 6488109 diff --git a/odE_T4oBgHgl3EQf8hwH/content/tmp_files/2301.08375v1.pdf.txt b/odE_T4oBgHgl3EQf8hwH/content/tmp_files/2301.08375v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..06d33614c7e7b3c0adff0ba15f1c3c330f355162 --- /dev/null +++ b/odE_T4oBgHgl3EQf8hwH/content/tmp_files/2301.08375v1.pdf.txt @@ -0,0 +1,1611 @@ +WITHIN-GROUP FAIRNESS: A GUIDANCE FOR MORE SOUND +BETWEEN-GROUP FAIRNESS +Sara Kim +Samsung Electronics Co. +Seoul +sarah58833@gmail.com +Kyusang Yu +Department of Applied Statistics +Konkuk University +Seoul +kyusangu@konkuk.ac.kr +Yongdai Kim +Department of Statistics +Seoul National University +Seoul +ydkim0903@gmail.com +ABSTRACT +As they have a vital effect on social decision-making, AI algorithms not only should be accurate +and but also should not pose unfairness against certain sensitive groups (e.g., non-white, women). +Various specially designed AI algorithms to ensure trained AI models to be fair between sensitive +groups have been developed. In this paper, we raise a new issue that between-group fair AI models +could treat individuals in a same sensitive group unfairly. We introduce a new concept of fairness +so-called within-group fairness which requires that AI models should be fair for those in a same sen- +sitive group as well as those in different sensitive groups. We materialize the concept of within-group +fairness by proposing corresponding mathematical definitions and developing learning algorithms to +control within-group fairness and between-group fairness simultaneously. Numerical studies show +that the proposed learning algorithms improve within-group fairness without sacrificing accuracy as +well as between-group fairness. +1 +Introduction +Recently, AI (Artificial Intelligence) is being used as decision-making tools in various domains such as credit scoring, +criminal risk assessment, education of college admissions [1]. As AI has a wide range of influences on human social +life, issues of transparency and ethics of AI are emerging. However, it is widely known that due to the existence of +historical bias in data against ethics or regulatory frameworks for fairness, trained AI models based on such biased +data could also impose bias or unfairness against a certain sensitive group (e.g., non-white, women) [2, 3]. Therefore, +designing an AI algorithm which is accurate and fair simultaneously has become a crucial research topic. +Demographic disparities due to AI, which refer to socially unacceptable bias that an AI model favors certain groups +(e.g., white, men) over other groups (e.g., black, women), have been observed frequently in many applications of AI +such as COMPAS recidivism risk assessment [1], Amazon’s prime free same-day delivery [4], credit score evaluation +[5] to name just a few. Many studies have been done recently to develop AI algorithms which remove or alleviate such +demographic disparities in trained AI models so that they will treat sensitive groups as equally as possible. In general, +these methods try to search AI models which are not only accurate but also similar between sensitive groups in a certain +sense. For an example of similarity, it is required that accuracies of an AI model for each sensitive group are similar +[6]. Hereinafter, criteria of fairness requiring similarity between sensitive groups are referred to as between-groups +fairness (BGF). +In this paper, we consider a new concept of fairness so called within-group fairness (WGF) which arises as a new +problem when we try to enforce BGF into AI algorithms. Generally speaking, within-group unfairness occurs when +there is an individual who is positively treated compared to others in a same sensitive group by an AI model trained +without BGF constraints but becomes negatively treated by an AI model trained with BGF constraints. +For an illustrative example of WGF, consider a college admission problem where gender (men vs women) is a sensitive +variable. Let X and Y ∈ {0, 1} be the input vector and the corresponding output label where X represents the +information of a candidate student such as GPA at high school, SAT score, etc. and Y is the admission result where 0 +and 1 mean the rejection and acceptance of the college admission, respectively. The Bayes classifier accepts a student +arXiv:2301.08375v1 [stat.ML] 20 Jan 2023 + +Figure 1: A toy example of within-group unfairness: The left panel: without BGF constraints, there exists unfairness +against the women sensitive group, but with BGF constraints, the scores of the two women become reversed and thus +within-group unfairness occurs. The right panel: The scores of the two women increase together to achieve BGF +without within-group unfairness. +with X = x when Pr(Y = 1|X = x) > 1/2. Suppose that there are two women ‘A’ and ‘B’ with the input vectors +xA and xB, respectively and the AI model trained without BGF constraints estimates Pr(Y = 1|X = xB) > 1/2 > +Pr(Y = 1|X = xA). Then, within-group unfairness occurs when an AI model trained with BGF constraints results +in Pr(Y = 1|X = xA) > 1/2 > Pr(Y = 1|X = xB). In this situation, which is illustrated in the left panel of +Figure 1, ‘B’ could claim that the AI model trained with BGF constraints mistreats her and so it is unfair. We will +show in Section 5 that there exists non-negligible within-group unfairness in AI models trained on real data with BGF +constraints. +Within-group unfairness arises because most existing learning algorithms for BGF force certain statistics (e.g. rate of +positive prediction, misclassification error rate, etc.) of a trained AI model being similar across sensitive groups but +do not care about what happens to individuals in a same sensitive group at all. For within-group fairness, a desirable +AI model is expected at least to preserve the ranks between Pr(Y = 1|X = xA) and Pr(Y = 1|X = xB) regardless +of estimating Pr(Y = 1|X = x) with or without BGF constraints, which is depicted in the right panel of Figure 1. +Our contributions are three folds. We first define the concept of WGF rigorously. Then we develop learning algorithms +which compromise BGF and WGF as well as accuracy. Finally, we show empirically that the proposed learning +algorithms improve WGF while maintaining accuracy and BGF. +Remark. One may argue that training data are prone to bias due to historical prejudices and discriminations, and +hence a trained AI model is also biased and socially unacceptable. On the other hand, a trained AI model with BGF +constraints does not have such bias and hence is socially acceptable. Therefore, it would be by no means reasonable +to claim unfairness based on discrepancies between socially unacceptable and acceptable AI models. However, note +that historical bias in training data is about bias between sensitive groups but not for individuals in a same sensitive +group. For WGF, we implicitly assume that no historical bias among individuals in a same sensitive group exists in +training data, which is not too absurd, and thus there is no reason for a trained AI model without BGF constraints to +treat individuals in a same sensitive group unfairly. This assumption, of course, needs more debates which we leave +as future work. +The paper is organized as follows. In Section 2, we briefly review methods for BGF, and in Sections 3 and 4, we +propose mathematical definitions of WGF and develop corresponding learning algorithms for classifiers and score +functions, respectively. The results of numerical studies are presented in Section 5, and remarks about reflecting WGF +to pre- and post processing algorithms for BGF are given in Section 6. Concluding remarks follow in Section 7. +2 +Review of between-group fairness +While it is completely new, the concept of WGF is a by-product of BGF and thus it is helpful to review learning +methods for BGF. In this section, we review the definitions of BGF and related studies. +2 + +Within-group unfair +Within-group fair +Estimated +score +0.5 +0.5 +BGF +BGF +Unconstrained +Unconstrained +constrained +constrained +men +women +rank preserved +rank changedFAIRNESS CRITERIA +E +E′ +DISPARATE IMPACT +[8] +1{Cf(X) = 1} +∅ +EQUAL OPPORTUNITY +[9] +1{Cf(X) = 1} +{Y = 1} +DISPARATE MISTREATMENT W.R.T. ERROR RATE +[6] +1{Cf(X) ̸= Y } +∅ +MEAN SCORE PARITY +[10] +f(X) +∅ +Table 1: Some group performance functions +We let D = {(xi, zi, yi)}n +i=1 be a set of training data of size n which are independent copies of a random vector +(X, Z, Y ) defined on X × Z × Y, where X ⊂ Rp. We consider a binary classification problem, which means Y = +{0, 1}, and for notational simplicity, we let Z = {0, 1}, where Z = 0 refers to the unprivileged group and Z = 1 refers +to the privileged group. Whenever the probability is mentioned, we mean it by either the probability of (X, Z, Y ) or +its empirical counterpart unless there is any confusion. +In this paper, we consider AI algorithms which yield a real-valued function f : X → R so called a score function +which assigns positive labeled instances higher scores than negative labeled instances. An example of the score +function is the conditional class probability Pr(Y = 1|x = x). In most human-related decision makings, real-valued +score functions are popularly used (e.g. scores for credit scoring). +Let F be a given set of score functions, in which we search an optimal score function in a certain sense (e.g. minimizing +the cross-entropy for classification problems). Examples of F are linear functions, reproducing kernel Hilbert space +and deep neural networks to name a few. For a given f ∈ F, the corresponding classifier Cf is defined as Cf(x) = +1(f(x) > 0). +2.1 +Definition of between-group fairness +For a given score function f and a sensitive group Z = z, we consider the group performance function of f given as +qz(f) := E(E|E′, Z = z) +(1) +for events E and E′ that might depend on f(X) and Y. The group performance function qz in (1), which is considered +by [7], includes various performance functions used in fairness AI. We summarize representative group performance +functions having the form of (1) in Table 1. +For given group performance functions qz(·), z ∈ {0, 1}, we say that f satisfies the BGF constraint with respect to qz +if q0(f) = q1(f). A relaxed version of the BGF constraint so called the ϵ-BGF constraint, is frequently considered, +which requires |q0(f) − q1(f)| < ϵ for a given ϵ > 0. Typically, AI algorithms search an optimal function f among +those satisfying the ϵ-BGF constraint with respect to given group performance functions qz(·), z ∈ {0, 1}. +2.2 +Related works +Several learning algorithms have been proposed to find an accurate model f satisfying a given BGF constraint, which +are categorized into three groups. In this subsection, we review some methods for each group. +Pre-processing methods: Pre-processing methods remove bias in training data or find a fair representation with re- +spect to sensitive variables before the training phase and learn AI models based on de-biased data or fair representation +[11, 12, 13, 14, 15, 16, 17, 18, 19]. [11] suggested pre-processing methods to eliminate bias in training data by use of +label changing, reweighing and sampling. Based on the idea that transformed data should not be able to predict the +sensitive variable, [13] proposed a transformation of input variables for eliminating the disparate impact. To find a fair +representation, [12, 14] proposed a data transformation mapping for preserving accuracy and alleviating discrimination +simultaneously. Pre-processing methods for fair learning on text data were studied by [15, 16]. +In-processing methods: In-processing methods generally train an AI model by minimizing a given cost function +(e.g. the cross-entropy, the sum of squared residuals, the empirical AUC etc.) subject to a ϵ-BGF constraint. Most +group performance functions qz(·) are not differentiable, and thus various surrogated group performance functions +and corresponding ϵ-BGF constraints have been proposed [20, 21, 22, 23, 6, 24, 25, 26, 7, 27, 28]. [20] used a +3 + +fairness regularizer which is an approximation of the mutual information between the sensitive variable and the target +variable. [23, 6] proposed covariance-type fairness constraints as tractable proxies targeting the disparate impact and +the equality of the false positive or negative rate, and [24] used a linear surrogated group performance function for the +equalized odds. On the other hand, [25, 7] derived an optimal classifier for a constrained fair classification as a form +of an instance-dependent threshold. Also, for fair score functions, [27] proposed fairness constraints based on ROC +curves of each sensitive group. +Post-processing methods: Post-processing methods first learn an AI model without any BGF constraint and then +transform the decision boundary or score function of the trained AI model for each sensitive group to satisfy given +BGF criteria [29, 30, 9, 31, 32, 33, 34, 35]. [9, 33] suggested finding sensitive group dependent thresholds to get a fair +classifier with respect to equal opportunity. [34, 35] developed an algorithm to transform the original score function +to achieve a BGF constraint. +3 +Within-group fairness for classifiers +We assume that there exists a known optimal classifier C⋆ which could be the Bayes classifier or its estimate. For +example, we can use Cf ⋆ for C⋆, where f ⋆ is the unconstrained minimizer of the cross-entropy on F. We mostly +focus on in-processing methods for the BGF and explain how to reflect WGF into a learning procedure. Remarks +about how to reflect WGF to pre- and post-processing methods are given in Section 6. +3.1 +Definition of within-group fairness +Conceptually, WGF means that the classifier Cf and C⋆ have the same ranks in each sensitive group. That is, for two +individuals xA and xB in a same sensitive group with C⋆(xA) > C⋆(xB), WGF requires that Cf(xA) ≥ Cf(xB). +To materialize this concept of WGF, we define the WGF constraint as +Pr {C⋆(X) = 0, Cf(X) = 1|Z = z} = 0 +or Pr {C⋆(X) = 1, Cf(X) = 0|Z = z} = 0 +(2) +for each z ∈ {0, 1}. Similar to the BGF, we relax the constraint (2) by requiring that either of the two probabilities is +small. That is, we say that f satisfies the δ-WGF constraint for a given δ > 0 if +max +z∈{0,1} min{a01|z(f), a10|z(f)} < δ, +(3) +where aij|z(f) = Pr{C⋆(X) = i, Cf(X) = j|Z = z}. +3.2 +Directional within-group fairness +Many BGF constraints have their own implicit directions toward which the classifier is expected to be guided in the +training phase. We can design a special WGF constraint reflecting the implicit direction of a given BGF constraint +which results in more desirable classifiers (better guided, more fair and frequently more accurate). Below, we present +two such WGF constraints. +Disparate impact: Note that the disparate impact requires that +Pr{Cf(X) = 1|Z = 0} = Pr{Cf(X) = 1|Z = 1}. +Suppose that Pr{C⋆(X) = 1|Z = 0} < Pr{C⋆(X) = 1|Z = 1}. Then, we expect that a desirable classifier Cf +achieves this BGF constraint by increasing Pr{Cf(X) = 1|Z = 0} from Pr{C⋆(X) = 1|Z = 0} and decreasing +Pr{Cf(X) = 1|Z = 1} from Pr{C⋆(X) = 1|Z = 1}. To reflect this direction, we can enforce a learning algorithm +to search a classifier Cf satisfying Pr{C⋆(X) = 1|Z = 0} < Pr{Cf(X) = 1|Z = 0} and Pr{C⋆(X) = 1|Z = +1} > Pr{Cf(X) = 1|Z = 1}. Based on this argument, we define the directional δ-WGF constraint for the disparate +impact as +max{a10|0(f), a01|1(f)} < δ. +(4) +Equal opportunity: The equal opportunity constraint is given as +Pr{Cf(X) = 1|Z = 0, Y = 1} = Pr{Cf(X) = 1|Z = 1, Y = 1}. +4 + +Suppose that Pr{C⋆(X) = 1|Z = 0, Y = 1} < Pr{C⋆(X) = 1|Z = 1, Y = 1}. A similar argument for the disparate +impact leads us to define the directional δ-WGF constraint for the equal opportunity as +max{a10|01(f), a01|11(f)} < δ +(5) +and +max +z∈{0,1} min +� +a10|z0(f), a01|z0(f) +� +< δ, +(6) +where +aij|zy(f) = Pr{C⋆(X) = i, Cf(X) = j|Z = z, Y = y}. +3.3 +Learning with doubly-group fairness constraints +We say that f satisfies the (ϵ, δ)-doubly-group fairness constraint if B(f) < ϵ and W(f) < δ, where B is a given BGF +constraint and W is the corresponding WGF constraint proposed in the previous two subsections. In this section, we +propose a relaxed version of W(·) for easy computation. As we review in Section 2, many relaxed versions of B(·) +have been proposed already. +The WGF constraints considered in Sections 3.1 and 3.2 are hard to be used as themselves in the training phase since +they are neither convex nor continuous. A standard approach to resolve this problem is to use a convex surrogated +function. For example, a surrogated version of the WGF constraint (3) is Wsurr(f) < δ, where +Wsurr(f) := max +z∈{0,1} min +� +E {φ(−f(X))|Z = z, Y ⋆ = 1} p1|z, +E {φ(f(X))|Z = z, Y ⋆ = 0} p0|z +� +, +(7) +where Y ⋆ = C⋆(X), py|z = Pr(C⋆(X) = y|Z = z) and φ is a convex surrogated function of the indicator function +1(z ≥ 0). In this paper, we use the hinge function given as φhinge(z) = (1 + z)+ as a convex surrogated function +which is popularly used for fair AI [21, 24, 36]. The surrogated versions for the other WGF constraints are derived +similarly. Finally, we estimate f by ˆf that minimizes the regularized cost function +L(f) + λBsurr(f) + ηWsurr(f), +(8) +where L is a given cost function (e.g. the cross-entropy) and Bsurr and Wsurr are the surrogated constraints of B and +W, respectively. The nonnegative constants λ and η are regularization parameters which are selected so that ˆf satisfies +B( ˆf) < ϵ and W( ˆf) < δ. +3.4 +Related notions with within-group fairness +There are several fairness concepts which are somehow related to WGF. However, the existing concepts are quite +different from our WGF. +1. Unified fairness: [37] used the term ‘within-group fairness’. However, WGF of [37] is different from our +WGF. [37] measured individual-level benefits of a given prediction model and they defined the model to be +WGF if the individual benefits in each group are similar. They also illustrated that WGF keeps decreasing as +BGF increases. Our WGF is nothing to do with individual-level benefits. Our WGF can be high even when +individual-level benefits are not similar. Also, our WGF can increase even when BGF increases. +2. Slack consistency: [38] proposed the ‘slack consistency’ which requires that the estimated scores of each +individual should be monotonic with respect to slack variables used in fairness constraints. Slack consistency +does not guarantee within-group fairness because the ranks of the estimated scores can change even when +they move monotonically. +4 +Within-group fairness for score functions +Similarly to classifiers, the WGF for score functions requires that f(xA) > f(xB) when f ⋆(xA) > f ⋆(xB) and vice +versa for two individuals xA and xB in a same sensitive group, where f ⋆ is a known optimal score function such as +the conditional class probability Pr(Y = 1|X) or its estimate. To realize this concept, we define the WGF constraint +5 + +for a score function f as τz(f) = 1 for z ∈ {0, 1}, where τz(·) is the Kendall’s τ between f and f ⋆ conditional on +Z = z, that is +τz(f) = E(X1,X2) +� +1{(f(X1) − f(X2))(f ⋆(X1) − f ⋆(X2)) > 0} +���Z = z +� +, +where X1 and X2 are independent copies of X. In turn, the δ-WGF constraint for a score function f is 1 − τz(f) < +δ, z ∈ {0, 1}. +Similarly for classifiers, we need a convex surrogated version of the δ-WGF constraint and a candidate would be +1 − τφ,z(f) < δ, z ∈ {0, 1}, where +τφ,z(f) = 1 − E(X1,X2) +� +φ{(f(X1) − f(X2))(f ⋆(X1) − f ⋆(X2))} +���Z = z +� +and φ is a convex surrogated function of 1(z > 0) such as the φhinge. +5 +Numerical studies +We investigate the impacts of the WGF constraints on the prediction accuracy as well as the BGF by analyzing real- +world datasets. We consider linear logistic and deep neural network (DNN) models for F and use the cross-entropy +for L. For DNN, fully connected neural networks with one hidden layer and p many hidden nodes are used. We +train the models by the gradient descent algorithm [39] implemented by Python with related libraries pytorch, +scikit-learn, numpy. The SGD optimizer is used with momentum 0.9 and a learning rate of either 0.1 or 0.01 +depending on the dataset. We use the unconstrained minimizer of L for f ⋆. +Datasets. We analyze four real world datasets, which are popularly used in fairness AI research and publicly available: +(i) The Adult Income dataset (Adult, [5]); (ii) The Bank Marketing dataset(Bank, [5]); (iii) The Law School dataset +(LSAC, [40]); (iv) The Compas Propublica Risk Assessment dataset (COMPAS, [41]). Except for the dataset Adult, +we split the training and test datasets randomly by 8:2 ratio and repeat 5 times training/test splits for performance +evaluation. +5.1 +Within-group fair classifiers +We consider following group performance functions for the BGF: the disparate impact (DI) [8] and the disparate +mistreatment w.r.t. error rate [6], which are defined as +DI(f) = |Pr(Cf(X) = 1|Z = 1) − Pr(Cf(X) = 1|Z = 0)| +ME(f) = |Pr(Cf(X) ̸= Y |Z = 0) − Pr(Cf(X) ̸= Y |Z = 1)| . +Note that the DI is directional while the ME is not. For the surrogated BGF constraints, we replace the indicator +function with the hinge function in calculating the BGF constraints as is done by [21, 36]. We name the corresponding +BGF constraints by Hinge-DI and Hinge-ME respectively. The results for other surrogated constraints such as the +covariance type constraints proposed by [23, 6] and the linear surrogated functions considered in [42] are presented +in the Supplementary material. In addition, the results for the equal opportunity constraint are summarized in the +Supplementary material. +For investigating the impacts of WGF on trained classifiers, we first fix the ϵ for each BGF constraint, and we choose +the regularization parameters λ and η to make the classifier ˆf minimizing the regularized cost function (8) satisfy the +ϵ-BGF constraint. Then, we assess the prediction accuracy and the degree of WGF of ˆf. +5.1.1 +Targeting for disparate impact +Table 2 presents the three 2 × 2 tables comparing the results of the unconstrained DNN classifier ( ˆY ⋆) and three DNN +classifiers ( ˆY ) trained on the dataset Adult: (i) only with the DI constraint, (ii) with the DI and WGF constraints and +(iii) with the DI and directional WGF (dWGF) constraints. We let ϵ be around 0.03. The numbers marked in red +are subjects treated unfairly with respect to the dWGF. Note that the numbers of unfairly treated subjects are reduced +much with the WGF and dWGF constraints and the dWGF constraint is more effective. We report that the accuracies +of the three classifiers on the test data are 0.837, 0.840 and 0.839, respectively, which indicates that the WGF and +dWGF constraints improve the WGF without hampering the accuracy. Compared to the dWGF, the WGF constraint +is less effective, which is observed consistently for different datasets when a BGF constraint is directional. See Table +6 + +ONLY WITH THE DI CONSTRAINT +Z = 0 +Z = 1 +ˆY = 0 +ˆY = 1 +ˆY = 0 +ˆY = 1 +ˆY ⋆ = 0 +4,592 +350 +ˆY ⋆ = 0 +7,966 +86 +ˆY ⋆ = 1 +13 +466 +ˆY ⋆ = 1 +945 +1,863 +WITH THE DI AND WGF CONSTRAINTS +Z = 0 +Z = 1 +ˆY = 0 +ˆY = 1 +ˆY = 0 +ˆY = 1 +ˆY ⋆ = 0 +4,703 +239 +ˆY ⋆ = 0 +8,021 +31 +ˆY ⋆ = 1 +27 +452 +ˆY ⋆ = 1 +1,156 +1,652 +WITH THE DI AND DWGF CONSTRAINTS +Z = 0 +Z = 1 +ˆY = 0 +ˆY = 1 +ˆY = 0 +ˆY = 1 +ˆY ⋆ = 0 +4,718 +224 +ˆY ⋆ = 0 +8,024 +28 +ˆY ⋆ = 1 +18 +461 +ˆY ⋆ = 1 +1,178 +1,630 +Table 2: Comparison of the results of the three DNN classifiers trained (i) only with the BGF constraint, (ii) with the +BGF and WGF constraints and (iii) with the BGF and dWGF constraints on the dataset Adult. Marked in red represent +the numbers of subjects treated unfairly in a same sensitive group. +LINEAR MODEL +DNN MODEL +DATASET +METHOD +ACC +DI +DWGF +ACC +DI +DWGF +Adult +UNCONS. +0.852 +0.172 +0.000 +0.853 +0.170 +0.000 +HINGE-DI +0.833 +0.028 +0.005 +0.837 +0.029 +0.008 +HINGE-DI-DF +0.836 +0.028 +0.003 +0.839 +0.026 +0.003 +Bank +UNCONS. +0.908 +0.195 +0.000 +0.904 +0.236 +0.000 +HINGE-DI +0.901 +0.024 +0.018 +0.899 +0.029 +0.033 +HINGE-DI-DF +0.904 +0.021 +0.007 +0.905 +0.029 +0.032 +LSAC +UNCONS. +0.823 +0.120 +0.000 +0.856 +0.131 +0.000 +HINGE-DI +0.809 +0.016 +0.014 +0.816 +0.032 +0.064 +HINGE-DI-DF +0.813 +0.018 +0.009 +0.809 +0.029 +0.047 +COMPAS +UNCONS. +0.757 +0.164 +0.000 +0.757 +0.162 +0.000 +HINGE-DI +0.641 +0.024 +0.153 +0.639 +0.030 +0.142 +HINGE-DI-DF +0.618 +0.025 +0.145 +0.654 +0.033 +0.120 +Table 3: Results for the DF classifier with the Hinge-DI constraint. Except for the dataset Adult, the average perfor- +mances are given. +2 in the Supplementary material for the corresponding numerical results. Thus, hereafter we consider the dWGF only +for the DI which has an implicit direction. +Table 3 summarizes the performances of the three classifiers - C⋆ and the two classifiers trained with the DI constraint +and the DI and dWGF constraints (doubly-fair, DF), respectively. In Table 3, we report the accuracies as well as +the values of DI and dWGF terms (i.e., DI( ˆf) and max{a10|0( ˆf), a01|1( ˆf)}, respectively). We observe that the DF +classifier improves the dWGF while keeping that the DI values and accuracies are favorably comparable to those of +the BGF classifier. For reference, the performances with the WGF constraint are summarized in the Supplementary +material. +To investigate the sensitivity of the accuracy to the degree of WGF, the scatter plots between various dWGF values +and the corresponding accuracies for the DF linear logistic model are given in Figure 2, where the DI value is fixed +around 0.03. The accuracies are not sensitive to the dWGF values. Moreover, for the datasets Adult, Bank and LSAC, +the accuracies keep increasing as the dWGF value decreases. +7 + +Figure 2: Scatter plots of the accuracies and dWGF values for the DF linear regression model with the DI values +around 0.03. (Topleft) Adult; (Topright) Bank; (Bottomleft) LSAC; (Bottomright) COMPAS. Red star points in each +figure represent the results of the BGF classifier. +While we analyzed the datasets Bank and LSAC, we found an undesirable aspect of the learning algorithm only +with the DI constraint. The corresponding classifiers improve the DI by decreasing (or increasing) the probabilities +P( ˆY = 1|Z = 0) and P( ˆY = 1|Z = 1) simultaneously compared to P(Y ⋆ = 1|Z = 0) and P(Y ⋆ = 1|Z = 1). +A better way to improve the DI would be to increase P( ˆY = 1|Z = 0) and decrease P( ˆY = 1|Z = 1) when +P(Y ⋆ = 1|Z = 0) < P(Y ⋆ = 1|Z = 1). Figures 3 show that this undesirable aspect disappears when the dWGF +constraint is considered. +Figure 3: Comparison of the conditional probabilities of each group for the datasets Bank (Left) and LSAC(Right). +5.1.2 +Targeting for disparate mistreatment +The results of the performances of the DF classifier with the ME as a BGF constraint are presented in Table 4. Since +the ME has no implicit direction, we use the undirectional WGF constraint. The overall conclusions are similar to +those for the DI and dWGF constraints. That is, the undirectional WGF constraint also works well. +8 + +0.836 +0.904 +0.834 +ACC +CC +0.902 +0.832 +DF +DF +0.830 +BGF +0.900 +BGF +0.002 +0.004 +0.010 +0.015 +0.020 +dWGF +dWGF +0.816 +0.64 +DF +BGF +0.814 +0.63 +CC +ACC +A +0.812 +0.62 +DF +0.810 +BGF +0.61 +0.010 +0.012 +0.014 +0.14 +0.15 +0.16 +dWGF +dWGFZ= 0 +Z = 1 +Z=0 +Z=1 +Uncons. +Uncons. +Z=0Z=1 +Z=0Z=1 +BGF +BGF +z=0z=1 +Z=0Z=1 +DF +工 +DF +0.05 +0.15 +0.25 +0.85 +0.90 +0.95 +Pr(Y= 1|Z = z) +Pr(Y = 1|Z = z)LINEAR MODEL +DNN MODEL +DATASET +METHOD +ACC +ME +WGF +ACC +ME +WGF +Adult +UNCONS. +0.852 +0.117 +0.000 +0.853 +0.105 +0.000 +HINGE-ME +0.834 +0.060 +0.005 +0.822 +0.025 +0.059 +HINGE-ME-DF +0.834 +0.060 +0.005 +0.825 +0.031 +0.026 +Bank +UNCONS. +0.908 +0.177 +0.000 +0.904 +0.174 +0.000 +HINGE-ME +0.740 +0.044 +0.068 +0.902 +0.164 +0.076 +HINGE-ME-DF +0.749 +0.045 +0.020 +0.897 +0.165 +0.047 +LSAC +UNCONS. +0.823 +0.090 +0.000 +0.856 +0.071 +0.000 +HINGE-ME +0.759 +0.028 +0.038 +0.815 +0.044 +0.040 +HINGE-ME-DF +0.742 +0.020 +0.017 +0.803 +0.038 +0.001 +COMPAS +UNCONS. +0.757 +0.022 +0.000 +0.757 +0.024 +0.000 +HINGE-ME +0.740 +0.020 +0.018 +0.738 +0.016 +0.018 +HINGE-ME-DF +0.743 +0.018 +<0.001 +0.757 +0.017 +0.001 +Table 4: Results for the DF classifier with the Hinge-ME constraint. Except for the dataset Adult, average performances +are given. +5.2 +Within-group fair for score function +In this section, we examine the WGF constraint for score functions. We choose the logistic loss (binary cross-entropy, +BCE) and AUC (area under the ROC) as evaluation metrics for prediction accuracy. For the BGF, we consider the +mean score parity (MSP, [10]): +MSP(f) = |E(σ(f(X))|Z = 1) − E(σ(f(X))|Z = 0)| , +where σ : x �→ 1/(1 + e−x) is the sigmoid function. To check how much the estimated score function ˆf is within- +group fair, we calculate the Kendall’s τ between ˆf and the ground-truth score function f ⋆ on the test data for each +sensitive group, and then we average them, which is denoted by ¯τ in Table 5. We choose the regularization parameters +λ and η such that ¯τ of ˆf is as close to 1 as possible while maintaining the MSP value around 0.03. +Table 5 amply shows that the DF score function always improves the degree of WGF (measured by ¯τ) and the accuracy +in terms of AUC simultaneously while keeping the degree of BGF at a reasonable level. With respect to the BCE, the +BGF and DF score functions are similar. The superiority of the DF score function in terms of AUC compared with +the BGF score function is partly because the WGF constraint shrinks the estimated score toward the ground-truth +score (Uncons. in Table 5) which is expected to be most accurate. Based on these results, we conclude that the WGF +constraint is a useful guide to find a better score function with respect to AUC as well as the WGF. +6 +Remarks on within-group fairness for pre- and post-processing methods +Various pre- and post-processing methods for fair AI have been proposed. An advantage of these methods compared +to constrained methods is that the methods are simple, computationally efficient but yet reasonably accurate. In this +section, we briefly explain how to reflect the WGF to pre- and post-processing methods for the BGF. +6.1 +Pre-processing methods and within-group fairness +Basically, pre-processing methods transform the training data in a certain way to be between-group fair and train an +AI model on the transformed data. To reflect the WGF, it suffices to add a WGF constraint in the training phase. Let +Dtrans be the transformed training data to be between-group fair and let Ltrans be the corresponding cost function. Then, +we learn a model by minimizing Ltrans(f) + ηWconv(f) for η > 0. +Table 6 presents the results of the models trained on the pre-processing training data and a WGF constraint for various +values of η, where the DI is used as the BGF and thus the corresponding dWGF constraint is used. In this experi- +ment, we use the linear logistic model and the Massaging [11] for the pre-processing. Surprisingly we observed that +introducing the dWGF constraint to the pre-processing method helps to improve the BGF and WGF simultaneously +without sacrificing the accuracies much. +9 + +LINEAR MODEL +DNN MODEL +DATASET +METHOD +BCE +AUC +MSP +¯τ +BCE +AUC +MSP +¯τ +Adult +UNCONS. +0.319 +0.905 +0.173 +1.000 +0.315 +0.908 +0.178 +1.000 +BGF +0.358 +0.879 +0.037 +0.854 +0.353 +0.879 +0.035 +0.805 +DF +0.368 +0.882 +0.033 +0.908 +0.364 +0.885 +0.035 +0.891 +Bank +UNCONS. +0.214 +0.932 +0.217 +1.000 +0.237 +0.926 +0.237 +1.000 +BGF +0.235 +0.906 +0.036 +0.706 +0.270 +0.908 +0.033 +0.671 +DF +0.240 +0.912 +0.039 +0.728 +0.266 +0.917 +0.031 +0.761 +LSAC +UNCONS. +0.434 +0.732 +0.125 +1.000 +0.359 +0.831 +0.142 +1.000 +BGF +0.450 +0.705 +0.033 +0.692 +0.381 +0.803 +0.025 +0.640 +DF +0.557 +0.717 +0.031 +0.719 +0.383 +0.809 +0.028 +0.738 +COMPAS +UNCONS. +0.511 +0.822 +0.122 +1.000 +0.506 +0.824 +0.118 +1.000 +BGF +0.599 +0.759 +0.035 +0.564 +0.588 +0.753 +0.030 +0.561 +DF +0.597 +0.792 +0.038 +0.720 +0.597 +0.766 +0.028 +0.623 +Table 5: Results of the DF score functions. Except for the dataset Adult, averages performances are given. +METHOD +η +ACC +DI +DWGF +MASSAGING +- +0.837 +0.069 +0.009 +MASSAGING + DWGF +0.5 +0.837 +0.048 +0.004 +1.0 +0.836 +0.037 +0.003 +Table 6: Comparison of the accuracy and fairnesses of the pre-processing method with and without the dWGF con- +straint. The results are evaluated on the dataset Adult. +6.2 +Post-processing methods and within-group fairness +For the BGF score functions, [35] developed an algorithm to obtain two monotonically nondecreasing transformations +mz, z ∈ {0, 1} such that m0 ◦ f ⋆ and m1 ◦ f ⋆ are BGF in the sense that the distributions of m0 ◦ f ⋆(X)|Z = 0 and +m1 ◦ f ⋆(X)|Z = 1 are the same. It is easy to check that the transformed score function mz ◦ f ⋆(x) is a perfectly +WGF score function even though it depends on the sensitivity group variable z. Note that the algorithm in Section 4 +yields score functions not depending on z. +7 +Conclusion +In this paper, we introduced a new concept so called within-group fairness, which should be considered along with +BGF when fair AI is a concern. Also, we proposed a regularization procedure to control the degree of WGF of +the estimated classifiers and score functions. By analyzing four real-world datasets, we illustrated that the WGF +constraints improve the degree of WGF without hampering BGF as well as accuracy. Moreover, in many cases, the +WGF constraints are helpful to find more accurate prediction models. +A problem in the proposed learning algorithm for WGF is that using a surrogated constraint for a given WGF constraint +is sometimes problematic. The learning algorithm can find a DF model which has a lower surrogated WGF value than +that of a BGF model, but the original WGF value is much higher. See Section A.2 of Appendix for empirical evidence. +A better surrogated WGF constraint to ensure a lower original WGF value would be useful. +Acknowledgments +This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) +grant funded by the Korea government(MSIT) (No. 2019-0-01396, Development of framework for analyzing, detect- +ing, mitigating of bias in AI model and training data). +10 + +References +[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica, May, 23:2016, 2016. +[2] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan. Algorithmic fairness. In Aea papers +and proceedings, volume 108, pages 22–27, 2018. +[3] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias and +fairness in machine learning. arXiv preprint arXiv:1908.09635, 2019. +[4] David Ingold and Spencer Soper. Amazon doesn’t consider the race of its customers. should it. Bloomberg, +April, 1, 2016. +[5] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. +[6] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P Gummadi. Fairness Con- +straints: A Flexible Approach for Fair Classification. J. Mach. Learn. Res., 20(75):1–42, 2019. +[7] L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Classification with fairness constraints: +A meta-algorithm with provable guarantees. In Proceedings of the Conference on Fairness, Accountability, and +Transparency, pages 319–328, 2019. +[8] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016. +[9] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In Advances in neural +information processing systems, pages 3315–3323, 2016. +[10] Amanda Coston, Karthikeyan Natesan Ramamurthy, Dennis Wei, Kush R Varshney, Skyler Speakman, Zairah +Mustahsan, and Supriyo Chakraborty. Fair transfer learning with missing protected attributes. In Proceedings of +the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 91–98, 2019. +[11] Faisal Kamiran and Toon Calders. +Data preprocessing techniques for classification without discrimination. +Knowledge and Information Systems, 33(1):1–33, 2012. +[12] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In Inter- +national Conference on Machine Learning, pages 325–333, 2013. +[13] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. Cer- +tifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on +knowledge discovery and data mining, pages 259–268, 2015. +[14] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varshney. +Optimized pre-processing for discrimination prevention. In Advances in Neural Information Processing Systems, +pages 3992–4001, 2017. +[15] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and mitigating unin- +tended bias in text classification. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, +pages 67–73, 2018. +[16] Kellie Webster, Marta Recasens, Vera Axelrod, and Jason Baldridge. Mind the gap: A balanced corpus of +gendered ambiguous pronouns. Transactions of the Association for Computational Linguistics, 6:605–617, 2018. +[17] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-aware generative adversarial networks. +In 2018 IEEE International Conference on Big Data (Big Data), pages 570–575. IEEE, 2018. +[18] Elliot Creager, David Madras, J¨orn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, and Richard +Zemel. Flexibly fair representation learning by disentanglement. In International Conference on Machine Learn- +ing, pages 1436–1445. PMLR, 2019. +[19] Novi Quadrianto, Viktoriia Sharmanska, and Oliver Thomas. Discovering fair representations in the data domain. +In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8227–8236, +2019. +[20] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with preju- +dice remover regularizer. In Joint European Conference on Machine Learning and Knowledge Discovery in +Databases, pages 35–50. Springer, 2012. +[21] Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander. Satisfying real-world goals with dataset +constraints. In Advances in Neural Information Processing Systems, pages 2415–2423, 2016. +[22] Yahav Bechavod and Katrina Ligett. Learning fair classifiers: A regularization-inspired approach. arXiv preprint +arXiv:1707.00044, pages 1733–1782, 2017. +11 + +[23] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fairness constraints: +Mechanisms for fair classification. In Artificial Intelligence and Statistics, pages 962–970, 2017. +[24] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pontil. Empirical risk +minimization under fairness constraints. In Advances in Neural Information Processing Systems, pages 2791– +2801, 2018. +[25] Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification. In Conference on +Fairness, Accountability and Transparency, pages 107–118, 2018. +[26] Harikrishna Narasimhan. Learning with complex loss functions and constraints. In International Conference on +Artificial Intelligence and Statistics, pages 1646–1654. PMLR, 2018. +[27] Robin Vogel, Aur´elien Bellet, and St´ephan Cl´emenc¸on. Learning Fair Scoring Functions: Fairness Definitions, +Algorithms and Generalization Bounds for Bipartite Ranking. arXiv preprint arXiv:2002.08159, 2020. +[28] Jaewoong Cho, Changho Suh, and Gyeongjo Hwang. +A fair classifier using kernel density estimation. +In +34th Conference on Neural Information Processing Systems, NeurIPS 2020. Conference on Neural Information +Processing Systems, 2020. +[29] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware classification. In +2012 IEEE 12th International Conference on Data Mining, pages 924–929. IEEE, 2012. +[30] Benjamin Fish, Jeremy Kun, and ´Ad´am D Lelkes. A confidence-based approach for balancing fairness and +accuracy. In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 144–152. SIAM, +2016. +[31] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision making and +the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and +data mining, pages 797–806, 2017. +[32] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and calibration. +In Advances in Neural Information Processing Systems, pages 5680–5689, 2017. +[33] Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Leveraging la- +beled and unlabeled data for consistent fair binary classification. In Advances in Neural Information Processing +Systems, pages 12760–12770, 2019. +[34] Dennis Wei, Karthikeyan Natesan Ramamurthy, and Flavio Calmon. Optimized Score Transformation for Fair +Classification. volume 108 of Proceedings of Machine Learning Research, pages 1673–1683, Online, 26–28 +Aug 2020. PMLR. +[35] Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair classification. +In Uncertainty in Artificial Intelligence, pages 862–872. PMLR, 2020. +[36] Yongkai Wu, Lu Zhang, and Xintao Wu. Fairness-aware Classification: Criterion, Convexity, and Bounds. arXiv +preprint arXiv:1809.04737, 2018. +[37] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P Gummadi, Adish Singla, Adrian Weller, and Muham- +mad Bilal Zafar. A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfair- +ness via inequality indices. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge +Discovery & Data Mining, pages 2239–2248, 2018. +[38] Ofir Nachum and Heinrich Jiang. Group-based fair learning leads to counter-intuitive predictions. arXiv preprint +arXiv:1910.02097, 2019. +[39] L´eon Bottou. +Large-scale machine learning with stochastic gradient descent. +In Proceedings of COMP- +STAT’2010, pages 177–186. Springer, 2010. +[40] Linda F Wightman and Henry Ramsey. LSAC national longitudinal bar passage study. Law School Admission +Council, 1998. +[41] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the COMPAS recidivism +algorithm. ProPublica (5 2016), 9(1), 2016. +[42] Manisha Padala and Sujit Gujar. FNNC: Achieving Fairness through Neural Networks. pages 2249–2255, 07 +2020. +[43] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and Ed H Chi. +Fairness without demographics through adversarially reweighted learning. arXiv preprint arXiv:2006.13114, +2020. +12 + +A +Supplenmetary Material +A.1 +Additional numerical studies for WGF classification +A.1.1 +Targeting for disparate impact +First, we investigate the sensitivity of the prediction accuracy to the degree of dWGF in the DNN model. Figure 4 +shows the scatter plots between various dWGF values and the corresponding accuracies for the DF DNN model, where +the DI is fixed around 0.03. The accuracies are not very sensitive to the dWGF values like the DF linear logistic model. +Furthermore, for the datasets Adult, Bank and COMPAS, the DF classifiers have higher accuracies and lower dWGF +values than the BGF classifier. +Figure 4: Scatter plots of the accuracies and dWGF values for the DF DNN model with the DI values around 0.03. +(Topleft) Adult; (Topright) Bank; (Bottomleft) LSAC; (Bottomright) COMPAS. Red star points in each figure represent +the results of the BGF classifier. +We also investigate how the dWGF constraint performs with surrogated BGF constraints other than Hinge-DI: (i) the +covariance type constraint [23, 6], named by COV-DI; and (ii) the linear surrogated function, named by FNNC-DI +[42]. Table 7 presents the results with various surrogated DI constraints and the dWGF constraint. In most cases, +COV-DI and FNNC-DI give the results similar to Hinge-DI with or without the dWGF constraint and we consistently +observe that considering the dWGF constraint together with the DI constraint helps to alleviate within-group fairness +while maintaining similar levels of the accuracy and the DI. Note that for the dataset Adult, the DNN model with +COV-DI constraint does not achieve the pre-specified DI value 0.03 regardless of the choice of tuning parameter. In +contrast, the DNN model trained with the DI and dWGF constraints achieves the DI value 0.03 with a smaller value of +dWGF. This observation is interesting since it implies that the dWGF constraint is helpful to increase even the BGF. +Next, we compare the dWGF and WGF constraints when targeting the DI with the hinge surrogated function in Table +8. In most cases, both the dWGF and WGF constraints are helpful to improve the WGF, while maintaining a similar +level of accuracy and DI. It is noticeable that the DF classifier with the dWGF constraint is more accurate than that +with the WGF constraint, which would be mainly because the DI constraint is directional. +13 + +0.839 +DF +0.904 +BGF +0.838 +ACC +0.837 +0.902 +0.836 +DF +0.900 +0.835 +BGF +0.004 +0.006 +0.008 +0.030 +0.035 +dWGF +dWGF +★ +0.815 +0.65 +0.810 +0.64 +CC +0.63 +0.805 +A +0.62 +0.800 +DF +DF +BGF +0.61 +BGF +0.795 +0.04 +0.05 +0.06 +0.12 +0.14 +dWGF +dWGFLINEAR MODEL +DNN MODEL +DATASET +METHOD +ACC +DI +DWGF +ACC +DI +DWGF +Adult +UNCONS. +0.852 +0.172 +0.000 +0.853 +0.170 +0.000 +COV-DI +0.837 +0.035 +0.003 +0.845 +0.082 +0.013 +COV-DI-DF +0.837 +0.030 +0.001 +0.840 +0.025 +0.007 +FNNC-DI +0.834 +0.023 +0.003 +0.838 +0.023 +0.006 +FNNC-DI-DF +0.836 +0.025 +0.001 +0.841 +0.025 +0.004 +Bank +UNCONS. +0.908 +0.195 +0.000 +0.904 +0.236 +0.000 +COV-DI +0.904 +0.019 +0.009 +0.906 +0.019 +0.036 +COV-DI-DF +0.904 +0.020 +0.007 +0.906 +0.020 +0.033 +FNNC-DI +0.903 +0.020 +0.013 +0.901 +0.020 +0.029 +FNNC-DI-DF +0.905 +0.020 +0.008 +0.900 +0.010 +0.027 +LSAC +UNCONS. +0.823 +0.120 +0.000 +0.856 +0.131 +0.000 +COV-DI +0.808 +0.015 +0.014 +0.859 +0.052 +0.020 +COV-DI-DF +0.811 +0.019 +0.010 +0.860 +0.054 +0.014 +FNNC-DI +0.809 +0.020 +0.014 +0.851 +0.025 +0.023 +FNNC-DI-DF +0.809 +0.014 +0.010 +0.844 +0.010 +0.019 +COMPAS +UNCONS. +0.757 +0.164 +0.000 +0.757 +0.162 +0.000 +COV-DI +0.640 +0.029 +0.149 +0.661 +0.038 +0.124 +COV-DI-DF +0.620 +0.024 +0.135 +0.650 +0.028 +0.097 +FNNC-DI +0.646 +0.037 +0.146 +0.646 +0.032 +0.133 +FNNC-DI-DF +0.624 +0.034 +0.143 +0.645 +0.021 +0.117 +Table 7: Results for the DF classifier with various surrogated DI constraints. Except for the dataset Adult, average +performances are described. +WITH THE DWGF CONSTRAINT +WITH THE WGF CONSTRAINT +DATASET +METHOD +ACC +DI +DWGF +ACC +DI +WGF +Adult +HINGE-DI +0.833 +0.028 +0.005 +0.833 +0.028 +0.005 +HINGE-DI-DF +0.836 +0.028 +0.003 +0.830 +0.012 +0.005 +Bank +HINGE-DI +0.901 +0.024 +0.018 +0.901 +0.024 +0.003 +HINGE-DI-DF +0.904 +0.021 +0.007 +0.898 +0.017 +0.000 +LSAC +HINGE-DI +0.809 +0.017 +0.014 +0.809 +0.017 +0.014 +HINGE-DI-DF +0.813 +0.018 +0.009 +0.810 +0.016 +0.011 +COMPAS +HINGE-DI +0.641 +0.024 +0.153 +0.641 +0.024 +0.136 +HINGE-DI-DF +0.618 +0.025 +0.145 +0.594 +0.018 +0.088 +Table 8: Comparison of the dWGF and WGF constraints based on the linear logistic model. Except for the dataset +Adult, average performances are described. +A.1.2 +Targeting for equal opportunity +We exam how the dWGF constraint works with the equal opportunity constraint given as +EOp = +���Pr( ˆY = 1|Y = 1, Z = 1) − Pr( ˆY = 1|Y = 1, Z = 0) +��� , +and the results are summarized in Table 9. For some cases, the dWGF constraint does not work at all (i.e., the dWGF +values of the BGF and DF classifiers are the sames). This is partly because the surrogated dWGF constraint does not +represent the original dWGF well, which is discussed in the following section. +14 + +LINEAR MODEL +DNN MODEL +DATASET +METHOD +ACC +EOP +DWGF +ACC +EOP +DWGF +Adult +UNCONS. +0.852 +0.070 +0.000 +0.853 +0.076 +0.000 +HINGE-EOP +0.851 +0.011 +0.002 +0.854 +0.012 +0.030 +HINGE-EOP-DF +0.853 +0.016 +0.001 +0.854 +0.015 +0.012 +FNNC-EOP +0.851 +0.013 +0.012 +0.852 +0.004 +0.021 +FNNC-EOP-DF +0.852 +0.007 +0.007 +0.852 +0.006 +0.019 +Bank +UNCONS. +0.908 +0.099 +0.000 +0.904 +0.082 +0.000 +HINGE-EOP +0.908 +0.027 +0.007 +0.909 +0.031 +0.122 +HINGE-EOP-DF +0.908 +0.027 +0.007 +0.909 +0.031 +0.122 +FNNC-EOP +0.908 +0.027 +0.010 +0.903 +0.037 +0.111 +FNNC-EOP-DF +0.908 +0.030 +0.010 +0.900 +0.028 +0.107 +LSAC +UNCONS. +0.823 +0.041 +0.000 +0.856 +0.038 +0.000 +HINGE-EOP +0.820 +0.003 +0.004 +0.852 +0.010 +0.015 +HINGE-EOP-DF +0.820 +0.003 +0.004 +0.851 +0.008 +0.012 +FNNC-EOP +0.822 +0.011 +0.003 +0.859 +0.010 +0.011 +FNNC-EOP-DF +0.822 +0.011 +0.003 +0.858 +0.010 +0.010 +COMPAS +UNCONS. +0.757 +0.074 +0.000 +0.757 +0.075 +0.000 +HINGE-EOP +0.713 +0.042 +0.073 +0.719 +0.029 +0.046 +HINGE-EOP-DF +0.713 +0.042 +0.073 +0.719 +0.029 +0.046 +FNNC-EOP +0.666 +0.039 +0.197 +0.722 +0.031 +0.056 +FNNC-EOP-DF +0.706 +0.031 +0.092 +0.725 +0.035 +0.042 +Table 9: Results for targeting EOp-dWGF. Except for the dataset Adult, average performances are described. +A.2 +Limitations of surrogated WGF constraint +We have seen that the DF classifier does not improve the dWGF value at all compared to the BGF classifier with respect +to the equal opportunity constraint for some datasets. We found that these undesirable results would be because the +surrogated dWGF constraint using the hinge function does not represent the original dWGF constraint. To take a +closer look at this problem, we investigate relations between the dWGF and Wconv evaluated on the training datasets +Bank and LSAC in Figure 5. We observe that the DF classifier has lower Wconv values but higher dWGF values than +the BGF classifier. That is, reducing the Wconv value does not always result in a small value of the original dWGF. +Alternative surrogated constraints, which resemble the original dWGF closely but are yet computationally easy, are +needed and we leave this issue for future work. +Figure 5: Scatter plots of the dWGF and the within-group fairness penalty (Wconv) values for the DF linear logistic +model with the EOp values around 0.03 evaluated on the training datasets. (Left) Bank; (Right) LSAC. Red star points +in each figure represent the results of the BGF classifier. +15 + +DF +0.0200 +0.012 +DF +BGF +0.0175 +BGF +0.011 +0.0150 +0.0125 +Mp +Mp +0.009 +0.0100 +0.008 +0.0075 +0.0050 +0.007 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 +0.10 +0.03 +0.04 +0.05 +0.06 +0.07 +Wconv +WconvMODEL +DATASET +ACC +DI +EOP +DM +LINEAR +Adult +0.852 +0.172 +0.070 +0.117 +Bank +0.908 +0.195 +0.099 +0.176 +LSAC +0.823 +0.120 +0.041 +0.090 +COMPAS +0.757 +0.164 +0.074 +0.020 +DNN +Adult +0.853 +0.170 +0.076 +0.105 +Bank +0.904 +0.236 +0.082 +0.174 +LSAC +0.856 +0.131 +0.038 +0.071 +COMPAS +0.757 +0.162 +0.075 +0.024 +Table 10: Performances of the unconstrained linear logistic model on the test dataset. Except for Adult, average metrics +are described. +A.3 +Datasets and Preprocessing +Dataset. We conduct our experiments with four real-world datasets, which are popularly used in fairness AI research +and publicly available: +• Adult [5]: The Adult Income dataset consists of 32,561 training subjects and 16,281 test subjects with 14 +features and a binary target, which indicates whether income exceeds $50k per a year. The sensitive variable +is the sex of the subject, Z = 0 for female and Z = 1 for male. +• Bank [5]: The Bank Marketing dataset contains 41,188 subjects with 20 features (e.g. age, occupation, +marital status) and a binary target indicating whether or not subjects have subscribed to the product (bank +term deposit). A discrete age is set as a binary sensitive variable by assigning 0 to subjects aged 25 to 60 +years old and 1 to else. +• LSAC [40]: The Law School dataset pre-processed by [43] contains 26,551 subjects with 10 input variables +and a binary target which indicates whether subject passed the bar exam or not. The sensitive variable is set +by 0 for ‘non-white’ subjects and 1 for ‘white’ subjects. +• COMPAS [41]: The Compas Propublica Risk Assessment dataset contains 6,172 subjects to predict recidi- +vism (‘HighScore’ or ‘LowScore’) with 6 variables related to criminal history and demographic information. +We use racial characteristics as a sensitive variable. +We transform all categorical variables to dummy variables using one-hot encoding, and standardize to get zero mean +and 1 standard deviation for each variable. Some variables having serious multicollinearity have been removed in +order to obtain stable estimation results. The performances of the unconstrained linear logistic model are summarized +in Table 10. +A.4 +Implementation details +For numerical stability, we use the ridge penalty for DNN parameters with the regularization parameter 10−6. All +experiments are conducted on a GPU server with NVIDIA TITAN Xp GPUs. Also, for each method, we consider +lr ∈ {0.01, 0.1, 1} and epoch ∈ {10000, 20000}, then we choose the best learning rate and epoch. In addition, we did +not use a mini-batch for the gradient descent approach, i.e., we set the batch size to the sample size. For each BGF +constraint, we choose the corresponding regularization parameter so that the value of the BGF constraint (e.g., DI, +EOp, MSP) reaches a certain level among the following candidate parameters set: +λ ∈ {0, 0.05, 0.1, 0.35, 0.45, 0.6, 0.75, 1, 2, 5}. +The hyper-parameters in the doubly-fair algorithm are set to minimize the dWGF (or WGF) value while the BGF level +remains similar to that of the BGF classifier, among the following candidate parameters sets: +λ ∈ {0, 0.05, 0.1, 0.35, 0.45, 0.6, 0.75, 1, 2, 5} +η ∈ {0, 0.1, 0.5, 1, 3, 5}. +For the WGF score function, we adopt the surrogated version of Kendall’s τ as the WGF constraint. However, the +surrogated Kendall’s τ requires huge computation since it should process all pairs of the training data. To save +computing time for calculating the surrogated Kendall’s τ, we use 50,000 pairs of samples randomly selected from the +training data for each sensitive group. +16 + diff --git a/odE_T4oBgHgl3EQf8hwH/content/tmp_files/load_file.txt b/odE_T4oBgHgl3EQf8hwH/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f737367cebfaa47015573d5767506a9457a0a4ad --- /dev/null +++ b/odE_T4oBgHgl3EQf8hwH/content/tmp_files/load_file.txt @@ -0,0 +1,1223 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf,len=1222 +page_content='WITHIN-GROUP FAIRNESS: A GUIDANCE FOR MORE SOUND BETWEEN-GROUP FAIRNESS Sara Kim Samsung Electronics Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Seoul sarah58833@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='com Kyusang Yu Department of Applied Statistics Konkuk University Seoul kyusangu@konkuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='kr Yongdai Kim Department of Statistics Seoul National University Seoul ydkim0903@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='com ABSTRACT As they have a vital effect on social decision-making, AI algorithms not only should be accurate and but also should not pose unfairness against certain sensitive groups (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', non-white, women).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Various specially designed AI algorithms to ensure trained AI models to be fair between sensitive groups have been developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this paper, we raise a new issue that between-group fair AI models could treat individuals in a same sensitive group unfairly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We introduce a new concept of fairness so-called within-group fairness which requires that AI models should be fair for those in a same sen- sitive group as well as those in different sensitive groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We materialize the concept of within-group fairness by proposing corresponding mathematical definitions and developing learning algorithms to control within-group fairness and between-group fairness simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Numerical studies show that the proposed learning algorithms improve within-group fairness without sacrificing accuracy as well as between-group fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 1 Introduction Recently, AI (Artificial Intelligence) is being used as decision-making tools in various domains such as credit scoring, criminal risk assessment, education of college admissions [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' As AI has a wide range of influences on human social life, issues of transparency and ethics of AI are emerging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' However, it is widely known that due to the existence of historical bias in data against ethics or regulatory frameworks for fairness, trained AI models based on such biased data could also impose bias or unfairness against a certain sensitive group (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', non-white, women) [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Therefore, designing an AI algorithm which is accurate and fair simultaneously has become a crucial research topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Demographic disparities due to AI, which refer to socially unacceptable bias that an AI model favors certain groups (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', white, men) over other groups (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', black, women), have been observed frequently in many applications of AI such as COMPAS recidivism risk assessment [1], Amazon’s prime free same-day delivery [4], credit score evaluation [5] to name just a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Many studies have been done recently to develop AI algorithms which remove or alleviate such demographic disparities in trained AI models so that they will treat sensitive groups as equally as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In general, these methods try to search AI models which are not only accurate but also similar between sensitive groups in a certain sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For an example of similarity, it is required that accuracies of an AI model for each sensitive group are similar [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Hereinafter, criteria of fairness requiring similarity between sensitive groups are referred to as between-groups fairness (BGF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this paper, we consider a new concept of fairness so called within-group fairness (WGF) which arises as a new problem when we try to enforce BGF into AI algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Generally speaking, within-group unfairness occurs when there is an individual who is positively treated compared to others in a same sensitive group by an AI model trained without BGF constraints but becomes negatively treated by an AI model trained with BGF constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For an illustrative example of WGF, consider a college admission problem where gender (men vs women) is a sensitive variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Let X and Y ∈ {0, 1} be the input vector and the corresponding output label where X represents the information of a candidate student such as GPA at high school, SAT score, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' and Y is the admission result where 0 and 1 mean the rejection and acceptance of the college admission, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The Bayes classifier accepts a student arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='08375v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='ML] 20 Jan 2023 Figure 1: A toy example of within-group unfairness: The left panel: without BGF constraints, there exists unfairness against the women sensitive group, but with BGF constraints, the scores of the two women become reversed and thus within-group unfairness occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The right panel: The scores of the two women increase together to achieve BGF without within-group unfairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' with X = x when Pr(Y = 1|X = x) > 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Suppose that there are two women ‘A’ and ‘B’ with the input vectors xA and xB, respectively and the AI model trained without BGF constraints estimates Pr(Y = 1|X = xB) > 1/2 > Pr(Y = 1|X = xA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Then, within-group unfairness occurs when an AI model trained with BGF constraints results in Pr(Y = 1|X = xA) > 1/2 > Pr(Y = 1|X = xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this situation, which is illustrated in the left panel of Figure 1, ‘B’ could claim that the AI model trained with BGF constraints mistreats her and so it is unfair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We will show in Section 5 that there exists non-negligible within-group unfairness in AI models trained on real data with BGF constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Within-group unfairness arises because most existing learning algorithms for BGF force certain statistics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' rate of positive prediction, misclassification error rate, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=') of a trained AI model being similar across sensitive groups but do not care about what happens to individuals in a same sensitive group at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For within-group fairness, a desirable AI model is expected at least to preserve the ranks between Pr(Y = 1|X = xA) and Pr(Y = 1|X = xB) regardless of estimating Pr(Y = 1|X = x) with or without BGF constraints, which is depicted in the right panel of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Our contributions are three folds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We first define the concept of WGF rigorously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Then we develop learning algorithms which compromise BGF and WGF as well as accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Finally, we show empirically that the proposed learning algorithms improve WGF while maintaining accuracy and BGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' One may argue that training data are prone to bias due to historical prejudices and discriminations, and hence a trained AI model is also biased and socially unacceptable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' On the other hand, a trained AI model with BGF constraints does not have such bias and hence is socially acceptable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Therefore, it would be by no means reasonable to claim unfairness based on discrepancies between socially unacceptable and acceptable AI models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' However, note that historical bias in training data is about bias between sensitive groups but not for individuals in a same sensitive group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For WGF, we implicitly assume that no historical bias among individuals in a same sensitive group exists in training data, which is not too absurd, and thus there is no reason for a trained AI model without BGF constraints to treat individuals in a same sensitive group unfairly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' This assumption, of course, needs more debates which we leave as future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Section 2, we briefly review methods for BGF, and in Sections 3 and 4, we propose mathematical definitions of WGF and develop corresponding learning algorithms for classifiers and score functions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The results of numerical studies are presented in Section 5, and remarks about reflecting WGF to pre- and post processing algorithms for BGF are given in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Concluding remarks follow in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2 Review of between-group fairness While it is completely new, the concept of WGF is a by-product of BGF and thus it is helpful to review learning methods for BGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this section, we review the definitions of BGF and related studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2 Within-group unfair Within-group fair Estimated score 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='5 BGF BGF Unconstrained Unconstrained constrained constrained men women rank preserved rank changedFAIRNESS CRITERIA E E′ DISPARATE IMPACT [8] 1{Cf(X) = 1} ∅ EQUAL OPPORTUNITY [9] 1{Cf(X) = 1} {Y = 1} DISPARATE MISTREATMENT W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' ERROR RATE [6] 1{Cf(X) ̸= Y } ∅ MEAN SCORE PARITY [10] f(X) ∅ Table 1: Some group performance functions We let D = {(xi, zi, yi)}n i=1 be a set of training data of size n which are independent copies of a random vector (X, Z, Y ) defined on X × Z × Y, where X ⊂ Rp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We consider a binary classification problem, which means Y = {0, 1}, and for notational simplicity, we let Z = {0, 1}, where Z = 0 refers to the unprivileged group and Z = 1 refers to the privileged group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Whenever the probability is mentioned, we mean it by either the probability of (X, Z, Y ) or its empirical counterpart unless there is any confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this paper, we consider AI algorithms which yield a real-valued function f : X → R so called a score function which assigns positive labeled instances higher scores than negative labeled instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' An example of the score function is the conditional class probability Pr(Y = 1|x = x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In most human-related decision makings, real-valued score functions are popularly used (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' scores for credit scoring).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Let F be a given set of score functions, in which we search an optimal score function in a certain sense (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' minimizing the cross-entropy for classification problems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Examples of F are linear functions, reproducing kernel Hilbert space and deep neural networks to name a few.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For a given f ∈ F, the corresponding classifier Cf is defined as Cf(x) = 1(f(x) > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Definition of between-group fairness For a given score function f and a sensitive group Z = z, we consider the group performance function of f given as qz(f) := E(E|E′, Z = z) (1) for events E and E′ that might depend on f(X) and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The group performance function qz in (1), which is considered by [7], includes various performance functions used in fairness AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We summarize representative group performance functions having the form of (1) in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For given group performance functions qz(·), z ∈ {0, 1}, we say that f satisfies the BGF constraint with respect to qz if q0(f) = q1(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A relaxed version of the BGF constraint so called the ϵ-BGF constraint, is frequently considered, which requires |q0(f) − q1(f)| < ϵ for a given ϵ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Typically, AI algorithms search an optimal function f among those satisfying the ϵ-BGF constraint with respect to given group performance functions qz(·), z ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Related works Several learning algorithms have been proposed to find an accurate model f satisfying a given BGF constraint, which are categorized into three groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this subsection, we review some methods for each group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Pre-processing methods: Pre-processing methods remove bias in training data or find a fair representation with re- spect to sensitive variables before the training phase and learn AI models based on de-biased data or fair representation [11, 12, 13, 14, 15, 16, 17, 18, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [11] suggested pre-processing methods to eliminate bias in training data by use of label changing, reweighing and sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Based on the idea that transformed data should not be able to predict the sensitive variable, [13] proposed a transformation of input variables for eliminating the disparate impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To find a fair representation, [12, 14] proposed a data transformation mapping for preserving accuracy and alleviating discrimination simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Pre-processing methods for fair learning on text data were studied by [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In-processing methods: In-processing methods generally train an AI model by minimizing a given cost function (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' the cross-entropy, the sum of squared residuals, the empirical AUC etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=') subject to a ϵ-BGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Most group performance functions qz(·) are not differentiable, and thus various surrogated group performance functions and corresponding ϵ-BGF constraints have been proposed [20, 21, 22, 23, 6, 24, 25, 26, 7, 27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [20] used a 3 fairness regularizer which is an approximation of the mutual information between the sensitive variable and the target variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [23, 6] proposed covariance-type fairness constraints as tractable proxies targeting the disparate impact and the equality of the false positive or negative rate, and [24] used a linear surrogated group performance function for the equalized odds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' On the other hand, [25, 7] derived an optimal classifier for a constrained fair classification as a form of an instance-dependent threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Also, for fair score functions, [27] proposed fairness constraints based on ROC curves of each sensitive group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Post-processing methods: Post-processing methods first learn an AI model without any BGF constraint and then transform the decision boundary or score function of the trained AI model for each sensitive group to satisfy given BGF criteria [29, 30, 9, 31, 32, 33, 34, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [9, 33] suggested finding sensitive group dependent thresholds to get a fair classifier with respect to equal opportunity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [34, 35] developed an algorithm to transform the original score function to achieve a BGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 3 Within-group fairness for classifiers We assume that there exists a known optimal classifier C⋆ which could be the Bayes classifier or its estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For example, we can use Cf ⋆ for C⋆, where f ⋆ is the unconstrained minimizer of the cross-entropy on F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We mostly focus on in-processing methods for the BGF and explain how to reflect WGF into a learning procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Remarks about how to reflect WGF to pre- and post-processing methods are given in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Definition of within-group fairness Conceptually, WGF means that the classifier Cf and C⋆ have the same ranks in each sensitive group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' That is, for two individuals xA and xB in a same sensitive group with C⋆(xA) > C⋆(xB), WGF requires that Cf(xA) ≥ Cf(xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To materialize this concept of WGF, we define the WGF constraint as Pr {C⋆(X) = 0, Cf(X) = 1|Z = z} = 0 or Pr {C⋆(X) = 1, Cf(X) = 0|Z = z} = 0 (2) for each z ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Similar to the BGF, we relax the constraint (2) by requiring that either of the two probabilities is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' That is, we say that f satisfies the δ-WGF constraint for a given δ > 0 if max z∈{0,1} min{a01|z(f), a10|z(f)} < δ, (3) where aij|z(f) = Pr{C⋆(X) = i, Cf(X) = j|Z = z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Directional within-group fairness Many BGF constraints have their own implicit directions toward which the classifier is expected to be guided in the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We can design a special WGF constraint reflecting the implicit direction of a given BGF constraint which results in more desirable classifiers (better guided, more fair and frequently more accurate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Below, we present two such WGF constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Disparate impact: Note that the disparate impact requires that Pr{Cf(X) = 1|Z = 0} = Pr{Cf(X) = 1|Z = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Suppose that Pr{C⋆(X) = 1|Z = 0} < Pr{C⋆(X) = 1|Z = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Then, we expect that a desirable classifier Cf achieves this BGF constraint by increasing Pr{Cf(X) = 1|Z = 0} from Pr{C⋆(X) = 1|Z = 0} and decreasing Pr{Cf(X) = 1|Z = 1} from Pr{C⋆(X) = 1|Z = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To reflect this direction, we can enforce a learning algorithm to search a classifier Cf satisfying Pr{C⋆(X) = 1|Z = 0} < Pr{Cf(X) = 1|Z = 0} and Pr{C⋆(X) = 1|Z = 1} > Pr{Cf(X) = 1|Z = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Based on this argument, we define the directional δ-WGF constraint for the disparate impact as max{a10|0(f), a01|1(f)} < δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (4) Equal opportunity: The equal opportunity constraint is given as Pr{Cf(X) = 1|Z = 0, Y = 1} = Pr{Cf(X) = 1|Z = 1, Y = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 4 Suppose that Pr{C⋆(X) = 1|Z = 0, Y = 1} < Pr{C⋆(X) = 1|Z = 1, Y = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A similar argument for the disparate impact leads us to define the directional δ-WGF constraint for the equal opportunity as max{a10|01(f), a01|11(f)} < δ (5) and max z∈{0,1} min � a10|z0(f), a01|z0(f) � < δ, (6) where aij|zy(f) = Pr{C⋆(X) = i, Cf(X) = j|Z = z, Y = y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='3 Learning with doubly-group fairness constraints We say that f satisfies the (ϵ, δ)-doubly-group fairness constraint if B(f) < ϵ and W(f) < δ, where B is a given BGF constraint and W is the corresponding WGF constraint proposed in the previous two subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this section, we propose a relaxed version of W(·) for easy computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' As we review in Section 2, many relaxed versions of B(·) have been proposed already.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The WGF constraints considered in Sections 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 are hard to be used as themselves in the training phase since they are neither convex nor continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A standard approach to resolve this problem is to use a convex surrogated function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For example, a surrogated version of the WGF constraint (3) is Wsurr(f) < δ, where Wsurr(f) := max z∈{0,1} min � E {φ(−f(X))|Z = z, Y ⋆ = 1} p1|z, E {φ(f(X))|Z = z, Y ⋆ = 0} p0|z � , (7) where Y ⋆ = C⋆(X), py|z = Pr(C⋆(X) = y|Z = z) and φ is a convex surrogated function of the indicator function 1(z ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this paper, we use the hinge function given as φhinge(z) = (1 + z)+ as a convex surrogated function which is popularly used for fair AI [21, 24, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The surrogated versions for the other WGF constraints are derived similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Finally, we estimate f by ˆf that minimizes the regularized cost function L(f) + λBsurr(f) + ηWsurr(f), (8) where L is a given cost function (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' the cross-entropy) and Bsurr and Wsurr are the surrogated constraints of B and W, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The nonnegative constants λ and η are regularization parameters which are selected so that ˆf satisfies B( ˆf) < ϵ and W( ˆf) < δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='4 Related notions with within-group fairness There are several fairness concepts which are somehow related to WGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' However, the existing concepts are quite different from our WGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Unified fairness: [37] used the term ‘within-group fairness’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' However, WGF of [37] is different from our WGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [37] measured individual-level benefits of a given prediction model and they defined the model to be WGF if the individual benefits in each group are similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' They also illustrated that WGF keeps decreasing as BGF increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Our WGF is nothing to do with individual-level benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Our WGF can be high even when individual-level benefits are not similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Also, our WGF can increase even when BGF increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Slack consistency: [38] proposed the ‘slack consistency’ which requires that the estimated scores of each individual should be monotonic with respect to slack variables used in fairness constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Slack consistency does not guarantee within-group fairness because the ranks of the estimated scores can change even when they move monotonically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 4 Within-group fairness for score functions Similarly to classifiers, the WGF for score functions requires that f(xA) > f(xB) when f ⋆(xA) > f ⋆(xB) and vice versa for two individuals xA and xB in a same sensitive group, where f ⋆ is a known optimal score function such as the conditional class probability Pr(Y = 1|X) or its estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To realize this concept, we define the WGF constraint 5 for a score function f as τz(f) = 1 for z ∈ {0, 1}, where τz(·) is the Kendall’s τ between f and f ⋆ conditional on Z = z, that is τz(f) = E(X1,X2) � 1{(f(X1) − f(X2))(f ⋆(X1) − f ⋆(X2)) > 0} ���Z = z � , where X1 and X2 are independent copies of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In turn, the δ-WGF constraint for a score function f is 1 − τz(f) < δ, z ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Similarly for classifiers, we need a convex surrogated version of the δ-WGF constraint and a candidate would be 1 − τφ,z(f) < δ, z ∈ {0, 1}, where τφ,z(f) = 1 − E(X1,X2) � φ{(f(X1) − f(X2))(f ⋆(X1) − f ⋆(X2))} ���Z = z � and φ is a convex surrogated function of 1(z > 0) such as the φhinge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 5 Numerical studies We investigate the impacts of the WGF constraints on the prediction accuracy as well as the BGF by analyzing real- world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We consider linear logistic and deep neural network (DNN) models for F and use the cross-entropy for L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For DNN, fully connected neural networks with one hidden layer and p many hidden nodes are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We train the models by the gradient descent algorithm [39] implemented by Python with related libraries pytorch, scikit-learn, numpy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The SGD optimizer is used with momentum 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='9 and a learning rate of either 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='01 depending on the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We use the unconstrained minimizer of L for f ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We analyze four real world datasets, which are popularly used in fairness AI research and publicly available: (i) The Adult Income dataset (Adult, [5]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (ii) The Bank Marketing dataset(Bank, [5]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (iii) The Law School dataset (LSAC, [40]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (iv) The Compas Propublica Risk Assessment dataset (COMPAS, [41]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, we split the training and test datasets randomly by 8:2 ratio and repeat 5 times training/test splits for performance evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Within-group fair classifiers We consider following group performance functions for the BGF: the disparate impact (DI) [8] and the disparate mistreatment w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' error rate [6], which are defined as DI(f) = |Pr(Cf(X) = 1|Z = 1) − Pr(Cf(X) = 1|Z = 0)| ME(f) = |Pr(Cf(X) ̸= Y |Z = 0) − Pr(Cf(X) ̸= Y |Z = 1)| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Note that the DI is directional while the ME is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For the surrogated BGF constraints, we replace the indicator function with the hinge function in calculating the BGF constraints as is done by [21, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We name the corresponding BGF constraints by Hinge-DI and Hinge-ME respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The results for other surrogated constraints such as the covariance type constraints proposed by [23, 6] and the linear surrogated functions considered in [42] are presented in the Supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In addition, the results for the equal opportunity constraint are summarized in the Supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For investigating the impacts of WGF on trained classifiers, we first fix the ϵ for each BGF constraint, and we choose the regularization parameters λ and η to make the classifier ˆf minimizing the regularized cost function (8) satisfy the ϵ-BGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Then, we assess the prediction accuracy and the degree of WGF of ˆf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Targeting for disparate impact Table 2 presents the three 2 × 2 tables comparing the results of the unconstrained DNN classifier ( ˆY ⋆) and three DNN classifiers ( ˆY ) trained on the dataset Adult: (i) only with the DI constraint, (ii) with the DI and WGF constraints and (iii) with the DI and directional WGF (dWGF) constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We let ϵ be around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The numbers marked in red are subjects treated unfairly with respect to the dWGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Note that the numbers of unfairly treated subjects are reduced much with the WGF and dWGF constraints and the dWGF constraint is more effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We report that the accuracies of the three classifiers on the test data are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='840 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='839, respectively, which indicates that the WGF and dWGF constraints improve the WGF without hampering the accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Compared to the dWGF, the WGF constraint is less effective, which is observed consistently for different datasets when a BGF constraint is directional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' See Table 6 ONLY WITH THE DI CONSTRAINT Z = 0 Z = 1 ˆY = 0 ˆY = 1 ˆY = 0 ˆY = 1 ˆY ⋆ = 0 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='592 350 ˆY ⋆ = 0 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='966 86 ˆY ⋆ = 1 13 466 ˆY ⋆ = 1 945 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='863 WITH THE DI AND WGF CONSTRAINTS Z = 0 Z = 1 ˆY = 0 ˆY = 1 ˆY = 0 ˆY = 1 ˆY ⋆ = 0 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='703 239 ˆY ⋆ = 0 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='021 31 ˆY ⋆ = 1 27 452 ˆY ⋆ = 1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='156 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='652 WITH THE DI AND DWGF CONSTRAINTS Z = 0 Z = 1 ˆY = 0 ˆY = 1 ˆY = 0 ˆY = 1 ˆY ⋆ = 0 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='718 224 ˆY ⋆ = 0 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 28 ˆY ⋆ = 1 18 461 ˆY ⋆ = 1 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='178 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='630 Table 2: Comparison of the results of the three DNN classifiers trained (i) only with the BGF constraint,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (ii) with the BGF and WGF constraints and (iii) with the BGF and dWGF constraints on the dataset Adult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Marked in red represent the numbers of subjects treated unfairly in a same sensitive group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' LINEAR MODEL DNN MODEL DATASET METHOD ACC DI DWGF ACC DI DWGF Adult UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='170 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='008 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 Bank UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='032 LSAC UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='064 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='047 COMPAS UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='162 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='639 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='142 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='145 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='654 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='120 Table 3: Results for the DF classifier with the Hinge-DI constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, the average perfor- mances are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2 in the Supplementary material for the corresponding numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Thus, hereafter we consider the dWGF only for the DI which has an implicit direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Table 3 summarizes the performances of the three classifiers - C⋆ and the two classifiers trained with the DI constraint and the DI and dWGF constraints (doubly-fair, DF), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Table 3, we report the accuracies as well as the values of DI and dWGF terms (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', DI( ˆf) and max{a10|0( ˆf), a01|1( ˆf)}, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We observe that the DF classifier improves the dWGF while keeping that the DI values and accuracies are favorably comparable to those of the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For reference, the performances with the WGF constraint are summarized in the Supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To investigate the sensitivity of the accuracy to the degree of WGF, the scatter plots between various dWGF values and the corresponding accuracies for the DF linear logistic model are given in Figure 2, where the DI value is fixed around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The accuracies are not sensitive to the dWGF values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Moreover, for the datasets Adult, Bank and LSAC, the accuracies keep increasing as the dWGF value decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 7 Figure 2: Scatter plots of the accuracies and dWGF values for the DF linear regression model with the DI values around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Topleft) Adult;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Topright) Bank;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Bottomleft) LSAC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Bottomright) COMPAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Red star points in each figure represent the results of the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' While we analyzed the datasets Bank and LSAC, we found an undesirable aspect of the learning algorithm only with the DI constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The corresponding classifiers improve the DI by decreasing (or increasing) the probabilities P( ˆY = 1|Z = 0) and P( ˆY = 1|Z = 1) simultaneously compared to P(Y ⋆ = 1|Z = 0) and P(Y ⋆ = 1|Z = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A better way to improve the DI would be to increase P( ˆY = 1|Z = 0) and decrease P( ˆY = 1|Z = 1) when P(Y ⋆ = 1|Z = 0) < P(Y ⋆ = 1|Z = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Figures 3 show that this undesirable aspect disappears when the dWGF constraint is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Figure 3: Comparison of the conditional probabilities of each group for the datasets Bank (Left) and LSAC(Right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Targeting for disparate mistreatment The results of the performances of the DF classifier with the ME as a BGF constraint are presented in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Since the ME has no implicit direction, we use the undirectional WGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The overall conclusions are similar to those for the DI and dWGF constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' That is, the undirectional WGF constraint also works well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='834 ACC CC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='832 DF DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='830 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='900 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 dWGF dWGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='64 DF BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='814 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='63 CC ACC A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='62 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='810 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='16 dWGF dWGFZ= 0 Z = 1 Z=0 Z=1 Uncons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Uncons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Z=0Z=1 Z=0Z=1 BGF BGF z=0z=1 Z=0Z=1 DF 工 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='95 Pr(Y= 1|Z = z) Pr(Y = 1|Z = z)LINEAR MODEL DNN MODEL DATASET METHOD ACC ME WGF ACC ME WGF Adult UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='117 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-ME 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='059 HINGE-ME-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='026 Bank UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='177 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='174 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-ME 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='076 HINGE-ME-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='749 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='897 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='165 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='047 LSAC UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='090 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-ME 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='040 HINGE-ME-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='742 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 COMPAS UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-ME 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 HINGE-ME-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 Table 4: Results for the DF classifier with the Hinge-ME constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, average performances are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Within-group fair for score function In this section, we examine the WGF constraint for score functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We choose the logistic loss (binary cross-entropy, BCE) and AUC (area under the ROC) as evaluation metrics for prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For the BGF, we consider the mean score parity (MSP, [10]): MSP(f) = |E(σ(f(X))|Z = 1) − E(σ(f(X))|Z = 0)| , where σ : x �→ 1/(1 + e−x) is the sigmoid function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To check how much the estimated score function ˆf is within- group fair, we calculate the Kendall’s τ between ˆf and the ground-truth score function f ⋆ on the test data for each sensitive group, and then we average them, which is denoted by ¯τ in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We choose the regularization parameters λ and η such that ¯τ of ˆf is as close to 1 as possible while maintaining the MSP value around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Table 5 amply shows that the DF score function always improves the degree of WGF (measured by ¯τ) and the accuracy in terms of AUC simultaneously while keeping the degree of BGF at a reasonable level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' With respect to the BCE, the BGF and DF score functions are similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The superiority of the DF score function in terms of AUC compared with the BGF score function is partly because the WGF constraint shrinks the estimated score toward the ground-truth score (Uncons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' in Table 5) which is expected to be most accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Based on these results, we conclude that the WGF constraint is a useful guide to find a better score function with respect to AUC as well as the WGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 6 Remarks on within-group fairness for pre- and post-processing methods Various pre- and post-processing methods for fair AI have been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' An advantage of these methods compared to constrained methods is that the methods are simple, computationally efficient but yet reasonably accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this section, we briefly explain how to reflect the WGF to pre- and post-processing methods for the BGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Pre-processing methods and within-group fairness Basically, pre-processing methods transform the training data in a certain way to be between-group fair and train an AI model on the transformed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To reflect the WGF, it suffices to add a WGF constraint in the training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Let Dtrans be the transformed training data to be between-group fair and let Ltrans be the corresponding cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Then, we learn a model by minimizing Ltrans(f) + ηWconv(f) for η > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Table 6 presents the results of the models trained on the pre-processing training data and a WGF constraint for various values of η, where the DI is used as the BGF and thus the corresponding dWGF constraint is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In this experi- ment, we use the linear logistic model and the Massaging [11] for the pre-processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Surprisingly we observed that introducing the dWGF constraint to the pre-processing method helps to improve the BGF and WGF simultaneously without sacrificing the accuracies much.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 9 LINEAR MODEL DNN MODEL DATASET METHOD BCE AUC MSP ¯τ BCE AUC MSP ¯τ Adult UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='319 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='173 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='315 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='178 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='358 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='353 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='805 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='368 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='882 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='364 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='885 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='891 Bank UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='214 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='932 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='217 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='237 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='926 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='237 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='235 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='270 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='671 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='240 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='266 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='917 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='761 LSAC UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='434 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='732 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='125 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='359 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='831 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='142 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='692 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='381 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='640 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='557 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='717 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='383 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='738 COMPAS UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='511 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='122 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='506 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='824 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='118 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='599 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='759 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='564 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='753 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='561 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='720 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='597 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='623 Table 5: Results of the DF score functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, averages performances are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' METHOD η ACC DI DWGF MASSAGING 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='009 MASSAGING + DWGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='048 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 Table 6: Comparison of the accuracy and fairnesses of the pre-processing method with and without the dWGF con- straint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The results are evaluated on the dataset Adult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Post-processing methods and within-group fairness For the BGF score functions, [35] developed an algorithm to obtain two monotonically nondecreasing transformations mz, z ∈ {0, 1} such that m0 ◦ f ⋆ and m1 ◦ f ⋆ are BGF in the sense that the distributions of m0 ◦ f ⋆(X)|Z = 0 and m1 ◦ f ⋆(X)|Z = 1 are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' It is easy to check that the transformed score function mz ◦ f ⋆(x) is a perfectly WGF score function even though it depends on the sensitivity group variable z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Note that the algorithm in Section 4 yields score functions not depending on z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 7 Conclusion In this paper, we introduced a new concept so called within-group fairness, which should be considered along with BGF when fair AI is a concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Also, we proposed a regularization procedure to control the degree of WGF of the estimated classifiers and score functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' By analyzing four real-world datasets, we illustrated that the WGF constraints improve the degree of WGF without hampering BGF as well as accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Moreover, in many cases, the WGF constraints are helpful to find more accurate prediction models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A problem in the proposed learning algorithm for WGF is that using a surrogated constraint for a given WGF constraint is sometimes problematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The learning algorithm can find a DF model which has a lower surrogated WGF value than that of a BGF model, but the original WGF value is much higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' See Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 of Appendix for empirical evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A better surrogated WGF constraint to ensure a lower original WGF value would be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Acknowledgments This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 2019-0-01396, Development of framework for analyzing, detect- ing, mitigating of bias in AI model and training data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 10 References [1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Machine bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' ProPublica, May, 23:2016, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [2] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Algorithmic fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Aea papers and proceedings, volume 108, pages 22–27, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [3] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A survey on bias and fairness in machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='09635, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [4] David Ingold and Spencer Soper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Amazon doesn’t consider the race of its customers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' should it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Bloomberg, April, 1, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [5] Dheeru Dua and Casey Graff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' UCI machine learning repository, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [6] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P Gummadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairness Con- straints: A Flexible Approach for Fair Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', 20(75):1–42, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [7] L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Classification with fairness constraints: A meta-algorithm with provable guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 319–328, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [8] Solon Barocas and Andrew D Selbst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Big data’s disparate impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Calif.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', 104:671, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [9] Moritz Hardt, Eric Price, and Nati Srebro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Equality of opportunity in supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in neural information processing systems, pages 3315–3323, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [10] Amanda Coston, Karthikeyan Natesan Ramamurthy, Dennis Wei, Kush R Varshney, Skyler Speakman, Zairah Mustahsan, and Supriyo Chakraborty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fair transfer learning with missing protected attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 91–98, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [11] Faisal Kamiran and Toon Calders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Data preprocessing techniques for classification without discrimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Knowledge and Information Systems, 33(1):1–33, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [12] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Learning fair representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Inter- national Conference on Machine Learning, pages 325–333, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [13] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Cer- tifying and removing disparate impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pages 259–268, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [14] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varshney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Optimized pre-processing for discrimination prevention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 3992–4001, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [15] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Measuring and mitigating unin- tended bias in text classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pages 67–73, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [16] Kellie Webster, Marta Recasens, Vera Axelrod, and Jason Baldridge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Mind the gap: A balanced corpus of gendered ambiguous pronouns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics, 6:605–617, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [17] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairgan: Fairness-aware generative adversarial networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In 2018 IEEE International Conference on Big Data (Big Data), pages 570–575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [18] Elliot Creager, David Madras, J¨orn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, and Richard Zemel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Flexibly fair representation learning by disentanglement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In International Conference on Machine Learn- ing, pages 1436–1445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' PMLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [19] Novi Quadrianto, Viktoriia Sharmanska, and Oliver Thomas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Discovering fair representations in the data domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8227–8236, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [20] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairness-aware classifier with preju- dice remover regularizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 35–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Springer, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [21] Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Satisfying real-world goals with dataset constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 2415–2423, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [22] Yahav Bechavod and Katrina Ligett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Learning fair classifiers: A regularization-inspired approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='00044, pages 1733–1782, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 11 [23] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairness constraints: Mechanisms for fair classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Artificial Intelligence and Statistics, pages 962–970, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [24] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pontil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Empirical risk minimization under fairness constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 2791– 2801, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [25] Aditya Krishna Menon and Robert C Williamson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The cost of fairness in binary classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Conference on Fairness, Accountability and Transparency, pages 107–118, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [26] Harikrishna Narasimhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Learning with complex loss functions and constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In International Conference on Artificial Intelligence and Statistics, pages 1646–1654.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [27] Robin Vogel, Aur´elien Bellet, and St´ephan Cl´emenc¸on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Learning Fair Scoring Functions: Fairness Definitions, Algorithms and Generalization Bounds for Bipartite Ranking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='08159, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [28] Jaewoong Cho, Changho Suh, and Gyeongjo Hwang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A fair classifier using kernel density estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In 34th Conference on Neural Information Processing Systems, NeurIPS 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Conference on Neural Information Processing Systems, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [29] Faisal Kamiran, Asim Karim, and Xiangliang Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Decision theory for discrimination-aware classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In 2012 IEEE 12th International Conference on Data Mining, pages 924–929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' IEEE, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [30] Benjamin Fish, Jeremy Kun, and ´Ad´am D Lelkes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A confidence-based approach for balancing fairness and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 144–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' SIAM, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [31] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Algorithmic decision making and the cost of fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, pages 797–806, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [32] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' On fairness and calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 5680–5689, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [33] Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Leveraging la- beled and unlabeled data for consistent fair binary classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 12760–12770, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [34] Dennis Wei, Karthikeyan Natesan Ramamurthy, and Flavio Calmon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Optimized Score Transformation for Fair Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' volume 108 of Proceedings of Machine Learning Research, pages 1673–1683, Online, 26–28 Aug 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [35] Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Wasserstein fair classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Uncertainty in Artificial Intelligence, pages 862–872.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' PMLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [36] Yongkai Wu, Lu Zhang, and Xintao Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairness-aware Classification: Criterion, Convexity, and Bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='04737, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [37] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P Gummadi, Adish Singla, Adrian Weller, and Muham- mad Bilal Zafar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfair- ness via inequality indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2239–2248, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [38] Ofir Nachum and Heinrich Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Group-based fair learning leads to counter-intuitive predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='02097, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [39] L´eon Bottou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Large-scale machine learning with stochastic gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In Proceedings of COMP- STAT’2010, pages 177–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Springer, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [40] Linda F Wightman and Henry Ramsey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' LSAC national longitudinal bar passage study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Law School Admission Council, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [41] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' How we analyzed the COMPAS recidivism algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' ProPublica (5 2016), 9(1), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [42] Manisha Padala and Sujit Gujar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' FNNC: Achieving Fairness through Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' pages 2249–2255, 07 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' [43] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and Ed H Chi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Fairness without demographics through adversarially reweighted learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='13114, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 12 A Supplenmetary Material A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Additional numerical studies for WGF classification A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1 Targeting for disparate impact First, we investigate the sensitivity of the prediction accuracy to the degree of dWGF in the DNN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Figure 4 shows the scatter plots between various dWGF values and the corresponding accuracies for the DF DNN model, where the DI is fixed around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The accuracies are not very sensitive to the dWGF values like the DF linear logistic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Furthermore, for the datasets Adult, Bank and COMPAS, the DF classifiers have higher accuracies and lower dWGF values than the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Figure 4: Scatter plots of the accuracies and dWGF values for the DF DNN model with the DI values around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Topleft) Adult;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Topright) Bank;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Bottomleft) LSAC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Bottomright) COMPAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Red star points in each figure represent the results of the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We also investigate how the dWGF constraint performs with surrogated BGF constraints other than Hinge-DI: (i) the covariance type constraint [23, 6], named by COV-DI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' and (ii) the linear surrogated function, named by FNNC-DI [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Table 7 presents the results with various surrogated DI constraints and the dWGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In most cases, COV-DI and FNNC-DI give the results similar to Hinge-DI with or without the dWGF constraint and we consistently observe that considering the dWGF constraint together with the DI constraint helps to alleviate within-group fairness while maintaining similar levels of the accuracy and the DI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Note that for the dataset Adult, the DNN model with COV-DI constraint does not achieve the pre-specified DI value 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03 regardless of the choice of tuning parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In contrast, the DNN model trained with the DI and dWGF constraints achieves the DI value 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03 with a smaller value of dWGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' This observation is interesting since it implies that the dWGF constraint is helpful to increase even the BGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Next, we compare the dWGF and WGF constraints when targeting the DI with the hinge surrogated function in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In most cases, both the dWGF and WGF constraints are helpful to improve the WGF, while maintaining a similar level of accuracy and DI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' It is noticeable that the DF classifier with the dWGF constraint is more accurate than that with the WGF constraint, which would be mainly because the DI constraint is directional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='839 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='838 ACC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='835 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 dWGF dWGF ★ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='64 CC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='805 A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='800 DF DF BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='61 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='795 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='14 dWGF dWGFLINEAR MODEL DNN MODEL DATASET METHOD ACC DI DWGF ACC DI DWGF Adult UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='170 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 COV-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='013 COV-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 FNNC-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='006 FNNC-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='841 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 Bank UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 COV-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='036 COV-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='033 FNNC-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 FNNC-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='905 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='027 LSAC UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 COV-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='808 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 COV-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='811 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 FNNC-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='023 FNNC-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='844 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='019 COMPAS UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='162 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 COV-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='149 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='661 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='124 COV-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='620 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='135 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='650 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='097 FNNC-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='146 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='032 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='133 FNNC-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='624 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='117 Table 7: Results for the DF classifier with various surrogated DI constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, average performances are described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' WITH THE DWGF CONSTRAINT WITH THE WGF CONSTRAINT DATASET METHOD ACC DI DWGF ACC DI WGF Adult HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='836 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='830 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='005 Bank HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='898 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 LSAC HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='809 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='014 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 COMPAS HINGE-DI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='153 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='136 HINGE-DI-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='145 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='594 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='088 Table 8: Comparison of the dWGF and WGF constraints based on the linear logistic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, average performances are described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Targeting for equal opportunity We exam how the dWGF constraint works with the equal opportunity constraint given as EOp = ���Pr( ˆY = 1|Y = 1, Z = 1) − Pr( ˆY = 1|Y = 1, Z = 0) ��� , and the results are summarized in Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For some cases, the dWGF constraint does not work at all (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', the dWGF values of the BGF and DF classifiers are the sames).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' This is partly because the surrogated dWGF constraint does not represent the original dWGF well, which is discussed in the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 14 LINEAR MODEL DNN MODEL DATASET METHOD ACC EOP DWGF ACC EOP DWGF Adult UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 HINGE-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 FNNC-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='021 FNNC-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='019 Bank UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='122 HINGE-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='122 FNNC-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='903 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='111 FNNC-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='107 LSAC UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='015 HINGE-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='851 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 FNNC-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 FNNC-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='858 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='010 COMPAS UNCONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='000 HINGE-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='713 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='073 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='046 HINGE-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='713 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='073 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='719 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='046 FNNC-EOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='666 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='197 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='722 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='056 FNNC-EOP-DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='031 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='042 Table 9: Results for targeting EOp-dWGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for the dataset Adult, average performances are described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='2 Limitations of surrogated WGF constraint We have seen that the DF classifier does not improve the dWGF value at all compared to the BGF classifier with respect to the equal opportunity constraint for some datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We found that these undesirable results would be because the surrogated dWGF constraint using the hinge function does not represent the original dWGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To take a closer look at this problem, we investigate relations between the dWGF and Wconv evaluated on the training datasets Bank and LSAC in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We observe that the DF classifier has lower Wconv values but higher dWGF values than the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' That is, reducing the Wconv value does not always result in a small value of the original dWGF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Alternative surrogated constraints, which resemble the original dWGF closely but are yet computationally easy, are needed and we leave this issue for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Figure 5: Scatter plots of the dWGF and the within-group fairness penalty (Wconv) values for the DF linear logistic model with the EOp values around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03 evaluated on the training datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Left) Bank;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' (Right) LSAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Red star points in each figure represent the results of the BGF classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 15 DF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='012 DF BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0175 BGF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0125 Mp Mp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='009 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='0050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='07 Wconv WconvMODEL DATASET ACC DI EOP DM LINEAR Adult 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='172 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='070 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='117 Bank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='176 LSAC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='041 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='090 COMPAS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='020 DNN Adult 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='853 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='170 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='105 Bank 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='174 LSAC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='856 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='131 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='071 COMPAS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='162 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='024 Table 10: Performances of the unconstrained linear logistic model on the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Except for Adult, average metrics are described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='3 Datasets and Preprocessing Dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We conduct our experiments with four real-world datasets, which are popularly used in fairness AI research and publicly available: Adult [5]: The Adult Income dataset consists of 32,561 training subjects and 16,281 test subjects with 14 features and a binary target, which indicates whether income exceeds $50k per a year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The sensitive variable is the sex of the subject, Z = 0 for female and Z = 1 for male.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Bank [5]: The Bank Marketing dataset contains 41,188 subjects with 20 features (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' age, occupation, marital status) and a binary target indicating whether or not subjects have subscribed to the product (bank term deposit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A discrete age is set as a binary sensitive variable by assigning 0 to subjects aged 25 to 60 years old and 1 to else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' LSAC [40]: The Law School dataset pre-processed by [43] contains 26,551 subjects with 10 input variables and a binary target which indicates whether subject passed the bar exam or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The sensitive variable is set by 0 for ‘non-white’ subjects and 1 for ‘white’ subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' COMPAS [41]: The Compas Propublica Risk Assessment dataset contains 6,172 subjects to predict recidi- vism (‘HighScore’ or ‘LowScore’) with 6 variables related to criminal history and demographic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We use racial characteristics as a sensitive variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' We transform all categorical variables to dummy variables using one-hot encoding, and standardize to get zero mean and 1 standard deviation for each variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Some variables having serious multicollinearity have been removed in order to obtain stable estimation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The performances of the unconstrained linear logistic model are summarized in Table 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='4 Implementation details For numerical stability, we use the ridge penalty for DNN parameters with the regularization parameter 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' All experiments are conducted on a GPU server with NVIDIA TITAN Xp GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' Also, for each method, we consider lr ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1, 1} and epoch ∈ {10000, 20000}, then we choose the best learning rate and epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' In addition, we did not use a mini-batch for the gradient descent approach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', we set the batch size to the sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For each BGF constraint, we choose the corresponding regularization parameter so that the value of the BGF constraint (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=', DI, EOp, MSP) reaches a certain level among the following candidate parameters set: λ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='35, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='45, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='75, 1, 2, 5}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' The hyper-parameters in the doubly-fair algorithm are set to minimize the dWGF (or WGF) value while the BGF level remains similar to that of the BGF classifier, among the following candidate parameters sets: λ ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='35, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='45, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='75, 1, 2, 5} η ∈ {0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content='5, 1, 3, 5}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' For the WGF score function, we adopt the surrogated version of Kendall’s τ as the WGF constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' However, the surrogated Kendall’s τ requires huge computation since it should process all pairs of the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' To save computing time for calculating the surrogated Kendall’s τ, we use 50,000 pairs of samples randomly selected from the training data for each sensitive group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} +page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/odE_T4oBgHgl3EQf8hwH/content/2301.08375v1.pdf'} diff --git a/pNE0T4oBgHgl3EQfqgGa/content/2301.02554v1.pdf b/pNE0T4oBgHgl3EQfqgGa/content/2301.02554v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4d6f65f6bcf1ee8bdb7c5132dbe8de702e8b8e65 --- /dev/null +++ b/pNE0T4oBgHgl3EQfqgGa/content/2301.02554v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2a1b4066b61b973b5f70c668b838a2804ef57782abc8c525f8cb7fc66075cc1f +size 11155001 diff --git a/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/2301.11914v1.pdf.txt b/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/2301.11914v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a8cd854207643477d18d2a514d821ac5d5e7f4f5 --- /dev/null +++ b/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/2301.11914v1.pdf.txt @@ -0,0 +1,1952 @@ +Mon. Not. R. Astron. Soc. 000, 000–000 (0000) +Printed 30 January 2023 +(MN LATEX style file v2.2) +Linking the Interiors and Surfaces of Magnetic Stars +Jim Fuller1⋆ and St´ephane Mathis2 +1TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA +2Universit´e Paris-Saclay, Universit´e Paris Cit´e, CEA, CNRS, AIM, F-91191, Gif-sur-Yvette, France +30 January 2023 +ABSTRACT +Strong magnetic fields are observed in a substantial fraction of upper main se- +quence stars and white dwarfs. Many such stars are observed to exhibit photometric +modulations as the magnetic poles rotate in and out of view, which could be a con- +sequence of magnetic perturbations to the star’s thermal structure. The magnetic +pressure is typically larger than the gas pressure at the star’s photosphere, but much +smaller than the gas pressure in the star’s interior, so the expected surface flux pertur- +bations are not clear. We compute magnetically perturbed stellar structures of young +3 M⊙ stars that are in both hydrostatic and thermal equilibrium, and which contain +both poloidal and toroidal components of a dipolar magnetic field as expected for +stable fossil fields. This provides semi-analytical models of such fields in baroclinic +stably stratified regions. The star’s internal pressure, temperature, and flux perturba- +tions can have a range of magnitudes, though we argue the most likely configurations +exhibit flux perturbations much smaller than the ratio of surface magnetic pressure to +surface gas pressure, but much larger than the ratio of surface magnetic pressure to +central gas pressure. The magnetic pole is hotter than the equator in our models, but +a cooler magnetic pole is possible depending on the magnetic field configuration. The +expected flux variations for observed field strengths are δL/L ≲ 10−6, much smaller +than those observed in magnetic stars, suggesting that observed perturbations stem +from changes to the emergent spectrum rather than changes to the bolometric flux. +Key words: stars: evolution – stars: magnetic fields +1 +INTRODUCTION +Magnetic fields produce a substantial impact on the appear- +ance of a star. In stars with convective envelopes, star spots +are well known as regions of high magnetic field strength and +low temperature. Some stars with radiative envelopes are +also known to host strong magnetic fields (e.g., Morel et al. +2014; Wade et al. 2016; Shultz et al. 2019), and such stars +frequently exhibit photometric variability at their rotation +periods, suggesting that their emergent flux is altered by the +magnetic fields. However, it is not clear how the magnetic +fields actually affect the stellar structure and emergent flux, +or whether photometric modulations can be used to learn +about the strength of the star’s internal magnetic fields. +One might expect magnetic fields to affect the photo- +spheric temperature if the magnetic pressure is comparable +to the photospheric gas pressure. Indeed, Cantiello & Braith- +waite (2011) argued that magnetic spots on massive stars +should be hot because they would have lower gas pressures +(and therefore lower densities), allowing us to see deeper into +⋆ Email: jfuller@caltech.edu +the star where the temperature is higher. Relatively mod- +est magnetic fields of B ≳ 100 G are required for large flux +perturbations in this scenario. Observed photometric mod- +ulations from stars with stronger magnetic fields, such as +Ap stars that exhibit photometric modulation with ∼1-3% +amplitudes (H¨ummerich et al. 2018), are much smaller than +naively predicted from this scenario. +The reason is that a star’s radiative flux will change in +response to the magnetic perturbation (i.e., the magnetic +hot spot will cool off) until the star finds a new radia- +tive equilibrium. Long-lived magnetic fields will thus pro- +duce much different effects than transient fields arising from +magnetic activity. To compute the perturbed structure of a +star with a stable magnetic field, we must find a structure +that is in both hydrostatic equilibrium and radiative equi- +librium. For rotating stars, it is well known that no state of +radiative equilibrium exists for solid body rotation, so that +stars must either have very special rotation profiles (von +Zeipel 1924; Busse 1981; Rieutord 2006), or have currents +that advect heat (Eddington 1929; Sweet 1950) and restore a +state of equilibrium (see Maeder 1999, Decressin et al. 2009, +Mathis 2013 for useful synopsis). Our goal in this paper is +© 0000 RAS +arXiv:2301.11914v1 [astro-ph.SR] 27 Jan 2023 + +2 +Fuller & Mathis +to compute the special magnetic field profiles that allow for +radiative equilibrium without requiring currents within the +star. +In addition, the magnetic field configuration must be a +stable equilibrium that does not unravel via magnetic insta- +bilities such as those of purely toroidal fields (Tayler 1973) +and purely poloidal fields (Markey & Tayler 1973). Several +works (Braithwaite & Spruit 2004; Braithwaite & Nordlund +2006; Braithwaite 2008; Broderick & Narayan 2008; Lyu- +tikov 2010; Duez & Mathis 2010; Duez et al. 2010b; Akg¨un +et al. 2013; Becerra et al. 2022b) have computed stable +magnetic equilibria through analytic calculations or numer- +ical simulations. These works agree that purely poloidal or +toroidal magnetic field configurations are unstable, and that +stable equilibria require similar toroidal and poloidal field +strengths (Tayler 1980; Braithwaite 2009). Stable stratifica- +tion (i.e., non-barotropic stars) is also required for long-term +stability (Lander & Jones 2012; Akg¨un et al. 2013; Becerra +et al. 2022a). Magnetic configurations decrease their mag- +netic energy but approximately conserve their magnetic he- +licity as they form and evolve (Braithwaite 2008). This is +the so-called selective decay as observed in plasmas in the +laboratory (Taylor 1974). Hence, recent works have com- +puted stable field configurations through variational tech- +niques that minimize total energy while conserving magnetic +helicity (Broderick & Narayan 2008; Duez & Mathis 2010). +However, all of these works have assumed barotropic +perturbations such that the perturbed temperature is di- +rectly proportional to the perturbed pressure. While these +configurations are in hydrostratic equilibrium, they are not +typically in thermal equlibrium, meaning that heat will be +transported from high temperature to low temperature re- +gions, changing the gas pressure and therefore the magnet- +ically perturbed stellar structure. This heat transport will +occur on a thermal time (typically ∼106 yr in A-type stars), +much shorter than Ohmic diffusion time scales (∼ 1010 yr) +and main sequence life times (∼109 yr). Hence, real stars +will approach a state close to hydrostatic equilibrium and +thermal equilibrium, which has not been considered in re- +cent literature. Accounting for thermal equilibrium is crucial +for predicting the long-term equilibria of stars (Reiseneg- +ger 2009), and observational manifestations such as the per- +turbed surface flux. +Calculations of equilibrium magnetic configurations +date back to the 1950s (e.g., Chandrasekhar 1956; Chan- +drasekhar & Prendergast 1956). Subsequent work included +the effects of centrifugal distortion and meridional flows +(e.g., Ostriker & Hartwick 1968; Mestel & Moss 1977). Inter- +estingly, works dating back to the 1960s (Monaghan 1966; +Davies 1968; Wright 1969; Moss 1973, 1979; Li et al. 2006) +have attempted to compute the structures of stars in both +hydrostatic and thermal equilibrium. However, much of this +work is either difficult to interpret, does not discuss the per- +turbed thermal structure and surface flux, does not consider +fields with both poloidal and toroidal components, or has +simply been forgotten. The goal of this paper is to provide +updated calculations of magnetically distorted stars in sta- +ble hydrostatic and thermal equilibrium for realistic stellar +structures, and to discuss the observational implications. +In this paper we primarily focus on application to up- +per main sequence stars of M ≳1.5 M⊙ with convective cores +and radiative envelopes. Much of the physics studied here +could also apply to radiative stars such as white dwarfs and +the radiative cores of red giants where internal fields can be +detected through asteroseismology (Garc´ıa et al. 2014; Stello +et al. 2016; Li et al. 2022) because of their impact on stellar +oscillations (Fuller et al. 2015; Lecoanet et al. 2017; Loi 2021; +Bugnet et al. 2021; Mathis et al. 2021). Magnetic upper main +sequence stars have typical surface field strengths of ∼1 kG +(see Braithwaite & Spruit 2017 for a review) and surface +magnetic pressures larger than surface gas pressures, such +that magnetic forces could be strong. The surface magnetic +morphologies are observed to be diverse: they can be com- +plex or simple, axisymmetric or non-axisymmetric, poloidal +or toroidal (Landstreet & Mathys 2000; Kochukhov et al. +2011; Shultz et al. 2019). However, as a first step, in this +work we examine simple dipolar magnetic configurations +that produce quadrupolar temperature/pressure perturba- +tions, which likely dominate observable photometric modu- +lations. +2 +EQUILIBRIUM STRUCTURE +Our goal is to calculate the structure of a magnetized star in +hydrostatic and thermal equilibrium, considering non-force- +free magnetic fields. We begin from the equation for magne- +tohydostratic equilibrium +− ∇P − ρ∇Φ + (∇ × B) × B +4π += 0 , +(1) +where P is the pressure, ρ the density, Φ the gravitational +potential, and B the magnetic field. We choose to work in +standard spherical coordinates with r the radius and θ the +colatitude. Following Duez & Mathis (2010), we decompose +the magnetic field into a poloidal magnetic stream function +Ψ and a toroidal magnetic flux F via +B = +√ +4π +r sin θ ∇Ψ × ˆφ + +√ +4π +r sin θ F ˆφ . +(2) +This means that +Br = +√ +4π +r2 sin θ +∂Ψ +∂θ , +(3) +Bθ = − +√ +4π +r sin θ +∂Ψ +∂r , +(4) +Bφ = +√ +4π +r sin θ F . +(5) +We consider an axisymmetric magnetic field such that Ψ and +F are independent of φ. It can easily be verified that this +field always satisfies ∇ · B = 0. +The φ-component of equation 1 becomes +− ∂F +∂θ +∂Ψ +∂r + ∂F +∂r +∂Ψ +∂θ = 0 . +(6) +This is always satisfied if F is a function of Ψ, or in other +words, the poloidal flux Ψ uniquely determines F and hence +the toroidal field. Broderick & Narayan (2008) and Duez & +Mathis (2010) show that the lowest energy state has +F = λ +RΨ , +(7) +where the constant λ determines the magnetic helicity, and +R is the stellar radius. This clearly satisfies equation 6. This +© 0000 RAS, MNRAS 000, 000–000 + +Magnetic Structure +3 +also results if we assume that F and Ψ have the same angular +form, such that equation 6 reduces to +1 +F +dF +dr = 1 +Ψ +dΨ +dr . +(8) +The solution to this equation is equation 7, for a constant λ +that is independent of radius. +Writing out the hydrostatic equilibrium condition and +using equation 7, the radial component of equation 1 be- +comes +− +1 +r2 sin2 θ +� λ2 +R2 Ψ + ∆∗Ψ +�∂Ψ +∂r = ∂P +∂r + ρ∂Φ +∂r , +(9) +while the θ-component is +− +1 +r2 sin2 θ +� λ2 +R2 Ψ + ∆∗Ψ +�∂Ψ +∂θ = ∂P +∂θ + ρ∂Φ +∂θ . +(10) +Here, ∆∗ is the “Grad-Shafranov” or “five-dimensional +Laplacian” operator, defined as +∆∗ = ∂2 +∂r2 + sin θ +r2 +∂ +∂θ +� +1 +sin θ +∂ +∂θ +� += ∂2 +∂r2 + 1 − µ2 +r2 +∂2 +∂µ2 , +(11) +where µ = cos θ. +It is immediately evident from equations 9 and 10 that +the field is force-free if +λ2 +R2 Ψ + ∆∗Ψ = 0 . +(12) +This results in a simple linear eigenvalue calculation for the +magnetic potential Ψ, and is the type of field considered by +Broderick & Narayan (2008). The work of Duez & Mathis +(2010) considers a non-force-free field such that +λ2 +R2 Ψ + ∆∗Ψ = −βρr sin2 θ , +(13) +where β is a constant that determines the strength of the +magnetic force. As an example, the case with λ = 0 and +β = 0 corresponds to a force-free poloidal dipole field. This +can be seen from equation 12, whose solution has Ψ ∝ r−1 +and hence B ∝ r−3 in that case. A non-zero value of β alters +both the magnetic forces and the radial profile of the field. +Substitution of equation 13 into equations 9 and 10 +yields +βρ∇Ψ = ∇P + ρ∇Φ . +(14) +Hence there is a direct relationship between the magnetic +flux and the pressure perturbation for barotropic perturba- +tions. Remarkably, the non-linear equations 9 and 10 have +been transformed into a linear relationship between Ψ and +P. Taking the curl of equation 14 yields +∇ρ × ∇P = 0 . +(15) +This implies that P is a function of ρ, and hence equation +13 is a solution for a barotropic equation of state such that +density and pressure perturbations are directly proportional +to each other. +In our work, we want to consider non-force-free fields +that produce non-barotropic density and pressure pertur- +bations. Hence, we cannot use the approximations made in +Broderick & Narayan (2008) or Duez & Mathis (2010), and +we shall see that this generally leads to a series of non-linear +differential equations that relate the magnetic field to den- +sity, temperature, and pressure perturbations. In our calcu- +lations, we parameterize the strength of the magnetic forces +via a parameter β. Assuming barotropic perturbations en- +tails that β (as defined in equation 13) is a constant within +the star. Accounting for radiative diffusion, this is no longer +the case. Nonetheless, we shall see below that we still require +a parameter to specify the strength of the magnetic forces, +which in practice is determined by the boundary conditions. +Since our stellar model has a convective core where equation +13 is a good approximation, we label our structures based +on the resulting β in the convective core. +2.1 +Electric Currents +The current density is +j = ∇ × B +4π += +λ +4πRBrˆr + +λ +4πRBθ ˆθ − +1 +√ +4πr sin θ +∆∗Ψˆφ . +(16) +The force-free field of equation 12 occurs when j is parallel +to B. Force-free fields are also obtained when Ψ = 0 (no +magnetic field) or from current-free fields, which only occur +when both λ = 0 and and ∆∗Ψ = 0. Note that the radial +current is proportional to the radial magnetic field, hence +a vanishing radial current near the surface of the star re- +quires a vanishing radial field Br, which in turn requires Ψ +to vanish at the stellar surface. +2.2 +Hydrostatic Equilibrium +In order to determine an equilibrium state, we use a linear +approximation such that perturbations to background quan- +tities (ρ, P, etc.) are considered to be small. The linearized +version of the radial momentum equation (9) is +− +1 +r2 sin2 θ +� λ2 +R2 Ψ+∆∗Ψ +�∂Ψ +∂r = ∂ +∂r δP +ρ ∂ +∂r δΦ+gδρ , (17) +while the θ-component of equation (10) is +− +1 +r2 sin2 θ +� λ2 +R2 Ψ + ∆∗Ψ +�∂Ψ +∂θ = ∂ +∂θ δP + ρ ∂ +∂θ δΦ . +(18) +Here, δ indicates an Eulerian perturbation, and we have used +a background in hydrostatic equilibrium with dP/dr = −ρg, +and g = dΦ/dr. +We next turn to the angular dependence of the magnetic +field and the perturbations to the stellar structure. Decom- +posing Ψ into eigenvalues of the horizontal component of ∆∗ +requires +(1 − µ2) ∂2 +∂µ2 gℓ(µ) = −ℓ(ℓ + 1)gℓ(µ) , +(19) +where gℓ is the angular eigenfunction corresponding to the +eigenvalue −ℓ(ℓ + 1) of the operator on the left hand side +of equation 19. The full response is Ψ = � +ℓ Ψℓgℓ(µ). As +discussed in Duez & Mathis (2010), the eigenvalue equation +above has solutions +gℓ(µ) = (1 − µ2)Pℓ−1(µ) , +(20) +where Pℓ is a Legendre polynomial. +For the lowest order (dipole) solution with ℓ = 1, we +© 0000 RAS, MNRAS 000, 000–000 + +4 +Fuller & Mathis +Figure 1. Magnetic field lines of a star for a toroidal field com- +parable to the poloidal field (λ2 = 10). Magnetic field lines are +colored by field strength, while the color shading indicates the +radiative flux perturbation at a given radius. +have gℓ(µ) = (1 − µ2) and hence Ψ = Ψℓ(r) sin2 θ. Plugging +this into equation 17 yields +− sin2(θ) +r2 +� ∂2 +∂r2 Ψℓ(r) − ℓ(ℓ + 1) +r2 +Ψℓ(r) + λ2 +R2 Ψℓ(r) +�∂Ψℓ(r) +∂r += ∂ +∂r δP + ρ ∂ +∂r δΦ + gδρ . +(21) +We see that the perturbed density, pressure, and poten- +tial must have angular form δP +∝ sin2(θ), which is a +combination of the ℓ = 2 and ℓ = 0 spherical harmon- +ics. Hence a dipole magnetic field induces both radial and +quadrupole components to the star’s distortion. Figure 1 +illustrates the geometry of a dipolar magnetic field with +helicity λ2 = 10 that induces quadrupolar flux perturba- +tions. The quadrupole (ℓ = 2) component of the field in- +duces ℓ = 4, ℓ = 2, and ℓ = 0 components of the stellar +distortion. +We thus have the unfortunate situation that the angular +eigenfunctions of the magnetic and hydrodynamic variables +are not the same, meaning that the radial and angular parts +of the response cannot generally be separated. In this work, +we limit ourselves to dipole magnetic field configurations, +which induce ℓ = 0 and ℓ = 2 components to the stellar +structure perturbations. We are not interested in the ℓ = 0 +component of the stellar response, as it is the non-radial +magnetic distortions that draw our focus. Hence, from here +forward, we consider a dipole (ℓ = 1) magnetic field and the +quadrupolar (ℓ = 2) component of the stellar response. +Letting the pressure response be +δP = a0δp0(r)Y00(θ) + a2δp2(r)Y20(θ) +(22) +and setting the angular dependence equal to sin2 θ requires +a2 = − +� +16π/45. The radial component of the response is +then a0δp0(r) = (4√π/3)δp2(r). Dropping the (r) depen- +dence and subscripts of Ψℓ and δp2 for simplicity, equations +17 and 18 can be written +� ∂2 +∂r2 Ψ − ℓ(ℓ + 1) +r2 +Ψ + λ2 +R2 Ψ +�∂Ψ +∂r += −r2 ∂δp +∂r − r2ρ ∂ +∂r δΦ − r2gδρ , +(23) +� ∂2 +∂r2 Ψ − ℓ(ℓ + 1) +r2 +Ψ + λ2 +R2 Ψ +� +Ψ = −r2δp − r2ρδΦ , +(24) +and it is now understood that these equations are only valid +for ℓ = 1 and δp, δΦ etc. refer to the quadrupolar part of +the stellar response. Equation 24 can be substituted into +equation 23 to obtain +� +δp + ρδΦ +�∂Ψ +∂r = +�∂δp +∂r + ρ ∂ +∂r δΦ + gδρ +� +Ψ . +(25) +However, we have divided by Ψ to obtain this equation, so +we must be wary of solutions that cross Ψ = 0. +The gravitational potential perturbation is given by +Poisson’s equation, +∇2δΦ = 4πGδρ . +(26) +This can be written in terms of two first-order equations, +∂ +∂r δΦ − δΦ′ = 0 , +(27) +∂ +∂r δΦ′ + 2 +r δΦ′ − (ℓ + 1)(ℓ + 2) +r2 +δΦ − 4πGδρ = 0 . +(28) +2.3 +Thermal Equilibrium +We next turn to the equations of thermal equilibrium. En- +ergy conservation requires +ρT ds +dt = ρϵ − ∇ · F , +(29) +where T is temperature, s is specific entropy, ϵ is the specific +energy generation rate, and F is the energy flux. In thermal +equilibrium, the entropy is constant, and the background +state only has a radial flux 4πr2F = L, which entails that +dL/dr = 4πρr2ϵ. Additionally, the energy flux is +F = −χ∇T +(30) +where +χ = 4acT 3 +3κρ +. +(31) +is the thermal diffusivity. This means that the background +temperature gradient is dT/dr = −L/(4πr2χ). +For a perturbation in thermal equilibrium, the Eulerian +perturbation of equation 29 is +∇ · δF − δρϵ − ρδϵ = 0 . +(32) +The Eulerian perturbation of equation 30 is +δF = −δχdT +dr ˆr − χ∇δT . +(33) +Taking the horizontal divergence of the horizontal part of +this equation yields +∇⊥ · δF⊥ = −χ∇2 +⊥δT , +(34) +© 0000 RAS, MNRAS 000, 000–000 + +0.5 +Flux Perturbation +-0.5Magnetic Structure +5 +where ∇2 +⊥ = −(ℓ+1)(ℓ+2)/r2 since we are considering per- +turbations with spherical harmonics of degree ℓ+1. Plugging +this into equation 32 and using 4πr2δFr = δL, we obtain +∂ +∂r δL + 4π(ℓ + 1)(ℓ + 2)χδT − 4πρr2 +�δρ +ρ ϵ + δϵ +� += 0 . (35) +This can be rewritten +r ∂ +∂r +δL +Ls + 4π(ℓ + 1)(ℓ + 2)χTr +Ls +δT +T − r +Ls +dL +dr +�δρ +ρ + δϵ +ϵ +� += 0 , +(36) +where Ls is the star’s surface luminosity. The energy gen- +eration perturbation can be expanded as δϵ/ϵ = ϵT δT/T + +ϵρδρ/ρ, where ϵT = (∂ ln ϵ/∂ ln T)ρ and ϵρ = (∂ ln ϵ/∂ ln ρ)T , +yielding +r ∂ +∂r +δL +Ls + 4π(ℓ + 1)(ℓ + 2)χTr +Ls +δT +T +− r +Ls +dL +dr +� +(1 + ϵρ)δρ +ρ + ϵT δT +T +� += 0 . +(37) +The radial component of equation 33 can be written +δFr +F += +� +3δT +T − δκ +κ − δρ +ρ +� +− χ +F +∂δT +∂r . +(38) +Using +δκ/κ += +κT δT/T ++ κρδρ/ρ, +where +κT += +(∂ ln κ/∂ ln T)ρ and κρ = (∂ ln κ/∂ ln ρ)T , this can be writ- +ten as +r ∂ +∂r +�δT +T +� ++ +L +4πrχT +�δL +L − (4 − κT )∂T +T + (1 + κρ)δρ +ρ +� += 0. +(39) +Finally, we require an equation of state to close the +system of equations. This is given by +δP +P − χT δT +T − χρ δρ +ρ = 0 , +(40) +where χT = (∂ ln P/∂ ln T)ρ and χρ = (∂ ln P/∂ ln ρ)T and +are determined by the equation of state. This is valid if the +composition is uniform, otherwise there will be an additional +term in equation 40, which we discuss in Section 4. +2.4 +Equations and Boundary Conditions +Putting everything together, we have a system of equations +that can be solved for six variables: Ψ and its radial deriva- +tive Ψ′ = ∂Ψ/∂r, and the Eulerian perturbations δP, δρ, +δT, and δL. The equations can be written +∂ +∂r Ψ − Ψ′ = 0 , +(41) +r2Ψ ∂ +∂r Ψ′+ +�λ2r2 +R2 −ℓ(ℓ+1) +� +Ψ2+r4P δP +P +r4ρδΦ = 0 , (42) +rΨ ∂ +∂r +δP +P + ρgr +P ΨδP +P + rρ +P Ψ ∂ +∂r δΦ + ρgr +P Ψδρ +ρ +− rΨ′ +�δP +P + ρδΦ +P +� += 0 , +(43) +r ∂ +∂r +�δT +T +� ++ +L +4πrχT +�δL +L − (4 − κT )δT +T + (1 + κρ)δρ +ρ +� += 0 , +(44) +r ∂ +∂r +δL +Ls + 4π(ℓ + 1)(ℓ + 2)χTr +Ls +δT +T +− r +Ls +dL +dr +� +(1 + ϵρ)δρ +ρ + ϵT δT +T +� += 0 , +(45) +along with Poisson’s equation (equations 27 and 28) and the +equation of state (equation 40). This system contains seven +first-order differential equations, two of which are non-linear. +They depend on the field geometry ℓ (assumed to be ℓ = 1 +here), and the magnetic helicity λ. +This system of equations requires seven boundary con- +ditions in order to be solved. At the inner boundary, we +require +Ψ = 0 +(46) +δP +P += 0 , +(47) +and +δΦ = 0 , +(48) +These ensure that δT/T, δρ/ρ, and δL/Ls are also zero at +the center of the star. +At the surface, we require the blackbody radiation con- +dition +∆L +Ls − 4∆T +T +− 2ξr +r = 0 , +(49) +where +∆ +indicates +a +Lagrangian +perturbation. +Using +dL/dr = 0 at the surface, and the surface pressure boundary +condition ∆P = 0, which becomes (P/ρgr)δP/P = ξr/r ≪ +δP/P, we can drop the last term, and this can be written as +δL +Ls − 4δT +T + 4∇δP +P += 0 , +(50) +where ∇ = d ln T/d ln P. At the outer boundary we require +a decaying potential perturbation: +δΦ′ = −ℓ + 2 +r +Φ . +(51) +Additionally, the amplitude of the response can be chosen +with a normalization condition at the surface, e.g., +Ψ = +√ +GM 2 . +(52) +Finally, we require another boundary condition at the +surface that determines the amplitude of another variable +(e.g., δT/T or δL/Ls), relative to Ψ. This boundary condi- +tion will determine the amplitude of the surface flux pertur- +bation and can be considered to be a measure of the strength +of the magnetic forces within the star. It is similar to speci- +fying the strength of the magnetic forces in barotropic stars +with a β parameter as described in Duez & Mathis (2010) +and in Section 2.5. In practice, we set the luminosity per- +turbation at the outer boundary in order to determine an +effective value of β. Setting δL = 0 at the outer boundary +would be equivalent to setting β = 0. +We pause to note a few important points. First, the dis- +placement vector ξ does not appear anywhere in our system +of equations. Lagrangian perturbations cannot be calculated +from this system of equations, except at the surface where +ξr/r = (P/ρgr)δP/P. Physically this arises from the fact +that in a thermally relaxed system of uniform composition, +there are an infinite number of combinations of radial and +© 0000 RAS, MNRAS 000, 000–000 + +6 +Fuller & Mathis +horizontal displacements ξr and ξ⊥ that could give rise to +a given density perturbation δρ/ρ. This is discussed further +in Section 4. +A second important point is that we have not imposed a +surface boundary condition in which the poloidal or toroidal +component of the magnetic field goes to zero. This is quite +different from the fields studied in Broderick & Narayan +(2008) and Duez & Mathis (2010). A non-zero toroidal field +requires a current to flow at the surface of the star, which is +often assumed to be zero due to the vanishing density and +temperature. Real stars, however, do not have zero tem- +perature or density in their photospheres or coronae, which +can support currents and toroidal fields (Kochukhov et al. +2011; Shulyak et al. 2007, 2010). Therefore, we do not im- +pose Ψ = 0 at the surface. A consequence of relaxing this +condition is that λ is no longer an eigenvalue, and the system +of equations can now be solved for any value of λ. +Alternatively, one could argue that the radial compo- +nent of the electric current (Equation 16) should vanish at +the surface of the star. This would require Br = 0 and hence +Ψ = 0 as discussed in Section 2.1, and imposed by Broderick +& Narayan (2008) and Duez & Mathis (2010). This eighth +boundary condition would transform our system of seven +differential equations into an eigenvalue problem that could +only be solved for certain combinations of λ and the surface +flux perturbation. We discuss this further in Section 3 and +4. +2.5 +Convective Zones +In convective zones, the radiative diffusion equation no +longer applies, and equations 44 and 45 are not valid. In- +stead, we assume that the perturbation to the entropy is +nearly zero, as convective heat flux will quickly smooth out +any entropy gradients. We therefore have +d ln T +d ln P = ∇ad = Γ3 − 1 +Γ1 +. +(53) +Perturbing this yields +δT +T − Γ3 − 1 +Γ1 +δP +P += 0 . +(54) +and +δP +P − Γ1 δρ +ρ = 0 . +(55) +Since the perturbations are barotropic, the system of +equations 41-43 simplifies, as discussed above. In this case, +the system of equations reduces to that of Duez & Mathis +(2010): +∂ +∂r Ψ − Ψ′ = 0 , +(56) +∂ +∂r Ψ′ + +� λ2 +R2 − ℓ(ℓ + 1) +r2 +� +Ψ + βr2ρ = 0 . +(57) +Here, β is a constant that determines the magnitude of the +magnetic force. Comparison with equation 14 shows that the +pressure perturbation is +δP +P + ρδΦ +P += βρΨ +P +. +(58) +Equations 56 and 57 combine into a linear wave equation: +∂2 +∂r2 Ψ + +� λ2 +R2 − ℓ(ℓ + 1) +r2 +� +Ψ + βr2ρ = 0 . +(59) +2.6 +Linking Convective and Radiative Zones +In this work we only consider stars with convective cores +and radiative envelopes. To solve for the magnetic field in +the full star, we choose a value of λ and a surface flux per- +turbation δL/L, which effectively sets the magnetic forces +and the value of β within the convective zone. Within the +convective zone, we replace equation 44 with equation 54, +and we replace equation 45 with ∂δL/∂r = 0. However, the +value of δL is not defined in the convective zone, only within +the radiative zone above it. In our solutions, we verify that +equation 58 is approximately satisfied within the convective +region. We then label our solutions by the corresponding +value of β. +2.7 +Solving the Equations +We solve the system of equations above in a stellar model +generated with the MESA stellar evolution code (Paxton +et al. 2011). We choose a M = 3 M⊙ star at the start of the +main sequence, with a radius of R = 2.1 R⊙, a surface tem- +perature of Teff = 11, 800 K, and a convective core bound- +ary at r/R = 0.13. This model resembles typical magnetic +Ap/Bp stars that are observed to harbor strong magnetic +fields. Our model has nearly uniform stellar composition so +that the equation of state (equation 40) is a good approxi- +mation. +We use a relaxation technique from Numerical Recipes +(Press et al. 2007) to solve the system of equations in Sec- +tion 2.4. We solve the equations on the same grid as the +underlying MESA model. A good initial guess is often re- +quired in order reliably to converge to a solution. Spurious +solutions (involving sudden jumps in the derivatives of δP +and Ψ) are often found, so caution is required. There may be +other physical solutions that exist that we do not examine +in this work. +3 +SOLUTIONS +In our models, both λ and β are free parameters. Physi- +cally, λ represents the magnetic helicity which is determined +by the dynamo process that created the field, and which is +roughly conserved during subsequent turbulent relaxation +(Braithwaite 2008; Duez & Mathis 2010). The lowest en- +ergy stable field configurations have λ ∼ 1, so λ values in +the range of 1-10 are reasonable expectations for real stars, +though larger values are possible. The value of β determines +the relative strength of magnetic forces as described in the +previous section. +Figure 2 and 3 show the magnetic field configuration +for a model with λ2 = β = 10. The poloidal field is largest +at the center of the star, where its field strength is roughly +four times larger than the surface value. The toroidal field +is largest at r/R ≈ 0.7. We shall see below that β = 10 is +small such that the magnetic field is similar to a force-free +field. For this value of λ, there is a null point (where Bθ = 0 +© 0000 RAS, MNRAS 000, 000–000 + +Magnetic Structure +7 +Figure 2. Meridional slices of a star, with color shading indicating the strength of the toroidal magnetic field (left) and poloidal +magnetic field (right) normalized to the maximum magnetic field. Orange lines show magnetic field lines of the poloidal field. This model +has magnetic helicity λ2 = 10 and magnetic force β = 10. +Radius +0 +2 +4 +Magnetic Field +λ 2 = 10 +β = 10 +Br +Bθ +Bφ +0 +10 +20 +Magnetic Field +λ 2 = 17 +β = 10 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +0 +10 +20 +30 +Magnetic Field +λ 2 = 10 +β = 110 +Figure 3. Radial profiles of the r, θ, and φ-components of the +magnetic field, scaled to the radial field at the surface, for models +with β = 10. Panels are labeled by their values of λ2 and β. +Note that the field is much more centrally concentrated for higher +values of λ or β. +and the field lines converge to closed loops at the equator) +at r/R ≃ 0.85. Both the poloidal and toroidal fields extend +above the surface of the star, where the field is force-free but +is not current-free. +Figure 4, 5, and 6 show the magnetic potential Ψ, pres- +sure perturbation δP/P, and luminosity perturbation δL/L +as a function of radius. In Figure 4, each curve has a dif- +ferent value of λ. Higher values of λ cause more oscillatory +variation of Ψ, as can be seen in equation 59 where the +radial wavenumber of Ψ is roughly +� +λ2/R2 − ℓ(ℓ + 1)/r2. +Higher values of λ push the null point and toroidal field +maximum deeper into the star, and also cause the central +field strengths to become larger relative to the surface field +strength, as shown in Figure 3. In this stellar model, a value +of λ ≃ 20 is the first value of λ for which Ψ = 0 at the sur- +face. From equation 42 we see that Ψ = 0 requires δP = 0, +so the Eulerian pressure perturbation is always zero where +the radial component of the field is zero. +For larger values of λ or β, the values of Ψ and δP +approach zero somewhere within the model. When this hap- +pens, the numerical solutions exhibit strange behavior. The +values of Ψ′ and ∂δP/∂r sometimes exhibit discontinuous +jumps at the zero-crossings of Ψ. However, the radial mag- +netic field, pressure perturbation, and temperature pertur- +bations are all continuous across these zero-crossings (only +their derivatives are discontinuous). It is unclear if these so- +lutions are physical or numerical artifacts. Physically, these +solutions would exhibit a discontinuity in the θ-component +of the magnetic field, an associated current sheet, and a +discontinuity in both the magnetic force and the pressure +force. Because the physicality of these solutions is unclear +and they also sometimes cause numerical convergence prob- +lems, we will not investigate them further in this work. +More highly oscillatory solutions also represent higher en- +ergy states (Broderick & Narayan 2008) and may be less +© 0000 RAS, MNRAS 000, 000–000 + +Toroidal Field +Poloidal Field +1.0 +1.0 +0.8 +0.5 +0.6 +R +0.0 +Z +0.4 B +-0.5 +0.2 +-1.0 +0 +0 +x/R +x/R8 +Fuller & Mathis +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Ψ +10−1 +100 +101 +102 +103 +δP/P +λ 2 =2.0 +λ 2 =5.0 +λ 2 =10.0 +λ 2 =14.0 +λ 2 =17.0 +λ 2 =19.6 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +−20 +−15 +−10 +−5 +0 +5 +δL +Figure 4. Profiles of the magnetic potential Ψ, relative pressure +perturbation δP/P, and luminosity perturbation δL (in units of +Lsurf) as a function of radius for a model with β = 10 and varying +values of the helicity λ. All quantities are normalized so that Ψ = +1 at its maximum. Stronger toroidal fields (larger λ) create more +oscillatory magnetic fields, but the associated surface luminosity +perturbation varies only slightly. The large values of δP/P near +the surface are discussed in Section 3.5. +likely to exist in stars that have relaxed to a minimum en- +ergy state. +In Figure 4, the relatively small value of β = 10 means +that the pressure and density terms in equation 42 are neg- +ligible relative to the magnetic terms, and the field is nearly +force-free. The magnetic solutions are thus similar to the +force-free solutions of Broderick & Narayan (2008). In this +limit, the perturbed pressure, temperature, etc. have a value +that is proportional to β, with a radial dependence that is +determined only by λ and the structure of the star. This +can be seen from equation 58, such that the value of δP, +δT, and δL are roughly proportional to β at the radiative +convective interface, and hence within the bulk of the ra- +diative zone. It is demonstrated in Figure 5 and 6, where +the pressure and luminosity fluctuations have similar pro- +files and increase linearly with β, as long as β ≲ 100. Hence, +a wide range in surface temperature and flux variations are +possible for a given surface field, depending on the strength +of the magnetic forces, parameterized by β in these models. +For larger values of β, however, the pressure/density +terms in equation 42 become comparable to the magnetic +terms. Physically this means that gas pressure forces begin +competing with magnetic forces, altering the profile of the +magnetic field. Large values of β have a similar effect to +larger values of λ, causing more oscillatory behavior of the +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Ψ +10−1 +100 +101 +102 +103 +δP/P +β =4.2 +β =23 +β =61 +β =110 +β =160 +β =200 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +−400 +−200 +0 +200 +δL +Figure 5. Same as Figure 4, but for a model with λ2 = 10 and +varying values of β. Larger magnetic forces (higher values of β) +create larger surface luminosity perturbations and more oscilla- +tory magnetic fields. +magnetic potential Ψ. The surface pressure and luminosity +perturbations reach a maximum when β ∼ 200, and decrease +at larger values. This is because Ψ (and hence δP) become +smaller near the surface at large values of β as gas pressure +forces start backreacting on the magnetic field profile. The +magnitude of β needed to have a large influence on the field +profile can be seen from equation 59: β must be large enough +for the last term to be comparable to the second term. Deep +within the star, this requires β ∼ ℓ(ℓ+1)Ψ/(ρr4), which typ- +ically has a value of a couple hundred for our stellar model +and normalization. +From Figure 4-6, we see that δP/P typically approaches +very large values near the surface of the star, because P +reaches very small values. However, the value of δP ap- +proaches very small values δP ≃ ρgξr near the surface, such +that the Lagrangian pressure perturbation ∆P = δP − ρgξr +smoothly approaches zero at the surface. The value of δP/P +thus approaches δP/P ≃ ξr/H at the star’s surface, which +becomes large as the pressure scale height H becomes small. +Although δP/P peaks near the surface, the value of δP +peaks at radii of r/R ≃ 0.2, as can be seen in Figure 7. +The values of δρ and δΦ show similar behavior. +In contrast, the value of δT increases within the con- +vective zone and then maintains a roughly constant profile +throughout the star. The derivative of δT has a discontinuity +at the convective interface due to the change in structure and +energy transport mechanism. Within the convective core, δT +is directly proportional to δP which is proportional to Ψ +© 0000 RAS, MNRAS 000, 000–000 + +Magnetic Structure +9 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Ψ +10−1 +100 +101 +102 +103 +δP/P +β =8.7 +β =79 +β =140 +β =220 +β =270 +β =290 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +−600 +−400 +−200 +0 +200 +400 +δL +Figure 6. Same as Figure 5, but for a model with λ2 = 2. Al- +though the magnetic structure is somewhat different, the surface +luminosity perturbations are similar to the case in Figure 5 with +stronger toroidal fields. +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +−20 +−10 +0 +10 +20 +30 +Ψ×30 +δP +δT ×20 +δρ +δL +δΦ×3 +Figure 7. The magnetic potential Ψ (units of +√ +GM2), pressure +perturbation δP (units of GM2/R4), temperature perturbation +δT (units of Tcen), density perturbation δρ (units of M/R3), lumi- +nosity perturbation δL (units of Lsurf), and gravitational poten- +tial perturbation δΦ (units of GM/R) for a model with λ2 = 10, +β = 10. The kinks at r = 0.13 occur at the boundary of the +convective core. +(equations 54 and 58), but in the radiative zone δT is de- +termined by the thermal equilibrium conditions (equations +44 and 45). This causes oscillatory variations in δT in the +outer layers of the star, due to variations in the thermal dif- +fusivity χ caused by opacity variations in partial ionization +zones near the surface. +Nevertheless, the luminosity perturbation δL always +changes smoothly and gradually throughout the star. Phys- +ically this occurs because sudden changes in δL would be +smoothed out by radiative diffusion. Mathematically this +can be seen from equation 45, because the values of χTr/L +and d ln L/d ln r become very small near the surface of the +star, preventing sudden variation in δL, despite large values +of δP/P and δT/T. Interestingly, in all of our models, the +luminosity perturbation switches sign at r/R ≃ 0.23 within +the radiative region above the convective core. +3.1 +Surface Flux Perturbation +All of our models have negative surface luminosity pertur- +bations δL2 as shown in the figures. However, the quadrupo- +lar component of the physical response (see equation 22) is +δL = δL2(1/3−cos2 θ). Hence, a negative value of δL2 trans- +lates to a positive flux perturbation at the magnetic pole +and a negative flux perturbation at the magnetic equator, +as shown in Figure 1. This is consistent with the heuristic +idea that strong magnetic pressure at the star’s pole causes +the gas pressure and density to be smaller, allowing us to see +deeper into the star such that magnetic spots are brighter +(Cantiello & Braithwaite 2011). However, it is also possible +for our models to produce a negative flux perturbation at +the magnetic pole if we consider negative values of β, so in +principle it is possible for the magnetic pole to be either hot +or cool. Below we argue that a hot magnetic pole is more +likely. +The value of the surface flux perturbation in our models +is δL/L ∼ βΨ2 +max, where Ψmax is the maximum value of Ψ +reached within the model. Since we have normalized Ψmax +to units of +√ +GM 2, this implies +δL +L ∼ β +4π +B2 +maxr4 +max +GM 2 +, +(60) +where Bmax and rmax are the magnetic field and radius +where Ψ peaks. In our models, this roughly translates to +δL +L ∼ 10−11β +�Bsurf +1kG +�2� R +R⊙ +�4� M +M⊙ +�−2 +, +(61) +where Bsurf is the magnetic field at the star’s surface. Clearly +this is too small to be detected in main sequence stars un- +less extremely large values of β are assumed. Equation 61 +is consistent with a naive estimate from the von Zeipel the- +orem applied to the star’s interior. The smoothly varying +magnetic fields of our models produce magnetic forces of +order fmag ∼ βB2/(ρr). Using the average stellar density +ρ ∼ M/R3 and gravitational force g ∼ GM/R2 yields the +von Zeipel estimate of δF/F ∼ fmag/g ∼ βB2R4/GM 2. +3.2 +Most likely field configurations +As mentioned in Section 2.1, the radial current jr may be +expected to be close to zero near the surface of the star +so that current does not flow into the star’s low-density +© 0000 RAS, MNRAS 000, 000–000 + +10 +Fuller & Mathis +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Ψ +10−1 +101 +103 +δP/P +λ 2 =10.0 +λ 2 =9.0 +λ 2 =8.0 +λ 2 =7.0 +λ 2 =5.0 +λ 2 =2.0 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Radius +−600 +−400 +−200 +0 +200 +400 +δL +Figure 8. Magnetic structures for models whose poloidal com- +ponent has a potential profile (Ψ ∝ r−ℓ) at the outer boundary, +for various magnetic helicities λ. This outer boundary condition +effectively sets the strength of magnetic forces, β. Configurations +similar to these may be more likely to exist in real stars. +corona. From equation 16, the only way this can happen +is when λ2 = 0 or Ψ = 0 at the surface of the star. If +there are near-surface toroidal fields, Ψ (and hence Br) must +be zero to have a non-zero current flowing out of the star. +Hence there is a critical value β0 such that Ψ = 0 at the +star’s surface. Figure 5 indicates this occurs at β0 ≃200 and +δL/L ∼ −400 for λ2 = 10 in our stellar model, or β0 ≃ 300 +and δL/L ∼ −500 for λ2 = 2 (Figure 6). Hence, those so- +lutions are arguably the most physically probable amongst +the possibilities shown here. Fireffig:magstrucvis shows the +predicted surface flux variations for β = β0. Even though +the large values of β increase the surface flux perturbation +above the naive estimate discussed above, it is too small to +be detected with current instruments. +Another possibility is that the value of λ2 is not con- +stant within the star due to dissipative effects near the sur- +face. In that case, one may expect the value of λ to de- +crease near the star’s surface, allowing the radial current +to vanish and still have a large value of Ψ and hence a +non-zero radial magnetic field. If the electric currents de- +crease to zero near or above the surface, the field must ap- +proach a potential configuration. Potential force-free fields +have ∂Ψ/∂r2 = ℓ(ℓ + 1)Ψ/r2, and an outwardly decreasing +field has Ψ ∝ r−ℓ and hence B ∝ r−(ℓ+2), i.e., a dipole field +for our assumed value of ℓ = 1. To model this case, we set +the outer boundary condition to ∂Ψ/∂r = −ℓΨ/r. The fixed +103 +104 +105 +106 +Surface Poloidal Field Strength (G) +10−8 +10−7 +10−6 +10−5 +10−4 +10−3 +Surface Luminosity Perturbation +λ 2 = 10, β = β0 +λ 2 = 2, β = β0 +λ 2 = 9, β = βpot +λ 2 = 2, β = βpot +Figure 9. The surface luminosity perturbation as a function of +surface magnetic field strength for models with β = β0, such that +the radial component of the magnetic field and electric current +vanish at the surface. We also plot luminosity perturbations for +β = βpot such that the poloidal field has a potential profile at the +surface. In either case, very strong magnetic fields are required for +detectable luminosity perturbations in main sequence stars. Ob- +served photometric variations of magnetic stars likely arise from +variations in the emergent spectrum rather than variations in the +bolometric flux. +slope at the outer boundary effectively sets the value of β, +which we refer to as βpot. +Figure 8 shows the results of this calculation for several +values of λ2. The required values of βpot are typically sim- +ilar to (but smaller than) β0, i.e., values on the order of a +hundred. For λ2 ≃ 10, a nearly force-free field satisfies the +potential outer boundary condition, such that βpot ≃ 0. For +larger values of λ, the required βpot is negative. However, +we find those solutions almost always have a zero-crossing +somewhere in the star, and cause numerical problems, so we +do not investigate them further in this work. We note that +they would likely entail surface flux perturbations of the +opposite sign, i.e., a cool magnetic pole and hot magnetic +equator. Figure 9 shows the surface luminosity perturba- +tions for β = βpot, which are a similar magnitude to those +with β = β0, and not detectable for observed magnetic field +strengths. +3.3 +Shape of Distorted Star +The sign of the pressure/density perturbations near the sur- +face of the star determine wither it becomes oblate (smaller +photospheric radius at magnetic pole) or prolate (larger +radius at magnetic pole). As discussed above, we believe +negative Eulerian pressure perturbations at the magnetic +pole are most likely, which means the surface displacement +ξr = δP/(ρg) is also negative at the magnetic pole. Hence, +magnetically distorted stars are likely to be oblate. Heuris- +tically, this is consistent with the idea that high magnetic +pressure at the star’s pole (or magnetic tension near the +equator) squeezes the star into a flattened shape. +© 0000 RAS, MNRAS 000, 000–000 + +Magnetic Structure +11 +The star’s ellipticity is +ε = ξr,surf +R += δP +P +H +R +∼ β × 10−10 +�Bsurf +1kG +�2� R +R⊙ +�4� M +M⊙ +�−2 +. +(62) +Similar to the flux perturbations, this is too small to detect. +The quadrupole moment of the star is +Q = +� +δρr4Y ∗ +20dΩdr +MR2 +∼ β × 10−12 +�Bsurf +1kG +�2� R +R⊙ +�4� M +M⊙ +�−2 +. +(63) +The quadrupole moment of the star is even tinier than other +perturbations because the density perturbation is largest +near r ∼ 0.2, providing a small lever arm for the quadrupole +moment. +3.4 +Ohmic Heating and Poynting Flux +Our models ignore non-ideal effects such as Ohmic heating +that will inevitably cause the field to decay. As long as these +effects are small, our approximations are suitable. We first +investigate the effect of Ohmic heating in our models. The +heating rate per unit volume is +ρϵOhm = 4πηj2 +(64) +where the current density j is given in equation 16. Hence +the heating rate is +ρϵOhm = η +λ2 +4πR2 +� +B2 +r + B2 +θ +� ++ +η +r2 sin2 θ (∆∗Ψ)2 . +(65) +Using equations 3, 5, and manipulating equation 18, this can +be expressed +ρϵOhm = η sin2 θ +r2 +� −4 +r2R2 Ψ2 + 1 +R2 Ψ′2 ++ +�r2(δP + ρδΦ) +Ψ ++ λ2 +R2 Ψ +�2� +. +(66) +The angular dependence is sin2 θ, and we have removed a +spherically symmetric term since we are only interested in +the non-spherical component. +Equation 66 can be compared to other sources of heat +generation and/or heat diffusion in equation 45. We find that +the Ohmic heating term is roughly three orders of magni- +tude smaller than the heat diffusion term (second term in +equation 45) for all the models shown in this paper. Hence, +Ohmic heating is irrelevant for these models. +Likely a more important effect is that the Ohmic diffu- +sion time tOhm = r2/η drops sharply near the surface of the +star, falling to ∼ 1 Gyr near the surface of our model. The +diffusion time scale is even shorter in the atmosphere of the +star and could be shorter than the star’s lifetime. Conse- +quently, the fields will dissipate or change their morphology +within the star’s atmosphere until they approach a current- +free (and force-free configuration). This will bend the field +lines and hence create magnetic forces within the star until +it approaches a new (quasi)-equilibrium. +Another way of seeing this is by examining the Poynting +flux (see Duez et al. 2010a): +Fpoy = ∇ · +� +ηFmag +� +(67) +where Fmag = (∇ × B) × B/4π is the Lorentz force. The +Poynting flux represents the decrease of electromagnetic en- +ergy per unit volume, and it has the same order of magnitude +as the Ohmic heating rate. As the fields dissipate, their en- +ergy density changes until the Poynting flux is nearly zero, +which happens on Ohmic diffusion time scales. Landstreet +(1987) discusses the importance of magnetic forces arising +due to Ohmic dissipation, finding they are likely negligible +for main sequence stars. However, over long time scales, the +morphology of the magnetic field will be altered away from +the solutions we have computed, which could also affect the +emerging luminosity perturbations. +3.5 +Linearity and near-surface effects +Since the value of δP/P can become very large near the sur- +face of the star (Figure 5-8), non-linear effects may also start +to be important in the near-surface layers. In our models, the +δP/P eigenfunction is 1-2 orders of magnitude larger than +the surface luminosity perturbation δL/L, which is plotted +as a function of surface field strength in Figure 9. Hence, +δP/P remains very small except for unphysically large sur- +face field strengths B ≳ 105 G. +However, we placed the outer boundary at a radius of +r/R ≃ 0.99 in our calculations. This allowed us to avoid +uncertainties associated with the response of near-surface +convective layers above our outer boundary. The value of +δP/P likely continues to increase towards the surface (be- +cause P drops sharply), so it is possible that non-linear ef- +fects start to become important near the surface. It is un- +likely that this affects the luminosity perturbation, which +changes smoothly with radius and cannot be greatly affected +in the near-surface layers. Hence, the magnetic field profiles +and luminosity perturbations that we calculate are probably +robust, but the near-surface pressure and temperature pro- +files could be affected by these surface effects. In principle, +this could affect the spectrum of the star, which is sensitive +the atmospheric temperature profile. +4 +DISCUSSION +4.1 +Stability of Equilibrium +The magnetic field configurations we have computed are +in hydrostatic and radiative equilibrium, but we have not +investigated whether these equilibria are stable or unsta- +ble. Braithwaite (2009) (see also Akg¨un et al. 2013; Becerra +et al. 2022b) showed that stable magnetic equilibria require +Etor ≳ 0.25Epol, where Etor and Epol are the toroidal and +poloidal magnetic field energies. All of our models satisfy +this criterion (they typically have Etor/Epol ∼ 1) except for +the λ2 = 2 models. They also fall below the upper limit for +stability, Emag ≲ (1/10)GM 2/R for surface field strengths +less than ∼ 1 MG. Nonetheless, it is possible that some of +our models are unstable, which should be examined in fu- +ture work using 3D numerical simulations (Duez et al. 2010b; +Kaufman et al. 2022). +© 0000 RAS, MNRAS 000, 000–000 + +12 +Fuller & Mathis +4.2 +More Realistic Field Configurations +A limitation of our work is the assumption of a field with +purely dipole structure, whereas real fields likely have a +more complicated angular structure that changes with ra- +dius. As discussed above, real fields likely have vanishing +current above the photosphere which (according to our solu- +tions, equation 16) require vanishing Br or vanishing λ. The +first conflicts with observations of real stars (Landstreet & +Mathys 2000; Oksala et al. 2018; Shultz et al. 2019) while the +second implies purely poloidal fields which are well known +to be unstable (Markey & Tayler 1973). It is likely that a +real star has a more complicated angular and radial field +dependence, such that the electric currents vanish in the +near-vacuum outside the star. In these configurations, the +toroidal magnetic field vanishes on magnetic field lines that +penetrate the surface of the star (Lyutikov 2010). +These sorts of configurations have been computed near +the surface of a star in Raadu (1971); Milsom & Wright +(1976), or in the interior for parameterized field configu- +rations (Lyutikov 2010; Akg¨un et al. 2013; Becerra et al. +2022b). However, these configurations are not in thermal +equilibrium and therefore not stable over thermal time +scales. Computing such fields in the bulk of a star and ac- +counting for thermal and hydrostatic equilibrium will re- +quire the solutions of partial differential equations, which is +beyond the scope of this work. We suspect that such con- +figurations (which appear qualitatively similar to those we +compute) will alter our results by a factor of order unity, +but will not greatly change any of our conclusions. +4.3 +Estimating the Perturbed Surface Flux +Our solutions which map onto Br = 0 or Br ∝ r−(ℓ+2) +may resemble more realistic magnetic field configurations. +We find that large values of β ∼200 are required for typical +toroidal fluxes of λ2 ∼ 1 − 10. This entails internal temper- +ature, pressure, and flux perturbations that are ∼200 times +larger than a naive estimate of ∼B2/(GM 2/R4). Nonethe- +less, even for the strongest observed fields of B ∼ 10 kG in +main sequence stars, the bolometric luminosity variation is +δL/L ≲ 10−6 (Figure 9) and is not detectable even with +high-quality space-based photometry. +Applying von Zeipel’s law near the surface of the star, +one might expect magnetic fields to produce flux perturba- +tions of order +δL +L ∼ fmag +fgrav ∼ B2 +surf +4πρRg . +(68) +This translates to +δL +L ∼ 0.004 +�Bsurf +1 kG +�2� +ρ +10−8g/cm3 +�−1� M +M⊙ +�−1� R +R⊙ +� +. +(69) +This is several orders of magnitude larger than our calcula- +tions, clearly ruling out this expectation. Even though mag- +netic forces can be comparable to gravity near the star’s +surface, this applies only in a very thin layer near the photo- +sphere. The deep interior (where the outgoing thermal flux is +determined) has much higher density and is only weakly dis- +torted, leading to a flux perturbation on the order of equa- +tion 61, which is the von Zeipel expectation applied to the +deep interior. The even more naive estimate +δL +L ∼ Pmag +Pgas ∼ 4 +�Bsurf +1 kG +�2� +Pgas +104erg cm−3 +�−1 +(70) +can be ruled out for the same reasons. +It would be useful to relate the observed flux perturba- +tion or surface magnetic field strength to a star’s internal +magnetic field strength. This will be difficult to accomplish +from flux perturbations until a better understanding of their +cause is established. Our results suggest that central mag- +netic field strengths can be anywhere from ∼3-50 larger than +surface field strengths (see Figure 3) which is in qualita- +tive agreement with numerical simulations by Braithwaite +(2008) (see Figure 8 of that work), with higher central field +strengths for higher magnetic forces or helicity. The force +will be difficult to observationally quantify but the helicity +could potentially be determined if the star’s surface toroidal +field can be measured (e.g., Figure 6 in Kochukhov et al. +2011). +The effects of magnetic fields are very different for sys- +tems not in thermal equilibrium. In stars with transient +magnetic activity (e.g., spots in magnetically active stars), +magnetic spot life times can be much shorter than the star’s +local thermal time, depending on the depth of the spots. +Magnetic fields can also temporarily disrupt convective en- +ergy transport, which also occurs on a thermal time. This +is why the Sun’s spots can appear dark: they are not in +thermal equilibrium with underlying layers. In our work, we +predict that magnetic poles of radiative stars can be either +hot or cool, although we have argued they are more likely +to be hot for realistic magnetic field configurations. This +agrees with the sign predicted by Cantiello & Braithwaite +(2011), who examined spots in hydrostatic equilibrium but +not thermal equilibrium. However, thermal diffusion could +drastically reduce the flux perturbation below their estimate +(essentially equation 70), for spots that live longer than the +local thermal time. +4.4 +Limitations +For the most part, our methods are general and are applica- +ble to nearly any type of radiative star, such as massive stars +or white dwarfs. However, there are a few modifications that +need to be made depending on the circumstances. +In this work, we did not compute the physical displace- +ment vector ξ, which does not appear anywhere in our set +of equations. The reason for this is that the final state of the +system (i.e., the perturbed pressure, temperature, etc.) and +its final energy is independent of the displacements needed +to reach that configuration. There are infinite combinations +of ξr and ξ⊥ that satisfy the continuity equation +δρ + ∇ · +� +ρξ +� += 0 . +(71) +However, we assumed uniform composition in our equation +of state (equation 40), a good approximation for young main +sequence stars. In stars with composition differences, the +equation of state will contain an extra χµ(δµ/µ) term, where +µ is the mean molecular weight. If composition does not +diffuse, we have δµ ∼ −ξrdµ/dr, and hence the perturbed +state will depend explicitly on the displacement vector. The +equilibrium configuration is then presumably given by the +© 0000 RAS, MNRAS 000, 000–000 + +Magnetic Structure +13 +displacement which minimizes the total energy of the per- +turbed system. This should be accounted for when consider- +ing stars with composition gradients (e.g., evolved stars and +white dwarfs). +Another issue we have neglected is anisotropic conduc- +tion induced by magnetic fields. In main sequence stars, this +effect is only important in the surface layers where the elec- +tron mean-free path increases and becomes comparable to +the Larmor radius. However, it may be important in the deep +interiors of white dwarfs where electrons conduct most of the +heat (Potekhin 1999; Potekhin & Yakovlev 2001; Chang & +Quataert 2010) and have fairly long mean free paths due to +the high electron degeneracy. We hope to examine this effect +in future work. +We have also neglected any magnetically induced +changes to opacity. These could be important near a star’s +surface because magnetic fields split the energy levels of +atomic transitions, changing the opacity from bound-bound, +bound-free absorption, and free-free absorption (e.g., Jordan +1992). We suspect that this will not alter our conclusions re- +garding the perturbation to the bolometric surface flux, be- +cause effects limited to the surface layers cannot change the +emerging flux from below. This can be seen from equation +45, because the second term is of order unity near the sur- +face, and will only change the emerging flux by an amount +∼ ∆r/r, where ∆r is the width over which near-surface ef- +fects are important. +What is more likely is that the star’s emergent spec- +trum is altered by magnetic changes to opacity, or by com- +position differences between the magnetic pole and equator. +Even with no perturbation to the bolometric flux, a chang- +ing spectrum could create large differences in, e.g., g-band or +r-band fluxes as the magnetic pole rotates in and out of view. +As an example, Caiazzo in prep. finds large changes in the +composition and spectrum as a function of rotational phase +in the magnetic WD ZTF J203349.8+322901.1 (“Janus”), +even though there is no clear variation in the bolomet- +ric flux. Similar photometric variations (typically ∼1-3% in +amplitude) are observed in chemically peculiar magnetic A +type stars (H¨ummerich et al. 2018). Compositional inho- +mogeneities could naturally arise due to the perturbed gas +pressure in the near-surface layers, which will alter atomic +diffusion processes. This process should be studied in more +detail. +5 +CONCLUSIONS +We have computed the effects of strong magnetic fields on +the structures of radiative main sequence stars. Our focus +is the perturbed surface temperature and radiative flux in- +duced by the magnetic field, which can produce photomet- +ric modulation as the star rotates. Unlike most prior work, +we have computed structures in both hydrostatic and ther- +mal equilibrium, which applies to stars with long-lived fossil +fields, such as magnetic Ap stars. Our models have simple +dipolar angular structure and include toroidal fields with +associated magnetic helicity λ. +We find that magnetic fields at observed field strengths +of ∼ 1 kG produce negligible bolometric flux perturbations, +δL/L ≲ 10−6. Even though such fields are large enough to +produce significant perturbations to the photospheric gas +pressure and hydrostatic force balance, the radiative flux +is determined by deeper layers of the star where magnetic +forces are negligible. The perturbed surface flux is compa- +rable to the von Zeipel theorem estimate δL/L ∼ fmag/(ρg) +only when evaluated in the deep interior. Depending on their +helicity and magnetic force, internal magnetic fields are typ- +ically a factor of ∼10 larger than surface magnetic fields. +The size of the magnetic perturbation depends on the +strength of the magnetic forces, parameterized by β, which +is zero for a force-free field. Relatively large values of β ∼200 +are needed for significant modification of the magnetic field +profile relative to a force-free configuration. We have argued +that these values of β are most likely to occur in real stars +such that the magnetic profile matches onto boundary condi- +tions minimizing electric current near the surface. This leads +to photometric modulations that are a few hundred times +larger than a naive estimate of δL/L∼B2 +surfR4/(GM 2), but +still too small to be observed. Photometric modulations ob- +served in magnetic stars likely arise from changes in the +emergent spectrum rather than changes in the bolometric +flux. Although we have focused on a young 3 M⊙ model in +this work, the same method can be applied to other types of +predominantly radiative stars, such as moderately evolved +massive stars or white dwarfs. +Our work can be improved in several ways. First, real- +istic magnetic configurations likely have toroidal fields con- +fined to closed poloidal surfaces within the star such that +current does not flow into the atmosphere and dissipate +the magnetic field. Incorporating this condition will require +more complicated magnetic topologies and non-separable +solutions to the hydrostatic balance and radiative diffu- +sion equations. The impacts of rotation, where the rotation +and magnetic axis are often misaligned, and of the associ- +ated centrifugal forces have also been neglected in this work +(Monaghan 1973; Galea & Wood 1985). Our models do not +account for composition gradients within a star, which may +significantly affect the magnetic perturbations in evolved +stars and white dwarfs. Finally, magnetic changes to opac- +ity and anisotropic conduction should be included in future +models in order to better interpret observable photometric +and spectroscopic variations of magnetic stars. +ACKNOWLEDGMENTS +JF is thankful for support through an Innovator Grant +from The Rose Hills Foundation. S.M. acknowledges sup- +port from CNES SOHO, PLATO, and LISA grants at +CEA/IRFU/DAp. +DATA AVAILABILITY +The relaxation code to compute magnetic perturbations is +available upon request. +REFERENCES +Akg¨un T., Reisenegger A., Mastrano A., Marchant P., +2013, MNRAS, 433, 2445 +Becerra L., Reisenegger A., Valdivia J. A., Gusakov M. E., +2022a, MNRAS, 511, 732 +© 0000 RAS, MNRAS 000, 000–000 + +14 +Fuller & Mathis +Becerra L., Reisenegger A., Valdivia J. A., Gusakov M., +2022b, MNRAS, 517, 560 +Braithwaite J., 2008, Mon. Not. R. Astron. Soc., 386, 1947 +Braithwaite J., 2009, MNRAS, 397, 763 +Braithwaite J., Nordlund ˚A., 2006, Astronomy & Astro- +physics, 450, 1077 +Braithwaite J., Spruit H. C., 2004, Nature, 431, 819 +Braithwaite J., Spruit H. C., 2017, Royal Society Open +Science, 4, 160271 +Broderick A. E., Narayan R., 2008, MNRAS, 383, 943 +Bugnet L., et al., 2021, A&A, 650, A53 +Busse F. H., 1981, Geophysical and Astrophysical Fluid +Dynamics, 17, 215 +Cantiello M., Braithwaite J., 2011, A&A, 534, A140 +Chandrasekhar S., 1956, ApJ, 124, 232 +Chandrasekhar S., Prendergast K. H., 1956, Proceedings of +the National Academy of Science, 42, 5 +Chang P., Quataert E., 2010, MNRAS, 403, 246 +Davies G. F., 1968, Australian Journal of Physics, 21, 293 +Decressin T., Mathis S., Palacios A., Siess L., Talon S., +Charbonnel C., Zahn J. P., 2009, A&A, 495, 271 +Duez V., Mathis S., 2010, A&A, 517, A58 +Duez V., Mathis S., Turck-Chi`eze S., 2010a, MNRAS, 402, +271 +Duez V., Braithwaite J., Mathis S., 2010b, ApJ, 724, L34 +Eddington A. S., 1929, MNRAS, 90, 54 +Fuller J., Cantiello M., Stello D., Garcia R. A., Bildsten L., +2015, Science, 350, 423 +Galea E. R., Wood W. P., 1985, MNRAS, 217, 633 +Garc´ıa R. A., et al., 2014, Astron. Astrophys., 563, A84 +H¨ummerich S., et al., 2018, A&A, 619, A98 +Jordan S., 1992, A&A, 265, 570 +Kaufman E., Lecoanet D., Anders E. H., Brown B. P., Vasil +G. M., Oishi J. S., Burns K. J., 2022, MNRAS, 517, 3332 +Kochukhov O., Lundin A., Romanyuk I., Kudryavtsev D., +2011, ApJ, 726, 24 +Lander S. K., Jones D. I., 2012, MNRAS, 424, 482 +Landstreet J. D., 1987, MNRAS, 225, 437 +Landstreet J. D., Mathys G., 2000, A&A, 359, 213 +Lecoanet D., Vasil G. M., Fuller J., Cantiello M., Burns +K. J., 2017, MNRAS, 466, 2181 +Li L. H., Ventura P., Basu S., Sofia S., Demarque P., 2006, +ApJS, 164, 215 +Li G., Deheuvels S., Ballot J., Ligni`eres F., 2022, Nature, +610, 43 +Loi S. T., 2021, MNRAS, 504, 3711 +Lyutikov M., 2010, MNRAS, 402, 345 +Maeder A., 1999, A&A, 347, 185 +Markey P., Tayler R. J., 1973, MNRAS, 163, 77 +Mathis S., 2013, in Goupil M., Belkacem K., Neiner C., +Ligni`eres F., Green J. J., eds, , Vol. 865, Lecture Notes in +Physics, Berlin Springer Verlag. p. 23, doi:10.1007/978-3- +642-33380-4˙2 +Mathis S., Bugnet L., Prat V., Augustson K., Mathur S., +Garcia R. A., 2021, A&A, 647, A122 +Mestel L., Moss D. L., 1977, MNRAS, 178, 27 +Milsom F., Wright G. A. E., 1976, MNRAS, 174, 307 +Monaghan F. F., 1966, MNRAS, 132, 1 +Monaghan J. J., 1973, MNRAS, 163, 423 +Morel T., et al., 2014, The Messenger, 157, 27 +Moss D. L., 1973, MNRAS, 164, 33 +Moss D., 1979, MNRAS, 187, 601 +Oksala M. E., Silvester J., Kochukhov O., Neiner C., Wade +G. A., MiMeS Collaboration 2018, MNRAS, 473, 3367 +Ostriker J. P., Hartwick F. D. A., 1968, ApJ, 153, 797 +Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., +Timmes F., 2011, ApJS, 192, 3 +Potekhin A. Y., 1999, A&A, 351, 787 +Potekhin A. Y., Yakovlev D. G., 2001, A&A, 374, 213 +Press W. H., Teukolsky S. A., Vetterling W. T., Flannery +B. P., 2007, Numerical Recipes 3rd Edition: The Art of +Scientific Computing, 3 edn. Cambridge University Press, +USA +Raadu M. A., 1971, Ap&SS, 14, 464 +Reisenegger A., 2009, A&A, 499, 557 +Rieutord M., 2006, EAS Publ. Ser., 21, 275 +Shultz M. E., et al., 2019, MNRAS, 490, 274 +Shulyak D., et al., 2007, A&A, 464, 1089 +Shulyak D., Kochukhov O., Valyavin G., Lee B. C., +Galazutdinov G., Kim K. M., Han I., Burlakova T., 2010, +A&A, 509, A28 +Stello D., Cantiello M., Fuller J., Huber D., Garc´ıa R. A., +Bedding T. R., Bildsten L., Silva Aguirre V., 2016, Na- +ture, 529, 364 +Sweet P. A., 1950, MNRAS, 110, 548 +Tayler R. J., 1973, MNRAS, 161, 365 +Tayler R. J., 1980, MNRAS, 191, 151 +Taylor J. B., 1974, Phys. Rev. Lett., 33, 1139 +Wade G. A., et al., 2016, MNRAS, 456, 2 +Wright G. A. E., 1969, MNRAS, 146, 197 +von Zeipel H., 1924, MNRAS, 84, 665 +© 0000 RAS, MNRAS 000, 000–000 + diff --git a/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/load_file.txt b/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1c910d288a640074a0e795505f9f040709c5c48b --- /dev/null +++ b/q9FKT4oBgHgl3EQf0C6i/content/tmp_files/load_file.txt @@ -0,0 +1,914 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf,len=913 +page_content='Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 000, 000–000 (0000) Printed 30 January 2023 (MN LATEX style file v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2) Linking the Interiors and Surfaces of Magnetic Stars Jim Fuller1⋆ and St´ephane Mathis2 1TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA 2Universit´e Paris-Saclay, Universit´e Paris Cit´e, CEA, CNRS, AIM, F-91191, Gif-sur-Yvette, France 30 January 2023 ABSTRACT Strong magnetic fields are observed in a substantial fraction of upper main se- quence stars and white dwarfs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Many such stars are observed to exhibit photometric modulations as the magnetic poles rotate in and out of view, which could be a con- sequence of magnetic perturbations to the star’s thermal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The magnetic pressure is typically larger than the gas pressure at the star’s photosphere, but much smaller than the gas pressure in the star’s interior, so the expected surface flux pertur- bations are not clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We compute magnetically perturbed stellar structures of young 3 M⊙ stars that are in both hydrostatic and thermal equilibrium, and which contain both poloidal and toroidal components of a dipolar magnetic field as expected for stable fossil fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This provides semi-analytical models of such fields in baroclinic stably stratified regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The star’s internal pressure, temperature, and flux perturba- tions can have a range of magnitudes, though we argue the most likely configurations exhibit flux perturbations much smaller than the ratio of surface magnetic pressure to surface gas pressure, but much larger than the ratio of surface magnetic pressure to central gas pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The magnetic pole is hotter than the equator in our models, but a cooler magnetic pole is possible depending on the magnetic field configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The expected flux variations for observed field strengths are δL/L ≲ 10−6, much smaller than those observed in magnetic stars, suggesting that observed perturbations stem from changes to the emergent spectrum rather than changes to the bolometric flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Key words: stars: evolution – stars: magnetic fields 1 INTRODUCTION Magnetic fields produce a substantial impact on the appear- ance of a star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In stars with convective envelopes, star spots are well known as regions of high magnetic field strength and low temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Some stars with radiative envelopes are also known to host strong magnetic fields (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Morel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Wade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Shultz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2019), and such stars frequently exhibit photometric variability at their rotation periods, suggesting that their emergent flux is altered by the magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, it is not clear how the magnetic fields actually affect the stellar structure and emergent flux, or whether photometric modulations can be used to learn about the strength of the star’s internal magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' One might expect magnetic fields to affect the photo- spheric temperature if the magnetic pressure is comparable to the photospheric gas pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Indeed, Cantiello & Braith- waite (2011) argued that magnetic spots on massive stars should be hot because they would have lower gas pressures (and therefore lower densities), allowing us to see deeper into ⋆ Email: jfuller@caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='edu the star where the temperature is higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Relatively mod- est magnetic fields of B ≳ 100 G are required for large flux perturbations in this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Observed photometric mod- ulations from stars with stronger magnetic fields, such as Ap stars that exhibit photometric modulation with ∼1-3% amplitudes (H¨ummerich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2018), are much smaller than naively predicted from this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The reason is that a star’s radiative flux will change in response to the magnetic perturbation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', the magnetic hot spot will cool off) until the star finds a new radia- tive equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Long-lived magnetic fields will thus pro- duce much different effects than transient fields arising from magnetic activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' To compute the perturbed structure of a star with a stable magnetic field, we must find a structure that is in both hydrostatic equilibrium and radiative equi- librium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For rotating stars, it is well known that no state of radiative equilibrium exists for solid body rotation, so that stars must either have very special rotation profiles (von Zeipel 1924;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Busse 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Rieutord 2006), or have currents that advect heat (Eddington 1929;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Sweet 1950) and restore a state of equilibrium (see Maeder 1999, Decressin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2009, Mathis 2013 for useful synopsis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our goal in this paper is © 0000 RAS arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='11914v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='SR] 27 Jan 2023 2 Fuller & Mathis to compute the special magnetic field profiles that allow for radiative equilibrium without requiring currents within the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In addition, the magnetic field configuration must be a stable equilibrium that does not unravel via magnetic insta- bilities such as those of purely toroidal fields (Tayler 1973) and purely poloidal fields (Markey & Tayler 1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Several works (Braithwaite & Spruit 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Braithwaite & Nordlund 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Braithwaite 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Broderick & Narayan 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Lyu- tikov 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Duez & Mathis 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Duez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2010b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Akg¨un et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Becerra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022b) have computed stable magnetic equilibria through analytic calculations or numer- ical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' These works agree that purely poloidal or toroidal magnetic field configurations are unstable, and that stable equilibria require similar toroidal and poloidal field strengths (Tayler 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Braithwaite 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Stable stratifica- tion (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', non-barotropic stars) is also required for long-term stability (Lander & Jones 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Akg¨un et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Becerra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic configurations decrease their mag- netic energy but approximately conserve their magnetic he- licity as they form and evolve (Braithwaite 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is the so-called selective decay as observed in plasmas in the laboratory (Taylor 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, recent works have com- puted stable field configurations through variational tech- niques that minimize total energy while conserving magnetic helicity (Broderick & Narayan 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Duez & Mathis 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, all of these works have assumed barotropic perturbations such that the perturbed temperature is di- rectly proportional to the perturbed pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' While these configurations are in hydrostratic equilibrium, they are not typically in thermal equlibrium, meaning that heat will be transported from high temperature to low temperature re- gions, changing the gas pressure and therefore the magnet- ically perturbed stellar structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This heat transport will occur on a thermal time (typically ∼106 yr in A-type stars), much shorter than Ohmic diffusion time scales (∼ 1010 yr) and main sequence life times (∼109 yr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, real stars will approach a state close to hydrostatic equilibrium and thermal equilibrium, which has not been considered in re- cent literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Accounting for thermal equilibrium is crucial for predicting the long-term equilibria of stars (Reiseneg- ger 2009), and observational manifestations such as the per- turbed surface flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Calculations of equilibrium magnetic configurations date back to the 1950s (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Chandrasekhar 1956;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Chan- drasekhar & Prendergast 1956).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Subsequent work included the effects of centrifugal distortion and meridional flows (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ostriker & Hartwick 1968;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Mestel & Moss 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Inter- estingly, works dating back to the 1960s (Monaghan 1966;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Davies 1968;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Wright 1969;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Moss 1973, 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2006) have attempted to compute the structures of stars in both hydrostatic and thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, much of this work is either difficult to interpret, does not discuss the per- turbed thermal structure and surface flux, does not consider fields with both poloidal and toroidal components, or has simply been forgotten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The goal of this paper is to provide updated calculations of magnetically distorted stars in sta- ble hydrostatic and thermal equilibrium for realistic stellar structures, and to discuss the observational implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this paper we primarily focus on application to up- per main sequence stars of M ≳1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 M⊙ with convective cores and radiative envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Much of the physics studied here could also apply to radiative stars such as white dwarfs and the radiative cores of red giants where internal fields can be detected through asteroseismology (Garc´ıa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Stello et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022) because of their impact on stellar oscillations (Fuller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Lecoanet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Loi 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Bugnet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Mathis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic upper main sequence stars have typical surface field strengths of ∼1 kG (see Braithwaite & Spruit 2017 for a review) and surface magnetic pressures larger than surface gas pressures, such that magnetic forces could be strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The surface magnetic morphologies are observed to be diverse: they can be com- plex or simple, axisymmetric or non-axisymmetric, poloidal or toroidal (Landstreet & Mathys 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Kochukhov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Shultz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, as a first step, in this work we examine simple dipolar magnetic configurations that produce quadrupolar temperature/pressure perturba- tions, which likely dominate observable photometric modu- lations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2 EQUILIBRIUM STRUCTURE Our goal is to calculate the structure of a magnetized star in hydrostatic and thermal equilibrium, considering non-force- free magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We begin from the equation for magne- tohydostratic equilibrium − ∇P − ρ∇Φ + (∇ × B) × B 4π = 0 , (1) where P is the pressure, ρ the density, Φ the gravitational potential, and B the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We choose to work in standard spherical coordinates with r the radius and θ the colatitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Following Duez & Mathis (2010), we decompose the magnetic field into a poloidal magnetic stream function Ψ and a toroidal magnetic flux F via B = √ 4π r sin θ ∇Ψ × ˆφ + √ 4π r sin θ F ˆφ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (2) This means that Br = √ 4π r2 sin θ ∂Ψ ∂θ , (3) Bθ = − √ 4π r sin θ ∂Ψ ∂r , (4) Bφ = √ 4π r sin θ F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (5) We consider an axisymmetric magnetic field such that Ψ and F are independent of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It can easily be verified that this field always satisfies ∇ · B = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The φ-component of equation 1 becomes − ∂F ∂θ ∂Ψ ∂r + ∂F ∂r ∂Ψ ∂θ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (6) This is always satisfied if F is a function of Ψ, or in other words, the poloidal flux Ψ uniquely determines F and hence the toroidal field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Broderick & Narayan (2008) and Duez & Mathis (2010) show that the lowest energy state has F = λ RΨ , (7) where the constant λ determines the magnetic helicity, and R is the stellar radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This clearly satisfies equation 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This © 0000 RAS, MNRAS 000, 000–000 Magnetic Structure 3 also results if we assume that F and Ψ have the same angular form, such that equation 6 reduces to 1 F dF dr = 1 Ψ dΨ dr .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (8) The solution to this equation is equation 7, for a constant λ that is independent of radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Writing out the hydrostatic equilibrium condition and using equation 7, the radial component of equation 1 be- comes − 1 r2 sin2 θ � λ2 R2 Ψ + ∆∗Ψ �∂Ψ ∂r = ∂P ∂r + ρ∂Φ ∂r , (9) while the θ-component is − 1 r2 sin2 θ � λ2 R2 Ψ + ∆∗Ψ �∂Ψ ∂θ = ∂P ∂θ + ρ∂Φ ∂θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (10) Here, ∆∗ is the “Grad-Shafranov” or “five-dimensional Laplacian” operator, defined as ∆∗ = ∂2 ∂r2 + sin θ r2 ∂ ∂θ � 1 sin θ ∂ ∂θ � = ∂2 ∂r2 + 1 − µ2 r2 ∂2 ∂µ2 , (11) where µ = cos θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is immediately evident from equations 9 and 10 that the field is force-free if λ2 R2 Ψ + ∆∗Ψ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (12) This results in a simple linear eigenvalue calculation for the magnetic potential Ψ, and is the type of field considered by Broderick & Narayan (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The work of Duez & Mathis (2010) considers a non-force-free field such that λ2 R2 Ψ + ∆∗Ψ = −βρr sin2 θ , (13) where β is a constant that determines the strength of the magnetic force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As an example, the case with λ = 0 and β = 0 corresponds to a force-free poloidal dipole field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This can be seen from equation 12, whose solution has Ψ ∝ r−1 and hence B ∝ r−3 in that case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A non-zero value of β alters both the magnetic forces and the radial profile of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Substitution of equation 13 into equations 9 and 10 yields βρ∇Ψ = ∇P + ρ∇Φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (14) Hence there is a direct relationship between the magnetic flux and the pressure perturbation for barotropic perturba- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Remarkably, the non-linear equations 9 and 10 have been transformed into a linear relationship between Ψ and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Taking the curl of equation 14 yields ∇ρ × ∇P = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (15) This implies that P is a function of ρ, and hence equation 13 is a solution for a barotropic equation of state such that density and pressure perturbations are directly proportional to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our work, we want to consider non-force-free fields that produce non-barotropic density and pressure pertur- bations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, we cannot use the approximations made in Broderick & Narayan (2008) or Duez & Mathis (2010), and we shall see that this generally leads to a series of non-linear differential equations that relate the magnetic field to den- sity, temperature, and pressure perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our calcu- lations, we parameterize the strength of the magnetic forces via a parameter β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Assuming barotropic perturbations en- tails that β (as defined in equation 13) is a constant within the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Accounting for radiative diffusion, this is no longer the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Nonetheless, we shall see below that we still require a parameter to specify the strength of the magnetic forces, which in practice is determined by the boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Since our stellar model has a convective core where equation 13 is a good approximation, we label our structures based on the resulting β in the convective core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1 Electric Currents The current density is j = ∇ × B 4π = λ 4πRBrˆr + λ 4πRBθ ˆθ − 1 √ 4πr sin θ ∆∗Ψˆφ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (16) The force-free field of equation 12 occurs when j is parallel to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Force-free fields are also obtained when Ψ = 0 (no magnetic field) or from current-free fields, which only occur when both λ = 0 and and ∆∗Ψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Note that the radial current is proportional to the radial magnetic field, hence a vanishing radial current near the surface of the star re- quires a vanishing radial field Br, which in turn requires Ψ to vanish at the stellar surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 Hydrostatic Equilibrium In order to determine an equilibrium state, we use a linear approximation such that perturbations to background quan- tities (ρ, P, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=') are considered to be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The linearized version of the radial momentum equation (9) is − 1 r2 sin2 θ � λ2 R2 Ψ+∆∗Ψ �∂Ψ ∂r = ∂ ∂r δP +ρ ∂ ∂r δΦ+gδρ , (17) while the θ-component of equation (10) is − 1 r2 sin2 θ � λ2 R2 Ψ + ∆∗Ψ �∂Ψ ∂θ = ∂ ∂θ δP + ρ ∂ ∂θ δΦ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (18) Here, δ indicates an Eulerian perturbation, and we have used a background in hydrostatic equilibrium with dP/dr = −ρg, and g = dΦ/dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We next turn to the angular dependence of the magnetic field and the perturbations to the stellar structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Decom- posing Ψ into eigenvalues of the horizontal component of ∆∗ requires (1 − µ2) ∂2 ∂µ2 gℓ(µ) = −ℓ(ℓ + 1)gℓ(µ) , (19) where gℓ is the angular eigenfunction corresponding to the eigenvalue −ℓ(ℓ + 1) of the operator on the left hand side of equation 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The full response is Ψ = � ℓ Ψℓgℓ(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As discussed in Duez & Mathis (2010), the eigenvalue equation above has solutions gℓ(µ) = (1 − µ2)Pℓ−1(µ) , (20) where Pℓ is a Legendre polynomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For the lowest order (dipole) solution with ℓ = 1, we © 0000 RAS, MNRAS 000, 000–000 4 Fuller & Mathis Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic field lines of a star for a toroidal field com- parable to the poloidal field (λ2 = 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic field lines are colored by field strength, while the color shading indicates the radiative flux perturbation at a given radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' have gℓ(µ) = (1 − µ2) and hence Ψ = Ψℓ(r) sin2 θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Plugging this into equation 17 yields − sin2(θ) r2 � ∂2 ∂r2 Ψℓ(r) − ℓ(ℓ + 1) r2 Ψℓ(r) + λ2 R2 Ψℓ(r) �∂Ψℓ(r) ∂r = ∂ ∂r δP + ρ ∂ ∂r δΦ + gδρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (21) We see that the perturbed density, pressure, and poten- tial must have angular form δP ∝ sin2(θ), which is a combination of the ℓ = 2 and ℓ = 0 spherical harmon- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence a dipole magnetic field induces both radial and quadrupole components to the star’s distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 1 illustrates the geometry of a dipolar magnetic field with helicity λ2 = 10 that induces quadrupolar flux perturba- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The quadrupole (ℓ = 2) component of the field in- duces ℓ = 4, ℓ = 2, and ℓ = 0 components of the stellar distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We thus have the unfortunate situation that the angular eigenfunctions of the magnetic and hydrodynamic variables are not the same, meaning that the radial and angular parts of the response cannot generally be separated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this work, we limit ourselves to dipole magnetic field configurations, which induce ℓ = 0 and ℓ = 2 components to the stellar structure perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We are not interested in the ℓ = 0 component of the stellar response, as it is the non-radial magnetic distortions that draw our focus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, from here forward, we consider a dipole (ℓ = 1) magnetic field and the quadrupolar (ℓ = 2) component of the stellar response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Letting the pressure response be δP = a0δp0(r)Y00(θ) + a2δp2(r)Y20(θ) (22) and setting the angular dependence equal to sin2 θ requires a2 = − � 16π/45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The radial component of the response is then a0δp0(r) = (4√π/3)δp2(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Dropping the (r) depen- dence and subscripts of Ψℓ and δp2 for simplicity, equations 17 and 18 can be written � ∂2 ∂r2 Ψ − ℓ(ℓ + 1) r2 Ψ + λ2 R2 Ψ �∂Ψ ∂r = −r2 ∂δp ∂r − r2ρ ∂ ∂r δΦ − r2gδρ , (23) � ∂2 ∂r2 Ψ − ℓ(ℓ + 1) r2 Ψ + λ2 R2 Ψ � Ψ = −r2δp − r2ρδΦ , (24) and it is now understood that these equations are only valid for ℓ = 1 and δp, δΦ etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' refer to the quadrupolar part of the stellar response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Equation 24 can be substituted into equation 23 to obtain � δp + ρδΦ �∂Ψ ∂r = �∂δp ∂r + ρ ∂ ∂r δΦ + gδρ � Ψ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (25) However, we have divided by Ψ to obtain this equation, so we must be wary of solutions that cross Ψ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The gravitational potential perturbation is given by Poisson’s equation, ∇2δΦ = 4πGδρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (26) This can be written in terms of two first-order equations, ∂ ∂r δΦ − δΦ′ = 0 , (27) ∂ ∂r δΦ′ + 2 r δΦ′ − (ℓ + 1)(ℓ + 2) r2 δΦ − 4πGδρ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (28) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='3 Thermal Equilibrium We next turn to the equations of thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' En- ergy conservation requires ρT ds dt = ρϵ − ∇ · F , (29) where T is temperature, s is specific entropy, ϵ is the specific energy generation rate, and F is the energy flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In thermal equilibrium, the entropy is constant, and the background state only has a radial flux 4πr2F = L, which entails that dL/dr = 4πρr2ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Additionally, the energy flux is F = −χ∇T (30) where χ = 4acT 3 3κρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (31) is the thermal diffusivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This means that the background temperature gradient is dT/dr = −L/(4πr2χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For a perturbation in thermal equilibrium, the Eulerian perturbation of equation 29 is ∇ · δF − δρϵ − ρδϵ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (32) The Eulerian perturbation of equation 30 is δF = −δχdT dr ˆr − χ∇δT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (33) Taking the horizontal divergence of the horizontal part of this equation yields ∇⊥ · δF⊥ = −χ∇2 ⊥δT , (34) © 0000 RAS, MNRAS 000, 000–000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 Flux Perturbation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5Magnetic Structure 5 where ∇2 ⊥ = −(ℓ+1)(ℓ+2)/r2 since we are considering per- turbations with spherical harmonics of degree ℓ+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Plugging this into equation 32 and using 4πr2δFr = δL, we obtain ∂ ∂r δL + 4π(ℓ + 1)(ℓ + 2)χδT − 4πρr2 �δρ ρ ϵ + δϵ � = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (35) This can be rewritten r ∂ ∂r δL Ls + 4π(ℓ + 1)(ℓ + 2)χTr Ls δT T − r Ls dL dr �δρ ρ + δϵ ϵ � = 0 , (36) where Ls is the star’s surface luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The energy gen- eration perturbation can be expanded as δϵ/ϵ = ϵT δT/T + ϵρδρ/ρ, where ϵT = (∂ ln ϵ/∂ ln T)ρ and ϵρ = (∂ ln ϵ/∂ ln ρ)T , yielding r ∂ ∂r δL Ls + 4π(ℓ + 1)(ℓ + 2)χTr Ls δT T − r Ls dL dr � (1 + ϵρ)δρ ρ + ϵT δT T � = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (37) The radial component of equation 33 can be written δFr F = � 3δT T − δκ κ − δρ ρ � − χ F ∂δT ∂r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (38) Using δκ/κ = κT δT/T + κρδρ/ρ, where κT = (∂ ln κ/∂ ln T)ρ and κρ = (∂ ln κ/∂ ln ρ)T , this can be writ- ten as r ∂ ∂r �δT T � + L 4πrχT �δL L − (4 − κT )∂T T + (1 + κρ)δρ ρ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (39) Finally, we require an equation of state to close the system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is given by δP P − χT δT T − χρ δρ ρ = 0 , (40) where χT = (∂ ln P/∂ ln T)ρ and χρ = (∂ ln P/∂ ln ρ)T and are determined by the equation of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is valid if the composition is uniform, otherwise there will be an additional term in equation 40, which we discuss in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 Equations and Boundary Conditions Putting everything together, we have a system of equations that can be solved for six variables: Ψ and its radial deriva- tive Ψ′ = ∂Ψ/∂r, and the Eulerian perturbations δP, δρ, δT, and δL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The equations can be written ∂ ∂r Ψ − Ψ′ = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (41) r2Ψ ∂ ∂r Ψ′+ �λ2r2 R2 −ℓ(ℓ+1) � Ψ2+r4P δP P +r4ρδΦ = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (42) rΨ ∂ ∂r δP P + ρgr P ΨδP P + rρ P Ψ ∂ ∂r δΦ + ρgr P Ψδρ ρ − rΨ′ �δP P + ρδΦ P � = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (43) r ∂ ∂r �δT T � + L 4πrχT �δL L − (4 − κT )δT T + (1 + κρ)δρ ρ � = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (44) r ∂ ∂r δL Ls + 4π(ℓ + 1)(ℓ + 2)χTr Ls δT T − r Ls dL dr � (1 + ϵρ)δρ ρ + ϵT δT T � = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (45) along with Poisson’s equation (equations 27 and 28) and the equation of state (equation 40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This system contains seven first-order differential equations, two of which are non-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' They depend on the field geometry ℓ (assumed to be ℓ = 1 here), and the magnetic helicity λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This system of equations requires seven boundary con- ditions in order to be solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' At the inner boundary, we require Ψ = 0 (46) δP P = 0 , (47) and δΦ = 0 , (48) These ensure that δT/T, δρ/ρ, and δL/Ls are also zero at the center of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' At the surface, we require the blackbody radiation con- dition ∆L Ls − 4∆T T − 2ξr r = 0 , (49) where ∆ indicates a Lagrangian perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Using dL/dr = 0 at the surface, and the surface pressure boundary condition ∆P = 0, which becomes (P/ρgr)δP/P = ξr/r ≪ δP/P, we can drop the last term, and this can be written as δL Ls − 4δT T + 4∇δP P = 0 , (50) where ∇ = d ln T/d ln P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' At the outer boundary we require a decaying potential perturbation: δΦ′ = −ℓ + 2 r Φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (51) Additionally, the amplitude of the response can be chosen with a normalization condition at the surface, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ψ = √ GM 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (52) Finally, we require another boundary condition at the surface that determines the amplitude of another variable (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', δT/T or δL/Ls), relative to Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This boundary condi- tion will determine the amplitude of the surface flux pertur- bation and can be considered to be a measure of the strength of the magnetic forces within the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is similar to speci- fying the strength of the magnetic forces in barotropic stars with a β parameter as described in Duez & Mathis (2010) and in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In practice, we set the luminosity per- turbation at the outer boundary in order to determine an effective value of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Setting δL = 0 at the outer boundary would be equivalent to setting β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We pause to note a few important points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' First, the dis- placement vector ξ does not appear anywhere in our system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Lagrangian perturbations cannot be calculated from this system of equations, except at the surface where ξr/r = (P/ρgr)δP/P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Physically this arises from the fact that in a thermally relaxed system of uniform composition, there are an infinite number of combinations of radial and © 0000 RAS, MNRAS 000, 000–000 6 Fuller & Mathis horizontal displacements ξr and ξ⊥ that could give rise to a given density perturbation δρ/ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is discussed further in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A second important point is that we have not imposed a surface boundary condition in which the poloidal or toroidal component of the magnetic field goes to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is quite different from the fields studied in Broderick & Narayan (2008) and Duez & Mathis (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A non-zero toroidal field requires a current to flow at the surface of the star, which is often assumed to be zero due to the vanishing density and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Real stars, however, do not have zero tem- perature or density in their photospheres or coronae, which can support currents and toroidal fields (Kochukhov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Shulyak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2007, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Therefore, we do not im- pose Ψ = 0 at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A consequence of relaxing this condition is that λ is no longer an eigenvalue, and the system of equations can now be solved for any value of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Alternatively, one could argue that the radial compo- nent of the electric current (Equation 16) should vanish at the surface of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This would require Br = 0 and hence Ψ = 0 as discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1, and imposed by Broderick & Narayan (2008) and Duez & Mathis (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This eighth boundary condition would transform our system of seven differential equations into an eigenvalue problem that could only be solved for certain combinations of λ and the surface flux perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We discuss this further in Section 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 Convective Zones In convective zones, the radiative diffusion equation no longer applies, and equations 44 and 45 are not valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In- stead, we assume that the perturbation to the entropy is nearly zero, as convective heat flux will quickly smooth out any entropy gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We therefore have d ln T d ln P = ∇ad = Γ3 − 1 Γ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (53) Perturbing this yields δT T − Γ3 − 1 Γ1 δP P = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (54) and δP P − Γ1 δρ ρ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (55) Since the perturbations are barotropic, the system of equations 41-43 simplifies, as discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this case, the system of equations reduces to that of Duez & Mathis (2010): ∂ ∂r Ψ − Ψ′ = 0 , (56) ∂ ∂r Ψ′ + � λ2 R2 − ℓ(ℓ + 1) r2 � Ψ + βr2ρ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (57) Here, β is a constant that determines the magnitude of the magnetic force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Comparison with equation 14 shows that the pressure perturbation is δP P + ρδΦ P = βρΨ P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (58) Equations 56 and 57 combine into a linear wave equation: ∂2 ∂r2 Ψ + � λ2 R2 − ℓ(ℓ + 1) r2 � Ψ + βr2ρ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (59) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 Linking Convective and Radiative Zones In this work we only consider stars with convective cores and radiative envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' To solve for the magnetic field in the full star, we choose a value of λ and a surface flux per- turbation δL/L, which effectively sets the magnetic forces and the value of β within the convective zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Within the convective zone, we replace equation 44 with equation 54, and we replace equation 45 with ∂δL/∂r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, the value of δL is not defined in the convective zone, only within the radiative zone above it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our solutions, we verify that equation 58 is approximately satisfied within the convective region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We then label our solutions by the corresponding value of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='7 Solving the Equations We solve the system of equations above in a stellar model generated with the MESA stellar evolution code (Paxton et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We choose a M = 3 M⊙ star at the start of the main sequence, with a radius of R = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1 R⊙, a surface tem- perature of Teff = 11, 800 K, and a convective core bound- ary at r/R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This model resembles typical magnetic Ap/Bp stars that are observed to harbor strong magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our model has nearly uniform stellar composition so that the equation of state (equation 40) is a good approxi- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We use a relaxation technique from Numerical Recipes (Press et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2007) to solve the system of equations in Sec- tion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We solve the equations on the same grid as the underlying MESA model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A good initial guess is often re- quired in order reliably to converge to a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Spurious solutions (involving sudden jumps in the derivatives of δP and Ψ) are often found, so caution is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' There may be other physical solutions that exist that we do not examine in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3 SOLUTIONS In our models, both λ and β are free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Physi- cally, λ represents the magnetic helicity which is determined by the dynamo process that created the field, and which is roughly conserved during subsequent turbulent relaxation (Braithwaite 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Duez & Mathis 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The lowest en- ergy stable field configurations have λ ∼ 1, so λ values in the range of 1-10 are reasonable expectations for real stars, though larger values are possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The value of β determines the relative strength of magnetic forces as described in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 2 and 3 show the magnetic field configuration for a model with λ2 = β = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The poloidal field is largest at the center of the star, where its field strength is roughly four times larger than the surface value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The toroidal field is largest at r/R ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We shall see below that β = 10 is small such that the magnetic field is similar to a force-free field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For this value of λ, there is a null point (where Bθ = 0 © 0000 RAS, MNRAS 000, 000–000 Magnetic Structure 7 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Meridional slices of a star, with color shading indicating the strength of the toroidal magnetic field (left) and poloidal magnetic field (right) normalized to the maximum magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Orange lines show magnetic field lines of the poloidal field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This model has magnetic helicity λ2 = 10 and magnetic force β = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Radius 0 2 4 Magnetic Field λ 2 = 10 β = 10 Br Bθ Bφ 0 10 20 Magnetic Field λ 2 = 17 β = 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius 0 10 20 30 Magnetic Field λ 2 = 10 β = 110 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Radial profiles of the r, θ, and φ-components of the magnetic field, scaled to the radial field at the surface, for models with β = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Panels are labeled by their values of λ2 and β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Note that the field is much more centrally concentrated for higher values of λ or β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' and the field lines converge to closed loops at the equator) at r/R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Both the poloidal and toroidal fields extend above the surface of the star, where the field is force-free but is not current-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 4, 5, and 6 show the magnetic potential Ψ, pres- sure perturbation δP/P, and luminosity perturbation δL/L as a function of radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In Figure 4, each curve has a dif- ferent value of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Higher values of λ cause more oscillatory variation of Ψ, as can be seen in equation 59 where the radial wavenumber of Ψ is roughly � λ2/R2 − ℓ(ℓ + 1)/r2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Higher values of λ push the null point and toroidal field maximum deeper into the star, and also cause the central field strengths to become larger relative to the surface field strength, as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this stellar model, a value of λ ≃ 20 is the first value of λ for which Ψ = 0 at the sur- face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' From equation 42 we see that Ψ = 0 requires δP = 0, so the Eulerian pressure perturbation is always zero where the radial component of the field is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For larger values of λ or β, the values of Ψ and δP approach zero somewhere within the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' When this hap- pens, the numerical solutions exhibit strange behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The values of Ψ′ and ∂δP/∂r sometimes exhibit discontinuous jumps at the zero-crossings of Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, the radial mag- netic field, pressure perturbation, and temperature pertur- bations are all continuous across these zero-crossings (only their derivatives are discontinuous).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is unclear if these so- lutions are physical or numerical artifacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Physically, these solutions would exhibit a discontinuity in the θ-component of the magnetic field, an associated current sheet, and a discontinuity in both the magnetic force and the pressure force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Because the physicality of these solutions is unclear and they also sometimes cause numerical convergence prob- lems, we will not investigate them further in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' More highly oscillatory solutions also represent higher en- ergy states (Broderick & Narayan 2008) and may be less © 0000 RAS, MNRAS 000, 000–000 Toroidal Field Poloidal Field 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Z 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0 0 x/R x/R8 Fuller & Mathis 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Ψ 10−1 100 101 102 103 δP/P λ 2 =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius −20 −15 −10 −5 0 5 δL Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Profiles of the magnetic potential Ψ, relative pressure perturbation δP/P, and luminosity perturbation δL (in units of Lsurf) as a function of radius for a model with β = 10 and varying values of the helicity λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' All quantities are normalized so that Ψ = 1 at its maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Stronger toroidal fields (larger λ) create more oscillatory magnetic fields, but the associated surface luminosity perturbation varies only slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The large values of δP/P near the surface are discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' likely to exist in stars that have relaxed to a minimum en- ergy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In Figure 4, the relatively small value of β = 10 means that the pressure and density terms in equation 42 are neg- ligible relative to the magnetic terms, and the field is nearly force-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The magnetic solutions are thus similar to the force-free solutions of Broderick & Narayan (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this limit, the perturbed pressure, temperature, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' have a value that is proportional to β, with a radial dependence that is determined only by λ and the structure of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This can be seen from equation 58, such that the value of δP, δT, and δL are roughly proportional to β at the radiative convective interface, and hence within the bulk of the ra- diative zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is demonstrated in Figure 5 and 6, where the pressure and luminosity fluctuations have similar pro- files and increase linearly with β, as long as β ≲ 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, a wide range in surface temperature and flux variations are possible for a given surface field, depending on the strength of the magnetic forces, parameterized by β in these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For larger values of β, however, the pressure/density terms in equation 42 become comparable to the magnetic terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Physically this means that gas pressure forces begin competing with magnetic forces, altering the profile of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Large values of β have a similar effect to larger values of λ, causing more oscillatory behavior of the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Ψ 10−1 100 101 102 103 δP/P β =4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 β =23 β =61 β =110 β =160 β =200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius −400 −200 0 200 δL Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Same as Figure 4, but for a model with λ2 = 10 and varying values of β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Larger magnetic forces (higher values of β) create larger surface luminosity perturbations and more oscilla- tory magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' magnetic potential Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The surface pressure and luminosity perturbations reach a maximum when β ∼ 200, and decrease at larger values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is because Ψ (and hence δP) become smaller near the surface at large values of β as gas pressure forces start backreacting on the magnetic field profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The magnitude of β needed to have a large influence on the field profile can be seen from equation 59: β must be large enough for the last term to be comparable to the second term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Deep within the star, this requires β ∼ ℓ(ℓ+1)Ψ/(ρr4), which typ- ically has a value of a couple hundred for our stellar model and normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' From Figure 4-6, we see that δP/P typically approaches very large values near the surface of the star, because P reaches very small values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, the value of δP ap- proaches very small values δP ≃ ρgξr near the surface, such that the Lagrangian pressure perturbation ∆P = δP − ρgξr smoothly approaches zero at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The value of δP/P thus approaches δP/P ≃ ξr/H at the star’s surface, which becomes large as the pressure scale height H becomes small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Although δP/P peaks near the surface, the value of δP peaks at radii of r/R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2, as can be seen in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The values of δρ and δΦ show similar behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In contrast, the value of δT increases within the con- vective zone and then maintains a roughly constant profile throughout the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The derivative of δT has a discontinuity at the convective interface due to the change in structure and energy transport mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Within the convective core, δT is directly proportional to δP which is proportional to Ψ © 0000 RAS, MNRAS 000, 000–000 Magnetic Structure 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Ψ 10−1 100 101 102 103 δP/P β =8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='7 β =79 β =140 β =220 β =270 β =290 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius −600 −400 −200 0 200 400 δL Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Same as Figure 5, but for a model with λ2 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Al- though the magnetic structure is somewhat different, the surface luminosity perturbations are similar to the case in Figure 5 with stronger toroidal fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius −20 −10 0 10 20 30 Ψ×30 δP δT ×20 δρ δL δΦ×3 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The magnetic potential Ψ (units of √ GM2), pressure perturbation δP (units of GM2/R4), temperature perturbation δT (units of Tcen), density perturbation δρ (units of M/R3), lumi- nosity perturbation δL (units of Lsurf), and gravitational poten- tial perturbation δΦ (units of GM/R) for a model with λ2 = 10, β = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The kinks at r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='13 occur at the boundary of the convective core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (equations 54 and 58), but in the radiative zone δT is de- termined by the thermal equilibrium conditions (equations 44 and 45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This causes oscillatory variations in δT in the outer layers of the star, due to variations in the thermal dif- fusivity χ caused by opacity variations in partial ionization zones near the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Nevertheless, the luminosity perturbation δL always changes smoothly and gradually throughout the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Phys- ically this occurs because sudden changes in δL would be smoothed out by radiative diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Mathematically this can be seen from equation 45, because the values of χTr/L and d ln L/d ln r become very small near the surface of the star, preventing sudden variation in δL, despite large values of δP/P and δT/T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Interestingly, in all of our models, the luminosity perturbation switches sign at r/R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='23 within the radiative region above the convective core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1 Surface Flux Perturbation All of our models have negative surface luminosity pertur- bations δL2 as shown in the figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, the quadrupo- lar component of the physical response (see equation 22) is δL = δL2(1/3−cos2 θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, a negative value of δL2 trans- lates to a positive flux perturbation at the magnetic pole and a negative flux perturbation at the magnetic equator, as shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is consistent with the heuristic idea that strong magnetic pressure at the star’s pole causes the gas pressure and density to be smaller, allowing us to see deeper into the star such that magnetic spots are brighter (Cantiello & Braithwaite 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, it is also possible for our models to produce a negative flux perturbation at the magnetic pole if we consider negative values of β, so in principle it is possible for the magnetic pole to be either hot or cool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Below we argue that a hot magnetic pole is more likely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The value of the surface flux perturbation in our models is δL/L ∼ βΨ2 max, where Ψmax is the maximum value of Ψ reached within the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Since we have normalized Ψmax to units of √ GM 2, this implies δL L ∼ β 4π B2 maxr4 max GM 2 , (60) where Bmax and rmax are the magnetic field and radius where Ψ peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our models, this roughly translates to δL L ∼ 10−11β �Bsurf 1kG �2� R R⊙ �4� M M⊙ �−2 , (61) where Bsurf is the magnetic field at the star’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Clearly this is too small to be detected in main sequence stars un- less extremely large values of β are assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Equation 61 is consistent with a naive estimate from the von Zeipel the- orem applied to the star’s interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The smoothly varying magnetic fields of our models produce magnetic forces of order fmag ∼ βB2/(ρr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Using the average stellar density ρ ∼ M/R3 and gravitational force g ∼ GM/R2 yields the von Zeipel estimate of δF/F ∼ fmag/g ∼ βB2R4/GM 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 Most likely field configurations As mentioned in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1, the radial current jr may be expected to be close to zero near the surface of the star so that current does not flow into the star’s low-density © 0000 RAS, MNRAS 000, 000–000 10 Fuller & Mathis 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Ψ 10−1 101 103 δP/P λ 2 =10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 λ 2 =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='0 Radius −600 −400 −200 0 200 400 δL Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic structures for models whose poloidal com- ponent has a potential profile (Ψ ∝ r−ℓ) at the outer boundary, for various magnetic helicities λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This outer boundary condition effectively sets the strength of magnetic forces, β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Configurations similar to these may be more likely to exist in real stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' From equation 16, the only way this can happen is when λ2 = 0 or Ψ = 0 at the surface of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' If there are near-surface toroidal fields, Ψ (and hence Br) must be zero to have a non-zero current flowing out of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence there is a critical value β0 such that Ψ = 0 at the star’s surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 5 indicates this occurs at β0 ≃200 and δL/L ∼ −400 for λ2 = 10 in our stellar model, or β0 ≃ 300 and δL/L ∼ −500 for λ2 = 2 (Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, those so- lutions are arguably the most physically probable amongst the possibilities shown here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Fireffig:magstrucvis shows the predicted surface flux variations for β = β0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Even though the large values of β increase the surface flux perturbation above the naive estimate discussed above, it is too small to be detected with current instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Another possibility is that the value of λ2 is not con- stant within the star due to dissipative effects near the sur- face.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In that case, one may expect the value of λ to de- crease near the star’s surface, allowing the radial current to vanish and still have a large value of Ψ and hence a non-zero radial magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' If the electric currents de- crease to zero near or above the surface, the field must ap- proach a potential configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Potential force-free fields have ∂Ψ/∂r2 = ℓ(ℓ + 1)Ψ/r2, and an outwardly decreasing field has Ψ ∝ r−ℓ and hence B ∝ r−(ℓ+2), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', a dipole field for our assumed value of ℓ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' To model this case, we set the outer boundary condition to ∂Ψ/∂r = −ℓΨ/r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The fixed 103 104 105 106 Surface Poloidal Field Strength (G) 10−8 10−7 10−6 10−5 10−4 10−3 Surface Luminosity Perturbation λ 2 = 10, β = β0 λ 2 = 2, β = β0 λ 2 = 9, β = βpot λ 2 = 2, β = βpot Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The surface luminosity perturbation as a function of surface magnetic field strength for models with β = β0, such that the radial component of the magnetic field and electric current vanish at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We also plot luminosity perturbations for β = βpot such that the poloidal field has a potential profile at the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In either case, very strong magnetic fields are required for detectable luminosity perturbations in main sequence stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Ob- served photometric variations of magnetic stars likely arise from variations in the emergent spectrum rather than variations in the bolometric flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' slope at the outer boundary effectively sets the value of β, which we refer to as βpot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 8 shows the results of this calculation for several values of λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The required values of βpot are typically sim- ilar to (but smaller than) β0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', values on the order of a hundred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For λ2 ≃ 10, a nearly force-free field satisfies the potential outer boundary condition, such that βpot ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' For larger values of λ, the required βpot is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, we find those solutions almost always have a zero-crossing somewhere in the star, and cause numerical problems, so we do not investigate them further in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We note that they would likely entail surface flux perturbations of the opposite sign, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', a cool magnetic pole and hot magnetic equator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Figure 9 shows the surface luminosity perturba- tions for β = βpot, which are a similar magnitude to those with β = β0, and not detectable for observed magnetic field strengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='3 Shape of Distorted Star The sign of the pressure/density perturbations near the sur- face of the star determine wither it becomes oblate (smaller photospheric radius at magnetic pole) or prolate (larger radius at magnetic pole).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As discussed above, we believe negative Eulerian pressure perturbations at the magnetic pole are most likely, which means the surface displacement ξr = δP/(ρg) is also negative at the magnetic pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, magnetically distorted stars are likely to be oblate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Heuris- tically, this is consistent with the idea that high magnetic pressure at the star’s pole (or magnetic tension near the equator) squeezes the star into a flattened shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' © 0000 RAS, MNRAS 000, 000–000 Magnetic Structure 11 The star’s ellipticity is ε = ξr,surf R = δP P H R ∼ β × 10−10 �Bsurf 1kG �2� R R⊙ �4� M M⊙ �−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (62) Similar to the flux perturbations, this is too small to detect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The quadrupole moment of the star is Q = � δρr4Y ∗ 20dΩdr MR2 ∼ β × 10−12 �Bsurf 1kG �2� R R⊙ �4� M M⊙ �−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (63) The quadrupole moment of the star is even tinier than other perturbations because the density perturbation is largest near r ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2, providing a small lever arm for the quadrupole moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 Ohmic Heating and Poynting Flux Our models ignore non-ideal effects such as Ohmic heating that will inevitably cause the field to decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As long as these effects are small, our approximations are suitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We first investigate the effect of Ohmic heating in our models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The heating rate per unit volume is ρϵOhm = 4πηj2 (64) where the current density j is given in equation 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence the heating rate is ρϵOhm = η λ2 4πR2 � B2 r + B2 θ � + η r2 sin2 θ (∆∗Ψ)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (65) Using equations 3, 5, and manipulating equation 18, this can be expressed ρϵOhm = η sin2 θ r2 � −4 r2R2 Ψ2 + 1 R2 Ψ′2 + �r2(δP + ρδΦ) Ψ + λ2 R2 Ψ �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (66) The angular dependence is sin2 θ, and we have removed a spherically symmetric term since we are only interested in the non-spherical component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Equation 66 can be compared to other sources of heat generation and/or heat diffusion in equation 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We find that the Ohmic heating term is roughly three orders of magni- tude smaller than the heat diffusion term (second term in equation 45) for all the models shown in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, Ohmic heating is irrelevant for these models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Likely a more important effect is that the Ohmic diffu- sion time tOhm = r2/η drops sharply near the surface of the star, falling to ∼ 1 Gyr near the surface of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The diffusion time scale is even shorter in the atmosphere of the star and could be shorter than the star’s lifetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Conse- quently, the fields will dissipate or change their morphology within the star’s atmosphere until they approach a current- free (and force-free configuration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This will bend the field lines and hence create magnetic forces within the star until it approaches a new (quasi)-equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Another way of seeing this is by examining the Poynting flux (see Duez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2010a): Fpoy = ∇ · � ηFmag � (67) where Fmag = (∇ × B) × B/4π is the Lorentz force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The Poynting flux represents the decrease of electromagnetic en- ergy per unit volume, and it has the same order of magnitude as the Ohmic heating rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As the fields dissipate, their en- ergy density changes until the Poynting flux is nearly zero, which happens on Ohmic diffusion time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Landstreet (1987) discusses the importance of magnetic forces arising due to Ohmic dissipation, finding they are likely negligible for main sequence stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, over long time scales, the morphology of the magnetic field will be altered away from the solutions we have computed, which could also affect the emerging luminosity perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='5 Linearity and near-surface effects Since the value of δP/P can become very large near the sur- face of the star (Figure 5-8), non-linear effects may also start to be important in the near-surface layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our models, the δP/P eigenfunction is 1-2 orders of magnitude larger than the surface luminosity perturbation δL/L, which is plotted as a function of surface field strength in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, δP/P remains very small except for unphysically large sur- face field strengths B ≳ 105 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, we placed the outer boundary at a radius of r/R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='99 in our calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This allowed us to avoid uncertainties associated with the response of near-surface convective layers above our outer boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The value of δP/P likely continues to increase towards the surface (be- cause P drops sharply), so it is possible that non-linear ef- fects start to become important near the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is un- likely that this affects the luminosity perturbation, which changes smoothly with radius and cannot be greatly affected in the near-surface layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Hence, the magnetic field profiles and luminosity perturbations that we calculate are probably robust, but the near-surface pressure and temperature pro- files could be affected by these surface effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In principle, this could affect the spectrum of the star, which is sensitive the atmospheric temperature profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 4 DISCUSSION 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1 Stability of Equilibrium The magnetic field configurations we have computed are in hydrostatic and radiative equilibrium, but we have not investigated whether these equilibria are stable or unsta- ble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Braithwaite (2009) (see also Akg¨un et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Becerra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022b) showed that stable magnetic equilibria require Etor ≳ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='25Epol, where Etor and Epol are the toroidal and poloidal magnetic field energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' All of our models satisfy this criterion (they typically have Etor/Epol ∼ 1) except for the λ2 = 2 models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' They also fall below the upper limit for stability, Emag ≲ (1/10)GM 2/R for surface field strengths less than ∼ 1 MG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Nonetheless, it is possible that some of our models are unstable, which should be examined in fu- ture work using 3D numerical simulations (Duez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2010b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Kaufman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' © 0000 RAS, MNRAS 000, 000–000 12 Fuller & Mathis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='2 More Realistic Field Configurations A limitation of our work is the assumption of a field with purely dipole structure, whereas real fields likely have a more complicated angular structure that changes with ra- dius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As discussed above, real fields likely have vanishing current above the photosphere which (according to our solu- tions, equation 16) require vanishing Br or vanishing λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The first conflicts with observations of real stars (Landstreet & Mathys 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Oksala et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Shultz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2019) while the second implies purely poloidal fields which are well known to be unstable (Markey & Tayler 1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It is likely that a real star has a more complicated angular and radial field dependence, such that the electric currents vanish in the near-vacuum outside the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In these configurations, the toroidal magnetic field vanishes on magnetic field lines that penetrate the surface of the star (Lyutikov 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' These sorts of configurations have been computed near the surface of a star in Raadu (1971);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Milsom & Wright (1976), or in the interior for parameterized field configu- rations (Lyutikov 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Akg¨un et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Becerra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2022b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, these configurations are not in thermal equilibrium and therefore not stable over thermal time scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Computing such fields in the bulk of a star and ac- counting for thermal and hydrostatic equilibrium will re- quire the solutions of partial differential equations, which is beyond the scope of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We suspect that such con- figurations (which appear qualitatively similar to those we compute) will alter our results by a factor of order unity, but will not greatly change any of our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='3 Estimating the Perturbed Surface Flux Our solutions which map onto Br = 0 or Br ∝ r−(ℓ+2) may resemble more realistic magnetic field configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We find that large values of β ∼200 are required for typical toroidal fluxes of λ2 ∼ 1 − 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This entails internal temper- ature, pressure, and flux perturbations that are ∼200 times larger than a naive estimate of ∼B2/(GM 2/R4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Nonethe- less, even for the strongest observed fields of B ∼ 10 kG in main sequence stars, the bolometric luminosity variation is δL/L ≲ 10−6 (Figure 9) and is not detectable even with high-quality space-based photometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Applying von Zeipel’s law near the surface of the star, one might expect magnetic fields to produce flux perturba- tions of order δL L ∼ fmag fgrav ∼ B2 surf 4πρRg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (68) This translates to δL L ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='004 �Bsurf 1 kG �2� ρ 10−8g/cm3 �−1� M M⊙ �−1� R R⊙ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (69) This is several orders of magnitude larger than our calcula- tions, clearly ruling out this expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Even though mag- netic forces can be comparable to gravity near the star’s surface, this applies only in a very thin layer near the photo- sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The deep interior (where the outgoing thermal flux is determined) has much higher density and is only weakly dis- torted, leading to a flux perturbation on the order of equa- tion 61, which is the von Zeipel expectation applied to the deep interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The even more naive estimate δL L ∼ Pmag Pgas ∼ 4 �Bsurf 1 kG �2� Pgas 104erg cm−3 �−1 (70) can be ruled out for the same reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' It would be useful to relate the observed flux perturba- tion or surface magnetic field strength to a star’s internal magnetic field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This will be difficult to accomplish from flux perturbations until a better understanding of their cause is established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our results suggest that central mag- netic field strengths can be anywhere from ∼3-50 larger than surface field strengths (see Figure 3) which is in qualita- tive agreement with numerical simulations by Braithwaite (2008) (see Figure 8 of that work), with higher central field strengths for higher magnetic forces or helicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The force will be difficult to observationally quantify but the helicity could potentially be determined if the star’s surface toroidal field can be measured (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Figure 6 in Kochukhov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The effects of magnetic fields are very different for sys- tems not in thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In stars with transient magnetic activity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', spots in magnetically active stars), magnetic spot life times can be much shorter than the star’s local thermal time, depending on the depth of the spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Magnetic fields can also temporarily disrupt convective en- ergy transport, which also occurs on a thermal time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This is why the Sun’s spots can appear dark: they are not in thermal equilibrium with underlying layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In our work, we predict that magnetic poles of radiative stars can be either hot or cool, although we have argued they are more likely to be hot for realistic magnetic field configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This agrees with the sign predicted by Cantiello & Braithwaite (2011), who examined spots in hydrostatic equilibrium but not thermal equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, thermal diffusion could drastically reduce the flux perturbation below their estimate (essentially equation 70), for spots that live longer than the local thermal time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='4 Limitations For the most part, our methods are general and are applica- ble to nearly any type of radiative star, such as massive stars or white dwarfs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, there are a few modifications that need to be made depending on the circumstances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In this work, we did not compute the physical displace- ment vector ξ, which does not appear anywhere in our set of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The reason for this is that the final state of the system (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', the perturbed pressure, temperature, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=') and its final energy is independent of the displacements needed to reach that configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' There are infinite combinations of ξr and ξ⊥ that satisfy the continuity equation δρ + ∇ · � ρξ � = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' (71) However, we assumed uniform composition in our equation of state (equation 40), a good approximation for young main sequence stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In stars with composition differences, the equation of state will contain an extra χµ(δµ/µ) term, where µ is the mean molecular weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' If composition does not diffuse, we have δµ ∼ −ξrdµ/dr, and hence the perturbed state will depend explicitly on the displacement vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The equilibrium configuration is then presumably given by the © 0000 RAS, MNRAS 000, 000–000 Magnetic Structure 13 displacement which minimizes the total energy of the per- turbed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This should be accounted for when consider- ing stars with composition gradients (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', evolved stars and white dwarfs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Another issue we have neglected is anisotropic conduc- tion induced by magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' In main sequence stars, this effect is only important in the surface layers where the elec- tron mean-free path increases and becomes comparable to the Larmor radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' However, it may be important in the deep interiors of white dwarfs where electrons conduct most of the heat (Potekhin 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Potekhin & Yakovlev 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Chang & Quataert 2010) and have fairly long mean free paths due to the high electron degeneracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We hope to examine this effect in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We have also neglected any magnetically induced changes to opacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' These could be important near a star’s surface because magnetic fields split the energy levels of atomic transitions, changing the opacity from bound-bound, bound-free absorption, and free-free absorption (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Jordan 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We suspect that this will not alter our conclusions re- garding the perturbation to the bolometric surface flux, be- cause effects limited to the surface layers cannot change the emerging flux from below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This can be seen from equation 45, because the second term is of order unity near the sur- face, and will only change the emerging flux by an amount ∼ ∆r/r, where ∆r is the width over which near-surface ef- fects are important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' What is more likely is that the star’s emergent spec- trum is altered by magnetic changes to opacity, or by com- position differences between the magnetic pole and equator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Even with no perturbation to the bolometric flux, a chang- ing spectrum could create large differences in, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', g-band or r-band fluxes as the magnetic pole rotates in and out of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' As an example, Caiazzo in prep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' finds large changes in the composition and spectrum as a function of rotational phase in the magnetic WD ZTF J203349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='8+322901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1 (“Janus”), even though there is no clear variation in the bolomet- ric flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Similar photometric variations (typically ∼1-3% in amplitude) are observed in chemically peculiar magnetic A type stars (H¨ummerich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Compositional inho- mogeneities could naturally arise due to the perturbed gas pressure in the near-surface layers, which will alter atomic diffusion processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This process should be studied in more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 5 CONCLUSIONS We have computed the effects of strong magnetic fields on the structures of radiative main sequence stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our focus is the perturbed surface temperature and radiative flux in- duced by the magnetic field, which can produce photomet- ric modulation as the star rotates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Unlike most prior work, we have computed structures in both hydrostatic and ther- mal equilibrium, which applies to stars with long-lived fossil fields, such as magnetic Ap stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our models have simple dipolar angular structure and include toroidal fields with associated magnetic helicity λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We find that magnetic fields at observed field strengths of ∼ 1 kG produce negligible bolometric flux perturbations, δL/L ≲ 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Even though such fields are large enough to produce significant perturbations to the photospheric gas pressure and hydrostatic force balance, the radiative flux is determined by deeper layers of the star where magnetic forces are negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The perturbed surface flux is compa- rable to the von Zeipel theorem estimate δL/L ∼ fmag/(ρg) only when evaluated in the deep interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Depending on their helicity and magnetic force, internal magnetic fields are typ- ically a factor of ∼10 larger than surface magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The size of the magnetic perturbation depends on the strength of the magnetic forces, parameterized by β, which is zero for a force-free field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Relatively large values of β ∼200 are needed for significant modification of the magnetic field profile relative to a force-free configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' We have argued that these values of β are most likely to occur in real stars such that the magnetic profile matches onto boundary condi- tions minimizing electric current near the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' This leads to photometric modulations that are a few hundred times larger than a naive estimate of δL/L∼B2 surfR4/(GM 2), but still too small to be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Photometric modulations ob- served in magnetic stars likely arise from changes in the emergent spectrum rather than changes in the bolometric flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Although we have focused on a young 3 M⊙ model in this work, the same method can be applied to other types of predominantly radiative stars, such as moderately evolved massive stars or white dwarfs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our work can be improved in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' First, real- istic magnetic configurations likely have toroidal fields con- fined to closed poloidal surfaces within the star such that current does not flow into the atmosphere and dissipate the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Incorporating this condition will require more complicated magnetic topologies and non-separable solutions to the hydrostatic balance and radiative diffu- sion equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' The impacts of rotation, where the rotation and magnetic axis are often misaligned, and of the associ- ated centrifugal forces have also been neglected in this work (Monaghan 1973;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Galea & Wood 1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Our models do not account for composition gradients within a star, which may significantly affect the magnetic perturbations in evolved stars and white dwarfs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Finally, magnetic changes to opac- ity and anisotropic conduction should be included in future models in order to better interpret observable photometric and spectroscopic variations of magnetic stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' ACKNOWLEDGMENTS JF is thankful for support through an Innovator Grant from The Rose Hills Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' acknowledges sup- port from CNES SOHO, PLATO, and LISA grants at CEA/IRFU/DAp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' DATA AVAILABILITY The relaxation code to compute magnetic perturbations is available upon request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' REFERENCES Akg¨un T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Reisenegger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mastrano A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Marchant P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2013, MNRAS, 433, 2445 Becerra L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Reisenegger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Valdivia J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Gusakov M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2022a, MNRAS, 511, 732 © 0000 RAS, MNRAS 000, 000–000 14 Fuller & Mathis Becerra L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Reisenegger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Valdivia J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Gusakov M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2022b, MNRAS, 517, 560 Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2008, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 386, 1947 Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2009, MNRAS, 397, 763 Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Nordlund ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2006, Astronomy & Astro- physics, 450, 1077 Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Spruit H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2004, Nature, 431, 819 Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Spruit H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2017, Royal Society Open Science, 4, 160271 Broderick A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Narayan R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2008, MNRAS, 383, 943 Bugnet L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2021, A&A, 650, A53 Busse F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1981, Geophysical and Astrophysical Fluid Dynamics, 17, 215 Cantiello M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2011, A&A, 534, A140 Chandrasekhar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1956, ApJ, 124, 232 Chandrasekhar S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Prendergast K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1956, Proceedings of the National Academy of Science, 42, 5 Chang P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Quataert E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010, MNRAS, 403, 246 Davies G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1968, Australian Journal of Physics, 21, 293 Decressin T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Palacios A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Siess L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Talon S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Charbonnel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Zahn J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2009, A&A, 495, 271 Duez V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010, A&A, 517, A58 Duez V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Turck-Chi`eze S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010a, MNRAS, 402, 271 Duez V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Braithwaite J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010b, ApJ, 724, L34 Eddington A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1929, MNRAS, 90, 54 Fuller J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Cantiello M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Stello D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Garcia R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Bildsten L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2015, Science, 350, 423 Galea E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Wood W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1985, MNRAS, 217, 633 Garc´ıa R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2014, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 563, A84 H¨ummerich S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2018, A&A, 619, A98 Jordan S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1992, A&A, 265, 570 Kaufman E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Lecoanet D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Anders E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Brown B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Vasil G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Oishi J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Burns K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2022, MNRAS, 517, 3332 Kochukhov O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Lundin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Romanyuk I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Kudryavtsev D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2011, ApJ, 726, 24 Lander S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Jones D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2012, MNRAS, 424, 482 Landstreet J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1987, MNRAS, 225, 437 Landstreet J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathys G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2000, A&A, 359, 213 Lecoanet D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Vasil G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Fuller J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Cantiello M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Burns K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2017, MNRAS, 466, 2181 Li L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ventura P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Basu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Sofia S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Demarque P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2006, ApJS, 164, 215 Li G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Deheuvels S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ballot J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ligni`eres F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2022, Nature, 610, 43 Loi S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2021, MNRAS, 504, 3711 Lyutikov M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010, MNRAS, 402, 345 Maeder A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1999, A&A, 347, 185 Markey P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Tayler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1973, MNRAS, 163, 77 Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2013, in Goupil M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Belkacem K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Neiner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Ligni`eres F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Green J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', eds, , Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 865, Lecture Notes in Physics, Berlin Springer Verlag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' 23, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content='1007/978-3- 642-33380-4˙2 Mathis S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Bugnet L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Prat V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Augustson K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Mathur S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Garcia R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2021, A&A, 647, A122 Mestel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Moss D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1977, MNRAS, 178, 27 Milsom F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Wright G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1976, MNRAS, 174, 307 Monaghan F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1966, MNRAS, 132, 1 Monaghan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1973, MNRAS, 163, 423 Morel T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2014, The Messenger, 157, 27 Moss D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1973, MNRAS, 164, 33 Moss D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1979, MNRAS, 187, 601 Oksala M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Silvester J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Kochukhov O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Neiner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Wade G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', MiMeS Collaboration 2018, MNRAS, 473, 3367 Ostriker J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Hartwick F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1968, ApJ, 153, 797 Paxton B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Bildsten L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Dotter A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Herwig F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Lesaffre P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Timmes F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2011, ApJS, 192, 3 Potekhin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1999, A&A, 351, 787 Potekhin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Yakovlev D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2001, A&A, 374, 213 Press W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Teukolsky S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Vetterling W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Flannery B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Cambridge University Press, USA Raadu M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1971, Ap&SS, 14, 464 Reisenegger A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2009, A&A, 499, 557 Rieutord M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2006, EAS Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 21, 275 Shultz M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2019, MNRAS, 490, 274 Shulyak D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2007, A&A, 464, 1089 Shulyak D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Kochukhov O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Valyavin G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Lee B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Galazutdinov G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Kim K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Han I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Burlakova T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2010, A&A, 509, A28 Stello D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Cantiello M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Fuller J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Huber D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Garc´ıa R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Bedding T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Bildsten L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', Silva Aguirre V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2016, Na- ture, 529, 364 Sweet P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1950, MNRAS, 110, 548 Tayler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1973, MNRAS, 161, 365 Tayler R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1980, MNRAS, 191, 151 Taylor J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1974, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 33, 1139 Wade G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 2016, MNRAS, 456, 2 Wright G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1969, MNRAS, 146, 197 von Zeipel H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} +page_content=', 1924, MNRAS, 84, 665 © 0000 RAS, MNRAS 000, 000–000' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf'} diff --git a/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/2301.04806v1.pdf.txt b/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/2301.04806v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8fa00d74d7431a93f8d2324a546c1140dbeaafa8 --- /dev/null +++ b/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/2301.04806v1.pdf.txt @@ -0,0 +1,1017 @@ +RF Injection Locking of THz Metasurface Quantum- +Cascade VECSEL +Yu Wu,1* Christopher A. Curwen,2 Mohammad Shahili,1 John L. Reno,3 +Benjamin S. Williams1 +1Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, +California 90095, USA +2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA +3Sandia National Laboratories, Center of Integrated Nanotechnologies, MS 1303, Albuquerque, New Mexico +87185, USA +*Corresponding author: ywu17@ucla.edu + +Abstract: RF injection locking and spectral broadening of a terahertz (THz) +quantum-cascade +vertical-external-cavity +surface-emitting +laser +(QC- +VECSEL) is demonstrated. An intra-cryostat VECSEL focusing cavity design +is used to enable continuous-wave lasing with a cavity length over 30 mm which +corresponds to a round-trip frequency near 5 GHz. Strong RF current +modulation is injected to the QC-metasurface electrical bias to pull and lock +the round-trip frequency. The injection locking range at various RF injection +powers is recorded and compared with the injection locking theory. Moreover, +the lasing spectrum broadens from 14 GHz in free-running mode to a maximum +spectral width around 100 GHz with 20 dBm of injected RF power. This +experimental setup is suitable for further exploration of active mode-locking +and picosecond pulse generation in THz QC-VECSELs. +1. Introduction +The terahertz (THz) spectral region has a need for high-resolution, high-speed +spectroscopy techniques, as many gas phase polar molecular species have strong +characteristic rotational lines there. Examples include applications in industrial and +environmental monitoring,[1,2] chemical detection and identification,[3,4] combustion +diagnostics.[5] The quantum cascade (QC) laser is well suited for spectroscopic +applications as it has been demonstrated as a compact, electrically pumped +semiconductor source which gives high power, broadband, coherent THz +radiation.[6–8] Its inherently high optical nonlinearity induces self-phase locking +through four-wave mixing, which promotes the generation of spontaneous frequency +combs; these have been demonstrated in waveguide-based Fabry-Pérot[9–11] and ring +QC-lasers.[12,13] Based on that, THz dual-comb spectroscopy has been demonstrated, +surpassing the precision and speed of traditional Fourier spectrometers by several +orders of magnitude.[14–17] + +In separate experiments, THz quantum-cascade lasers have recently been +implemented in the vertical-external-cavity surface-emitting laser (VECSEL) +architecture, which exhibits watt-level output power, near diffraction-limited beam +quality, and ~20% continuous fractional single-mode tuning.[18–20] The key +component of a QC-VECSEL is an amplifying reflectarray metasurface of metal- +metal waveguide antennas that are loaded with QC-gain material. It is further paired +with a partially transmissive output coupler to form the laser cavity. In contrast to +ridge-waveguide QC-lasers, experiments have shown that QC-VECSELs tend to +operate in single-mode regime despite having large gain bandwidths. For example, +we have developed an intra-cryostat focusing VECSEL cavity to reduce the intra- +cavity diffraction loss and enable continuous-wave (CW) lasing at 3.4 THz with a +cavity length of ∼30 mm.[21] Even though the gain bandwidth of the metasurface +used was at least 100 times larger than the free spectral range, only a single lasing +mode was observed. This is mainly due to a lack of spatial hole burning within the +QC-VECSEL metasurface which suppresses multi-mode instabilities,[22] although it +is perhaps compounded by the fact that no effort towards dispersion engineering has +Figure 1. (a) Schematic of the QC-VECSEL based on an intra-cryostat focusing cavity design. (b) +Scanning electron microscopy image of the fabricated QC-metasurface. The inset shows the +dimension and E-field distribution in a single ridge antenna. (c) FEM simulated active metasurface +reflectance, output coupler transmittance and GDD contributed by the two components. Shaded +area indicates the frequency range where lasing is observed. (d) Schematic of experimental setup +for RF injection locking. THz lasing spectrum (e) and beat note spectra (f) of the free-running QC- +device in existence of optical feedback are collected at a DC bias of 0.235 mA, where optical +feedback is provided by the moving FTIR mirror. The beat note spectra are measured in both +Average (solid) and Max Hold modes (dashed) with a RBW of 2 kHz. + +(a) +Outputcoupler +(b) +IEI at 3.36 THz +X104 +(c) +21.5 +QC-gain +FEM +Exp +10日 +L80.2 +Biasarea +d=0.4mm +41.7μm +MS+OC +OC +Off-axis +(sd) +0.5 +MS +paraboloid +GDD ( +QC-metasurface +mirror +-0.5 +2.5 +3 +3.5 +4 +Frequency (THz) +100 +Intensity (a.u.) +(e) +(d) +Directional +Microwave +RF synthesizer +FTIR +Bias-T +coupler +amplifier +10-2 +SMA +3.3 +3.4 +3.5 +3.6 +Optical +Frequency(THz) +feedback +Intensity (dBm) +60 +Cryostat +(f) +50kH +-80 +DCpower +8kHz +Average +MaxHold +supply +Spectrum +-100 +analyzer +BN +4852.4 +4852.6 +4852.8 +Frequency(MHz)yet been attempted. Despite these challenges, there is strong interest in achieving +active mode-locked QCLs and frequency combs within the QC-VECSEL +architecture. +Radiofrequency (RF) current modulation of QC-lasers has been demonstrated to +promote the generation of sidemodes; by injecting a RF signal near the cavity round- +trip frequency, the generated sidemodes will lock existing adjacent free-running +lasing modes or seed new ones, which allows for the stabilization and tuning of +frequency comb states.[23–26] RF modulation and injection locking is also an +important mechanism for active mode-locking in QC-lasers; pulses as narrow as 4- +5 ps have been reported.[27,28] +In this article, we demonstrate the emergence of spectral broadening and +multimoding in THz QC-VECSEL as we inject strong RF current modulation to the +QC-metasurface at a frequency close to the cavity round-trip frequency; at the same +time, round-trip frequency pulling and locking to the injected RF signal is observed. +The lasing bandwidth and injection locking range increase monotonically with the +injected RF power. Lasing modes spanning ~100 GHz are demonstrated under an +injected RF power of 20 dBm at 4852.7 MHz, along with a locking range ~5 MHz. +2. Sample and experimental setup +The QC-VECSEL used for all measurements is based on an intra-cryostat focusing +cavity design, as sketched in Figure 1(a). An off-axis paraboloid (OAP) mirror with +a focal length of 12.7 mm is introduced into the VECSEL cavity to reduce the intra- +cavity diffraction loss and enable CW lasing using small metasurfaces in long lasing +cavities.[21] The QC-metasurface used in this paper is the same one as reported in ref +[21], with a small bias area of diameter d = 0.4 mm for reduced injection current. It is +designed to be resonant at 3.3 THz and consists of an array of ridges of width 12.2 +µm repeated with a period of 41.7 µm (Figure 1(b)). An output coupler with ROC ≈ +95% is used in pair with the metasurface to form a laser cavity. Both two components +are dispersive and contribute to the group delay dispersion (GDD) over one round +trip - it exhibits a maximum value exceeding 0.35 ps2 in the frequency range where +lasing occurs. The simulated spectral response of the metasurface and the output +coupler are plotted in Figure 1(c) based on full-wave 2D finite-element (FEM) +electromagnetic reflectance simulation (Ansys HFSS). Detailed information of the +active region design and simulation parameters can be found in the Supporting +Information. +The experimental setup for RF injection locking is depicted in Figure 1(d). All the +measurements were performed in vacuum at a temperature of 77 K. We note that +formable semi-rigid coaxial cable is used within the cryostat up to the chip carrier +package (see Supporting Information). Due to impedance mismatch between the + +50Ω SMA port and the QC-device, the spectrum analyzer collects not only the +generated beat note from the QC-device fBN (blue arrow), but also the RF injection +signal reflected at the interface of SMA/QC-device fRF (green arrow). +In free-running case, although only single-mode lasing was observed using the +same QC-device in ref [21], here we note that the existence of optical feedback can +induce multi-mode operation.[29–31] Due to the temporally varying small feedback +from the scanning Fourier-transform infrared spectrometer (FTIR, Nicolet 8700) +mirrors, we observed at least two lasing modes separated by ~14 GHz in the emission +spectrum (Figure 1(e)). Additional low intensity sidemodes may also exist but +cannot be resolved by the limited FTIR resolution of 7.5 GHz. This phenomenon is +similar as that observed in ref [30], where additional lasing modes are observed in a +Mid-IR QC-laser under tilted optical feedback. Through nonlinear mixing of the +free-running lasing modes, a weak electrical beat note signal is observed. It is +collected using the spectrum analyzer (Agilent N9020a) both in Average mode and +in Max Hold mode over 30 seconds, which indicates a round-trip frequency fBN ≈ +4852.7 MHz and an equivalent cavity length around 31 mm (Figure 1(f)). A narrow +8-kHz -3dB linewidth in Average mode and 60-kHz linewidth in Max Hold mode of +the intermodal beat note is on the same order as the free-running linewidth of the +single THz lasing mode measured in [21]; it is likely contributed by only two (or a +few) lasing modes. Furthermore, recent study of optical feedback has highlighted its +effect on THz QC-lasers combs.[32–34] Here, we experimentally demonstrate that +optical feedback plays an important role in determining not only the free-running +beat note frequency but also the injection locking range (see Supporting +Information). +3. RF injection locking +With the knowledge of an accurate round-trip frequency, we are able to +systematically study the modulation-dependent behavior of this QC-device. We +swept the RF modulation frequency around the round-trip frequency at various +modulation powers from -20 dBm to 20 dBm. All RF powers indicated in this paper +refer to the nominal output level of the RF synthesizer (Hewlett-Packard 83650B) +or after a 20 dBm amplifier (Hewlett-Packard 8349B). The DC bias is fixed at a +current of 0.235 mA (≈1.17×Ith), and the THz emission spectra as well as intermodal +beat note are collected and plotted in Figure 2. +At the lowest power level of -20 dBm, the spectral map in Figure 2(a) clearly shows +that the beat note is pulled toward the injection signal and finally locked. A locking +range of 30 kHz is demonstrated which increases with respect to the RF injection +power. Starting from an RF power of -2.5 dBm, injection locking occurs before the +beat note is fully pulled to meet the injected signal fRF (Figure 2(b)); at the same + +time, lasing bandwidth broadening is observed in the THz emission spectra. This +spectral broadening increases with respect to RF power as shown in Figure 2(d). The +maximum RF injection power used in this measurement is 20 dBm limited by the +max allowable power of the bias-Tee. THz emission and RF beat note spectral maps +in this case are plotted in Figure 2(e-f). The maximum spectral broadening occurs at +fRF = 4852.7 MHz with lasing modes spanning around 100 GHz (Figure 2(g)). +However, due to the limited FTIR resolution of 7.5 GHz, we were not able to +spectrally resolve individual lasing modes. The corresponding power and voltage vs. +current (P-I-V) curves are plotted in Figure 2(h) (solid curve). A maximum output +power around 10 mW was collected using a pyroelectric detector (GentecEO). +Compared with the P-I characteristic in the free-running case (dashed curve), the +output power, as well as the lasing threshold, is slightly lower. It is noticed from +Figure 2(e) that the symmetry of the lasing spectrum is highest at fRF = 4852.7 MHz, +where the maximum bandwidth is observed with relative low THz output power +obtained from the P-I curve. At injection frequencies above/below this value, the +optical power increases – still smaller than that in free-running case – and +concentrates toward lower/higher portion of the spectrum. This phenomenon is +Figure 2. Beat note spectral map under constant RF injection power of -20 dBm (a) and -2.5 dBm +(b) with RF modulation frequency sweeping around the round-trip frequency. (c) Experimental +injection locking range at different RF injection powers (blue stars), following a 0.5-slope +dependence in log–log scale (red dashed line). The free-running beat note frequency was shifted +from ~ 4842 MHz in (a-c) to ~ 4853 MHz in (d-h) as the movement of cryostat changes the amount +of optical feedback. (d) THz lasing spectra at increasing RF power when fRF is fixed at 4852.7 MHz. +(e) Lasing spectral and (f) beat note maps of the device under constant RF injection power of 20 +dBm. The estimated locking range is pointed out by the red arrows. The maximum spectral +broadening occurs at fRF = 4852.7 MHz (white dashed line) and the THz lasing spectrum and P-I- +V curves in this case are plotted in (g-h). + +4842.1 +(a) +dBm +(d) +(e) +20dBm +(f) +20 dBm +-40 +4842.05 +20dBm +-20dBm +60 +19dBm +Locking +(MHz) +80 +18dBm +4842 +17dBm +injection freg ( +4854 +Range +100 +freq +-120 +16dBm +=4852.7MHz +15dBm +4841.9 +4842 +4842.1 +RF Inj. +RF injection f +14dBm +Frequency (MHz) +4852 +Signal fr +13dBm +800 +dBm +(b) +dBm +12dBm +600 +Beat note fen +20 +4842.2 +-20 +11dBm +40 +-2.5 dBm +48 +Intensity (a.u.) +10dBm +4850 +400 +60 +4842 +9dBm +200 +80 +8dBm +100 +4841.8 +100 +Z dBm +6dBm +3.33.353.43.453.5 +4848 +4852 +4856 +4841.5 +4842 +4842.5 +5dBm +Frequency(THz) +Frequency(MHz) +Frequency (MHz) +4dBm +3dBm +(h) +Current (A) +range(kHz) +(c) +2dBm +(g) +1dBm +Atm +0 +0.1 +0.2 +103 +OdBm +('ne) +absorption +10 +1dBm +-2dBm +M +Intensity +10 +-3dBm +-4dBm +6 +-5dBm +~100GHz +4 +5 +(mW) +Expt. +-6dBm +-7dBm +-RFoff +Adler's Eq. +-8dBm +2 +fr=4852.7MHz +101 +-9dBm +0 +20.dBm +0 +-20 +-10 +0 +10 +20 +3.35 +3.45 +3.55 +3.3 +3.4 +3.5 +3.6 +0 +200 +400 +600 +RFpower(dBm) +Freguency(THz) +Freguency (THz) +CurrentDensity(A/cm2)similar as that reported in ref [26] and a possible explanation can be found in ref [35] +due to phase mismatch between the modulation period and group round-trip time. In +Figure 2(f), although there is no beat note pulling observed, it is notable that the +emission spectrum undergoes distinct change as the beat note disappears (pointed +out by red arrows) – it is believed that this is a signature of injection locking and +occurs in our measurements under different RF powers. +The experimental locking range at various RF injection powers is plotted in Figure +2(c). To analyze the phenomenon of RF injection locking, Adler’s equation is +commonly used with a locking bandwidth given by:[23,36] +𝛥𝜈 = 2𝜈0 +𝑄 √𝑃𝑖𝑛𝑗 +𝑃0 +, (1) +where Q is the cold-cavity quality factor, 𝜈0 and P0 are the frequency and power of +a free-running longitudinal mode, while Pinj is the power of the injected sideband +induced by RF injection. Adler’s equation indicates a square root dependence of the +locking bandwidth on the RF power and fits our experimental results well at low RF +powers (red dashed line). However, our experimental locking range deviates from +Adler’s equation towards higher values under strong RF modulation. This may +indicate the limitation of Adler’s equation in explaining RF injection locking +especially in the case when multiple new lasing modes are excited at RF powers > +−2.5 dBm. Adler’s equation assumes a weak injection signal where amplitude +perturbation induced by the injection signal is not considered; a more rigorous +derivation of the locking range is therefore needed. +Moreover, we studied the behavior of this QC-device at various DC biases ranging +from the lasing threshold to near the NDR point. Figure 3(a) shows the lasing spectra +under 20 dBm RF injection at a frequency of fRF = 4852.7 MHz. Significant spectral +Figure 3. (a) THz lasing spectra at various biases when RF signal at 4852.7 MHz is injected into the +QC-device, the RF power used is 20 dBm for significant spectral broadening. (b) Injection locking +range as a function of bias current under -15 dBm RF power in the cases of different +length/strength/angle of optical feedback. + +120 +(a.u.) +(a) +(b) +247 mA +244mA +(ZH>) +Intensity +100 +240mA +235mA +range +230 mA +80 +Normalized +225 mA +Locking +219mA +60 +213 mA +207 mA +201 mA +40 +3.3 +3.4 +3.5 +3.6 +0.2 +0.210.220.230.240.25 +Frequency (THz) +Biascurrent (A)broadening is observed at all the applied biases, and the lasing bandwidth increases +only slightly with respect to the bias current as more modes are brought above the +lasing threshold. +As a next step, the effects of device bias on the injection locking bandwidth were +investigated. We swept the RF modulation frequency around the round-trip +frequency at a fixed injection power of -15 dBm and measured the injection locking +bandwidth at various biases. Small injection power was used so the locking range +can be more clearly observed. Additionally, we repeated such bias sweeps while +providing different magnitude, phase, and angle of feedback light from an external +mirror, the corresponding locking ranges are indicated by different colored curves +in Figure 3(b). Our experimental observation reveals that the relationship between +locking range and device bias is related to the condition of optical feedback, i.e. +feedback length (phase), strength and tilted angle. This is significantly different from +previous demonstrations using ridge-waveguide QC-lasers, where the locking range +became smaller with increasing bias.[23,37] In our system, we could make a simple +assumption that there are two free-running modes, where mode ω1 is induced by +optical feedback around the main lasing peak ω0 and is locked by the RF-excited +sideband of the latter. The ratio of Pinj/P0 in Adler’s equation can be estimated as the +ratio of the free-running power of mode ω0 and that of mode ω1 as the injected RF +power is fixed, which determines the injection locking range. How the locking range +changes is therefore determined by how the relative power of two lasing modes +develops with respect to bias. Unfortunately, this is not able to be observed +experimentally limited by the resolution of our FTIR. In theory, the spectral +characteristics of the device versus applied bias is expected to be affected by the +changes of threshold gain induced by optical feedback and the alignment of +compound-cavity modes formed in the external cavity with respect to gain, which is +related to not only the length and strength of optical feedback, but also the tilt angle +of external mirror.[31] To fully understand this phenomenon, a theoretical study of +laser dynamics and instabilities of QC-VECSELs under optical feedback and +systematic experiments of the RF-injected system with well-controlled, adjustable +optical feedback will be needed and are beyond the scope of this paper. +4. Discussion and conclusion +The injection locking range obtained in this paper is considerably smaller +compared with those demonstrated in RF injection-locked Fabry-Pérot waveguide +QC-lasers at same level of RF power.[23,25] One of the reasons is that QC-VECSELs +have higher quality factors compared with ridge waveguide QC-lasers. Our +VECSEL has a 31 mm-long external cavity and low loss from the ~95% reflectance +output coupler; using a coupled-cavity model we estimate a cold-cavity linewidth of + +ν0/Q ≈ 70 MHz. This is around 300 times smaller than a value of 25 GHz estimated +in ref [23]. In addition, intrinsic and technical issues with our QC-VECSEL setup +result in a low efficiency of RF power transfer at ~4.8 GHz from the synthesizer to +the QC-metasurface bias terminal. First, due to parasitic capacitances contributed by +unbiased regions, the QC-metasurface itself exhibits a larger RC time-constant +compared with a narrow ridge waveguide. Second, the electrical packaging has not +been optimized for RF operation, where wire bonds and wire bonding pads +contribute parasitic inductance and capacitance respectively. Consequently, there is +a huge impedance mismatch between the 50Ω SMA port and the QC-device, the +resulting transmittance of RF signal through the SMA/QC-package boundary is +simulated to be ~4% at a target frequency of 4.8 GHz (see Supporting Information), +only part of which will be applied to modulate the gain material. To make things +worse, an additional ~8 dB RF attenuation has been characterized accounting for +losses through cables and directional coupler from the synthesizer to the SMA +connector. In contrast to other demonstrations of ridge waveguide QC-lasers using +RF coplanar probes,[23,38] RF launchers,[39] or custom high-frequency PCB mounts[28] +to achieve modulation of QC-lasers up to 35 GHz, microwave rectification technique +indicates a significant roll-off at frequency higher than 3 GHz in our QC-device (see +Supporting Information). +In conclusion, we demonstrate RF injection locking in a THz QC-VECSEL based +on intra-cryostat focusing cavity design. Round-trip frequency pulling and locking +against an RF injection signal is observed. Furthermore, the RF amplitude +modulation leads to broadening of the lasing spectrum up to a spectral width of 100 +GHz. This is particularly notable, as multi-mode lasing in QC-VECSELs has been +extremely difficult to achieve due to the lack of spatial hole burning within the +metasurface; before now at most 9 lasing modes had been observed.[22] There are +several obvious avenues for improvement. First, RF attenuation and impedance +mismatch severely limits the modulation efficiency, and strong RF reflections +impede the detection of the electrical beat note signal using a spectrum analyzer. +This can be improved by optimizing the electrical packaging of the QC-device, i.e. +reducing the capacitance and inductance portion of the equivalent circuit by 1) +redesigning the QC-metasurface with reduced unbiased area and an improved RF +feed structure; 2) replacing the electrical contact pad with a well-designed PCB 50Ω +transmission line feed up to the edge of the metasurface chip with minimal wire bond +length. Second, we note that no particular effort to provide dispersion compensation +has been attempted here; further engineering of GDD within the QC-VECSEL cavity +may be needed to increase the lasing across the entire ~1 THz gain bandwidth. +Finally, given measurements of ridge-waveguide THz QC-lasers under strong RF +modulation, it is quite likely that this device is generating short pulses in an active +mode-locking regime.[27,28] Further characterization techniques such as shifted-wave + +interference Fourier-transform spectroscopy (SWIFTs)[10,40,41] or asynchronous +electro-optical sampling will be needed to recover the time-domain structure of the +field.[42,43] + +Supporting Information +Supporting Information is available from the author. +Acknowledgments +The authors thank David Burghoff, Andres Forrer, Giacomo Scalari, and Stefano +Barbieri for valuable conversations. Microfabrication was performed at the UCLA +Nanoelectronics Research Facility, wire bonding was performed at the UCLA +Center for High Frequency Electronics. This work was performed, in part, at the +Center for Integrated Nanotechnologies, an Office of Science User Facility operated +for the U.S. Department of Energy (DOE) Office of Science. Sandia National +Laboratories is a multimission laboratory managed and operated by National +Technology and Engineering Solution of Sandia, LLC., a wholly owned subsidiary +of Honeywell International, Inc., for the U.S. Department of Energy's National +Nuclear Security Administration under contract DE-NA-0003525. Partial funding +was provided by the National Science Foundation (2041165), and the National +Aeronautics and Space Administration (80NSSC19K0700). +References +[1] +D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, Appl. Phys. B +Lasers Opt. 1998, 67, 379. +[2] +A. Cuisset, F. Hindle, G. Mouret, R. Bocquet, J. Bruckhuisen, J. Decker, A. Pienkina, C. Bray, É. +Fertein, V. Boudon, Appl. Sci. 2021, 11, 1229. +[3] +H. Zhong, A. Redo-Sanchez, X.-C. Zhang, Opt. Express 2006, 14, 9130. +[4] +I. R. Medvedev, C. F. Neese, G. M. Plummer, F. C. De Lucia, Opt. Lett. 2010, 35, 1533. +[5] +M. Araki, K. Matsuyama, Curr. Appl. Phys. 2022, 36, 83. +[6] +R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. +C. Iotti, F. Rossi, Nature 2002, 417, 156. +[7] +L. H. Li, L. Chen, J. R. Freeman, M. Salih, P. Dean, A. G. Davies, E. H. Linfield, Electron. Lett. +2017, 53, 799. +[8] +D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, J. Faist, Appl. Phys. Lett. 2011, +99, 191104. +[9] +M. Rösch, G. Scalari, M. Beck, J. Faist, Nat. Photonics 2014, 9, 42. +[10] +D. Burghoff, T. Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. +Reno, Q. Hu, Nat. Photonics 2014, 8, 462. +[11] +A. Forrer, Y. Wang, M. Beck, A. Belyanin, J. Faist, G. Scalari, Appl. Phys. Lett. 2021, 118, +131112. +[12] +M. Piccardo, B. Schwarz, D. Kazakov, M. Beiser, N. Opačak, Y. Wang, S. Jha, J. Hillbrand, M. +Tamagnone, W. T. Chen, A. Y. Zhu, L. L. Columbo, A. Belyanin, F. Capasso, Nature 2020, 582, +360. +[13] +M. Jaidl, N. Opačak, M. A. Kainz, S. Schönhuber, D. Theiner, B. Limbacher, M. Beiser, M. +Giparakis, A. M. Andrews, G. Strasser, B. Schwarz, J. Darmo, K. Unterrainer, Optica 2021, 8, +780. + +[14] +M. Rösch, G. Scalari, G. Villares, L. Bosco, M. Beck, J. Faist, Appl. Phys. Lett. 2016, 108, +171104. +[15] +L. A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno, Q. Hu, G. Wysocki, Optica 2019, +6, 766. +[16] +H. Li, Z. Li, W. Wan, K. Zhou, X. Liao, S. Yang, C. Wang, J. C. Cao, H. Zeng, ACS Photonics +2020, 7, 49. +[17] +L. Consolino, M. Nafa, M. De Regis, F. Cappelli, K. Garrasi, F. P. Mezzapesa, L. Li, A. G. +Davies, E. H. Linfield, M. S. Vitiello, S. Bartalini, P. De Natale, Commun. Phys. 2020, 3, 1. +[18] +L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, B. S. Williams, Appl. Phys. Lett. 2015, +107, 221105. +[19] +C. A. Curwen, J. L. Reno, B. S. Williams, Appl. Phys. Lett. 2018, 113, 011104. +[20] +C. A. Curwen, J. L. Reno, B. S. Williams, Nat. Photonics 2019, 13, 855. +[21] +Y. Wu, C. Curwen, J. L. Reno, B. Williams, Appl. Phys. Lett. 2022, 121, 191106. +[22] +Y. Wu, S. Addamane, J. L. Reno, B. S. Williams, Appl. Phys. Lett. 2021, 119, 111103. +[23] +P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. +H. Linfield, H. E. Beere, D. A. Ritchie, Opt. Express 2010, 18, 20799. +[24] +H. Li, P. Laffaille, D. Gacemi, M. Apfel, C. Sirtori, J. Leonardon, G. Santarelli, M. Rösch, G. +Scalari, M. Beck, J. Faist, W. Hänsel, R. Holzwarth, S. Barbieri, Opt. Express 2015, 23, 33270. +[25] +A. Forrer, L. Bosco, M. Beck, J. Faist, G. Scalari, Photonics 2020, 7, 9. +[26] +B. Schneider, F. Kapsalidis, M. Bertrand, M. Singleton, J. Hillbrand, M. Beck, J. Faist, Laser +Photonics Rev. 2021, 15, 2100242. +[27] +A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori, G. Santarelli, W. Hänsel, +R. Holzwart, L. H. Li, E. H. Linfield, S. Barbieri, Optica 2017, 4, 168. +[28] +U. Senica, A. Forrer, T. Olariu, P. Micheletti, S. Cibella, G. Torrioli, M. Beck, Jerome Faist, G. +Scalari, arXiv:2207.06737 [physics.optics]. +[29] +X. Qi, K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, Phys. Rev. A 2021, 103, 033504. +[30] +X. G. Wang, B. Bin Zhao, Y. Deng, V. Kovanis, C. Wang, Phys. Rev. A 2021, 103, 23528. +[31] +D. S. Seo, J. D. Park, J. G. Mcinerney, M. Osinski, IEEE J. Quantum Electron. 1989, 25, 2229. +[32] +M. Wienold, B. Röben, L. Schrottke, H. T. Grahn, Opt. Express 2014, 22, 30410. +[33] +X. Liao, X. Wang, K. Zhou, W. Guan, Z. Li, X. Ma, C. Wang, J. C. Cao, C. Wang, H. Li, Opt. +Express 2022, 30, 35937. +[34] +M. Piccardo, P. Chevalier, T. S. Mansuripur, D. Kazakov, Y. Wang, N. A. Rubin, L. +Meadowcroft, A. Belyanin, F. Capasso, Opt. Express 2018, 26, 9464. +[35] +Y. Wang, A. Belyanin, Opt. Express 2015, 23, 4173. +[36] +M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini, M. Beck, J. Faist, +H.C.Liu, Carlo Sirtori, Laser Photon. Rev. 2014, 8, 443. +[37] +F. P. Mezzapesa, K. Garrasi, J. Schmidt, L. Salemi, V. Pistore, L. Li, A. G. Davies, E. H. Linfield, +M. Riesch, C. Jirauschek, T. Carey, F. Torrisi, A. C. Ferrari, M. S. Vitiello, ACS Photonics 2020, +7, 3489. +[38] +B. Hinkov, A. Hugi, M. Beck, J. Faist, Opt. Express 2016, 24, 3294. +[39] +E. Rodriguez, A. Mottaghizadeh, D. Gacemi, M. Jeannin, Z. Asghari, A. Vasanelli, Y. Todorov, +Q. J. Wang, C. Sirtori, Laser Photonics Rev. 2020, 14, 1900389. +[40] +D. Burghoff, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, Q. Hu, Opt. Express 2015, 23, 1190. +[41] +F. Cappelli, L. Consolino, G. Campo, I. Galli, D. Mazzotti, A. Campa, M. Siciliani de Cumis, P. +Cancio Pastor, R. Eramo, M. Rösch, M. Beck, G. Scalari, J. Faist, P. De Natale, S. Bartalini, Nat. +Photonics 2019, 13, 562. +[42] +D. Oustinov, N. Jukam, R. Rungsawang, J. Madéo, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, +J. Tignon, S. Dhillon, Nat. Commun. 2010, 1, 69. +[43] +S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. +Linfield, A. G. Davies, Nat. Photonics 2011, 5, 306. + +Supplementary material of “RF Injection Locking of THz +Metasurface Quantum-Cascade VECSEL” +Yu Wu,1* Christopher A. Curwen,2 Mohammad Shahili,1 John L. Reno,3 +Benjamin S. Williams1 + +S1. Modeling of QC-metasurface and output coupler +The QC-metasurface shown in Figure 1 is modelled using full-wave 2D finite- +element (FEM) simulation (Ansys HFSS), assuming it is infinite in extent, where a +single metal-metal waveguide antenna is simulated with periodic boundary +conditions. Simulated losses in the metal thin films are estimated using the Drude +model (nAu = 5.9 × 1022 cm-3, τAu,77 K = 39 fs [1]), while for the semiconductor layer, +band diagram is simulated to obtain the intersubband gain provided by the active +material. The QC-active material is grown 10-μm thick by molecular beam epitaxy +(wafer number VB0739). The active region is based upon a hybrid bound-to- +continuum/ resonant-phonon design scheme and exhibits over 1 THz gain bandwidth +peaking at 3.4 THz, the same one as used in Refs [2,3]. It consists of an +GaAs/Al0.15Ga0.85As heterostructure where, starting from the injection barrier, the +layer thicknesses in Å are 51/103/17/107/37/88/37/172 (barrier layers are bold). The +central 88 Å of the underlined well is Si-doped at 5 × 1016 cm−3. We simulated the +band diagram for one module of the active region using a self-consistent +Schrödinger-Poisson solver at the bias providing maximum gain (Figure S1(a)) and +obtained its permittivity along the growth direction (Figure S1(b)). The dominant +intersubband transition occurs between the upper lasing state 5 and the lower lasing +state 4 at a frequency of 𝜈54 = 3.4 THz with oscillator strength of f54 = 0.427, where +the population inversion takes up 25% of the total doping concentration. A good +Figure. S1. (a) Conduction band diagram of the active region at the bias of 58 mV/module. (b) +The real and imaginary part of the permittivity of the active region simulated using the +Schrödinger-Poisson solver (red solid curves), and fitting based on Lorentz model (blue dashed +curves). + +a +Bias = 58 mV/module, T=77 K +0.2 +(b) +0.1 +180 +Real +0 +(meV) +-0.1 +140 +Energy ( +-0.2 +- Lorentz model +100 +0 +Schrodinger solver +3 +-0.1 +Imag( +60 +1 +-0.2 +-0.3 +20 +0 +10 +20 +30 +40 +50 +60 +2.5 +3 +3.5 +4 +z (nm) +Freguency(THz)qualitative fitting of the permittivity is obtained by considering only the 5 → 4 +transition using a Lorentz oscillator model (Figure S1(b), dashed lines): + 𝜀𝑧(𝜔) = 𝜀𝑐𝑜𝑟𝑒 + 𝑁𝐼𝑆𝐵𝑒2 +𝑚∗𝐿𝑚𝑜𝑑 +𝑓54 +𝜔2 − 𝜔54 +2 + 𝑖𝜔𝛾, (1) +where NISB is the population inversion sheet density per module, εcore is the +semiconductor permittivity excluding free carrier contributions, m* is the GaAs +electron effective mass, Lmod is the length of one module of the active region and γ +is the damping term which is set as 2π × 700 GHz for best fit. The resonance +frequency offset between the Lorentz model and Schrödinger simulation results can +be explained by uncertainties in growth thicknesses and compositions of the QC- +material. This permittivity is brought into FEM simulation, where the simulated +reflectance and GDD are plotted in Figure 1(c). +The output coupler used to form a laser cavity is the same type that has been used +in previous QC-VECSEL experiments [4,5]. It is made of an inductive Ti/Au mesh +evaporated on a 100-μm-thick double-side-polished z-cut quartz substrate. The mesh +is designed with a period of 13 μm and width of 3 μm, which determines the overall +transmittance magnitude. + +S2. Effects of optical feedback +We experimentally found that optical feedback, even weak feedback originating +from the FTIR mirrors, induces few-mode lasing in free-running QC-VECSELs. +This can be useful, as it provides exact information on round-trip frequency from an +observed beat note (Figure 1(e-f)) – without feedback, the device lases in single- +Figure. S2. (a-c) Beat note spectral maps under constant RF injection power of -15 dBm in the +case when the strength of optical feedback is reduced controlled by the rotational angle from +“90°” to “70°”. (d) The free-running beat note frequency is shifted with reduced strength of +optical feedback. + +4987.7 +(a) 90° +(b) 80° +4987.7 +. Freq (MHz) +Locking +Locking +Range +Range +dBm +4987.6 +dBm +4987.6 +~50kHz +40 +64kHz +Inj. +40 +60 +Inj. +60 +RF +-80 +-80 +100 +100 +4987.5 +4987.5 +4987.44987.64987.8 +4987.44987.64987.8 +Frequency(MHz) +Frequency(MHz) +4987.7 +50 +(c)70° +(d) +Inj.Freq (MHz) +Intensity (dBm) +0 +Locking +4987.6 +Range +dBm +~72kHz +-40 +-50 +-60 +80 +30 +-100 +-100 +4987.5 +20 +4987.44987.64987.8 +4987.6 +4987.8 +Freguency((MHz) +Frequency(MHz)mode regime with no beat note detected. It is believed that the performances (e.g. +output power, spectral characteristics, injection locking range) of QC-lasers will be +affected by the strength, length (phase) and the tilted angle of the optical feedback +[6–9]. A systematic study will be needed using a motorized translational and rotational +stage that can precisely control the optical feedback length and angle, and a rotatable +polarizer that adjusts optical feedback strength. +Here, we did a simple experiment to qualitatively demonstrate the effects of optical +feedback strength on free-running beat note frequency as well as the RF injection +locking range. We put a flat mirror in front of the cryostat window (approximately +15 cm from the device) and a rotatable wire-grid polarizer in between. THz radiation +coming from the QC-VECSEL has a polarization perpendicular to the ridge antennas +and the QC-metasurface only interacts with light at that polarization. We label it as +“90°” for the case when 100% of the THz radiation passes through the polarizer. As +the polarizer was rotated from “90°” to “70°”, the amount of light feedbacked back +into the QC-device was reduced. The collected beat note spectral maps under a +constant RF power of -15 dBm are plotted in Figure S2(a-c) which indicate an +increasing locking range with respect to the reduced optical feedback strength. +Moreover, the free-running beat notes were also collected in Figure S2(d) showing +frequency shift as optical feedback strength was changed. + +S3. Transmission loss in the QC-device +To estimate the transmission loss in the QC-device due to impedance mismatch, +an FEM simulation is used accounting for the finite dimension of the metasurface +including its electrical packaging. Figure S3(a) shows the QC-device mounted in the +focusing cavity that is modelled using Ansys HFSS in Figure S3(b). Only the +electrically biased ridges are modelled with metal layers loaded with Drude loss; the +circular biased area is assumed to be loaded with GaAs with a shunt conductivity +derived from experimental dI/dV curve while the unbiased area is defined as bulk +GaAs. Two 1-mil bond wires of approximately 2 mm length electrically connect the +metasurface to a “gold pad”: a 2.5 mm × 4.5 mm × 0.254 mm thick Al2O3 pad coated +with Au above and below. The pad is soldered to the center pin of an SMA connector +on the other side. The E-field distribution along one of the biased ridges is simulated +at 5 GHz which indicates the injected RF signal propagating along the QC- +metasurface has an effective wavelength much longer than its dimension. The +simulated power dissipation with a 50 Ω excitation port is plotted in Figure S3(c), +which gives an estimated power transfer of 4% from the SMA into the QC-device +and shows good agreement with circuit model result (see section S4) except at lower +frequencies. The frequency of the electrical resonance is determined by the +dimensions of the gold pad and bond wires. + + +S4. Microwave rectification measurement and equivalent lumped element +circuit model +To experimentally characterize the response of QC-device to injected RF signal, +microwave rectification technique has been applied as described in Ref. [10–12]. The +RF signal generated from the synthesizer is amplitude modulated at a frequency of +10 kHz and injected into the QC-device, while the latter is biased at a constant +current. The variation in DC rectification voltage is measured using a lock-in +amplifier referenced to the amplitude modulation. The injected RF power is kept +constant at -10 dBm, and the normalized rectification voltage (proportional to |VRF|2) +is plotted in Figure S4 at bias current of 0.235 mA. The result is well described by a +lumped-element circuit model described in more details below. Notably, an +electrical resonance is present at 3 GHz (associated with the LC parasitics) and the +3-dB cutoff frequency is 3.7 GHz followed by a rapid roll-off at higher frequencies. +Consequently, the rectification voltage of the QC-device at the target frequency of +4.8 GHz is reduced to ~5% of that at lower frequencies. +An equivalent lumped-element circuit is introduced to model the QC-device and +explain the rectification measurement. The QC-metasurface used in this paper has a +dimension much smaller than the RF operation wavelength as shown in Figure S3(b) +and is therefore represented as a parallel plate capacitor in parallel with a resistor +Figure. S3. (a) Image of QC metasurface device mounted in the focusing cavity. (b) Electrical +packaging structure that is modelled in Ansys HFSS including the gold pad and bond wires. Their +dimensions are labeled and the simulated E-field distribution along one of the biased ridges at 5 +GHz is plotted. (c) Transmission coefficient simulated within HFSS assuming an excitation port of +50 Ω (blue) and calculated using the lumped element circuit model (red). + +(a) +(c) +1 +HFSS +0.8 +Circuit model +QC device +~.0.6 +0.15 +SMA +0.4 +0.1 +~4% +0.05 +0.2 +0 +Off-axismirror +4 +5 +6 +0 +Frequency (GHz) +10-1 +100 +101 +Frequency(GHz) +(b) +2.5mm +4.5mm +Wire-bond area +1.5mm +QC-metasurface +(biased ridges) +Gold pad +0.254mm +Biasdiameter0.4mm +Wire bonds +E-field at5GHz +Circular +bias areacoming from the effect of QC-active material. The capacitance CMS is calculated +based on the dimension and thickness of the metasurface assuming the permittivity +of 12.5 for the GaAs/AlGaAs active region. The differential shunt resistance RAR is +obtained based on the experimental slope of I-V curve at the bias point. Lwire is the +inductance of the two wire bonds connected in series with the RC circuit and is +estimated based upon the rule of thumb of ~1nH/mm/wire. Cgold pad is the capacitance +of the gold pad whose value is estimated based on its dimension and the permittivity +of Al2O3. The gold pad is connected to the RF source with a 50Ω generator +impedance Rg, which provides a RF power of PRF and an equivalent RF voltage of +𝑉𝑅𝐹 = 2√𝑅𝑔𝑃𝑅𝐹. +The rectification voltage of the QC-device can be calculated according to Ref. [11]: +𝑉𝑟𝑒𝑐𝑡 = 1 +2 |𝑉′′|𝐼0𝐼𝑅𝐹,𝑄𝐶𝐿 +2 +, +(S1) +where V’’ is the second derivative of the I-V curve at DC bias current I0. IRF, QCL is +the RF modulation current injected into the QC-active material: +𝐼𝑅𝐹,𝑄𝐶𝐿 = 𝑉𝑅𝐹 +𝑅𝐿 +𝑅𝐴𝑅(𝑍𝑄𝐶𝐿 + 𝑅𝐿) +𝑍𝑀𝑆 +(𝑗𝜔𝐿 + 𝑍𝑀𝑆) , +(S2) +where the impedance of the QC-device ZQCL and the metasurface ZMS is pointed out +in Figure S4 inset. The theoretical rectification voltage is plotted in dashed line using +values of: CMS = 6.1 pF, RAR = 16 Ω, Cgold pad = 3.8 pF, Lwire = 1nH. + +References: +[1] +N. Laman, D. Grischkowsky, Appl. Phys. Lett. 2008, 93, 051105. +[2] +C. A. Curwen, J. L. Reno, B. S. Williams, Nat. Photonics 2019, 13, 855. +[3] +C. A. Curwen, J. L. Reno, B. S. Williams, Electron. Lett. 2020, 56, 1264. +Figure. S4. Normalized rectification curves (solid line) measured at bias current of 0.235 mA, +together with the theoretical fits (dashed line) obtained based on lumped element circuit model. +Inset: equivalent lumped element circuit model. Blue and red dashed boxes point out the +impedances of the QC-device and metasurface. + +101 +Measurement +Lumpedmodel +(a.u.) +100 +rectification +RF source +R. +I Z +wire +10-1 +> +MS +Norm. +P +RF +10-2 +gold pad +R +1 +2 +3 +4 +5 +6 +7 8 +Frequency(GHz)[4] +L. Xu, C. A. Curwen, J. L. Reno, B. S. Williams, Appl. Phys. Lett. 2017, 111, 101101. +[5] +Y. Wu, S. Addamane, J. L. Reno, B. S. Williams, Appl. Phys. Lett. 2021, 119, 111103. +[6] +M. Wienold, B. Röben, L. Schrottke, H. T. Grahn, Opt. Express 2014, 22, 30410. +[7] +X. Liao, X. Wang, K. Zhou, W. Guan, Z. Li, X. Ma, C. Wang, J. C. Cao, C. Wang, H. Li, Opt. +Express 2022, 30, 35937. +[8] +D. S. Seo, J. D. Park, J. G. Mcinerney, M. Osinski, IEEE J. Quantum Electron. 1989, 25, 2229. +[9] +X. G. Wang, B. Bin Zhao, Y. Deng, V. Kovanis, C. Wang, Phys. Rev. A 2021, 103, 23528. +[10] +E. Rodriguez, A. Mottaghizadeh, D. Gacemi, M. Jeannin, Z. Asghari, A. Vasanelli, Y. Todorov, +Q. J. Wang, C. Sirtori, Laser Photonics Rev. 2020, 14, 1900389. +[11] +B. Hinkov, A. Hugi, M. Beck, J. Faist, Opt. Express 2016, 24, 3294. +[12] +L. Gu, W. J. Wan, Y. H. Zhu, Z. L. Fu, H. Li, J. C. Cao, J. Opt. (United Kingdom) 2017, 19, +065706. + + + + diff --git a/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/load_file.txt b/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..52e6f7346b5a03733fa2f1a3bcbb396b06667c46 --- /dev/null +++ b/qdE3T4oBgHgl3EQf8QuK/content/tmp_files/load_file.txt @@ -0,0 +1,1021 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf,len=1020 +page_content='RF Injection Locking of THz Metasurface Quantum- Cascade VECSEL Yu Wu,1* Christopher A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen,2 Mohammad Shahili,1 John L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno,3 Benjamin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams1 1Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA 3Sandia National Laboratories, Center of Integrated Nanotechnologies, MS 1303, Albuquerque, New Mexico 87185, USA Corresponding author: ywu17@ucla.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='edu Abstract: RF injection locking and spectral broadening of a terahertz (THz) quantum-cascade vertical-external-cavity surface-emitting laser (QC- VECSEL) is demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' An intra-cryostat VECSEL focusing cavity design is used to enable continuous-wave lasing with a cavity length over 30 mm which corresponds to a round-trip frequency near 5 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Strong RF current modulation is injected to the QC-metasurface electrical bias to pull and lock the round-trip frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The injection locking range at various RF injection powers is recorded and compared with the injection locking theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Moreover, the lasing spectrum broadens from 14 GHz in free-running mode to a maximum spectral width around 100 GHz with 20 dBm of injected RF power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This experimental setup is suitable for further exploration of active mode-locking and picosecond pulse generation in THz QC-VECSELs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Introduction The terahertz (THz) spectral region has a need for high-resolution, high-speed spectroscopy techniques, as many gas phase polar molecular species have strong characteristic rotational lines there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Examples include applications in industrial and environmental monitoring,[1,2] chemical detection and identification,[3,4] combustion diagnostics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [5] The quantum cascade (QC) laser is well suited for spectroscopic applications as it has been demonstrated as a compact, electrically pumped semiconductor source which gives high power, broadband, coherent THz radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [6–8] Its inherently high optical nonlinearity induces self-phase locking through four-wave mixing, which promotes the generation of spontaneous frequency combs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' these have been demonstrated in waveguide-based Fabry-Pérot[9–11] and ring QC-lasers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [12,13] Based on that, THz dual-comb spectroscopy has been demonstrated, surpassing the precision and speed of traditional Fourier spectrometers by several orders of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [14–17] In separate experiments, THz quantum-cascade lasers have recently been implemented in the vertical-external-cavity surface-emitting laser (VECSEL) architecture, which exhibits watt-level output power, near diffraction-limited beam quality, and ~20% continuous fractional single-mode tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [18–20] The key component of a QC-VECSEL is an amplifying reflectarray metasurface of metal- metal waveguide antennas that are loaded with QC-gain material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is further paired with a partially transmissive output coupler to form the laser cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In contrast to ridge-waveguide QC-lasers, experiments have shown that QC-VECSELs tend to operate in single-mode regime despite having large gain bandwidths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' For example, we have developed an intra-cryostat focusing VECSEL cavity to reduce the intra- cavity diffraction loss and enable continuous-wave (CW) lasing at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 THz with a cavity length of ∼30 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [21] Even though the gain bandwidth of the metasurface used was at least 100 times larger than the free spectral range, only a single lasing mode was observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This is mainly due to a lack of spatial hole burning within the QC-VECSEL metasurface which suppresses multi-mode instabilities,[22] although it is perhaps compounded by the fact that no effort towards dispersion engineering has Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) Schematic of the QC-VECSEL based on an intra-cryostat focusing cavity design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (b) Scanning electron microscopy image of the fabricated QC-metasurface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The inset shows the dimension and E-field distribution in a single ridge antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (c) FEM simulated active metasurface reflectance, output coupler transmittance and GDD contributed by the two components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Shaded area indicates the frequency range where lasing is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (d) Schematic of experimental setup for RF injection locking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' THz lasing spectrum (e) and beat note spectra (f) of the free-running QC- device in existence of optical feedback are collected at a DC bias of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='235 mA, where optical feedback is provided by the moving FTIR mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The beat note spectra are measured in both Average (solid) and Max Hold modes (dashed) with a RBW of 2 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) Outputcoupler (b) IEI at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='36 THz X104 (c) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 QC-gain FEM Exp 10日 L80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 Biasarea d=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4mm 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7μm MS+OC OC Off-axis (sd) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 MS paraboloid GDD ( QC-metasurface mirror 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4 Frequency (THz) 100 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=') (e) (d) Directional Microwave RF synthesizer FTIR Bias-T coupler amplifier 10-2 SMA 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 Optical Frequency(THz) feedback Intensity (dBm) 60 Cryostat (f) 50kH 80 DCpower 8kHz Average MaxHold supply Spectrum 100 analyzer BN 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 Frequency(MHz)yet been attempted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Despite these challenges, there is strong interest in achieving active mode-locked QCLs and frequency combs within the QC-VECSEL architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Radiofrequency (RF) current modulation of QC-lasers has been demonstrated to promote the generation of sidemodes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' by injecting a RF signal near the cavity round- trip frequency, the generated sidemodes will lock existing adjacent free-running lasing modes or seed new ones, which allows for the stabilization and tuning of frequency comb states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [23–26] RF modulation and injection locking is also an important mechanism for active mode-locking in QC-lasers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' pulses as narrow as 4- 5 ps have been reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [27,28] In this article, we demonstrate the emergence of spectral broadening and multimoding in THz QC-VECSEL as we inject strong RF current modulation to the QC-metasurface at a frequency close to the cavity round-trip frequency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' at the same time, round-trip frequency pulling and locking to the injected RF signal is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The lasing bandwidth and injection locking range increase monotonically with the injected RF power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lasing modes spanning ~100 GHz are demonstrated under an injected RF power of 20 dBm at 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz, along with a locking range ~5 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sample and experimental setup The QC-VECSEL used for all measurements is based on an intra-cryostat focusing cavity design, as sketched in Figure 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' An off-axis paraboloid (OAP) mirror with a focal length of 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 mm is introduced into the VECSEL cavity to reduce the intra- cavity diffraction loss and enable CW lasing using small metasurfaces in long lasing cavities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [21] The QC-metasurface used in this paper is the same one as reported in ref [21], with a small bias area of diameter d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 mm for reduced injection current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is designed to be resonant at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='3 THz and consists of an array of ridges of width 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 µm repeated with a period of 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 µm (Figure 1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' An output coupler with ROC ≈ 95% is used in pair with the metasurface to form a laser cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Both two components are dispersive and contribute to the group delay dispersion (GDD) over one round trip - it exhibits a maximum value exceeding 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='35 ps2 in the frequency range where lasing occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The simulated spectral response of the metasurface and the output coupler are plotted in Figure 1(c) based on full-wave 2D finite-element (FEM) electromagnetic reflectance simulation (Ansys HFSS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Detailed information of the active region design and simulation parameters can be found in the Supporting Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The experimental setup for RF injection locking is depicted in Figure 1(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' All the measurements were performed in vacuum at a temperature of 77 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We note that formable semi-rigid coaxial cable is used within the cryostat up to the chip carrier package (see Supporting Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Due to impedance mismatch between the 50Ω SMA port and the QC-device, the spectrum analyzer collects not only the generated beat note from the QC-device fBN (blue arrow), but also the RF injection signal reflected at the interface of SMA/QC-device fRF (green arrow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In free-running case, although only single-mode lasing was observed using the same QC-device in ref [21], here we note that the existence of optical feedback can induce multi-mode operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [29–31] Due to the temporally varying small feedback from the scanning Fourier-transform infrared spectrometer (FTIR, Nicolet 8700) mirrors, we observed at least two lasing modes separated by ~14 GHz in the emission spectrum (Figure 1(e)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Additional low intensity sidemodes may also exist but cannot be resolved by the limited FTIR resolution of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This phenomenon is similar as that observed in ref [30], where additional lasing modes are observed in a Mid-IR QC-laser under tilted optical feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Through nonlinear mixing of the free-running lasing modes, a weak electrical beat note signal is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is collected using the spectrum analyzer (Agilent N9020a) both in Average mode and in Max Hold mode over 30 seconds, which indicates a round-trip frequency fBN ≈ 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz and an equivalent cavity length around 31 mm (Figure 1(f)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A narrow 8-kHz -3dB linewidth in Average mode and 60-kHz linewidth in Max Hold mode of the intermodal beat note is on the same order as the free-running linewidth of the single THz lasing mode measured in [21];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' it is likely contributed by only two (or a few) lasing modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Furthermore, recent study of optical feedback has highlighted its effect on THz QC-lasers combs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [32–34] Here, we experimentally demonstrate that optical feedback plays an important role in determining not only the free-running beat note frequency but also the injection locking range (see Supporting Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' RF injection locking With the knowledge of an accurate round-trip frequency, we are able to systematically study the modulation-dependent behavior of this QC-device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We swept the RF modulation frequency around the round-trip frequency at various modulation powers from -20 dBm to 20 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' All RF powers indicated in this paper refer to the nominal output level of the RF synthesizer (Hewlett-Packard 83650B) or after a 20 dBm amplifier (Hewlett-Packard 8349B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The DC bias is fixed at a current of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='235 mA (≈1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='17×Ith), and the THz emission spectra as well as intermodal beat note are collected and plotted in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' At the lowest power level of -20 dBm, the spectral map in Figure 2(a) clearly shows that the beat note is pulled toward the injection signal and finally locked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A locking range of 30 kHz is demonstrated which increases with respect to the RF injection power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Starting from an RF power of -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 dBm, injection locking occurs before the beat note is fully pulled to meet the injected signal fRF (Figure 2(b));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' at the same time, lasing bandwidth broadening is observed in the THz emission spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This spectral broadening increases with respect to RF power as shown in Figure 2(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The maximum RF injection power used in this measurement is 20 dBm limited by the max allowable power of the bias-Tee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' THz emission and RF beat note spectral maps in this case are plotted in Figure 2(e-f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The maximum spectral broadening occurs at fRF = 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz with lasing modes spanning around 100 GHz (Figure 2(g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' However, due to the limited FTIR resolution of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 GHz, we were not able to spectrally resolve individual lasing modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The corresponding power and voltage vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' current (P-I-V) curves are plotted in Figure 2(h) (solid curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A maximum output power around 10 mW was collected using a pyroelectric detector (GentecEO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Compared with the P-I characteristic in the free-running case (dashed curve), the output power, as well as the lasing threshold, is slightly lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is noticed from Figure 2(e) that the symmetry of the lasing spectrum is highest at fRF = 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz, where the maximum bandwidth is observed with relative low THz output power obtained from the P-I curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' At injection frequencies above/below this value, the optical power increases – still smaller than that in free-running case – and concentrates toward lower/higher portion of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This phenomenon is Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beat note spectral map under constant RF injection power of -20 dBm (a) and -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 dBm (b) with RF modulation frequency sweeping around the round-trip frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (c) Experimental injection locking range at different RF injection powers (blue stars), following a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5-slope dependence in log–log scale (red dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The free-running beat note frequency was shifted from ~ 4842 MHz in (a-c) to ~ 4853 MHz in (d-h) as the movement of cryostat changes the amount of optical feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (d) THz lasing spectra at increasing RF power when fRF is fixed at 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (e) Lasing spectral and (f) beat note maps of the device under constant RF injection power of 20 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The estimated locking range is pointed out by the red arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The maximum spectral broadening occurs at fRF = 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz (white dashed line) and the THz lasing spectrum and P-I- V curves in this case are plotted in (g-h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 4842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 (a) dBm (d) (e) 20dBm (f) 20 dBm 40 4842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='05 20dBm 20dBm 60 19dBm Locking (MHz) 80 18dBm 4842 17dBm injection freg ( 4854 Range 100 freq 120 16dBm =4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7MHz 15dBm 4841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='9 4842 4842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 RF Inj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' RF injection f 14dBm Frequency (MHz) 4852 Signal fr 13dBm 800 dBm (b) dBm 12dBm 600 Beat note fen 20 4842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 20 11dBm 40 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 dBm 48 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=') 10dBm 4850 400 60 4842 9dBm 200 80 8dBm 100 4841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 100 Z dBm 6dBm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4848 4852 4856 4841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4842 4842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 5dBm Frequency(THz) Frequency(MHz) Frequency (MHz) 4dBm 3dBm (h) Current (A) range(kHz) (c) 2dBm (g) 1dBm Atm 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content="2 103 OdBm ('ne) absorption 10 1dBm 2dBm M Intensity 10 3dBm 4dBm 6 5dBm ~100GHz 4 5 (mW) Expt." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=" 6dBm 7dBm RFoff Adler's Eq." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 8dBm 2 fr=4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7MHz 101 9dBm 0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='dBm 0 20 10 0 10 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='35 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='45 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='55 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 0 200 400 600 RFpower(dBm) Freguency(THz) Freguency (THz) CurrentDensity(A/cm2)similar as that reported in ref [26] and a possible explanation can be found in ref [35] due to phase mismatch between the modulation period and group round-trip time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In Figure 2(f), although there is no beat note pulling observed, it is notable that the emission spectrum undergoes distinct change as the beat note disappears (pointed out by red arrows) – it is believed that this is a signature of injection locking and occurs in our measurements under different RF powers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The experimental locking range at various RF injection powers is plotted in Figure 2(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' To analyze the phenomenon of RF injection locking, Adler’s equation is commonly used with a locking bandwidth given by:[23,36] 𝛥𝜈 = 2𝜈0 𝑄 √𝑃𝑖𝑛𝑗 𝑃0 , (1) where Q is the cold-cavity quality factor, 𝜈0 and P0 are the frequency and power of a free-running longitudinal mode, while Pinj is the power of the injected sideband induced by RF injection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Adler’s equation indicates a square root dependence of the locking bandwidth on the RF power and fits our experimental results well at low RF powers (red dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' However, our experimental locking range deviates from Adler’s equation towards higher values under strong RF modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This may indicate the limitation of Adler’s equation in explaining RF injection locking especially in the case when multiple new lasing modes are excited at RF powers > −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Adler’s equation assumes a weak injection signal where amplitude perturbation induced by the injection signal is not considered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' a more rigorous derivation of the locking range is therefore needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Moreover, we studied the behavior of this QC-device at various DC biases ranging from the lasing threshold to near the NDR point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Figure 3(a) shows the lasing spectra under 20 dBm RF injection at a frequency of fRF = 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Significant spectral Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) THz lasing spectra at various biases when RF signal at 4852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 MHz is injected into the QC-device, the RF power used is 20 dBm for significant spectral broadening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (b) Injection locking range as a function of bias current under -15 dBm RF power in the cases of different length/strength/angle of optical feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 120 (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=') (a) (b) 247 mA 244mA (ZH>) Intensity 100 240mA 235mA range 230 mA 80 Normalized 225 mA Locking 219mA 60 213 mA 207 mA 201 mA 40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='25 Frequency (THz) Biascurrent (A)broadening is observed at all the applied biases, and the lasing bandwidth increases only slightly with respect to the bias current as more modes are brought above the lasing threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' As a next step, the effects of device bias on the injection locking bandwidth were investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We swept the RF modulation frequency around the round-trip frequency at a fixed injection power of -15 dBm and measured the injection locking bandwidth at various biases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Small injection power was used so the locking range can be more clearly observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Additionally, we repeated such bias sweeps while providing different magnitude, phase, and angle of feedback light from an external mirror, the corresponding locking ranges are indicated by different colored curves in Figure 3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Our experimental observation reveals that the relationship between locking range and device bias is related to the condition of optical feedback, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' feedback length (phase), strength and tilted angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This is significantly different from previous demonstrations using ridge-waveguide QC-lasers, where the locking range became smaller with increasing bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [23,37] In our system, we could make a simple assumption that there are two free-running modes, where mode ω1 is induced by optical feedback around the main lasing peak ω0 and is locked by the RF-excited sideband of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The ratio of Pinj/P0 in Adler’s equation can be estimated as the ratio of the free-running power of mode ω0 and that of mode ω1 as the injected RF power is fixed, which determines the injection locking range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' How the locking range changes is therefore determined by how the relative power of two lasing modes develops with respect to bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Unfortunately, this is not able to be observed experimentally limited by the resolution of our FTIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In theory, the spectral characteristics of the device versus applied bias is expected to be affected by the changes of threshold gain induced by optical feedback and the alignment of compound-cavity modes formed in the external cavity with respect to gain, which is related to not only the length and strength of optical feedback, but also the tilt angle of external mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [31] To fully understand this phenomenon, a theoretical study of laser dynamics and instabilities of QC-VECSELs under optical feedback and systematic experiments of the RF-injected system with well-controlled, adjustable optical feedback will be needed and are beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Discussion and conclusion The injection locking range obtained in this paper is considerably smaller compared with those demonstrated in RF injection-locked Fabry-Pérot waveguide QC-lasers at same level of RF power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [23,25] One of the reasons is that QC-VECSELs have higher quality factors compared with ridge waveguide QC-lasers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Our VECSEL has a 31 mm-long external cavity and low loss from the ~95% reflectance output coupler;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' using a coupled-cavity model we estimate a cold-cavity linewidth of ν0/Q ≈ 70 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This is around 300 times smaller than a value of 25 GHz estimated in ref [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In addition, intrinsic and technical issues with our QC-VECSEL setup result in a low efficiency of RF power transfer at ~4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 GHz from the synthesizer to the QC-metasurface bias terminal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' First, due to parasitic capacitances contributed by unbiased regions, the QC-metasurface itself exhibits a larger RC time-constant compared with a narrow ridge waveguide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Second, the electrical packaging has not been optimized for RF operation, where wire bonds and wire bonding pads contribute parasitic inductance and capacitance respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Consequently, there is a huge impedance mismatch between the 50Ω SMA port and the QC-device, the resulting transmittance of RF signal through the SMA/QC-package boundary is simulated to be ~4% at a target frequency of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 GHz (see Supporting Information), only part of which will be applied to modulate the gain material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' To make things worse, an additional ~8 dB RF attenuation has been characterized accounting for losses through cables and directional coupler from the synthesizer to the SMA connector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In contrast to other demonstrations of ridge waveguide QC-lasers using RF coplanar probes,[23,38] RF launchers,[39] or custom high-frequency PCB mounts[28] to achieve modulation of QC-lasers up to 35 GHz, microwave rectification technique indicates a significant roll-off at frequency higher than 3 GHz in our QC-device (see Supporting Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' In conclusion, we demonstrate RF injection locking in a THz QC-VECSEL based on intra-cryostat focusing cavity design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Round-trip frequency pulling and locking against an RF injection signal is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Furthermore, the RF amplitude modulation leads to broadening of the lasing spectrum up to a spectral width of 100 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This is particularly notable, as multi-mode lasing in QC-VECSELs has been extremely difficult to achieve due to the lack of spatial hole burning within the metasurface;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' before now at most 9 lasing modes had been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [22] There are several obvious avenues for improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' First, RF attenuation and impedance mismatch severely limits the modulation efficiency, and strong RF reflections impede the detection of the electrical beat note signal using a spectrum analyzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This can be improved by optimizing the electrical packaging of the QC-device, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' reducing the capacitance and inductance portion of the equivalent circuit by 1) redesigning the QC-metasurface with reduced unbiased area and an improved RF feed structure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2) replacing the electrical contact pad with a well-designed PCB 50Ω transmission line feed up to the edge of the metasurface chip with minimal wire bond length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Second, we note that no particular effort to provide dispersion compensation has been attempted here;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' further engineering of GDD within the QC-VECSEL cavity may be needed to increase the lasing across the entire ~1 THz gain bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Finally, given measurements of ridge-waveguide THz QC-lasers under strong RF modulation, it is quite likely that this device is generating short pulses in an active mode-locking regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [27,28] Further characterization techniques such as shifted-wave interference Fourier-transform spectroscopy (SWIFTs)[10,40,41] or asynchronous electro-optical sampling will be needed to recover the time-domain structure of the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [42,43] Supporting Information Supporting Information is available from the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Acknowledgments The authors thank David Burghoff, Andres Forrer, Giacomo Scalari, and Stefano Barbieri for valuable conversations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Microfabrication was performed at the UCLA Nanoelectronics Research Facility, wire bonding was performed at the UCLA Center for High Frequency Electronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Department of Energy (DOE) Office of Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solution of Sandia, LLC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=', a wholly owned subsidiary of Honeywell International, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=', for the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=" Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Partial funding was provided by the National Science Foundation (2041165), and the National Aeronautics and Space Administration (80NSSC19K0700).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' References [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mittleman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jacobsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Neelamani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Baraniuk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Nuss, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' B Lasers Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 1998, 67, 379.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cuisset, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hindle, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mouret, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bocquet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bruckhuisen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Decker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Pienkina, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bray, É.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Fertein, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Boudon, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2021, 11, 1229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhong, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Redo-Sanchez, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhang, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2006, 14, 9130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [4] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Medvedev, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Neese, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Plummer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' De Lucia, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2010, 35, 1533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Araki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Matsuyama, Curr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2022, 36, 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kohler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Tredicucci, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beltram, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beere, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Davies, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ritchie, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Iotti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rossi, Nature 2002, 417, 156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Freeman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Salih, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Dean, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Davies, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2017, 53, 799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Turčinková, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Castellano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Amanti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2011, 99, 191104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rösch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2014, 9, 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Burghoff, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Han, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Chan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hayton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hu, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2014, 8, 462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Forrer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Belyanin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2021, 118, 131112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Piccardo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schwarz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kazakov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beiser, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Opačak, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jha, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hillbrand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Tamagnone, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Columbo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Belyanin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Capasso, Nature 2020, 582, 360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jaidl, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Opačak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kainz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schönhuber, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Theiner, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Limbacher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beiser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Giparakis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Andrews, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Strasser, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schwarz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Darmo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Unterrainer, Optica 2021, 8, 780.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rösch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Villares, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bosco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2016, 108, 171104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sterczewski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Westberg, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Burghoff, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wysocki, Optica 2019, 6, 766.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Liao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zeng, ACS Photonics 2020, 7, 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Consolino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Nafa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' De Regis, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cappelli, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Garrasi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mezzapesa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Davies, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Vitiello, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bartalini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' De Natale, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2020, 3, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hon, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Itoh, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2015, 107, 221105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2018, 113, 011104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2019, 13, 855.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2022, 121, 191106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Addamane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2021, 119, 111103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [23] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gellie, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Barbieri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lampin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Filloux, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Manquest, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sagnes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Khanna, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beere, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ritchie, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2010, 18, 20799.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [24] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Laffaille, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gacemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Apfel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Leonardon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Santarelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rösch, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hänsel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Holzwarth, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Barbieri, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2015, 23, 33270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Forrer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bosco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, Photonics 2020, 7, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [26] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schneider, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kapsalidis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bertrand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Singleton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hillbrand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Laser Photonics Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2021, 15, 2100242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mottaghizadeh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gacemi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Laffaille, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Amanti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Santarelli, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hänsel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Holzwart, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Barbieri, Optica 2017, 4, 168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [28] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Senica, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Forrer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Olariu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Micheletti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cibella, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Torrioli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, Jerome Faist, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='06737 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='optics].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [29] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Qi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bertling, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Taimre, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Agnew, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lim, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A 2021, 103, 033504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [30] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bin Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Deng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kovanis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A 2021, 103, 23528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Seo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mcinerney, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Osinski, IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Quantum Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 1989, 25, 2229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wienold, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Röben, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schrottke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Grahn, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2014, 22, 30410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [33] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Liao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Guan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2022, 30, 35937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [34] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Piccardo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Chevalier, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mansuripur, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kazakov, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rubin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Meadowcroft, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Belyanin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Capasso, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2018, 26, 9464.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [35] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Belyanin, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2015, 23, 4173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' St-Jean, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Amanti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bernard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Calvar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bismuto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='Liu, Carlo Sirtori, Laser Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2014, 8, 443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [37] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mezzapesa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Garrasi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schmidt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Salemi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Pistore, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Davies, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Riesch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jirauschek, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Carey, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Torrisi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ferrari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Vitiello, ACS Photonics 2020, 7, 3489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [38] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hinkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hugi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2016, 24, 3294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [39] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rodriguez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mottaghizadeh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gacemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jeannin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Asghari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Vasanelli, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Todorov, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, Laser Photonics Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2020, 14, 1900389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [40] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Burghoff, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hayton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hu, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2015, 23, 1190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [41] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cappelli, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Consolino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Campo, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Galli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mazzotti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Campa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Siciliani de Cumis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cancio Pastor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Eramo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rösch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Scalari, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' De Natale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bartalini, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2019, 13, 562.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [42] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Oustinov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jukam, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rungsawang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Madéo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Barbieri, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Filloux, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Marcadet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Tignon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Dhillon, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2010, 1, 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Barbieri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ravaro, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gellie, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Santarelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Manquest, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Khanna, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Linfield, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Davies, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2011, 5, 306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Supplementary material of “RF Injection Locking of THz Metasurface Quantum-Cascade VECSEL” Yu Wu,1* Christopher A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen,2 Mohammad Shahili,1 John L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno,3 Benjamin S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams1 S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Modeling of QC-metasurface and output coupler The QC-metasurface shown in Figure 1 is modelled using full-wave 2D finite- element (FEM) simulation (Ansys HFSS), assuming it is infinite in extent, where a single metal-metal waveguide antenna is simulated with periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Simulated losses in the metal thin films are estimated using the Drude model (nAu = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='9 × 1022 cm-3, τAu,77 K = 39 fs [1]), while for the semiconductor layer, band diagram is simulated to obtain the intersubband gain provided by the active material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The QC-active material is grown 10-μm thick by molecular beam epitaxy (wafer number VB0739).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The active region is based upon a hybrid bound-to- continuum/ resonant-phonon design scheme and exhibits over 1 THz gain bandwidth peaking at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 THz, the same one as used in Refs [2,3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It consists of an GaAs/Al0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='15Ga0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='85As heterostructure where, starting from the injection barrier, the layer thicknesses in Å are 51/103/17/107/37/88/37/172 (barrier layers are bold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The central 88 Å of the underlined well is Si-doped at 5 × 1016 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We simulated the band diagram for one module of the active region using a self-consistent Schrödinger-Poisson solver at the bias providing maximum gain (Figure S1(a)) and obtained its permittivity along the growth direction (Figure S1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The dominant intersubband transition occurs between the upper lasing state 5 and the lower lasing state 4 at a frequency of 𝜈54 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 THz with oscillator strength of f54 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='427, where the population inversion takes up 25% of the total doping concentration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A good Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) Conduction band diagram of the active region at the bias of 58 mV/module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (b) The real and imaginary part of the permittivity of the active region simulated using the Schrödinger-Poisson solver (red solid curves), and fitting based on Lorentz model (blue dashed curves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' a Bias = 58 mV/module, T=77 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 180 Real 0 (meV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 140 Energy ( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 Lorentz model 100 0 Schrodinger solver 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 Imag( 60 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='3 20 0 10 20 30 40 50 60 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4 z (nm) Freguency(THz)qualitative fitting of the permittivity is obtained by considering only the 5 → 4 transition using a Lorentz oscillator model (Figure S1(b),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' dashed lines): 𝜀𝑧(𝜔) = 𝜀𝑐𝑜𝑟𝑒 + 𝑁𝐼𝑆𝐵𝑒2 𝑚∗𝐿𝑚𝑜𝑑 𝑓54 𝜔2 − 𝜔54 2 + 𝑖𝜔𝛾,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (1) where NISB is the population inversion sheet density per module,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' εcore is the semiconductor permittivity excluding free carrier contributions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' m* is the GaAs electron effective mass,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lmod is the length of one module of the active region and γ is the damping term which is set as 2π × 700 GHz for best fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The resonance frequency offset between the Lorentz model and Schrödinger simulation results can be explained by uncertainties in growth thicknesses and compositions of the QC- material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This permittivity is brought into FEM simulation, where the simulated reflectance and GDD are plotted in Figure 1(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The output coupler used to form a laser cavity is the same type that has been used in previous QC-VECSEL experiments [4,5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is made of an inductive Ti/Au mesh evaporated on a 100-μm-thick double-side-polished z-cut quartz substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The mesh is designed with a period of 13 μm and width of 3 μm, which determines the overall transmittance magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Effects of optical feedback We experimentally found that optical feedback, even weak feedback originating from the FTIR mirrors, induces few-mode lasing in free-running QC-VECSELs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' This can be useful, as it provides exact information on round-trip frequency from an observed beat note (Figure 1(e-f)) – without feedback, the device lases in single- Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a-c) Beat note spectral maps under constant RF injection power of -15 dBm in the case when the strength of optical feedback is reduced controlled by the rotational angle from “90°” to “70°”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (d) The free-running beat note frequency is shifted with reduced strength of optical feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 (a) 90° (b) 80° 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Freq (MHz) Locking Locking Range Range dBm 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 dBm 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 ~50kHz 40 64kHz Inj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 40 60 Inj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 60 RF 80 80 100 100 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='44987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='64987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='44987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='64987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 Frequency(MHz) Frequency(MHz) 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 50 (c)70° (d) Inj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='Freq (MHz) Intensity (dBm) 0 Locking 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 Range dBm ~72kHz 40 50 60 80 30 100 100 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 20 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='44987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='64987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 4987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 Freguency((MHz) Frequency(MHz)mode regime with no beat note detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' It is believed that the performances (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' output power, spectral characteristics, injection locking range) of QC-lasers will be affected by the strength, length (phase) and the tilted angle of the optical feedback [6–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A systematic study will be needed using a motorized translational and rotational stage that can precisely control the optical feedback length and angle, and a rotatable polarizer that adjusts optical feedback strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Here, we did a simple experiment to qualitatively demonstrate the effects of optical feedback strength on free-running beat note frequency as well as the RF injection locking range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We put a flat mirror in front of the cryostat window (approximately 15 cm from the device) and a rotatable wire-grid polarizer in between.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' THz radiation coming from the QC-VECSEL has a polarization perpendicular to the ridge antennas and the QC-metasurface only interacts with light at that polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' We label it as “90°” for the case when 100% of the THz radiation passes through the polarizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' As the polarizer was rotated from “90°” to “70°”, the amount of light feedbacked back into the QC-device was reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The collected beat note spectral maps under a constant RF power of -15 dBm are plotted in Figure S2(a-c) which indicate an increasing locking range with respect to the reduced optical feedback strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Moreover, the free-running beat notes were also collected in Figure S2(d) showing frequency shift as optical feedback strength was changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Transmission loss in the QC-device To estimate the transmission loss in the QC-device due to impedance mismatch, an FEM simulation is used accounting for the finite dimension of the metasurface including its electrical packaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Figure S3(a) shows the QC-device mounted in the focusing cavity that is modelled using Ansys HFSS in Figure S3(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Only the electrically biased ridges are modelled with metal layers loaded with Drude loss;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' the circular biased area is assumed to be loaded with GaAs with a shunt conductivity derived from experimental dI/dV curve while the unbiased area is defined as bulk GaAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Two 1-mil bond wires of approximately 2 mm length electrically connect the metasurface to a “gold pad”: a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 mm × 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 mm × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='254 mm thick Al2O3 pad coated with Au above and below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The pad is soldered to the center pin of an SMA connector on the other side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The E-field distribution along one of the biased ridges is simulated at 5 GHz which indicates the injected RF signal propagating along the QC- metasurface has an effective wavelength much longer than its dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The simulated power dissipation with a 50 Ω excitation port is plotted in Figure S3(c), which gives an estimated power transfer of 4% from the SMA into the QC-device and shows good agreement with circuit model result (see section S4) except at lower frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The frequency of the electrical resonance is determined by the dimensions of the gold pad and bond wires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Microwave rectification measurement and equivalent lumped element circuit model To experimentally characterize the response of QC-device to injected RF signal, microwave rectification technique has been applied as described in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [10–12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The RF signal generated from the synthesizer is amplitude modulated at a frequency of 10 kHz and injected into the QC-device, while the latter is biased at a constant current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The variation in DC rectification voltage is measured using a lock-in amplifier referenced to the amplitude modulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The injected RF power is kept constant at -10 dBm, and the normalized rectification voltage (proportional to |VRF|2) is plotted in Figure S4 at bias current of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='235 mA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The result is well described by a lumped-element circuit model described in more details below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Notably, an electrical resonance is present at 3 GHz (associated with the LC parasitics) and the 3-dB cutoff frequency is 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='7 GHz followed by a rapid roll-off at higher frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Consequently, the rectification voltage of the QC-device at the target frequency of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 GHz is reduced to ~5% of that at lower frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' An equivalent lumped-element circuit is introduced to model the QC-device and explain the rectification measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The QC-metasurface used in this paper has a dimension much smaller than the RF operation wavelength as shown in Figure S3(b) and is therefore represented as a parallel plate capacitor in parallel with a resistor Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) Image of QC metasurface device mounted in the focusing cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (b) Electrical packaging structure that is modelled in Ansys HFSS including the gold pad and bond wires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Their dimensions are labeled and the simulated E-field distribution along one of the biased ridges at 5 GHz is plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (c) Transmission coefficient simulated within HFSS assuming an excitation port of 50 Ω (blue) and calculated using the lumped element circuit model (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (a) (c) 1 HFSS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 Circuit model QC device ~.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='15 SMA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 ~4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='2 0 Off-axismirror 4 5 6 0 Frequency (GHz) 10-1 100 101 Frequency(GHz) (b) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5mm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5mm Wire-bond area 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5mm QC-metasurface (biased ridges) Gold pad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='254mm Biasdiameter0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='4mm Wire bonds E-field at5GHz Circular bias areacoming from the effect of QC-active material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The capacitance CMS is calculated based on the dimension and thickness of the metasurface assuming the permittivity of 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='5 for the GaAs/AlGaAs active region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The differential shunt resistance RAR is obtained based on the experimental slope of I-V curve at the bias point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lwire is the inductance of the two wire bonds connected in series with the RC circuit and is estimated based upon the rule of thumb of ~1nH/mm/wire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cgold pad is the capacitance of the gold pad whose value is estimated based on its dimension and the permittivity of Al2O3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The gold pad is connected to the RF source with a 50Ω generator impedance Rg, which provides a RF power of PRF and an equivalent RF voltage of 𝑉𝑅𝐹 = 2√𝑅𝑔𝑃𝑅𝐹.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The rectification voltage of the QC-device can be calculated according to Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [11]: 𝑉𝑟𝑒𝑐𝑡 = 1 2 |𝑉′′|𝐼0𝐼𝑅𝐹,𝑄𝐶𝐿 2 , (S1) where V’’ is the second derivative of the I-V curve at DC bias current I0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' IRF, QCL is the RF modulation current injected into the QC-active material: 𝐼𝑅𝐹,𝑄𝐶𝐿 = 𝑉𝑅𝐹 𝑅𝐿 𝑅𝐴𝑅(𝑍𝑄𝐶𝐿 + 𝑅𝐿) 𝑍𝑀𝑆 (𝑗𝜔𝐿 + 𝑍𝑀𝑆) , (S2) where the impedance of the QC-device ZQCL and the metasurface ZMS is pointed out in Figure S4 inset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' The theoretical rectification voltage is plotted in dashed line using values of: CMS = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='1 pF, RAR = 16 Ω, Cgold pad = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='8 pF, Lwire = 1nH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' References: [1] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Laman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Grischkowsky, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2008, 93, 051105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Photonics 2019, 13, 855.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2020, 56, 1264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Normalized rectification curves (solid line) measured at bias current of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='235 mA, together with the theoretical fits (dashed line) obtained based on lumped element circuit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Inset: equivalent lumped element circuit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Blue and red dashed boxes point out the impedances of the QC-device and metasurface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 101 Measurement Lumpedmodel (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=') 100 rectification RF source R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' I Z wire 10-1 > MS Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' P RF 10-2 gold pad R 1 2 3 4 5 6 7 8 Frequency(GHz)[4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Curwen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2017, 111, 101101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Addamane, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Reno, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Williams, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2021, 119, 111103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wienold, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Röben, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Schrottke, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Grahn, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2014, 22, 30410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [7] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Liao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Guan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Ma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2022, 30, 35937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Seo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mcinerney, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Osinski, IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Quantum Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 1989, 25, 2229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [9] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Bin Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Deng, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Kovanis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' A 2021, 103, 23528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Rodriguez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Mottaghizadeh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gacemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Jeannin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Asghari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Vasanelli, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Todorov, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Sirtori, Laser Photonics Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' 2020, 14, 1900389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hinkov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Hugi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Beck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Faist, Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Express 2016, 24, 3294.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Gu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Wan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Fu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} +page_content=' (United Kingdom) 2017, 19, 065706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/qdE3T4oBgHgl3EQf8QuK/content/2301.04806v1.pdf'} diff --git a/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/2301.00937v1.pdf.txt b/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/2301.00937v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..10c65cb10719081313452d7e6ad8e6212ec13f06 --- /dev/null +++ b/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/2301.00937v1.pdf.txt @@ -0,0 +1,3180 @@ +Draft version January 4, 2023 +Typeset using LATEX twocolumn style in AASTeX62 +FEASTS: IGM cooling triggered by tidal interactions through the diffuse HI phase around NGC 4631 +Jing Wang (王菁),1 Dong Yang (杨冬),1 S-H. Oh,2 Lister Staveley-Smith,3, 4 Jie Wang,5 Q. Daniel Wang,6 +Kelley M. Hess,7, 8 Luis C. Ho,1, 9 Ligang Hou,5 Yingjie Jing,5 Peter Kamphuis,10 Fujia Li,11, 12 +Xuchen Lin (林旭辰),1 Ziming Liu,5 Li Shao,5 Shun Wang (王舜),1 and Ming Zhu5 +1 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China +2Department of Physics and Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea +3International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia +4ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia +5National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, People’s Republic of +China +6Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA +7Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain +8ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands +9Department of Astronomy, School of Physics, Peking University, Beijing 100871, People’s Republic of China +10Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute, 44780 Bochum, Germany +11CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of +China, Hefei 230026, People’s Republic of China +12 School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China +ABSTRACT +We use the single-dish radio telescope FAST to map the Hi in the tidally interacting NGC 4631 +group with a resolution of 3.24′ (7 kpc), reaching a 5-σ column density limit of 1017.9 cm−2 assuming +a line width of 20 km s−1. Taking the existing interferometric Hi image from the HALOGAS project +of WSRT as reference, we are able to identify and characterize a significant excess of large-scale, low- +density, and diffuse Hi in the group. This diffuse Hi extends for more than 120 kpc across, and accounts +for more than one fourth of the total Hi detected by FAST in and around the galaxy NGC 4631. In the +region of the tidal tails, the diffuse Hi has a typical column density above 1019.5 cm−2, and is highly +turbulent with a velocity dispersion around 50 km s−1. It increases in column density with the dense +Hi, and tends to be associated with the kinematically “hotter” part of the dense Hi. Through simple +modeling, we find that the majority of the diffuse Hi in the tail region is likely to induce cooling out +of the hot IGM instead of evaporating or being radiatively ionized. Given these relations of gas in +different phases, the diffuse Hi may represent a condensing phase of the IGM. Active tidal interactions +on-going and in the past may have produced the wide-spreading Hi distribution, and triggered the gas +accretion to NGC 4631 through the phase of the diffuse Hi. +Keywords: Galaxy evolution, interstellar medium +1. INTRODUCTION +The loss and gain of Hi are important drivers of galac- +tic evolution, as Hi is in the phase where the star- +forming gas starts to cool and settle down onto a galactic +Corresponding author: Jing Wang +jwang astro@pku.edu.cn +Corresponding author: S-H. Oh +seheonoh@kasi.re.kr +disk. Although Hi disks can be several times more ex- +tended from the galactic center than the optical disks +where most star formation occurs (Swaters et al. 2002; +Wang et al. 2013), the integral Hi richness is correlated +with the amount of Hi on optical disks (Wang et al. 2020; +Yu et al. 2022), and further with the specific star forma- +tion rate (SFR) (Saintonge et al. 2017; Guo et al. 2021). +Such a link of SFR with Hi far away extends further into +the circum-galactic medium, indicated by the strengths +of Lyman-α absorbers (Borthakur et al. 2016; Lan & +arXiv:2301.00937v1 [astro-ph.GA] 3 Jan 2023 + +2 +Mo 2018). These correlations imply a quasi-equilibrium +state of baryonic flow through galaxies, and supports the +role of Hi as the reservoir of raw material for forming +stars. +Tidal interactions are significant channels for galax- +ies to both gain and lose Hi (Putman 2017; Verdes- +Montenegro et al. 2001), but the net effects on the +whole and in each step of physical processes remain to +be studied. For example, Hi tails and clouds possibly +of tidal origin are often found, including the Magellanic +stream and at least some of the high-velocity cloud com- +plexes around the Milky Way (Putman et al. 2012). +They indicate a redistribution of gas between galaxies +due to tidal interactions. +These extra-planar Hi fea- +tures should be prone to thermal evaporation (Cowie & +McKee 1977), radiative ionisation, and dispersal due to +Kelvin-Helmholtz instability and Rayleigh-Taylor insta- +bility, but long-lasting ones have been found in massive +clusters (Chung et al. 2007), loose groups (Koopmann +et al. 2008; Zhu et al. 2021), and compact groups (Serra +et al. 2013). It indicates a complex interplay between +the Hi gas and the circum(inter)-galactic environment. +For another example, starbursts are often found in gas- +rich interacting pairs (Ellison et al. 2013; Chown et al. +2019), possibly caused by gas inflows driven by tidal +shocks, torques, and instabilities (Blumenthal & Barnes +2018). Despite the enhanced consumption of gas, the +integral Hi masses of mergers and post-mergers are not +found to decrease compared to control samples (Ellison +et al. 2018; Zuo et al. 2018; Shangguan et al. 2019). +This unexpected consistency in Hi amount may be due +to a boosted CGM cooling out of thermal instabilities, +or suppressed atomic-to-molecular conversion efficiency +out of turbulent Hi, but the exact reason is unclear. In +most of the puzzles of this type, a major difficulty arises +from the physical nature that various gravitational and +hydrodynamic effects are involved and interact, and that +gas exchanges between phases. +Sorting out the response of Hi during tidal interac- +tions is important for a refined evolutionary theory of +galaxies of different types and in different environments. +Semi-analytical models of galaxy evolution have been +plagued by the fact that environmental and internal ef- +fects have a strong degeneracy when reproducing the +observed Hi or SFR scaling relations of satellite galaxies +(Stevens & Brown 2017). Because different environmen- +tal mechanisms co-exist, it is hard to separate and assess +the role of each (Boselli & Gavazzi 2006; Cortese et al. +2021), even in groups and the outskirts of clusters where +tidal interactions should dominate other environmental +effects (Boselli et al. 2022). The most promising way +forward may be a more detailed analysis of existing and +newly observed data. +Characterizing the distribution +and kinematics of Hi in prominent tidally interacting +galaxy samples will help us identify signatures to sep- +arate the tidal effects from other environmental effects; +comparing quantified properties with physical models, +and formulating empirical relations to be implemented +into semi-analytical models, will help us break the de- +generacy between internal and external causes. +Luckily, there have been long-lasting efforts in this di- +rection of characterizing detailed Hi properties in tidal +interactions (e.g. +Rand 1994; Yun et al. 1994; Wolfe +et al. 2013; Lee-Waddell et al. 2019; Sorgho et al. 2019; +Namumba et al. 2021). +A highlight among them are +the systematic research on compact groups (Verdes- +Montenegro et al. 2001, 2005; Borthakur et al. 2010; +Serra et al. 2013; Hess et al. 2017; Jones et al. 2019). +Built upon these benchmarking papers, in this paper +we study in detail one classical interacting system, the +NGC 4631 group (N4631g). We contribute the following +unique inputs. We use the Five hundred meter Aperture +Spherical Telescope (FAST, Jiang et al. 2019) to obtain +an Hi image with a high sensitivity, and moderate reso- +lution. A first impression of the N4631g and its Hi distri- +bution can be obtained from Figure 1. The FAST data +reveals and spatially resolves a significant excess of Hi +compared to a previous deep interferometric observation +with the Westerbork Synthesis Radio Telescope (WSRT) +by Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) +survey (Heald et al. 2011). This paper thus addresses +in particular the existence of such an extended Hi enve- +lope around NGC 4631, which the WSRT observations +miss because it is too faint and too extended. The com- +bined data show this well and allow an assessment of +how much there is, how it is distributed, what its kine- +matics are and how it is connected to the higher density +Hi that the HALOGAS project found. The amount tells +us about the total gas reservoir around galaxies, while +the detailed properties tells us about the tidal interac- +tion and the physics of the IGM (intra-galactic medium), +CGM (circum-galactic medium), and ISM (inter-stellar +medium) connection that are essential to gas accretion +and depletion. +The combination of single dish data and synthesis +data, which is essential to obtain the new results in this +paper, is a known but difficult problem (Stanimirovic +2002). This paper demonstrates the power of FAST as +compared to existing attempts to add extended emis- +sion restricted to other single-dish telescopes (e.g. GBT +and Parkes, de Blok et al. 2018; Das et al. 2020), which +have much smaller dishes and hence have less overlap in +u,v space with the synthesis data, or relatively signif- +icant side-lobes (e.g. Arecibo, Heiles et al. 2001; Hess + +3 +et al. 2017). Closely relevant to this paper, Richter et al. +(2018) used Hi image taken by the GBT in combination +with the WSRT image. Limited by the resolution of the +GBT image, the two types of Hi data were compared +mainly in a qualitative way, and the focus of that work +was instead on one line-of-sight with ultraviolet spectro- +scopic data taken by the Hubble Space Telescope (HST). +The FAST image used in this work has three times bet- +ter resolution than the GBT image, has a much wider +uv coverage in common with the WSRT data, and there- +fore enables a relatively better quantified characteriza- +tion and comparison of the Hi properties throughout the +tidally interacting region in the group. +This paper is organized as follows. We introduce the +sample, the Hi data , and the multi-wavelength data in +section 2. Particularly, we describe the observation and +reduction of the FAST Hi data. In section 3, we ver- +ify that the flux calibrations are consistent between the +FAST and WSRT data, and show globally the existence +of excess Hi detected by FAST. In section 4, we con- +duct detailed analysis of the excess Hi, which is likely +large-scale and low-density diffuse Hi. We quantify the +distribution and localized kinematics of it, and its rela- +tion to the dense Hi detected by WSRT. In section 5, +we quantify the hydrodynamic and gravitational envi- +ronment around the galaxy NGC 4631, and discuss the +fate and motion of the (diffuse) Hi in the IGM. Finally +we summarize in section 6. Throughout the paper, we +assume a Chabrier (2003) initial mass function to esti- +mate the stellar mass and SFR. +2. DATA AND ANALYSIS +2.1. The NGC 4631 galaxy and group +The galaxy NGC 4631, known as the Whale galaxy, +is an edge-on spiral galaxy, and has remarkable Hi tidal +structures (Weliachew et al. 1978; Rand 1994). +It is +centered at α2000 = 190.9905◦, δ2000 = 32.1682◦, ac- +cording to the 2MASS Extended Source Catalog (Jar- +rett et al. 2000). It has a heliocentric systematic velocity +of 615 km s−1 (Rand 1994). We take the error weighted +mean of luminosity distances derived with the TRGB +method in the literature (Seth et al. 2005; Tully et al. +2013; Radburn-Smith et al. 2011; Monachesi et al. 2016), +which is 7.53 Mpc. +The members of N4631g have a velocity dispersion σc +of 217 km s−1 (Kourkchi & Tully 2017). As the brightest +galaxy of the N4631g, NGC 4631 has two major com- +panions, NGC 4656 and NGC 4627, 70.5 and 5.6 kpc +away in projected distance respectively, the interaction +with which should have produced most of the Hi tidal +structures around NGC 4631. Its interaction with NGC +4656 might start only a few hundreds of million years +ago, as suggested by the age of a tidal dwarf near NGC +4656 (Schechtman-Rook & Hess 2012), and the simula- +tion of Combes (1978) in an attempt to reproduce its +Hi tidal tails. It also has many other fainter dwarf com- +panions, and stellar tidal tails which do not correspond +to the Hi tails (Mart´ınez-Delgado et al. 2015). These +properties indicate a dynamic, actively interacting envi- +ronment around NGC 4631. +NGC 4631 has an active star formation possibly due +to the active tidal interaction with neighbors. The ac- +tive star formation may have triggered powerful outflows +of mass and energy. These outflows reveal themselves +as super-shells and anomalous velocity features in the +Hi (Rand 1994) and CO images (Rand 2000), filamen- +tary structures of dust (Mel´endez et al. 2015), ionized +gas (Golla et al. 1996; Martin & Kern 2001; Strickland +et al. 2004; T¨ullmann et al. 2006) extending above the +disk plane, and magnetic fields perpendicular to the disk +plane (Mora-Partiarroyo et al. 2019a,b). +The present +and past outflows may have built the prominent hot +gaseous halo that is bright in the radio continuum (Ek- +ers & Sancisi 1977; Irwin et al. 2012) and X-ray (Wang +et al. 1995, 2001). But we point out that, the Hi struc- +ture detected in this work which is large than 60 kpc +in radius extends much further than the X-ray emitting +hot gas halo which is roughly 10 kpc in radius. +2.2. The FAST HI observation +The FAST Hi observations of NGC 4631 were +carried out on 2022 March 25/26/27 (proposal ID: +PT2021 0071) as part of the FAST Extended Atlas +of Selected Targets Survey (FEASTS)1. The zenith an- +gles were < 15.7◦ during the observation. A rectangle +of 1.6◦ × 1.5◦ is targeted around α2000 = 190.7027◦, +δ2000 = 32.4058◦, an arbitrary position (grey cross in +top panel of Figure 3) between NGC 4631 and NGC +4656. The rectangle is scanned in the on-the-fly (OTF) +mode with six passes, evenly divided into vertical and +horizontal ones to achieve basket weaving. The scans are +conducted with the L-band (1.05 - 1.45 GHz) 19-beam +receiver rotated by 23.4/53.4◦(horizontal/vertical), and +the spacing of scanning stripes set to be 21.66′. +We +show in the left panel of Figure 2 how these stripes are +arranged. They cover extra regions on the four sides, in +order to achieve relatively uniform sampling densities in +the targeted region. +The full width half maximum (FWHM) of the raw +beam is ∼ 2.9′ at a frequency of 1.42 GHz (Jiang et al. +2020). +The effective angular separation between scan +lines is 1.15′, and the effective integration time per po- +1 https://github.com/FEASTS/LVgal/wiki + +4 +Figure 1. +A false color image demonstrating the NGC 4631 group and its Hi gas. On top of the optical image, the blue +colored halo shows the diffuse Hi flux imaged by FAST (beam FWHM=3.24′ or 7 kpc) in this study, while the light-blue finer +structures are the denser Hi previously detected in the WSRT HALOGAS (Heald et al. 2011) observation (beam FWHM=40′′ +or 1.46 kpc). The names of 6 relatively prominent member galaxies are denoted. +sition is 235.8 s. The total integration time is 4.47 h. +The observation is accompanied by a 10-K noise diode +turned on for 1 s every 60 s. The data is recorded by +the Spec (W+N) backend, with a sampling time of 1 s, +and channel width of 7.63 kHz, or 1.61 km/s for Hi 21 +cm observations. +2.3. The FAST data reduction +We extract a low-redshift frequency slice of 1408.7- +1425.2 MHz (equivalent to 76-1609 km s−1), and focus +on this part of the data. The data reduction is carried +out with a pipeline developed following the standard +procedures of reducing radio single-dish image data, par- +ticularly those from Arecibo Legacy Fast ALFA Survey +(ALFALFA, Haynes et al. 2018) and HI Parkes All Sky +Survey (HIPASS, Barnes et al. 2001). It has 4 major +modules, including RFI flagging, calibration, imaging, +and baseline flattening. Many of these steps go back- +ward and iterate till convergency. We briefly introduce + +Keeler 529 +NGC4627 +Dwarf A +NGC4631 +MCG+06-28-022 +NGC4656 +FAST +WSRT +10 kpc5 +the steps below. An early version of the pipeline is also +described in Zuo et al. (2022). +1. RFI flagging. +We flag the radio frequency in- +terferences (RFIs) in two major steps. Firstly, we +use the conventional waterfall map, which is distri- +bution of flux in the diagram of frequency versus +time, to identify outstanding stripes. +Secondly, +the whole image region is scanned with 6 passes, +so that after gridding the data by sky position for +each of the 6 passes, we can use a median and 3- +σ based outlier finder to reject RFI contaminated +data for the same sky position. The whole RFI +flagging procedure is reviewed again after the steps +of bandpass removal and flux calibration in the cal- +ibration module. The RFI contamination rate is +minimal in the FAST data used in this paper. +2. Calibration. The bandpass is derived per beam +for each stripe of the scan. +The Hi emission is +masked from the waterfall map with a best effort. +The mask starts with a subjective, rough region +with knowledge of Hi distribution from the litera- +ture (Rand 1994), and is adjusted later with rms +level based criterion after the first round of cal- +ibration. Tests are conducted to decide an opti- +mized smoothing width of 240 s for determining +the bandpasses. The data and bandpass are cali- +brated against the bandpass-removed sampling of +the noise diode. The mask of the Hi emission is up- +dated with the bandpass-removed and scaled data +with the criterion of at least 200 connected pixels +above 2-σ threshold. The procedure goes back to +the step of determining the bandpasses and is it- +erated for 3 times. Finally, the bandpass-removed +and scaled data is corrected for a zenith angle +dependent effective gain value of 13.5-16 to ac- +count for scaling differences from the perfect gain +and aperture efficiency at almost zero zenith angle +(Jiang et al. 2020). +3. Imaging. For the analysis of this paper, we pro- +duce two sets of data cubes. The first set is a con- +ventional FAST cube, with pixel size of of 30′′, and +the channel width of 1.61 km/s. The second set is +a projected FAST cube, gridded to match the area +and WCS system of the WSRT HALOGAS data +(see section 2.5). A Gaussian kernel with FWHM +equivalent to half the FWHM of the raw beam +is used to grid the data into channel maps. The +FWHM of the raw beam is taken to be 2.9′, the +median value of the 19 beams typically at the se- +lected frequency (Jiang et al. 2020). This gridding +process effectively smoothes the data, increasing +the FWHM of the actual beam to 3.24′. The right +panel of Figure 2 displays the the relative sampling +densities of the observed data when gridding them +into pixels. The density is roughly uniform with a +1-σ scatter of 3.48% around the median value. +4. Baseline flattening. We remove the continuum +in the full range 1408.7-1425.2 MHz of the se- +lected frequency slice by modeling it with a first- +order polynomial function. Before removing the +continuum, the Hi emissions are masked using a +mask file generated by SoFiA (Serra et al. 2015). +We then remove the residual continuum, standing +waves, and other global irregularities in the spec- +tra, which are referred to together as the resid- +ual continuum. The residual continuum is mod- +eled with the S-G filter with an effective poly- +nomial order of 2, and a width of 480 km s−1 +(or 2.274 MHz), which are optimized after exper- +iments. +For reference, the major standing wave +due to reflection between the dish and the receiver +bin is ∼ 200 km s−1 (∼ 1 MHz) for FAST (Jiang +et al. 2020). This module is iterated for 3 times. +2.4. The FAST data cube +We use SoFiA (Serra et al. 2015) on the conven- +tional FAST cube to generate the detection mask for Hi +emission. We use the threshold-based smooth+clipping +source finding algorithm. The threshold is set to be 3- +σ, and the smoothing kernels have widths of 0, 3, and 5 +pixels in the sky direction, and of 0 and 3 channels in the +velocity direction. The reliability module is used with a +threshold of 0.99 to exclude false detections. The result- +ing mask is used to project the cube into moment maps +and integral spectrum, and also to select emission-free +regions to derive the rms level. The FAST data cube +has an rms level of 0.965 mJy b−1 +F , where bF denotes +the beam area of FAST. It corresponds to a 5-σ column +density limit of 8.0×1017 cm−2, assuming a line width of +20 km s−1, or a 5-σ point source mass limit of 105.9 M⊙, +assuming a line width of 150 km s−1. +We show the column density map derived from the +moment-0 images in Figure 3. Apparent from the mo- +ment images are the main target NGC 4631, its major +satellite NGC 4656 to the south-east, and a known op- +tically faint companion Dwarf A to the north-west. An- +other two Hi bearing dwarfs previously detected in the +WSRT cube of Rand (1994), Keeler 529 and MCG+06- +28-022, are blended into the tidal feature on the north +and south-east. Due to their relatively small Hi masses +(each ∼ 107.15 M⊙, Rand 1994), we will not distinguish + +6 +192.0° +191.5° +191.0° +190.5° +190.0° +189.5° +33.5° +33.0° +32.5° +32.0° +31.5° +RA(deg) +DEC(deg) +scan track +Cut_region +191.3° +191.0° +190.7° +190.3° +190.0° +33.0° +32.7° +32.3° +32.0° +31.7° +RA(deg) +Dec(deg) +sampling density +0.85 +0.90 +0.95 +1.00 +1.05 +1.10 +1.15 +Figure 2. Left: one set of vertical and horizontal scanning stripes of the observation. Lines of different colors represent different +IDs of the 19 beams. The blue square represents the imaging region of the final data cube. One can see that the scanning mode +is not the traditional basket weaving, but using evenly distributed horizontal and vertical scans to micmic a basket weaving. +Right: the relative sampling density of the whole observed data set when gridding them into pixels. The densities are normalized +to the median value. +them from the tidal structures in the analysis later. We +also show the moment-1 and -2 images in Figure 4. De- +spite the relatively low spatial resolution, the moment-1 +image shows velocity gradients in the disk regions of +NGC 4631 and NGC 4656. It also shows several steep +gradients in the region of tidal tails, possibly reflect- +ing sharp turning in the direction of motions. +These +steep gradients are accompanied by high values in the +moment-2 image, where the relative large beam of FAST +tends to mix velocity structures. In the moment-2 im- +age, the particularly high values are also caused by over- +lapping structures that are separated in velocity space. +We run SoFiA similarly for the projected FAST cube, +but the smoothing kernels have widths of 0, 3, 11, and +41 pixels in the sky direction instead. In unit of arcsec, +the maximum extents of smoothing are actually similar +for the conventional and projected FAST cubes. Expect- +edly, the depths and moment images from the projected +FAST cube are similar to those from the conventional +FAST cube. +2.5. The WSRT data cube +We use the naturally weighted data cube from the +WSRT HALOGAS project (Heald et al. 2011). It was +observed with an integration time of 10×12h. The obser- +vation has the shortest and longest baselines of WSRT +around 36 m and 2.7 km, corresponding to a nominal +largest and smallest angular scale of 24.5′ and 19.6′′, re- +spectively. The data cube has a synthesis beam major +and minor axes of 45.0′′ and 39.1′′. It has a pixel size +of 4′′, and a channel width of 4.12 km s−1. The WSRT +data cube covers an area of roughly 1◦×1◦ around NGC +4631, so the companion NGC 4656 is near the edge of +the image, and quite some of the tidal Hi is near or +beyond the FWHM of the WSRT primary beam (PB) +which has a size of 0.3◦. +We run SoFiA on the WSRT cube to generate the +detection mask. +The parameter setting is similar to +that for the projected FAST cube. +With the SoFiA +mask, we produce the moment images and integral spec- +tra, and derive the rms level. The moment images are +close to those published in Richter et al. (2018). The +column density map derived from the moment-0 im- +age is displayed in the bottom-left panel of Figure 3. +The WSRT cube has a rms level σW of 0.257 mJy b−1, +where b denotes the beam area of the WSRT data. This +rms level corresponds to a 5-σ column density limit of +7.32 × 1018 cm−2 assuming a line width of 20 km s−1 +and 5-σ point source mass limit of 105.54 M⊙ assuming +a line width of 150 km s−1. +Through visual inspection, we find noticeable so-called +“negative bowl” artifacts throughout the cube indicative +of missing short-spacing information, particularly in the + +7 +12h44m +42m +40m +33°00' +32°40' +20' +00' +ra (deg) +dec (deg) +FAST +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +21.0 +21.5 +logNHI(cm +2) +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +WSRT +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +21.0 +21.5 +22.0 +logNHI(cm +2) +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +FAST+WSRT +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +21.0 +21.5 +22.0 +logNHI(cm +2) +Figure 3. +The Hi column density maps of NGC 4631 field. The maps are derived from the FAST cube (top), WSRT cube +(bottom-left), and the FAST+WSRT combined cube (bottom-right). In the top panel, the center of the FAST observational +field is marked with a grey cross. In the bottom-left panel, the FWHM of the WSRT PB is shown as the grey dashed circle. +In the bottom-right panel, the grey dashed circle has a diameter equal to the critical angular scale for WSRT to miss extended +Hi (see section 3.2). The bottom-right image does not look like the sum of the other two because the combination is done in +the Fourier space thus the FAST flux is conserved, and because the PB attenuation effect of the WSRT cube is applied (see +section 4.1). Beam shapes are denoted as green and open ellipses at the bottom left corner of each map. +velocity range between 500 and 700 km s−1 where tidal +features are strong. They highlight the need of single- +dish image to fill this missing part, but also add un- +certainties and complexities when we directly compare +the FAST and WSRT images to characterize the spatial +distribution of the large-scale Hi. Luckily, the typical +absolute level of those “negative bowl” is around 1-σ of +the WSRT data cube, and as we will show in section 4.2 +and Figure 8, the associated cumulative absolute flux is +low compared to the excess Hi detected by FAST. These +facts mitigate the problem, but future investigation of +optimized strategy of combining the single-dish and in- +terferometric data in the uv space may better solve this +problem. +2.6. Derived cubes +For convenience of comparison, we produce a few de- +rived cubes to control for the effects of the PSF (i.e. the +FAST beam and the WSRT synthesis beam) and the +WSRT PB attenuation. +We use the equation from Wang et al. (2015) to pro- +duce a data cube of PB attenuation levels (the PB cube +hereafter). The equation is a function of the distance +from the image center, and was calibrated using con- + +8 +12h44m +42m +40m +33°00' +32°40' +20' +00' +31°40' +ra (deg) +dec (deg) +450 +500 +550 +600 +650 +700 +750 +v (km/s) +12h44m +42m +40m +33°00' +32°40' +20' +00' +31°40' +ra (deg) +dec (deg) +10 +20 +30 +40 +50 +60 +70 +v (km/s) +Figure 4. +Moment 1 (top) and 2 (bottom) images of the +NGC 4631 field. +The images are derived from the FAST +cube. The column density contour of the WSRT data at the +level of 1019.5cm−2 is plotted on top to guide the eye. +tinuum sources from NRAO VLA Sky Survey (NVSS, +Condon et al. 1998) and Faint Images of the Radio Sky +at Twenty centimeters (FIRST, Becker et al. 1995). We +produce the PB-corrected WSRT cube by dividing the +original WSRT cube by the PB cube. +We produce the smoothed WSRT cube by convolving +the channel maps of the WSRT cube with the FAST +beam. The beam image of the FAST is derived by stack- +ing point source images of the 19 beams with data from +Jiang et al. (2020). More details and discussion regard- +ing the beam image can be found in appendix A. The +flux of the smoothed WSRT cube is converted to the +unit of Jy b−1 +F . +We produce the PB-attenuated FAST cube by mul- +tiplying the projected FAST cube with the PB cube. +We subtract the smoothed WSRT cube from the PB- +attenuated FAST cube, and obtain the PB-attenuated +excess Hi cube2. We apply PB correction to the PB- +attenuated excess Hi cube, and obtain the PB-free excess +Hi cube. The PB-free excess Hi cube is largely positive, +and the very few negative regions (most apparent ones +are the two small white patches near the N4631 disk +in the top panel of Figure 9) are likely due to point- +ing uncertainties, deviation of real FAST beam from the +adopted averaged one, and noise. +The PB-attenuated excess Hi cube has the advantage +of a relatively uniform rms level, convenient for thresh- +old based analysis, while the PB-free one has the advan- +tage of reflecting the actual amount of excess Hi. We +will show in section 4 that, the PB-free excess Hi cube +is practically the diffuse HI cube. +2.7. Definition of regions +We define the NGC 4631 region. We take the SoFiA +mask of the projected FAST cube, exclude the region +of Dwarf A, and separate the region of NGC 4631 and +NGC 4656 by arbitrarily drawing a line roughly along +the disk direction of NGC 4656. The line and the resul- +tant NGC 4631 region to the north-west are shown in +Figure 5. This region is delineated in order to study the +distribution of any excess Hi detected by FAST (sec- +tion 4.2). We exclude NGC 4656 because it is at the +corner of the WSRT field of view, where the PB atten- +uation factor reaches 0.1 and where the rms level will +thus be increased by 10 times after PB correction. +We separate the WSRT-detected NGC 4631 region +into the disk region and the tail region. The disk and tail +regions are defined to compare the localized kinemat- +ics and distribution of Hi fluxes detected by FAST and +WSRT (section 4.4 and 4.3). The tail region is further +divided into the regions of four tails to study their bulk +motions (section 5.2). These regions are defined based +on the SoFiA mask of the WSRT cube and the tilted +ring model of the NGC 4631 disk from Rand (1994), +and through the watershed algorithm. The technique +details are presented in appendix B. The sky projected +view of these regions are displayed in Figure 5. +We exclude the disk region from the NGC 4631 re- +gion, and define the IGM region. This region is mainly +2 +Strictly +speaking, +we +should +compare +(FAST +cube) ∗ +(WSRT beam) with (WSRT cube)∗(FAST beam), where ∗ is the +sign of operation for convolution. We thus also tried smoothing +the projected FAST cube with the WSRT beam, before applying +the PB attenuation. We find the two products do not differ much +due to the relatively small size of the WSRT beam. + +9 +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +region labels +0 +1 +2 +3 +4 +5 +6 +7 +8 +Region +Figure 5. Label of regions in the WSRT cube. The id from +1 to 7 (color from dark blue to brown) corresponds to tail +1, tail 2, tail 3, tail 4, NGC 4656, Dwarf A, and NGC 4631 +disk region respectively. The light blue color (id 0) marks +the region detected in Hi by the projected FAST cube. The +white dashed line separates the NGC 4631 and NGC 4656 +regions. +for highlighting where the excess Hi dominates the Hi +detected by FAST (section 4.2), and discussing the hy- +drodynamical effects in the IGM (section 5.1). +2.8. Multi-wavelength measurements from the literature +We derive the stellar mass for NGC 4631 with Spitzer +IRAC1 and 2 (3.6 and 4.5 µm) fluxes from the Local Vol- +ume Legacy (LVL) project (Dale et al. 2009). We use +the equation from Querejeta et al. (2015), to derive the +IRAC1−IRAC2 color dependent IRAC1 mass-to-light +ratio. The equation was calibrated using fluxes decom- +posed into stellar and non-stellar components through +independent component analysis. The estimated stellar +mass log M∗/M⊙ = 10.25 ± 0.1. We use the star for- +mation rates (SFR) derived in Lee et al. (2011) based +on the far-ultraviolet and the total-infrared luminosi- +ties. +The total-infrared luminosity accounts for the +dust attenuation of the far-ultraviolet luminosity, and +was derived through spectral energy distribution fit- +ting of mid- and far-infrared bands taken by Spitzer +as part of the LVL project (Dale et al. 2009). +The +SFR= 4.19 ± 0.25 M⊙yr−1. We also obtain these two +parameters for NGC 4656 from the same datasets, with +log M∗/M⊙ = 9.15±0.1, and SFR= 1.17±0.07 M⊙yr−1. +We summarize from the literature and estimate more +properties about the N4631g in the appendix. Partic- +ularly, in appendix D, we show that, based on the the +local grouping of satellites, the characteristic radius r200 +within which the averaged density is 200 times the cos- +mic critical density is around 249 kpc. Accordingly the +virial temperature of the IGM should be around 8× 105 +K, though the near-disk outflowing hot gas reaches a +temperature of nearly 2×106 K (Wang et al. 1995). A +single-β model of the density profile of the IGM hot gas +is presented and discussed in appendix E. +3. COMPARING THE FAST AND WSRT DATA +In this section, we provide integral spectra, fluxes and +masses of Hi for galaxies in N4631g, and analyze Hi dis- +tribution on different angular scales (inverse of spatial +frequency) in the FAST and WSRT data. The difference +of the integral measurements for galaxies between the +two datasets provides a first-order measure of the excess +Hi detected by FAST. Comparing integral fluxes of com- +pact sources, and comparing amplitudes in an angular- +scale range corresponding to overlapping region in the +uv space help verify the consistency of flux calibrations +between the two datasets, which is the basis for char- +acterizing any excess Hi detected by FAST. Through +comparing the amplitudes of the two datasets on large +angular scales, we can further derive the critical angular +scale for WSRT to miss extended Hi. +3.1. The integral spectra and integrated fluxes +In Figure 6, we show the integral Hi spectra of the +N4631g from the FAST data, and compare it with those +from the WSRT data. +The conventional FAST spectrum is slightly higher +than the projected FAST spectrum at the high velocity +end, consistent with the truncation of the galaxy NGC +4656 at the edge of the field of view of the WSRT ob- +servation. The projected FAST Hi flux is in excess of +the PB-corrected WSRT one throughout the velocity +range. +The integral fluxes from the FAST data, the +projected FAST data, the WSRT cube, and the PB- +corrected WSRT data are 1345.9±134.6, 1314.6±131.5, +593.8±59.4, and 852.1±85.2 Jy km s−1 respectively. +The error bars are dominated by an assumed flux cali- +bration uncertainty of 10%. +From the FAST cube, the Hi masses of NGC 4631, +its major satellite NGC 4656, and dwarf companion +Dwarf A are 1010.08±0.04, 109.77±0.04, and 107.77±0.04 M⊙ +(all assuming the distance of NGC 4656) respectively. +In comparison, the corresponding values from the PB- +corrected WSRT cube are 109.90±0.04, 109.38±0.04, and +107.82±0.04 M⊙. To show the very little influence of reso- + +10 +400 +450 +500 +550 +600 +650 +700 +750 +800 +vel (km/s) +0 +1 +2 +3 +4 +5 +6 +7 +f (Jy) +FAST +FAST (proj) +WSRT +WSRT (PBc) +Figure 6. +Integral Hi spectra of N4631g from different +cubes. The spectra from the FAST cube, the projected FAST +cube, the WSRT cube, and the PB-corrected WSRT cube are +plotted in red, pink, green and purple, respectively. +lution in this comparison, we also derive the correspond- +ing values from the PB-corrected smoothed WSRT cube, +which are are 109.90±0.04, 109.39±0.04, and 107.76±0.04 +M⊙. +There is clear excess Hi detected by FAST for NGC +4631 and NGC 4656. +The excess Hi may be caused +by the existence of diffuse Hi, which has large angular +size or low surface densities 3. There is no excess Hi +detected by FAST for Dwarf A, which is relatively small +in angular size. +3.2. Comparing the amplitude spectra +One concern that arises when comparing the FAST +and WSRT data is whether the flux calibrations are con- +sistent. The consistent integral fluxes of Dwarf A sup- +port it, but we further justify it by comparing the am- +plitude spectra between the PB-attenuated FAST cube +and the smoothed WSRT cube. +The analysis exploits modified scripts from the pack- +age uvcombine 4. Each channel image is Fourier trans- +formed, and becomes a complex image of amplitudes and +phases where the position of a pixel reflects the spatial +frequency (inverse of the angular scale). The relation +between the amplitude A and the angular scale is called +the amplitude spectrum. The right panel of Figure 7 +shows the amplitude spectra for both datasets at a se- +lected channel. The two spectra converge at intermedi- +ate angular scales, largely between a lower and upper +3 We note that, when the definition of low-surface density is +based on the rms level of the WSRT cube, it is influenced by the +effect of PB attenuation. We will discuss more on this point in +section 4.2 +4 https://github.com/radio-astro-tools/uvcombine/ +limit angular scales of 4′ and 24.5′. The lower limit is +just slightly (1.25 times) higher than the FWHM of the +FAST beam, while the upper one corresponds to the +shortest baseline (36 m) of the WSRT array. We select +the data points of the two datasets between the limiting +angular scales, and compare their spectral amplitudes +as well as the related real and imaginary parts in the +left panel of Figure 7. The data points all lie close to +the one-to-one line. We select the channels (in total 50) +where the maximum FAST amplitudes are higher than +0.15 Jy, and derive the average linear scaling factor of +FAST amplitudes over the WSRT amplitudes for each +of these channels (more details in appendix F and left +panel of Figure 20). The average scaling factors have a +median value and standard deviation of 0.98 and 0.02 +respectively. They strongly support the consistency of +fluxes from FAST and WSRT observations on the se- +lected overlapping angular scales. We do not correct for +this 1.02 scaling difference, but if we do so the amount of +excess Hi derived in this work should be systematically +enlarged by 2%. +In the left panel of Figure 7, we see a hint of the FAST +amplitudes exceeding the WSRT amplitudes on the high +amplitude end. It indicates the start of the regime where +the WSRT tends to miss large-scale diffuse flux. In order +to investigate whether this hint is really, we select chan- +nels (50 in total) where the PB-attenuated FAST inten- +sity is higher than 0.15 Jy and higher than the WSRT +intensity by more than 10%. For each channel, we derive +the critical angular scale above which the FAST A are +higher than the WSRT A by more than 1%. The critical +angular scales have a relative narrow range, and a mean +value of 13.6′ ± 1.9′ (more details in appendix F and +right panel of Figure 20), corresponding to a baseline of +65 m and a physical scale of 29.7 kpc. This critical an- +gular scale is roughly half the theoretical value derived +from the shortest baseline of the WSRT array, possibly +due to a combined effect of the PB attenuation, and the +limited WSRT sampling density of the shortest baseline +which can be exacerbated by RFI flagging. +4. THE DIFFUSE HI DETECTED BY FAST +This section characterizes the diffuse Hi detected by +FAST, including how much there is, how it is dis- +tributed, what its kinematics are, and how it is con- +nected to the higher density Hi that the HALOGAS +project detected. +4.1. Combining the HI data +Because the FAST beam has a relatively low side- +lobe level of around 1% beyond a radius of ∼ 3.5′ (ap- +pendix A), we use the MIRIAD procedure immerge to + +11 +2 +1 +0 +1 +2 +AWSRT +2 +1 +0 +1 +2 +AFAST +channel-31 +imag +real +A +103 +Angular scale (arcsec) +10 +4 +10 +3 +10 +2 +10 +1 +100 +A +smoothed WSRT +PB attenuated FAST +Figure 7. +An example of amplitude spectral analysis of channel maps. The two channel maps analyzed have the same channel +number 31 (corresponding to a velocity of 477.7 km s−1), but are from the PB-attenuated FAST cube and the smoothed WSRT +cube. Left: a one-to-one comparison in amplitudes (purple), the real parts (yellow), and the imaginary parts (green) between +the two types of data, selected to have angular scales between the limiting values marked in the right panel. The dashed line +is the y = x line. The solid line shows the best-fit linear relation between the two types of amplitudes. Right: the amplitude +spectra of the amplitude (A) as a function of the angular scale, for the FAST (red dots) and WSRT data (blue dots). The two +black, thick, vertical lines mark the limiting angular scales of 4′ and 24.5′, between which both FAST and WSRT data should +have relatively good sensitivity. Here this channel 31 is arbitrarily chosen, and the emission of that channel map is relatively +compact in morphology. In Figure 20 of appendix F, we show a similar comparison between the FAST and WSRT datasets +with data from all channels which have significant flux (FAST amplitudes>0.15 Jy) putting together. +combine the projected FAST and WSRT cubes, which +uses the Gaussian functions to approximate beams. The +procedure immerge combines the two types of data in +the Fourier domain, with a unit weight for the projected +FAST data and a tapering for the WSRT data. The ef- +fect of the tappering is to make a Gaussian beam equiv- +alent to the WSRT synthesis beam, after adding the +tapered WSRT synthesis beam to the FAST beam in +the Fourier domain. The output is an image combining +the spatial information of both data, but with the same +PB attenuation effect as the WSRT data. The proce- +dure also derives a calibration factor of WSRT flux over +FAST flux to be 0.98, consistent with the result from +our amplitude spectral analysis. +The combined data give us a visual impression where +and how significant FAST detects the diffuse Hi that +is lacking in the WSRT observations. +The combined +moment-0 image is displayed in the bottom-right panel +of Figure 3. FAST detects an excess of Hi widely sur- +rounding the denser tidal structures previously detected +by WSRT, typically on a scale larger than the critical +angular scale for WSRT to miss extended fluxes (see +section 3.2). The immerge process adds not only a lot +of new, diffuse Hi near the WSRT detection limit of +1018.86 cm−2, but also thickens the structures at a rel- +atively higher column density of 1020 cm−2 (i.e. FAST +also detects more relatively high-density gas). +Because the side-lobe level of the FAST beam cannot +be ignored (appendix A), the combined data cube and +image are mainly for visual inspection here and later +in section 5.2. In the following, we analyze the FAST- +detected excess, diffuse Hi combining the two datasets, +but not directly based on the immerge combined data. +4.2. Relating the diffuse HI to large-angular scale gas +We classify and quantify the distribution of excess Hi +detected in the FAST data with respect to the WSRT +data. Unless otherwise specified, we focus on the NGC +4631 region in this section, as NGC 4656 is heavily at- +tenuated by the PB effects. In the NGC 4631 region, +26.3% of the flux from the PB-attenuated FAST cube +are missed by the WSRT cube. The missed part may be +related to the existence of low-surface density or large- +angular scale Hi, which we refer to together as the diffuse +Hi. +We use the rms level of the WSRT data, to separate +the PB-attenuated excess Hi into the low-surface density +and the large-angular scale types. We remind that, the +noise level of the PB-attenuated FAST cube decreases +as a function of radius from the image center while that +of the WSRT cube remains roughly constant, so the rel- +ative level of low-surface density Hi that is missed by +WSRT for being below the rms-based threshold should +increase toward large radius. This effect biases our anal- +ysis toward attributing excess Hi to the low-surface den- +sity type at large radius, and undermines the detection +of large-angular scale type. + +12 +In Figure 8, we study the cumulative distribution of +the PB-attenuated excess Hi as a function of the asso- +ciated flux in the PB-attenuated FAST cube. The 3-σ +detection threshold line of the smoothed WSRT cube is +marked in the figure. The distribution to the left of the +positive threshold line (i.e. the right-side edge of the +cyan band) reflects the part of PB-attenuated excess Hi +missed by WSRT due to its low-surface density. There is +only 10.3% of PB-attenuated excess Hi in this part. The +remaining part (89.7%) of PB-attenuated excess Hi is +likely missed by WSRT due to its large-angular scale dis- +tribution. Because the periphery of large-angular scale +Hi distribution naturally has low densities, and because +of the PB attenuation effects described above, the ac- +tual fraction of large-angular scale Hi missed by WSRT +should be higher than this value of 89.7%. Thus, the +majority of the diffuse Hi are invisible to WSRT not +because of the limited sensitivity, but because of the +limited shortest baseline. +We display the column density maps of the diffuse +Hi (PB-free excess Hi), its low-surface density part (the +part below the WSRT detection threshold before apply- +ing the correction for PB attenuation), and the large- +angular scale part (the diffuse Hi minus the low-surface +density part) for the NGC 4631 region in Figure 9. +As discussed before, the low-surface density and large- +angular scale parts displayed here are upper and lower +limits of the actual parts. The displayed large-angular +scale Hi is almost always higher in level than the dis- +played low-surface density Hi, except for the periphery +of the whole region and a small region on the south- +west. +It confirms that, a considerable fraction of the +low-surface density Hi is attached to the large-angular +scale Hi in the outskirts. The majority of the excess Hi +is by nature the large-angular scale Hi. +It is still questionable whether the diffuse Hi primar- +ily overlaps with or is beyond the region of dense Hi +detected in the WSRT cube. +In Figure 8, the right +panel is similar to the left panel, but the x-axis is re- +placed by the associated flux of the smoothed WSRT +cube. The distribution to the left of the positive thresh- +old line now reflects the part of PB-attenuated excess Hi +residing in regions where the WSRT data detects no Hi. +Only 40.3% of the PB-attenuated excess Hi are found in +blank regions of the WSRT data. More than half of the +PB-attenuated excess Hi overlaps in regions with where +the WSRT detects the dense Hi (i.e. disk region+tail +region). Another noticeable feature in the right panel of +Figure 8 is that, the WSRT flux distribution is peaked +at a value below zero (∼ −1.5 mJy b−1 +F ), likely related +to the “negative bowl” artifacts discussed in section 2.5. +Multiplying this absolute peak value with the number of +voxels which have smoothed WSRT flux below 3-σ but +non-zero excess Hi provides a rough estimate of the re- +lated uncertainty for the fraction 40.3% derived above, +which is 12.5%. +If we further limit the analysis to the IGM region +by excluding the disk region of NGC 4631, the frac- +tion of PB-attenuated FAST flux missed by the WSRT +data dramatically increases to 71.2%, the fraction of PB- +attenuated excess Hi classified into the low-surface den- +sity type slightly increases to 14.5%, and the fraction +found beyond the dense Hi region (equivalent to the tail +region) slightly increases to 56.3%. These fractions also +indicate that, in the tail region, the amounts of dense +Hi and diffuse Hi are roughly equal. +4.3. Relating the diffuse HI to properties of the dense +HI +In the following, we take advantage of the high resolu- +tion of the WSRT data, quantify the localized kinematic +properties of dense Hi, and search for the preferred kine- +matic condition traced by the dense Hi to form the dif- +fuse Hi. The analysis of this section is limited to the tail +region. +We use BAYGAUD (Oh et al. 2022) to fit multi-Gaussian +models to the line-of-sight spectra of the WSRT cube. +BAYGAUD uses Bayesian analysis techniques to decide +the optimal number of Gaussian components. Figure 10 +shows the map of the number of components. The max- +imum number reaches 4, but those line-of-sights with +4 Gaussian components are mostly within the galactic +disks. The NGC 4631 disk region has many Gaussian +components possibly because of the edge-on geometry, +the tidal perturbation, and the energy input from mas- +sive young stars. These complexities support our deci- +sion to leave aside the disk region and focus on the tail +region. +The profiles which are best fit with only one Gaussian +component are referred to as the single-Gaussian pro- +files, otherwise the multi-Gaussian profiles. +For each +multi-Gaussian profile, we identify the the Gaussian +component with the highest intensity as the primary +component. +Figure 11 shows the distribution of σ of +all the single or primary Gaussian components of dense +Hi in the tail region. We divide the Gaussian compo- +nents into narrow (warm) and broad (hot) ones by a σ +of 8 km s−1, thermally corresponding to a temperature +of 3600 K though the σ here are not really thermal. +We use not only the number of Gaussian components +but also profile broadness to indicate the kinematic hot- +ness of the dense Hi. The expectations are: 1) for single- +Gaussian profiles, velocity dispersion σ is indicative of +kinematic hotness, and high column densities of the + +13 +20 +10 +0 +10 +20 +30 +40 +fHI, F(mJy/bF) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (excess HI) +FAST PB attenuated +20 +10 +0 +10 +20 +30 +40 +fHI, W(mJy/bF) +WSRT smoothed +Figure 8. +The distribution of attenuated excess Hi as a function of voxel values in data cubes. The left panel is for the +attenuated FAST cube, and the right the smoothed WSRT cube. In each panel, the solid grey curve is the cumulative distribution +starting from the low-value side, and the dashed grey curve is for the peak-value normalized differential distribution. The cyan +band is the ±3-σ range of the smoothed WSRT cube. +broad (narrow) components tend to be associated with a +high level of kinematic hotness (coolness); 2) in general, +single-Gaussian profiles tend to be kinematically cooler +than multi-Gaussian profiles if they are not significantly +affected by projection effect; 3) for a multi-Gaussian pro- +file, the narrower Gaussian component with the smaller +value of σ is relatively cooler than the broader ones; 4) +for multi-Gaussian profiles, profiles with narrow compo- +nents tend to be kinematically cooler than those with- +out, and those with a high fraction of flux in narrow +components tend to be cooler than otherwise. +We study how the column density of diffuse Hi is re- +lated to these kinematical properties of the dense Hi. In +each panel of Figure 12, we select and divide into two +subsets the line-of-sights along dense Hi by one type of +dense Hi kinematic property described above. We com- +pare the distributions of column density in associated +diffuse Hi between the two subsets. Systematic trends +arise from the comparisons. For single-Gaussian narrow +profiles, high levels of diffuse Hi prefer those that are +broader in widths (panel a), but do not have a clear +trend with the column density (panel b). +For single- +Gaussian broad profiles, they show a slight tendency +toward the broad widths (panel c) and high column +densities (panel d). For all profiles, they prefer multi- +Gaussian profiles over single-Gaussian profiles (panel e), +and regions where there is no narrow Hi over otherwise +(panel f). For multi-Gaussian profiles, they slightly pre- +fer those with low fractions of narrow components (panel +g). +Together, these trends indicate that the localized +kinematic hotness of the dense Hi and the column den- +sity of the diffuse Hi seem to be boosted simultaneously +in the tail region. There might be a pipeline of the Hi +shifting from the narrow, to the broad, and then to the +diffuse status, or in the opposite direction. +4.4. The localized kinematics of the diffuse HI +From the spectra displayed in Figure 6, the FAST +flux does not extend further in velocity than the WSRT +flux. In the literature, such an excess of Hi in the same +velocity range is typically attributed to a tidal origin +(Verdes-Montenegro et al. 2001). Those integral spec- +tra mix the effect of bulk motions and localized kine- +matics. In the following, we remove the velocity shift +due to bulk motions and derive super profiles to reflect +localized kinematics. In order to minimize the projec- +tion effect of multiple velocity components, we select the +line-of-sights which have single-Gaussian profiles in the +dense Hi, which comprise 51%, 14%, and 65% of the +line-of-sights in the NGC 4631 region (disk region+tail +region), the disk region, and the tail region, respectively. +We keep in mind that in addition to thermal motions, +beam smearing, and turbulence should significantly con- +tribute to the broadening of line widths. +We use the velocity centers of line-of-sight spectra in +the WSRT cube, which have been obtained using BAY- +GAUD (Oh et al. 2022). We stack the line-of-sight spectra + +14 +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +Missing HI: the diffuse HI +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +logNHI(1020 cm +2) +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +HI missed due to limited sensitivity +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +logNHI(1020 cm +2) +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +HI missed due to limited baseline +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +logNHI(1020 cm +2) +Figure 9. +Column density maps of the excess Hi in the NGC 4631 region. The top panel shows the PB-free excess Hi missed +by WSRT. The bottom-left and bottom-right panels divide the PB-free excess Hi into two parts: the one missed by WSRT due +to the limited sensitivity (the low-surface density Hi) and the one missed missed by WSRT due to the limited shortest baseline +(the large-angular scale Hi), respectively. Some of the low-surface density Hi shown in the bottom-left panel may actually belong +to the large-angular scale Hi in the bottom-right panel; please refer to the main text for more details. +of the WSRT cube, after register them to the same ve- +locity center. The stacking is performed for the WSRT- +detected NGC 4631 region, the disk region, and the tail +region, respectively. We do the same stacking for the +smoothed WSRT cube and the PB-attenuated FAST +cube, using the same velocity centroid determined from +the WSRT cube. We display these super profiles in Fig- +ure 13. From the top panel, the PB-attenuated excess +Hi of FAST is found throughout the localized velocity +range, but not preferentially in the wings of the dense +Hi. The conclusion above holds for both disk and tail +regions displayed in the middle and bottom panels, but +the super profiles of the former are much broader than +the latter, indicating influences from the galactic inter- +nal structures, geometry, and stellar feedbacks. In the +following of this section, we therefore limit the analysis +to the tail region to focus on tidal effects. +We use emcee (Foreman-Mackey et al. 2013), the +Python implementation of Goodman & Weare’s Affine +Invariant Markov Chain Monte Carlo (MCMC) Ensem- + +15 +12h44m +43m +42m +41m +40m +33°00' +32°45' +30' +15' +00' +ra (deg) +dec (deg) +Number of G components +1 +2 +3 +4 +5 +ncomp +Figure 10. +Map of number of Gaussian components from +BAYGAUD fit for the WSRT cube. The numbers 1 to 4 is +denoted by colors from cyan to red. +0 +5 +10 +15 +20 +25 +HI(km s +1) +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +frac (pixel) +Velocity dispersion of the single or primary Gaussian component +narrow +broad +Figure 11. +The distribution of the velocity dispersion of +the single or primary Gaussian components in the WSRT +cube. +The vertical and dashed line at 8 km s−1 divides +the Gaussian components into the narrow (warm) and broad +(hot) types. +ble sampler, to fit a double-Gaussian model to each of +the super profiles of the tail region. +The details and +best-fit models are present in appendix G. +It is interesting to point out that, the narrow-Gaussian +component accounts for roughly half the total flux in +the FAST super profile, which is close to the ratio of +the dense Hi flux over the FAST detected Hi flux in +the tail region. +Thus, it is possible that the narrow +component of the FAST super profile corresponds to the +dense Hi detected by WSRT, while the broad component +corresponds to a diffuse envelope missed by WSRT. +We use the square root difference between the veloc- +ity dispersions of the WSRT and the smoothed WSRT +cubes to correct for beam smearing effects. After the +correction, the narrow and broad Gaussian components +of the FAST super profile have σ of 13.4 and 51.0 km s−1 +respectively. It is obvious that the width of the broad +component is unlikely thermal, but should be possibly +dominated by turbulence, and perhaps also some con- +tribution from beam smearing of where no WSRT flux +is detected. +5. THE HYDRO-DYNAMIC AND TIDAL +ENVIRONMENTS +In this section, we investigate the thermal, radiative, +and gravitational environments around NGC 4631. We +investigate, what is the fate of the Hi and particularly +the diffuse Hi in the IGM and tidal region, and what +physical mechanisms drive that. +5.1. The hydro-dynamic effects +We come back to the column density map of FAST +detected Hi in Figure 3. The high density part, where +NHI ≥ 1019cm−2, extends for ∼120 kpc across. Near +the edge, NHI drops by nearly 1 dex within a length +comparable to the beam size of 3.24′, or 7.1 kpc. +Similar but sharper (due to the use of images with a +higher resolution) edges of Hi distribution were noticed +before at a similar column density level, particularly by +the pioneering work of Corbelli et al. (1989) and van +Gorkom (1993), in deep Hi imaging of the nearby galax- +ies M33 and NGC 3198. +The truncation of Hi disks +was attributed to the ionisation by the cosmic ultra- +violet (UV) background (Maloney 1993). +The preva- +lence of the truncation and the uniformity of the thresh- +old column density are questioned recently by deep Hi +imaging of more galaxies (Bland-Hawthorn et al. 2017; +Ianjamasimanana et al. 2018), as both the local UV +background and the clumpiness of Hi affect the ionizing +status while both factors are quite uncertain (Bland- +Hawthorn et al. 2017). The condition for Hi to survive +and evolve in the hot gas halo of N4631g may also dif- +fer from those benchmark galaxies M33 and NGC 3198. +Firstly, the tidal Hi reaches far into the IGM while re- +taining a high column density, which may induce effi- +cient cooling of the hot gas. +Secondly, the relatively +high SFR of NGC 4631 may enhance the local UV radi- +ation. +In the following, we discuss the fate of Hi in the IGM +region in the context of different hydro-dynamic pro- +cesses as a function of radius from NGC 4631. We note + +16 +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +a) single-G: velocity dispersion of narrow line +low +sg, narrow +high +sg, narrow +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +b) single-G: column density of narrow line +low +sg, narrow +high +sg, narrow +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +c) single-G: velocity dispersion of broad line +low +sg, broad +high +sg, broad +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +d) single-G: column density of broad line +low +sg, broad +high +sg, broad +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +e) all: number of components +ncomp = 1 +ncomp > 1 +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +f) all: the existence of narrow components +with narrow comp +without narrow comp +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +NHI, diffuse(1020cm +2) +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +frac (pixel) +g) mutliple-G: narrow-component fraction +high +fracnarrow +low +fracnarrow +Figure 12. +Comparing the cumulative distributions of diffuse Hi column densities between line-of-sights with different localized +kinematic properties of the dense Hi. The properties considered include the velocity dispersion of narrow/broad single-Gaussian +components (panel a/c), and the column density of narrow/broad single-Gaussian components (panel b/d), the number of +Gaussian components (panel e), the existence of the narrow component (panel f), and the flux fraction of narrow components +along line-of-sights with multi-Gaussian components (panel g). + +17 +200 +150 +100 +50 +0 +50 +100 +150 +200 +v(km/s) +0 +50 +100 +150 +200 +f(mJy/bF) +whole +WSRT (sg fit) +WSRT +WSRT (smooth) +FAST +200 +150 +100 +50 +0 +50 +100 +150 +200 +v(km/s) +0 +5 +10 +15 +20 +25 +30 +f(mJy/bF) +disk +WSRT (sg fit) +WSRT +WSRT (smooth) +FAST +200 +150 +100 +50 +0 +50 +100 +150 +200 +v(km/s) +0 +20 +40 +60 +80 +100 +120 +140 +f(mJy/bF) +tail +WSRT (sg fit) +WSRT +WSRT (smooth) +FAST +Figure 13. +Super profiles of Hi from stacking line-of-sights +of data cubes. The line-of-sights are selected to have single- +Gaussian profiles in the dense Hi. +The top, middle, and +bottom panels plot the super profiles of the whole WSRT Hi +detected region, the disk region, and the tail region, respec- +tively. +The cubes include the WSRT cube, the smoothed +WSRT cube, and the PB-attenuated FAST cubes, which +are plotted in orange, green and red. The stacking centers +and stacking regions are determined by single-Gaussian fit +to line-of-sights from the WSRT cube; the super profile of +the single-Gaussian fits is plotted in cyan. +that the following discussion is based on first order ap- +proximations of the complex interplay between the dif- +ferent phases and dynamics in the IGM. As such they +merely provide a first indication of what might be hap- +pening to the Hi in the tidal region. +We point out that, the models discussed are 3- +dimensional but the observed Hi is projected. +The +galactocentric distances can be underestimated, and +the projection and overlapping of structures can arti- +ficially enhance the Hi column density, which may be +major sources of uncertainty in the discussion of Hi +survival in the IGM. On the other hand, the projected +phase-space distribution of flux (Figure16, discussed in +section 5.2.2) suggests that the overlapping of structures +seems not severe in most parts of tail 1, 3 and 4, which +may mitigate the problem. To overcome this observa- +tional limitation in the future, hydrodynamic modeling +specifically conducted to reproduce the Hi distribution +in N4631g will greatly help; alternatively, a sample of +many interacting systems like N4631g will provide a +statistical and representative view for comparison with +and constraint on general hydrodynamic simulation of +interacting systems. +Despite the uncertainties, a major advance here is +that, the calculations are based on real measurements +of the diffuse Hi, which were lacking in most previous +observations. +5.1.1. Thermal conduction +Based on the theory of Cowie & McKee (1977), we use +the following simplified calculation to discuss the status +of thermal conduction of the Hi in the IGM region. +We assume a density distribution for the hot gas in the +IGM (nIGM) following the single-β models presented in +Eckert et al. (2011) (See appendix E for details). The +temperature is assumed to be uniform at the virial tem- +perature of 8×105 K (appendix D). Based on our mea- +sured super profiles, we fix the velocity dispersion of the +diffuse Hi to σHI = 51.0km s−1 (section 4.4). We assume +the Hi travels in the hot gas halo in an external pressure- +confined way, and derive the volume density of the dif- +fuse Hi (nHI) accordingly. The value of log(nHI/cm−3) +drops from −2.4 at 10 kpc to −3.1 at 60 kpc, consis- +tent with the typical values of tidal Hi discussed in the +literature (e.g. Borthakur et al. 2010). +For an Hi cloud with a radius rc, the dimensionless +“global saturation parameter” σ0 = +(TIGM/1.5×107 K)2 +nIGM rc +separates the gas at the interface between Hi and hot gas +into regimes of saturated evaporation, classical evapora- +tion, and cooling flows (Cowie & McKee 1977). Using +the critical value σ0 = 0.027 (Cowie & McKee 1977), +we derive the critical rc as a function of distance from + +18 +NGC 4631. Then we calculate the critical column den- +sity NHI,c,evap = nHI rc = 1018.5 cm−2 for classical evap- +oration in N4631g. Because N4631g has a relatively low +mass and thus low virial temperature, thermal evapo- +ration is only relevant on small scales, corresponding to +low column densities. This critical value does not vary +significantly with distance to NGC 4631 because the Hi +volume density scales with the ICM density in our as- +sumed model. +For both the FAST detected Hi and the diffuse Hi +(Figure 3 and 9), this critical column density value is +only reached at the very periphery of the IGM region. +It is also clear in Figure 14, where we plot the number +density of pixels as a function of column density of the +diffuse Hi and radius. Between a distance of 20 and 60 +kpc, the number densities peak where log(NHI/cm−2) > +19.5, and sharply drop where log(NHI/cm−2) < 18.8. +The NHI,c,evap values lie right below where the sharp +drop begins. Thus the majority of the Hi in the IGM +region is more likely to induce cooling out of the IGM +at its surface instead of thermally evaporating itself. +We make a similar plot replacing the diffuse Hi by +all the Hi detected by FAST in the bottom panel of +Figure 14. The discussion above still applies, but the +previous sharp pattern of number density dropping at +log(NHI/cm−2) < 18.8 is more blurred. +In summary, there seems to be efficient cooling instead +of evaporation associated with the Hi in the IGM region. +We note that the lack of direct measurements on the +temperature and density of the IGM, and the magnetic +fields (Cowie & Songaila 1977) in the tidal region are +major sources of uncertainty in the derivation of the +evaporation related parameters. +5.1.2. Photon ionisation +The Hi remains neutral in the UV radiation field +through self-shelding. The quantity to derive is the crit- +ical Hi column density (NHI,c,ion) where half of the hy- +drogen gets ionized due to the photon ionisation by stars +plus the cosmic background. We estimate the dimen- +sionless ionisation parameter of stars (Ustar) from the +SFR of NGC 4631 based on the equation in Tumlinson +et al. (2011). We use Cloudy (Ferland et al. 1998) to sim- +ulate the ionisation rate of hydrogen at different levels +of Ustar plus the comic background. We derive NHI,c,ion +as a function of distance to NGC 4631 based on prod- +ucts of the simulation. More technical details can be +found in section H of the appendix. We emphasize that +in the model Ustar is only attenuated as a function of +radius squared, but the possible absorption of tidal Hi +(and possibly also dust) as the photons travel through +0 +10 +20 +30 +40 +50 +60 +r (kpc) +18 +19 +20 +21 +22 +logNHI(cm +2) +Diffuse HI +NHI, c, evap +NHI, c, ion +FAST beam +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +log N +0 +10 +20 +30 +40 +50 +60 +r (kpc) +18 +19 +20 +21 +22 +logNHI(cm +2) +FAST detected HI +NHI, c, evap +NHI, c, ion +FAST beam +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +log N +Figure 14. +The distribution of Hi column density as a +function of projected distance from NGC 4631. +The top +panel is for the diffuse (excess) Hi, while the bottom panel +for all Hi. Each pixel in the plot is color coded by logarithm +of the number of pixels from the relevant column density +map. The two dashed curves in each plot show the critical +column densities to survive thermal evaporation (magenta), +and UV ionisation (yellow) respectively. The brown curves +show the shape of the FAST beam. +it is not considered. So the NHI,c,ion derived should be +viewed as upper limits. +In Figure 14, the NHI,c,ion values lie roughly be- +tween +where +the +number +densities +of +pixels +con- +centrate (log(NHI/cm−2) > 19.5) and sharply drop +(log(NHI/cm−2) < 18.8). +The transition in number +densities is not sharply defined by NHI,c,ion, imply- +ing the aforementioned over-estimation of NHI,c,ion and +other uncertainties in the modeling, as well as possible +counteracting effects of IGM cooling. Despite the likely +over-estimation of NHI,c,ion, most pixels of diffuse Hi +have NHI above them, indicating that most diffuse Hi +are safe against photon ionisation in N4631g. +5.2. Tidal interactions of the HI +We investigate the distribution of Hi in N4631g in re- +sponse to the past and on-going tidal interactions. We +visualize the 3-dimensional distribution, and also pro- +vide a characterization of the phase-space distribution. + +19 +5.2.1. The 3-dimensional visualization +We provide snapshots of a 3-dimensional visualization +of the Hi distribution in N4631g in Figure 15. +The +visualization is realized using the software SlicerAstro +(Punzo et al. 2017). We use it to provide a first im- +pression of the complex morphology and kinematics of +Hi in the N4631g. Similar discussions were presented +in Rand (1994) based on channel maps and position- +velocity slices of an early WSRT data. +From the snapshots of FAST data, tail 1 and 2 clearly +connect NGC 4631 and NGC 4656. Tail 1 starts from +the east and low-velocity side of NGC 4631, and reaches +NGC 4656 on its east and high-velocity side (snapshot +1, 2, 3, 5, 6, 8). Tail 2 starts from near the disk center of +NGC 4631, and reaches NGC 4656 on its west and low- +velocity side (snapshot 1, 2, 5, 6, 8). The connection +between the two galaxies by tail 2 was not so clear in +the WSRT data of HALOGAS, or the early WSRT data +of Rand (1994); probably consequently, Combes (1978) +tended to attribute the formation of tail 2 primarily to +the perturbation of the much smaller but closer com- +panion NGC 4627, and only secondarily to NGC 4656. +From the snapshots of the FAST data, tail 3 starts +from the high-velocity and western side of NGC 4631 +(snapshot 1, 3, 4, 5, 8), extends to the intermediate +velocity and joins tail 1 in the south (snapshot 2, 5, +8). This link between tail 3 and 1 was tentatively seen +but again unclear in the WSRT data. Tail 4 is short in +both the FAST and WSRT data. It starts from the west +end of the NGC 4631 disk, and extends to the east and +low-velocity direction (snapshot 1, 5, 8). +5.2.2. Analysis of the phase-space distribution +We study the projected phase-space distribution of Hi +around NGC 4631. The projected phase-space diagram +is a diagram of radial velocity offset versus projected +distance to the center of NGC 4631. We are limited by +observational projections, but a first-order characteri- +zation can still be obtained about the bulk motions of +Hi. +We plot the distribution of Hi in the regions of the +NGC 4631 disk and the 4 tails in the projected phase- +space diagram in Figure 16. +We focus our discussion +on the distribution of PB-corrected dense Hi, as it is a +good tracer of the kinematic skeleton of tidal tails. But +we also outline the distribution of diffuse Hi using the +PB-corrected, mmerge combined cube. The distribution +of dense Hi in the NGC 4631 disk shows the pattern +of a rotating disk with a maximum velocity around 150 +km s−1, which is by construction when defining the disk +region. To guide the eye, the distribution of Hi in the +disk region is repeated in all panels of the tails. To assist +the analysis, we also plot contours of the gravitational +potential with linear steps (see details in appendix I), +and mark the truncation radius imposed by NGC 4656 +at 41.9 kpc which we derive using the equation of Byrd +& Valtonen (1990). +We find three distinct patterns of the Hi distribution +in the projected phase-space diagram. Tail 1 and 3 both +start from the end of the disk, and deaccelerate in rela- +tively radial velocity while extending to large projected +distance until reaching around the truncation radius im- +posed by NGC 4656. Tail 4 is almost a parallel shift of +the lower envelope of the disk in the projected phase- +space diagram. +This linear shape suggests an almost +solid-body rotation, which are often found in systems of +slow encounters (e.g. M81, Sorgho et al. 2019). Tail 2 +looks much broader in morphology and possibly higher +in energy than the other tails. Its furthest end crosses +the truncation radius of NGC 4656, while the relative +radial velocity is still high. In the projected view, the +furthest end reaches a gravitational potential level sim- +ilar to those of tail 1 and 3, and much higher than that +of tail 4. Its high energy and complex morphology sug- +gests it likely to have been perturbed by more than one +galaxy (i.e. both NGC 4656 and NGC 4627), which was +supported by previous particle simulations to reproduce +the dense Hi distribution in N4631g (Combes 1978). +Limited by projection effects, it is difficult to deduce +the motion of gas without the aid of hydrodynamic simu- +lations designed to reproduce the morphology. But from +the complexity of Hi distribution in the projected phase- +space diagram, we can still infer that there are more +than one tidal encounters in N4631g, which should ex- +plain the widely spreading Hi, and may input turbulent +energy through shocks to produce the diffuse Hi. +6. SUMMARY AND CONCLUSION +We present a deep FAST image of Hi in and around +NGC 4631. We identify a component of excess Hi de- +tected by FAST but missed by WSRT. Our major results +are summarized below: +1. The nature of the excess HI is likely large- +scale, diffuse HI. This excess Hi has a low spatial fre- +quency, corresponding to a characteristic angular scale +≥ 14′ or 30 kpc, missed by WSRT due to the limited +shortest baseline. It is also highly turbulent, with a ve- +locity dispersion around 44 km s−1. Around 40% (70%) +of the excess Hi in the NGC 4631 region (IGM region) +is found beyond the regions where dense Hi is detected +by the WSRT. +2. +The diffuse HI is more closely related to +the dense HI that is kinematically hot than that +is warm. When overlapping with the dense Hi in the + +20 +Figure 15. +Snapshots of 3-dimensional visualization of Hi distribution in the FAST and WSRT cubes. An animated version +of this figure is available as on-line material. +The duration of the animation is 28 s, and the content is the 3-dimensional +visualization of the FAST and WSRT cubes (WCS system registered) continuously rotating by 360◦. The viewing angles are +denoted as direction axes, with N, E, W, z and Z pointing toward the north, east, west, low-redshift (velocity), and high-redshift +(velocity) direction, respectively. The visualization is realized using the software SlicerAstro (Punzo et al. 2017). The figure +here shows 8 snapshots from that animation, which are evenly distributed in a rotation of 360◦, and are ordered by number +denoted in the top-left corner of panels. For visual clarity, the 4 tidal tails are denoted in the figure (but not in the animation), +and each pair of FAST and WSRT snapshots are vertically arranged (while horizontally arranged in the animation). To be +continued. + +1 +2 +T3 +Z +3 +W +W +FAST +FAST +Z +W +W +WSRT +WSRT +3 +4 +3 +W +W +专 +FAST +FAST +W +W +WSRT +WSRT +E +ZE21 +Figure 15. +Continued. + +5 +6 +T4 +T3 +T3 +W +Wt +Z +. +T2 +12 +FAST +FAST +W +Wt +Z +WSRT +WSRT +2 +7 +8 +T3 +13 +E +W +T4 +T2 +T2 +FAST +FAST +E +E +W +WSRT +N +WSRT +Z +E22 +0 +50 +100 +150 +200 +d +80.0 +0 +50 +100 +150 +200 +vrad(kms +1) +t1 +80.0 +4.0 +0 +50 +100 +150 +200 +vrad(kms +1) +t2 +80.0 +4.0 +4.0 +0 +50 +100 +150 +200 +vrad(kms +1) +t3 +80.0 +4.0 +4.0 +0 +10 +20 +30 +40 +50 +60 +dproj(kpc) +0 +50 +100 +150 +200 +vrad(kms +1) +t4 +80.0 +4.0 +0 +200 +400 +600 +800 +Jyb +1kms +1 +10 +20 +30 +40 +Jyb +1kms +1 +10 +20 +30 +40 +Jyb +1kms +1 +10 +20 +30 +40 +Jyb +1kms +1 +10 +20 +30 +40 +Jyb +1kms +1 +Figure 16. +The projected phase-space distribution of Hi flux around NGC 4631. From top to bottom, the distribution of Hi +in the disk and the 4 tail regions are plotted respectively. The pixels are color coded by Hi flux from the PB-corrected WSRT +cube, and the distributions are outlined by solid contours at the level of 4 (80) Jy b−1 km s−1 for the tail (disk) flux. The +distribution of Hi flux from the PB-corrected, FAST+WSRT combined cube is outlined by dashed contours at the same level. +The disk region is repeated in every panel to guide the eye. Contours of gravitational potential with linear interval steps are +plotted as grey dotted curves. The truncation radius for NGC 4656 to strip gas from NGC 4631 is plotted as the thick, pink +vertical line. The pink arrow mark the radial velocity deviation of NGC 4631 from NGC 4656. + +23 +tail region, the diffuse Hi increases in column density +with the dense Hi, and is particularly closely associated +with the “hotter” part of the dense Hi. It is preferen- +tially found where the dense Hi is more dominated by +the broad-velocity components, or has multiple velocity +components. +3. +The diffuse HI is likely to induce cooling +flows of the hot IGM. +The diffuse Hi in the IGM +region typically have a column density ≥ 1019.2 cm−2, +which is far above the critical column density for ther- +mal evaporation, and likely safe from photon ionization. +This relatively high Hi column density is consistent with +a condition to induce efficient cooling flows from the hot +IGM. +The results above involve gases of four different phases +in the IGM region, namely the hot IGM, the diffuse +Hi characterized in result 1, the “hot” dense Hi, and +the “warm” dense Hi, sorted roughly in reverse order of +energy. Result 3 indicates that, except for the periphery +of the widely spreading IGM region, the hot IGM is +likely cooling into the diffuse Hi. An important reason +for cooling flows to be induced near Hi gas, is that the +thermal temperature of the interface between Hi and the +hot IGM produced by turbulent mixing is intermediate +between these two gas phases, reaching close to the value +of 105 K for the radiative cooling function to peak (Dere +et al. 2009). +Indeed, if we take the radiative cooling +function of Dere et al. (2009) for the solar metallicity +and assume no heating, the isochoric cooling time for +hot gas at the virial temperature of N4631g is close to +the dynamical time of N4631g (∼400 Myr at a radius +of 30 kpc), indicative of difficult cooling. +But if the +temperature drops to 105 K, the cooling time drops by +more than one order of magnitude. +The diffuse Hi further links to the dense Hi gas. Result +2 indicates a continuous shift in phases between the dif- +fuse Hi, the hot dense Hi, and the warm dense Hi, while +the shift could be in either direction. Indeed, tidal in- +teractions can both enhance cooling through mixing of +metals, and heating through tidally induced shocks. If +the net effect is the diffuse Hi progressively cooling into +the dense Hi, then there is a unidirectional accretion +pipeline that transfers gas from the hot IGM through +the diffuse Hi to the dense Hi. If, on the other hand, +the dense Hi is being progressively heated into the dif- +fuse Hi, the surface area of Hi in the IGM enlarges, and +the cooling rate of the hot IGM increases as a result. +In both cases, the diffuse Hi plays an important role in +the gas accretion from the hot IGM, either more as a +transfer station of the accreted gas, or more a catalyst +for cooling from the hot IGM. +Given such an important role of diffuse Hi in gas +accretion, the tidal interaction may have significantly +boosted the gas accreting rate (i.e., the integral cool- +ing rate from the hot IGM) of NGC 4631. N4631g has +M200 ∼ 1012.1 M⊙ (appendix D), putting NGC 4631 in +a theoretical regime where heating from cosmic gas ac- +cretion and internal feedbacks start to efficiently prevent +gas cooling (Kereˇs et al. 2005). The gas accretion could +be effectively slow in NGC 4631 if it was an unperturbed +galaxy. Tidal interaction enhances the gas accreting rate +by spreading Hi widely in the IGM. The tidal Hi, par- +ticularly when in the diffuse phase, greatly increases the +area of interface between the Hi and and the hot IGM, +thus induce significantly extra cooling. The tidal effects +also put the gas in a kinematic status prone to shocks, +ram pressure, and tidal compression, causing localized +gaseous condensation and thermal instabilities directly +relevant for enhanced cooling. The tidal effects further +help transport metals throughout the IGM which is im- +portant for radiative cooling (Dere et al. 2009). If such +a scenario of enhanced cooling is true, we speculate the +existence of a large amount of warm, ionized gas as an +intermediate phase between the hot IGM and the dif- +fuse Hi, which was indeed tentatively detected in Hα +throughout the group (Donahue et al. 1995). It might be +worth mentioning that, in a recent cosmological zoom- +in magnetohydrodynamics simulation by Sparre et al. +(2022), one simulated galaxy pair shows a broad Hi +bridge, which is qualitatively similar to the structure ob- +served between NGC 4631 and NGC 4656. Sparre et al. +(2022) found that the gas that had been in the CGM +prior to the tidal interaction contributed to nearly half +of the mass in the gas bridge, and more than one fourth +of the fueling to star formation during the interaction. +Previous observational studies based on individual or +statistical samples of tidally interacting systems found +evidence for Hi to be both depleted and replenished +in galaxies (Verdes-Montenegro et al. 2001; Hess et al. +2017; Ellison et al. 2018). Theoretically, both effects are +physically possible (Boselli & Gavazzi 2006; Hani et al. +2018; Stevens et al. 2019). On the whole, there seems +to be a high level of physical complexities in mergers, +which may smooth out in statistical analysis of integral +Hi measurements, and cannot be fully captured by in- +dividual systems. Our study put NGC 4631 in the cate- +gory where the tidal interaction induces Hi fueling, but +the main contribution is characterizing and highlighting +the role of the diffuse Hi, instead of just adding vote to +one side in the question of fueling or depletion. +To put NGC 4631 in the context of general galaxy +evolution, in Figure 17, we compare the SFR and Hi +mass of it and NGC 4656 to other galaxies of a stellar + +24 +mass selected sample, and particularly to the main se- +quences of the two properties. It is interesting to notice +that the FAST measurements of the Hi mass put the +two galaxies in the regime of Hi-excess galaxies, while +the WSRT measurements put them in the Hi main se- +quence of normal star-forming galaxies. We will need a +dataset like the one used in this paper but for a census +of interacting galactic systems with different mass ra- +tios, gas richnesses, merging distances, and large-scale +environments, as well as for a sample of control galaxies +in relative isolations. Such a dataset will be available in +the future by combining data from FEASTS and from +existing and SKA related interferometry surveys. +We conclude that, tidal interaction should be an ef- +ficient channel to accrete the IGM gas to the galaxy +NGC 4631. The excess Hi detected by FAST provides +the crucial, new information to reach this conclusion. +We thank the anonymous referee for very construc- +tive comments! +We thank Xu Kong, Thijs van der +Hulst, Zhiyuan Li, Ningyu Tang, Tobias Westmeier, +Feng Yuan, Pei Zuo for useful discussions. JW thank +support of the research grants from Ministry of Sci- +ence and Technology of the People’s Republic of China +(NO. 2022YFA1602902), the National Science Foun- +dation of China (NO. 12073002, 11721303), and the +science research grants from the China Manned Space +Project (NO. CMS-CSST-2021-B02). S.H.OH. acknowl- +edges support from the National Research Foundation +of Korea (NRF) grant funded by the Korea govern- +ment (Ministry of Science and ICT: MSIT; No. +RS- +2022-00197685). LCH was supported by the National +Science Foundation of China (11721303, +11991052, +12011540375) and the China Manned Space Project +(CMS-CSST-2021-A04, CMS-CSST-2021-A06). +KMH +acknowledges financial support from the State Agency +for Research of the Spanish Ministry of Science, Innova- +tion and Universities through the ”Center of Excellence +Severo Ochoa” awarded to the Instituto de Astrofísica +de Andalucía (SEV-2017-0709), from the coordina- +tion of the participation in SKA-SPAIN, funded by +the Ministry of Science and Innovation (MCIN), and +financial support from grant RTI2018-096228-B-C31 +(MCIU/AEI/FEDER,UE). PK acknowledges financial +support by the German Federal Ministry of Educa- +tion and Research (BMBF) Verbundforschung grant +05A20PC4 (Verbundprojekt D-MeerKAT-II). Parts of +this research were supported by High-performance Com- +puting Platform of Peking University. +This work made use of the data from FAST (Five- +hundred-meter Aperture Spherical radio Telescope). +FAST is a Chinese national mega-science facility, oper- +ated by National Astronomical Observatories, Chinese +Academy of Sciences. +Facilities: FAST, GALEX, Spitzer, WSRT +Software: Astropy(AstropyCollaborationetal.2013, +2018, 2022), Astrosclicer (Punzo et al. 2017), BAYGAUD +(Oh et al. 2022), 3D-Barolo (Di Teodoro & Fraternali +2015), Cloudy (Ferland et al. 1998), galpy (Bovy 2015, +v1.8.0), numpy (van der Walt et al. 2011, v1.21.4), photu- +tils (Bradley et al. 2019, v1.2.0), Python (Perez & Granger +2007, v3.9.13), scipy (Virtanen et al. 2020, 1.8.0) +REFERENCES +Andreon, S., Wang, J., Trinchieri, G., Moretti, A., & Serra, +A. L. 2017, A&A, 606, A24, +doi: 10.1051/0004-6361/201730722 +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., +et al. 2013, A&A, 558, A33, +doi: 10.1051/0004-6361/201322068 +Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., +et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f +Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., +et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74 +Barnes, D. G., Staveley-Smith, L., de Blok, W. J. G., et al. +2001, MNRAS, 322, 486, +doi: 10.1046/j.1365-8711.2001.04102.x +Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, +450, 559, doi: 10.1086/176166 +Behroozi, P. S., Conroy, C., & Wechsler, R. H. 2010, ApJ, +717, 379, doi: 10.1088/0004-637X/717/1/379 +Bland-Hawthorn, J., Maloney, P. R., Stephens, A., Zovaro, +A., & Popping, A. 2017, ApJ, 849, 51, +doi: 10.3847/1538-4357/aa8f45 +Blumenthal, K. A., & Barnes, J. E. 2018, MNRAS, 479, +3952, doi: 10.1093/mnras/sty1605 +Borthakur, S., Yun, M. S., & Verdes-Montenegro, L. 2010, +ApJ, 710, 385, doi: 10.1088/0004-637X/710/1/385 +Borthakur, S., Yun, M. S., Verdes-Montenegro, L., et al. +2015, ApJ, 812, 78, doi: 10.1088/0004-637X/812/1/78 +Borthakur, S., Heckman, T., Tumlinson, J., et al. 2016, +ApJ, 833, 259, doi: 10.3847/1538-4357/833/2/259 +Bose, S., Eisenstein, D. J., Hernquist, L., et al. 2019, +MNRAS, 490, 5693, doi: 10.1093/mnras/stz2546 +Boselli, A., Fossati, M., & Sun, M. 2022, A&A Rv, 30, 3, +doi: 10.1007/s00159-022-00140-3 +Boselli, A., & Gavazzi, G. 2006, PASP, 118, 517, +doi: 10.1086/500691 + +25 +9.0 +9.5 +10.0 +10.5 +11.0 +11.5 +log M * (M ) +3 +2 +1 +0 +1 +2 +log SFR (M +yr +1) +N4631 +N4656 +9.0 +9.5 +10.0 +10.5 +11.0 +11.5 +log M * (M ) +7.5 +8.0 +8.5 +9.0 +9.5 +10.0 +10.5 +11.0 +log MHI(M ) +N4631 +N4656 +FAST +WSRT (PBcor) +Figure 17. The position of NGC 4631 and NGC 4656 in the diagram of SFR versus stellar mass and Hi mass versus stellar +mass. The two red or orange dots represent NGC 4636 and NGC 4656, with the former having the higher stellar mass. The +background data points are from the xGASS sample (Catinella et al. 2018). Left: the red and orange dots are for Hi masses from +the FAST cube and the PB-corrected WSRT cube respectively; the solid and dashed curves are the position and scatter of star +forming main sequence from (Saintonge et al. 2016). Right: the blue and cyan points in the background represent measurements +and upper limits for Hi detected and un-detected galaxies; the solid and dashed curves are the position and scatter of Hi main +sequence of star-forming galaxies from Janowiecki et al. (2020). +Bovy, J. 2015, ApJS, 216, 29, +doi: 10.1088/0067-0049/216/2/29 +Bradley, L., Sip˝ocz, B., Robitaille, T., et al. 2019, +astropy/photutils: v0.7.2, v0.7.2, Zenodo, Zenodo, +doi: 10.5281/zenodo.3568287 +Byrd, G., & Valtonen, M. 1990, ApJ, 350, 89, +doi: 10.1086/168362 +Catinella, B., Saintonge, A., Janowiecki, S., et al. 2018, +MNRAS, 476, 875, doi: 10.1093/mnras/sty089 +Chabrier, G. 2003, ApJL, 586, L133, doi: 10.1086/374879 +Chown, R., Li, C., Athanassoula, E., et al. 2019, MNRAS, +484, 5192, doi: 10.1093/mnras/stz349 +Chung, A., van Gorkom, J. H., Kenney, J. D. P., & +Vollmer, B. 2007, ApJL, 659, L115, doi: 10.1086/518034 +Combes, F. 1978, A&A, 65, 47 +Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, +AJ, 115, 1693, doi: 10.1086/300337 +Corbelli, E., Schneider, S. E., & Salpeter, E. E. 1989, AJ, +97, 390, doi: 10.1086/114989 +Cortese, L., Catinella, B., & Smith, R. 2021, PASA, 38, +e035, doi: 10.1017/pasa.2021.18 +Cowie, L. L., & McKee, C. F. 1977, ApJ, 211, 135, +doi: 10.1086/154911 +Cowie, L. L., & Songaila, A. 1977, Nature, 266, 501, +doi: 10.1038/266501a0 +Dale, D. A., Cohen, S. A., Johnson, L. C., et al. 2009, ApJ, +703, 517, doi: 10.1088/0004-637X/703/1/517 +Das, S., Sardone, A., Leroy, A. K., et al. 2020, ApJ, 898, +15, doi: 10.3847/1538-4357/ab97b9 +de Blok, W. J. G., Walter, F., Ferguson, A. M. N., et al. +2018, ApJ, 865, 26, doi: 10.3847/1538-4357/aad557 +Dere, K. P., Landi, E., Young, P. R., et al. 2009, A&A, 498, +915, doi: 10.1051/0004-6361/200911712 +Di Teodoro, E. M., & Fraternali, F. 2015, MNRAS, 451, +3021, doi: 10.1093/mnras/stv1213 +Donahue, M., Aldering, G., & Stocke, J. T. 1995, ApJL, +450, L45, doi: 10.1086/316771 +Dutton, A. A., & Macci`o, A. V. 2014, MNRAS, 441, 3359, +doi: 10.1093/mnras/stu742 +Eckert, D., Molendi, S., & Paltani, S. 2011, A&A, 526, A79, +doi: 10.1051/0004-6361/201015856 +Ekers, R. D., & Sancisi, R. 1977, A&A, 54, 973 +Ellison, S. L., Catinella, B., & Cortese, L. 2018, MNRAS, +478, 3447, doi: 10.1093/mnras/sty1247 +Ellison, S. L., Mendel, J. T., Patton, D. R., & Scudder, +J. M. 2013, MNRAS, 435, 3627, +doi: 10.1093/mnras/stt1562 +Ettori, S. 2015, MNRAS, 446, 2629, +doi: 10.1093/mnras/stu2292 +Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, +PASP, 110, 761, doi: 10.1086/316190 +Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, +J. 2013, PASP, 125, 306, doi: 10.1086/670067 +Golla, G., Dettmar, R. J., & Domgoergen, H. 1996, A&A, +313, 439 + +26 +Guo, H., Jones, M. G., Wang, J., & Lin, L. 2021, ApJ, 918, +53, doi: 10.3847/1538-4357/ac062e +Hani, M. H., Sparre, M., Ellison, S. L., Torrey, P., & +Vogelsberger, M. 2018, MNRAS, 475, 1160, +doi: 10.1093/mnras/stx3252 +Haynes, M. P., Giovanelli, R., Kent, B. R., et al. 2018, ApJ, +861, 49, doi: 10.3847/1538-4357/aac956 +Heald, G., J´ozsa, G., Serra, P., et al. 2011, A&A, 526, +A118, doi: 10.1051/0004-6361/201015938 +Heiles, C., Perillat, P., Nolan, M., et al. 2001, PASP, 113, +1247, doi: 10.1086/323290 +Hess, K. M., Cluver, M. E., Yahya, S., et al. 2017, MNRAS, +464, 957, doi: 10.1093/mnras/stw2338 +Ianjamasimanana, R., Walter, F., de Blok, W. J. G., Heald, +G. H., & Brinks, E. 2018, AJ, 155, 233, +doi: 10.3847/1538-3881/aabbaa +Irwin, J., Beck, R., Benjamin, R. A., et al. 2012, AJ, 144, +44, doi: 10.1088/0004-6256/144/2/44 +Janowiecki, S., Catinella, B., Cortese, L., Saintonge, A., & +Wang, J. 2020, MNRAS, 493, 1982, +doi: 10.1093/mnras/staa178 +Jarrett, T. H., Chester, T., Cutri, R., et al. 2000, AJ, 119, +2498, doi: 10.1086/301330 +Jiang, P., Yue, Y., Gan, H., et al. 2019, Science China +Physics, Mechanics, and Astronomy, 62, 959502, +doi: 10.1007/s11433-018-9376-1 +Jiang, P., Tang, N.-Y., Hou, L.-G., et al. 2020, Research in +Astronomy and Astrophysics, 20, 064, +doi: 10.1088/1674-4527/20/5/64 +Jones, M. G., Verdes-Montenegro, L., Damas-Segovia, A., +et al. 2019, A&A, 632, A78, +doi: 10.1051/0004-6361/201936349 +Kereˇs, D., Katz, N., Weinberg, D. H., & Dav´e, R. 2005, +MNRAS, 363, 2, doi: 10.1111/j.1365-2966.2005.09451.x +Koopmann, R. A., Giovanelli, R., Haynes, M. P., et al. +2008, ApJL, 682, L85, doi: 10.1086/591124 +Kourkchi, E., & Tully, R. B. 2017, ApJ, 843, 16, +doi: 10.3847/1538-4357/aa76db +Lan, T.-W., & Mo, H. 2018, ApJ, 866, 36, +doi: 10.3847/1538-4357/aadc08 +Lee, J. C., Gil de Paz, A., Kennicutt, Robert C., J., et al. +2011, ApJS, 192, 6, doi: 10.1088/0067-0049/192/1/6 +Lee-Waddell, K., Koribalski, B. S., Westmeier, T., et al. +2019, MNRAS, 487, 5248, doi: 10.1093/mnras/stz017 +Leitherer, C., Ortiz Ot´alvaro, P. A., Bresolin, F., et al. +2010, ApJS, 189, 309, doi: 10.1088/0067-0049/189/2/309 +Maloney, P. 1993, ApJ, 414, 41, doi: 10.1086/173055 +Martin, C., & Kern, B. 2001, ApJ, 555, 258, +doi: 10.1086/323161 +Mart´ınez-Delgado, D., D’Onghia, E., Chonis, T. S., et al. +2015, AJ, 150, 116, doi: 10.1088/0004-6256/150/4/116 +Mel´endez, M., Veilleux, S., Martin, C., et al. 2015, ApJ, +804, 46, doi: 10.1088/0004-637X/804/1/46 +Monachesi, A., Bell, E. F., Radburn-Smith, D. J., et al. +2016, MNRAS, 457, 1419, doi: 10.1093/mnras/stv2987 +Mora-Partiarroyo, S. C., Krause, M., Basu, A., et al. 2019a, +A&A, 632, A10, doi: 10.1051/0004-6361/201834571 +—. 2019b, A&A, 632, A11, +doi: 10.1051/0004-6361/201935961 +Namumba, B., Koribalski, B. S., J´ozsa, G. I. G., et al. 2021, +MNRAS, 505, 3795, doi: 10.1093/mnras/stab1524 +Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, +490, 493, doi: 10.1086/304888 +Oh, S.-H., Kim, S., For, B.-Q., & Staveley-Smith, L. 2022, +ApJ, 928, 177, doi: 10.3847/1538-4357/ac5905 +Perez, F., & Granger, B. E. 2007, Computing in Science +and Engineering, 9, 21, doi: 10.1109/MCSE.2007.53 +Punzo, D., van der Hulst, J. M., Roerdink, J. B. T. M., +Fillion-Robin, J. C., & Yu, L. 2017, Astronomy and +Computing, 19, 45, doi: 10.1016/j.ascom.2017.03.004 +Putman, M. E. 2017, in Astrophysics and Space Science +Library, Vol. 430, Gas Accretion onto Galaxies, ed. +A. Fox & R. Dav´e, 1, doi: 10.1007/978-3-319-52512-9 1 +Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, +ARA&A, 50, 491, +doi: 10.1146/annurev-astro-081811-125612 +Querejeta, M., Meidt, S. E., Schinnerer, E., et al. 2015, +ApJS, 219, 5, doi: 10.1088/0067-0049/219/1/5 +Radburn-Smith, D. J., de Jong, R. S., Seth, A. C., et al. +2011, ApJS, 195, 18, doi: 10.1088/0067-0049/195/2/18 +Rand, R. J. 1994, A&A, 285, 833 +—. 2000, ApJ, 535, 663, doi: 10.1086/308869 +Reichert, A., B¨ohringer, H., Fassbender, R., & M¨uhlegger, +M. 2011, A&A, 535, A4, +doi: 10.1051/0004-6361/201116861 +Richter, P., Winkel, B., Wakker, B. P., et al. 2018, ApJ, +868, 112, doi: 10.3847/1538-4357/aae838 +Saintonge, A., Catinella, B., Cortese, L., et al. 2016, +MNRAS, 462, 1749, doi: 10.1093/mnras/stw1715 +Saintonge, A., Catinella, B., Tacconi, L. J., et al. 2017, +ApJS, 233, 22, doi: 10.3847/1538-4365/aa97e0 +Schechtman-Rook, A., & Hess, K. M. 2012, ApJ, 750, 171, +doi: 10.1088/0004-637X/750/2/171 +Serra, P., Koribalski, B., Duc, P.-A., et al. 2013, MNRAS, +428, 370, doi: 10.1093/mnras/sts033 +Serra, P., Westmeier, T., Giese, N., et al. 2015, MNRAS, +448, 1922, doi: 10.1093/mnras/stv079 +Seth, A. C., Dalcanton, J. J., & de Jong, R. S. 2005, AJ, +129, 1331, doi: 10.1086/427859 + +27 +Shangguan, J., Ho, L. C., Li, R., et al. 2019, ApJ, 870, 104, +doi: 10.3847/1538-4357/aaf21a +Sorgho, A., Foster, T., Carignan, C., & Chemin, L. 2019, +MNRAS, 486, 504, doi: 10.1093/mnras/stz696 +Sparre, M., Whittingham, J., Damle, M., et al. 2022, +MNRAS, 509, 2720, doi: 10.1093/mnras/stab3171 +Stanimirovic, S. 2002, in Astronomical Society of the +Pacific Conference Series, Vol. 278, Single-Dish Radio +Astronomy: Techniques and Applications, ed. +S. Stanimirovic, D. Altschuler, P. Goldsmith, & C. Salter, +375–396. https://arxiv.org/abs/astro-ph/0205329 +Stevens, A. R. H., & Brown, T. 2017, MNRAS, 471, 447, +doi: 10.1093/mnras/stx1596 +Stevens, A. R. H., Diemer, B., Lagos, C. d. P., et al. 2019, +MNRAS, 483, 5334, doi: 10.1093/mnras/sty3451 +Strickland, D. K., Heckman, T. M., Colbert, E. J. M., +Hoopes, C. G., & Weaver, K. A. 2004, ApJ, 606, 829, +doi: 10.1086/383136 +Swaters, R. A., van Albada, T. S., van der Hulst, J. M., & +Sancisi, R. 2002, A&A, 390, 829, +doi: 10.1051/0004-6361:20011755 +T¨ullmann, R., Pietsch, W., Rossa, J., Breitschwerdt, D., & +Dettmar, R. J. 2006, A&A, 448, 43, +doi: 10.1051/0004-6361:20052936 +Tully, R. B. 2015, AJ, 149, 54, +doi: 10.1088/0004-6256/149/2/54 +Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, +AJ, 146, 86, doi: 10.1088/0004-6256/146/4/86 +Tumlinson, J., Werk, J. K., Thom, C., et al. 2011, ApJ, +733, 111, doi: 10.1088/0004-637X/733/2/111 +van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, +Computing in Science and Engineering, 13, 22, +doi: 10.1109/MCSE.2011.37 +van Gorkom, J. 1993, in Astrophysics and Space Science +Library, Vol. 188, The Environment and Evolution of +Galaxies, ed. J. M. Shull & H. A. Thronson, 345, +doi: 10.1007/978-94-011-1882-8 20 +Verdes-Montenegro, L., Del Olmo, A., Yun, M. S., & Perea, +J. 2005, A&A, 430, 443, doi: 10.1051/0004-6361:20047084 +Verdes-Montenegro, L., Yun, M. S., Williams, B. A., et al. +2001, A&A, 377, 812, doi: 10.1051/0004-6361:20011127 +Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, +Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2 +Wang, E., Wang, J., Kauffmann, G., J´ozsa, G. I. G., & Li, +C. 2015, MNRAS, 449, 2010, doi: 10.1093/mnras/stv390 +Wang, J., Catinella, B., Saintonge, A., et al. 2020, ApJ, +890, 63, doi: 10.3847/1538-4357/ab68dd +Wang, J., Kauffmann, G., J´ozsa, G. I. G., et al. 2013, +MNRAS, 433, 270, doi: 10.1093/mnras/stt722 +Wang, Q. D., Immler, S., Walterbos, R., Lauroesch, J. T., +& Breitschwerdt, D. 2001, ApJL, 555, L99, +doi: 10.1086/323179 +Wang, Q. D., Walterbos, R. A. M., Steakley, M. F., +Norman, C. A., & Braun, R. 1995, ApJ, 439, 176, +doi: 10.1086/175162 +Weliachew, L., Sancisi, R., & Guelin, M. 1978, A&A, 65, 37 +Wolfe, S. A., Pisano, D. J., Lockman, F. J., McGaugh, +S. S., & Shaya, E. J. 2013, Nature, 497, 224, +doi: 10.1038/nature12082 +Yamasaki, N. Y., Sato, K., Mitsuishi, I., & Ohashi, T. 2009, +PASJ, 61, S291, doi: 10.1093/pasj/61.sp1.S291 +Yu, N., Ho, L. C., & Wang, J. 2022, ApJ, 930, 85, +doi: 10.3847/1538-4357/ac5f07 +Yun, M. S., Ho, P. T. P., & Lo, K. Y. 1994, Nature, 372, +530, doi: 10.1038/372530a0 +Zhu, M., Yu, H., Wang, J., et al. 2021, ApJL, 922, L21, +doi: 10.3847/2041-8213/ac350a +Zuo, P., Xu, C. K., Yun, M. S., et al. 2018, ApJS, 237, 2, +doi: 10.3847/1538-4365/aabd30 + +28 +APPENDIX +A. THE AVERAGE BEAM IMAGE OF FAST +We derive a clean average beam image of the 19 beams, gridded in the same way as for the N4631 data. We use the +calibrated mapping data of point sources from Jiang et al. (2020) to derive the average beam of FAST. The observation +was specifically designed to characterize the beam properties of FAST. The data are in total 100 minutes’ mapping of +point sources in raster scan mode along right ascension or declination directions, with a high sampling rate of per 10′′. +We refer the readers to Jiang et al. (2020) for more details of the data and of the properties of the 19 beams of FAST. +We use the same procedure that has produced the NGC 4631 cube in this paper to make the images of the 19 beams +separately. We note that, a different 2-dimensional interpolation method was used in Jiang et al. (2020) for gridding, +which is improper for the NGC 4631 data here whose sampling rate is much lower. After masking contaminating +sources in the neighborhood, we follow the steps in Jiang et al. (2020) and fit a skew Gaussian to each of the 19 beam +images. We stack the images of the 19 beams after register them to the same Gaussian center. The stacking procedure +takes the 3-sigma clipped mean value for each pixel. The directly stacked beam image looks like a smoothed version of +beam 1 displayed in Jiang et al. (2020) because of additional smoothing in gridding. It has a central core surrounded +by a side-lobe ring, and then a axisymmetric periodical pattern with 6 broad peaks. It still has some noise patterns in +the background and imperfectness in the periodical pattern. We clean the beam image by first using the segmentation +function of the python package astropy.photutils to flag and mask the noise patterns in the background. We then +perform a Fourier decomposition of the periodical pattern, and find that the pattern can be well represented by only +retaining the m = 6 mode of the Fourier components. After these two steps, we obtain a relatively clean and average +beam image for the NGC 4631 FAST image data. We show the directly stacked beam image, the cleaned beam image, +and a difference map of the two images in Figure 18. +In Figure 18, we also present an azimuthally averaged radial profile of the cleaned beam image. Within a radius of +∼ 3.5′, the inner region of the profile is well fitted by a Gaussian function with a FWHM of 3.24′. Beyond that, the real +beam deviate from the Gaussian approximation, with a level of around 1%. The level of the first side-lobe is around +1/10 that of Arecibo (Heiles et al. 2001), indicating the power of FAST to map low-surface density, extended Hi. +However, the level also suggests that the scattered light due to side-lobes cannot be fully ignored when we investigate +extended Hi with column densities close to 1018cm−2. Therefore, in section 2.6, we convolve the WSRT cube with the +real beam of FAST, before comparing the distribution of Hi fluxes between the WSRT and FAST data. +We caution that, the beam shape of the NGC 4631 data may differ from the data of in Jiang et al. (2020), as +the observing times are quite different. Moreover, the beam shapes, particularly the side-lobes, differ between the 19 +beams, as shown in Jiang et al. (2020). However, this average beam image is the best we can achieve with the resources +in hand. And, the variation among beams is an intrinsic systematic uncertainty of the 19-beam mapping, which is a +necessary compromise for the mapping efficiency. +B. THE DISK AND TIDAL TAIL REGIONS OF NGC 4631 +We manually separate the FAST-detected region of the NGC 4631 and NGC 4656 system by arbitrarily drawing a +line roughly along the disk direction of NGC 4656 (the white dashed line in Figure 5). We separate the WSRT-detected +NGC 4631 region into regions of the main disk and 4 tidal tails. We firstly determine the region of the main disk of +NGC 4631 in the data cube. We take the parameters of the kinematic model of the main disk of NGC 4631 from +Rand (1994), and use 3D-Barolo (Di Teodoro & Fraternali 2015) to make a 3 dimensional data cube based on the +parameters. We arbitrarily take a density threshold equivalent to 0.02% the peak density of the model to draw a mask +of the NGC 4631 disk region in the cube. The region belonging to the two satellite galaxies NGC 4656 and Dwarf A +are already labeled by SoFiA. The cube space beyond the disk region of NGC 4631, NGC 4656 and Dwarf A, but are +within the SoFiA mask of the WSRT cube are considered the tail region. +The separation of the tail region into different tails is performed with the 3-dimensional watershed algorithm of the +python package skimage.segmentation. The outputs are 3-dimensional flagging masks of the separate components. A +previous study, Combes (1978) manually separated the tidal features into four tails, denoting them by number 1 to 4, +and used numerical simulation of interaction to reproduce the morphology and kinematics of these 4 tails. The same +denoting system has been adopted by studies later to have a coherence context of discussion (e.g. Rand 1994). Our +watershed results directly flag tail 3 and 4, but 1 and 2 are blended. We manually and arbitrarily draw a division line +in the sky plane to separate tail 1 from 2 in the blended region to qualitatively match the separation in Rand (1994). + +29 +75 +50 +25 +0 +25 +50 +75 +x (arcmin) +80 +60 +40 +20 +0 +20 +40 +60 +80 +y (arcmin) +stacked beam +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +level +75 +50 +25 +0 +25 +50 +75 +x (arcmin) +80 +60 +40 +20 +0 +20 +40 +60 +80 +y (arcmin) +cleaned beam +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +level +0 +2 +4 +6 +8 +r (arcmin) +4.0 +3.5 +3.0 +2.5 +2.0 +1.5 +1.0 +0.5 +0.0 +logf/fpeak +beam profile +Gaussian model +Figure 18. +The beam of the FAST Hi data. +Top-left and top-right panels are the stacked beam and the cleaned beam +respectively. The bottom panel is the azimuthally averaged radial profile of the beam, and its best-fit Gaussian model with a +FWHM of 3.24′. +The sky projected view of these regions are displayed in Figure 5. +C. THE TEMPERATURE OF THE HOT GAS NEAR THE DISK +There are abundant studies in the literature on the properties of the X-ray emitting hot gas near the disk within a +distance of around 10 kpc. This part of the hot gas halo mostly represents hot gas outflows from the galactic disk, +especially from its inner actively star-forming region. Therefore its temperature should be higher than, and can be +used as upper limit of that in a hydrostatic equilibrium in the galaxy’s potential. +Wang et al. (1995) used ROSAT data to detect the soft X-ray radiation of the hot gas of NGC 4631 out to 8 kpc +above the disk plane. They estimated a characteristic thermal temperature of 0.25±0.03 keV. Wang et al. (2001) +used Chandra to detect the halo out to a similar distance. They performed a 2-component thermal plasma model fit, +obtaining a hot component of 0.61±0.12 keV close to the disk and a cooler component of 0.18±0.02 keV dominating +the outer corona. As in this study we focus on the tidal Hi far away from the disk, we only take the temperature of +the further component. T¨ullmann et al. (2006) used XMM-Newton to derive the temperature out of 3 stripes south +of the disk, and 5 stripes north of the disk, reaching out to nearly 11 kpc. They used 5 bands ranging from super-soft +to hard, so they managed to derive two characteristic temperatures for both a soft and a hard components. The +hard component has a mean temperature of 0.24±0.03 keV, and a slightly higher but comparable number density of +IGM throughout the analysis regions. The soft component has a temperature that is roughly 4 times lower, and we +thus take the temperature of the more energetic hard component. Finally, Yamasaki et al. (2009) used the Imaging +Spectrometer of Suzaku to trance X-ray halo out to about 10 kpc from the disk. They fit 2-component thermal models +to the disk and the halo regions separately. In the halo region, the hard component of 0.3±0.016 keV is dominating +over the soft component by 5 times more flux. + +.30 +Taking together these four sets of previous measurements, we calculate a mean value of 0.24±0.03 keV, equivalent +to 2.8 × 106 K, as the temperature of the hot gas halo within 10 kpc around the NGC 4631 disk. +D. THE DARK MATTER HALO MASS OF N4631G +We use M500 as the fiducial measure of the dark matter halo mass, the mass within r500 the radius where the average +density is 500 times the critical density of the universe. Characteristic masses are also defined at alternative averaged +density levels, like M200 and M101 (the virial mass at redshift z= 0 in ΛCDM cosmology). They are convertible with +each other assuming a NFW model (Navarro et al. 1997) of the dark matter halo with a concentration index c∆ of 8, +as is expected for a halo of roughly 1012 M⊙ at redshift z = 0 (Dutton & Macci`o 2014). +We use the stellar mass-halo mass relation in Behroozi et al. (2010) to derive a lower limit of log M500/M⊙ = 11.61. +It is viewed as a lower limit because from halo occupation distribution studies, dark matter halos with a mass around +1012 M⊙ should have the number of satellites which have stellar masses above 109.28 M⊙ far less than unity (Bose +et al. 2019). +We use the M500-IGM temperature relation from Reichert et al. (2011), in combination with the characteristic +temperature of the near-disk hot gas summarized above, to derive an upper limit of log M500/M⊙ = 12.13 ± 0.06. +The N4631g can be found in the group catalog of Kourkchi & Tully (2017) with a PGC id of 42637. From that +group catalog, it has 10 member galaxies. These member galaxies have a radial velocity dispersion σc of 217 km s−1, +and a projected gravitational radius Rg of 92 kpc. Based on the equation of Tully (2015), we derivelog M500/M⊙ of +11.97. This value is between the lower and upper limits derived above, and is taken to be the final estimate. +Accordingly, the r500, r200, and M200 of N4631g are 148 kpc, 224 kpc, and 1012.1 M⊙ respectively. The corresponding +virial mass implies a virial temperature of 8×105 K, considerably lower than that of the X-ray emitting and outflowing +hot gas near the disk. +E. THE DENSITY OF THE HOT GAS HALO +We base on the M500 estimated in appendix D to derive M500,gas, the hot gas mass within R500. +We use the +M500,gas-M500 relations from Andreon et al. (2017) and Ettori (2015), which derive log M500,gas/M⊙ of 10.56±0.17 +and 10.51±0.10 respectively. The two values are consistent within the error bar, and we take the one with smaller +error. +We consider a single-β model distribution of the IGM. Following the specifics in Eckert et al. (2011), we assume +the β value to be 0.64, and the core radius rc = 0.19r500. Cumulating the IGM model profile from center to R500, +we derive a central density of 5.778×10−4 cm−3. We also consider a double-β model, to match the fact that many +previous studies found two thermal components in the hot gas halo. Following Eckert et al. (2011), we set the outer +component to have core radius rc = 0.03r500. We arbitrarily set the central density of the outer and inner components +to be equal, partly motivated by the fact that in T¨ullmann et al. (2006) the density of the hot and cold components are +roughly equal in the inner corona. We plot both models in Figure 19. Although the double-β model fit the measured +densities from Yamasaki et al. (2009) better, both models are close beyond a radius of 10 kpc in the IGM region. We +thus adopt the single-β model for simpler assumptions. +F. AMPLITUDE SPECTRAL ANALYSIS THROUGHOUT APPLICABLE CHANNELS +To demonstrate the consistency of amplitudes cross the applicable channels (which have flux intensity greater than +0.15 Jy), we plot the relation between the normalized amplitudes of all these channels in the left panel of Figure 20. +The normalization factor of each channel is taken to be the maximum amplitude from the PB-attenuated FAST cube +in the selected angular scale range (4 to 24.5′). The data points distribute close to the y = x line. To demonstrate the +deviation of critical angular scales, in the right panel of Figure 20, we show the relation between amplitude ratios and +angular scales from the selected channels. Each curve represents the median relation from a channel map, and starts +from 4′. The curves start to exceed unity near the mean critical angular scale of 13.6′. +G. MCMC RESULT OF DOUBLE-GAUSSIAN FIT TO THE SUPER PROFILES +We use emcee (Foreman-Mackey et al. 2013) to conduct a double-Gaussian fit to the super profile stacked from the +line-of-sights with single-Gaussian spectra in dense Hi in the tail region of the projected FAST cube. The amplitude a +and σ of the narrow and broad Gaussian components are denoted by 1 and 2 respectively. We also include a fraction +uncertainty of the model f in the fitting. The corner figure of probability distribution of parameters are displayed in + +31 +0 +10 +20 +30 +40 +50 +r (kpc) +3.8 +3.6 +3.4 +3.2 +3.0 +2.8 +lognICM (cm +3) +single +double +N +S +Figure 19. +IGM density profiles of N4631g. The black and pink solid lines are the single and double-β models. The black +dashed lines are the 1-σ uncertainty range of the single-β model due to uncertainty in the estimate of M500,gas. The blue and +cyan dots are measurements from Yamasaki et al. (2018) at distances from the north and south sides of the disk. +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +AWSRT, normalized +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +AFAST, normalized +2.6 +2.8 +3.0 +3.2 +3.4 +log Angular scale (arcsec) +0.3 +0.2 +0.1 +0.0 +0.1 +0.2 +0.3 +log AFAST/AWSRT +Figure 20. +The comparison between amplitudes of amplitude spectra from the WSRT cube and PB-attenuated FAST cube. +Left: relation of normalized amplitudes from the two types of cubes selected from the angular scale range between 4′ and 24.5′ +as in Figure 7. The dashed line mark the y = x line. Right: the median curves of the ratio of amplitudes from the two cubes +as a function of the angular scale. Each curve corresponds to one channel. The horizontal dashed line mark the y position of +zero. The red vertical line marks the mean critical angular scale of 13.6′ for FAST amplitudes to exceed the WSRT amplitudes +by 1%. The black vertical line marks the angular scale corresponding to the shortest baseline of the WSRT array configuration. +Figure 21. We do not find strong degeneracy between model parameters from the corner figures, where the probability +distribution are projected onto 2-dimensional diagrams of the parameters. The fractional uncertainty of the model is +low. So the double-Gaussian model seems a good description of the super profiles. +We do the same for the smoothed WSRT cube, and the original WSRT cube. The results are displayed in Figure 22, +and 23 respectively. The degeneracies of σ1 and σ2 with a1/(a1+a2) become stronger, but the probability distributions +are still relatively narrow. So the double-Gaussian model seems still a reasonable description of the super profiles. +The best-fit σ of the narrow and broad Gaussian components, and the ratio of peak intensities between +them are 16.3+0.37 +−0.33 km s−1, 58.0+1.43 +−1.39 km s−1, and 0.76+0.011 +0.010 +for the super profile of FAST data. +The values +are 12.9+0.30 +−0.29 km s−1, 30.9+1.63 +−1.38 km s−1, and 0.74+0.028 +−0.028 for the super profile of the smoothed WSRT cube, and +8.9+0.45 +−0.55 km s−1, 13.9+1.17 +−0.91 km s−1 and 0.61+0.118 +−0.136 for the super profile of the WSRT cube. + +32 +15.6 +16.2 +16.8 +17.4 +18.0 +1(kms +1) +55.0 +57.5 +60.0 +62.5 +2(kms +1) +0.72 +0.74 +0.76 +0.78 +0.80 +a1/(a1 + a2) +4.0 +3.6 +3.2 +2.8 +log(f) +15.6 +16.2 +16.8 +17.4 +18.0 +1(kms +1) +55.0 +57.5 +60.0 +62.5 +2(kms +1) +4.0 +3.6 +3.2 +2.8 +log(f) +FAST (tail region) +Figure 21. Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of FAST data cube +in the tail region. +H. USING CLOUDY TO PREDICT THE CRITICAL COLUMN DENSITY OF HI FOR PHOTON IONISATION +The procedure below is a modified version of the one described in Borthakur et al. (2015). +We consider two sources contributing to the UV photons, the cosmic background UV radiation, and the photons from +the young stars in NGC 4631. For the UV photons associated with young stars, we use the equation from Tumlinson +et al. (2011) to estimate the dimensionless ionisation parameter Ustar which depends on the SFR of NGC 4631 and +the distance squared. It also assumes a uniform fraction of 0.1 for the UV photons to escape from the interstellar +medium. We have ignored the UV photons from NGC 4656, as its SFR is around one fourth, thus the distance to +have the same level of Ustar is half that of NGC 4631. The UV photons from NGC 4656 only start to be important +when the distance from NGC 4631 is larger than 52.5 kpc along the direction connecting these two galaxies. Diffuse +stellar features have been found around NGC 4631, but mostly consisting of old stars (Mart´ınez-Delgado et al. 2015), +unlikely to provide additional UV photons. +We use starburst99 (Leitherer et al. 2010) to generate a young stellar population with a solar metallicity and an age +of 4 Myr. We use the spectral energy distribution of this stellar population as input for Cloudy. We generate a three +dimensional grid of hydrogen density nH, the hydrogen column density NH, and the stellar ionisation parameter Ustar. +log nH ranges from -2.6 to -1.8 with a step of 0.2, log NH range 17.5 to 22.5 with a step of 0.25, and Ustar from -6 to +-1.4 with a step of 0.2. We use the default “background” and “Background cosmic ray”, to add the ionizing effects +of the cosmic UV background and the cosmic ray background. In the top panel of Figure 24, we plot the resulting + +33 +7.2 +8.0 +8.8 +9.6 +1(kms +1) +12 +14 +16 +18 +2(kms +1) +0.30 +0.45 +0.60 +0.75 +a1/(a1 + a2) +8 +6 +4 +log(f) +7.2 +8.0 +8.8 +9.6 +1(kms +1) +12 +14 +16 +18 +2(kms +1) +8 +6 +4 +log(f) +WSRT (tail region) +Figure 22. Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of WSRT data cube +in the tail region. +neutral fraction of hydrogen (NHI/NH), as a function of log NHI in different bins of U, fixing log nHI at -2.6. We can +see that toward the low values of Ustar (dark purple), NHI/NH converges to the highest possible value at a given NHI, +because the comic UV background starts to dominate there. Setting NHI/NH = 0.5, we derive the critical Hi column +density (NHI,c,ion) from each curve. We plot NHI,c,ion as a function of Ustar for different values of nH in the righ panel +of Figure 24. We assume nH = 2nHI, and interpolate in this parameter space to derive the critical column density of +Hi as a function of distance. +We plot NHI,c,ion as a function of radius to NGC 4631 in the right panel of Figure 14. The values of NHI,c,ion flatten +around 1019.2 cm−2 beyond a distance of 30 kpc. The value of 1019.2 cm−2 is close to many previously derived when +only accounting for the cosmic background of UV radiation (Maloney 1993), but if we remove the effect of young stars +in NGC 4631, NHI,c,ion would drop to one third of its current value at a radius of 30 kpc. +We note that the leakage fraction of UV photons, the extent of shielding by Hi in tails at smaller distances, the +lack of information on the filling factor and clumpiness of Hi, and the contribution of ionizing energy from shocks, are +major sources of uncertainties in the deviation of the ionisation related parameters. +I. THE GRAVITATIONAL POTENTIAL AROUND NGC 4631 +We use galpy (Bovy 2015) to model the mass distribution and gravitational potential around NGC 4631. We use the +Miyamoto-Nagai model with the Milky Way specifics (scale length 3 kpc and scale height 0.28 kpc) to represent the + +34 +12 +13 +14 +15 +1(kms +1) +27 +30 +33 +36 +39 +2(kms +1) +0.66 +0.72 +0.78 +0.84 +a1/(a1 + a2) +8 +6 +4 +log(f) +12 +13 +14 +15 +1(kms +1) +27 +30 +33 +36 +39 +2(kms +1) +8 +6 +4 +log(f) +WSRT (tail region, smoothed) +Figure 23. Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of smoothed WSRT +data cube in the tail region. +disk, the NFW model with scale radius equal to r200/c∆ to represent the dark matter, and use the rotational velocity +of 145 km s−1 at a radius of 8 kpc (Rand 1994) to calibrate the normalization. The resulted mass model has a disk +mass of 1010.2 M⊙ within 8 kpc, and a halo mass of 1012.02 M⊙ within r500 derived in appendix D. Thus the mass +model is close to the observed stellar mass and M500 of NGC 4631. Then we use the evaluatePotentials task of galpy +to evaluate the potential distribution around NGC 4631. + +35 +17.5 +18.0 +18.5 +19.0 +19.5 +20.0 +20.5 +logNHI(cm +2) +4.0 +3.5 +3.0 +2.5 +2.0 +1.5 +1.0 +0.5 +0.0 +logNHI/NH +Ionization by UV photons from stars and background +6 +5 +4 +3 +2 +Ustar +18 +19 +20 +21 +logNHI, c, ion(cm +2) +nH = -2.6 +nH = -2.4 +nH = -2.2 +nH = -2.0 +nH = -1.8 +nH = -1.6 +nH = -1.4 +Figure 24. Photon ionisation of hydrogen in grids of stellar ionisation parameter, hydrogen density and hydrogen column +density. +Left: the neutral ratio of hydrogen, NHI/NH, is plotted as a function of the Hi column density in bins of stellar +ionisation parameter Ustar. The values of Ustar range from -6 to -1.4 with a linear step of 0.2, and the curves in lighter purple +colors correspond to higher values of Ustar. The dashed, horizontal line mark where the neutral ratio is 50%. Right: the critical +Hi column density, where the ionisation or neutral ratio is 50%, as a function of Ustar in different bins of nH. The darker blue +colors correspond to lower values of nH. + diff --git a/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/load_file.txt b/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3f0eae5289e4d7e1eded3d35d7cfc0167991182a --- /dev/null +++ b/rtAzT4oBgHgl3EQfA_rZ/content/tmp_files/load_file.txt @@ -0,0 +1,2384 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf,len=2383 +page_content='Draft version January 4, 2023 Typeset using LATEX twocolumn style in AASTeX62 FEASTS: IGM cooling triggered by tidal interactions through the diffuse HI phase around NGC 4631 Jing Wang (王菁),1 Dong Yang (杨冬),1 S-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Oh,2 Lister Staveley-Smith,3, 4 Jie Wang,5 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Daniel Wang,6 Kelley M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hess,7, 8 Luis C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Ho,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 9 Ligang Hou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 Yingjie Jing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 Peter Kamphuis,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='10 Fujia Li,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 12 Xuchen Lin (林旭辰),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 Ziming Liu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 Li Shao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 Shun Wang (王舜),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 and Ming Zhu5 1 Kavli Institute for Astronomy and Astrophysics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Peking University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Beijing 100871,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' China 2Department of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Sejong University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 209 Neungdong-ro,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Gwangjin-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Seoul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Republic of Korea 3International Centre for Radio Astronomy Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' University of Western Australia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 35 Stirling Highway,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Crawley,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' WA 6009,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Australia 4ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Australia 5National Astronomical Observatories,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Chinese Academy of Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 20A Datun Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Chaoyang District,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Beijing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' People’s Republic of China 6Astronomy Department,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' University of Massachusetts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Amherst,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' MA 01003,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' USA 7Instituto de Astrof´ısica de Andaluc´ıa (CSIC),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Glorieta de la Astronom´ıa s/n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 18008 Granada,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Spain 8ASTRON,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the Netherlands Institute for Radio Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Postbus 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 7990 AA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Dwingeloo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The Netherlands 9Department of Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' School of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Peking University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Beijing 100871,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' People’s Republic of China 10Ruhr University Bochum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Faculty of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Astronomical Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 44780 Bochum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Germany 11CAS Key Laboratory for Research in Galaxies and Cosmology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Department of Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' University of Science and Technology of China,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hefei 230026,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' People’s Republic of China 12 School of Astronomy and Space Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' University of Science and Technology of China,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hefei 230026,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' People’s Republic of China ABSTRACT We use the single-dish radio telescope FAST to map the Hi in the tidally interacting NGC 4631 group with a resolution of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′ (7 kpc), reaching a 5-σ column density limit of 1017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9 cm−2 assuming a line width of 20 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Taking the existing interferometric Hi image from the HALOGAS project of WSRT as reference, we are able to identify and characterize a significant excess of large-scale, low- density, and diffuse Hi in the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This diffuse Hi extends for more than 120 kpc across, and accounts for more than one fourth of the total Hi detected by FAST in and around the galaxy NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the region of the tidal tails, the diffuse Hi has a typical column density above 1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 cm−2, and is highly turbulent with a velocity dispersion around 50 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It increases in column density with the dense Hi, and tends to be associated with the kinematically “hotter” part of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Through simple modeling, we find that the majority of the diffuse Hi in the tail region is likely to induce cooling out of the hot IGM instead of evaporating or being radiatively ionized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Given these relations of gas in different phases, the diffuse Hi may represent a condensing phase of the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Active tidal interactions on-going and in the past may have produced the wide-spreading Hi distribution, and triggered the gas accretion to NGC 4631 through the phase of the diffuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Keywords: Galaxy evolution, interstellar medium 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' INTRODUCTION The loss and gain of Hi are important drivers of galac- tic evolution, as Hi is in the phase where the star- forming gas starts to cool and settle down onto a galactic Corresponding author: Jing Wang jwang astro@pku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='cn Corresponding author: S-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Oh seheonoh@kasi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='kr disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Although Hi disks can be several times more ex- tended from the galactic center than the optical disks where most star formation occurs (Swaters et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013), the integral Hi richness is correlated with the amount of Hi on optical disks (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022), and further with the specific star forma- tion rate (SFR) (Saintonge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Such a link of SFR with Hi far away extends further into the circum-galactic medium, indicated by the strengths of Lyman-α absorbers (Borthakur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Lan & arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00937v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='GA] 3 Jan 2023 2 Mo 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These correlations imply a quasi-equilibrium state of baryonic flow through galaxies, and supports the role of Hi as the reservoir of raw material for forming stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tidal interactions are significant channels for galax- ies to both gain and lose Hi (Putman 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Verdes- Montenegro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001), but the net effects on the whole and in each step of physical processes remain to be studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For example, Hi tails and clouds possibly of tidal origin are often found, including the Magellanic stream and at least some of the high-velocity cloud com- plexes around the Milky Way (Putman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They indicate a redistribution of gas between galaxies due to tidal interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These extra-planar Hi fea- tures should be prone to thermal evaporation (Cowie & McKee 1977), radiative ionisation, and dispersal due to Kelvin-Helmholtz instability and Rayleigh-Taylor insta- bility, but long-lasting ones have been found in massive clusters (Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2007), loose groups (Koopmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021), and compact groups (Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It indicates a complex interplay between the Hi gas and the circum(inter)-galactic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For another example, starbursts are often found in gas- rich interacting pairs (Ellison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Chown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019), possibly caused by gas inflows driven by tidal shocks, torques, and instabilities (Blumenthal & Barnes 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Despite the enhanced consumption of gas, the integral Hi masses of mergers and post-mergers are not found to decrease compared to control samples (Ellison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Zuo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Shangguan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This unexpected consistency in Hi amount may be due to a boosted CGM cooling out of thermal instabilities, or suppressed atomic-to-molecular conversion efficiency out of turbulent Hi, but the exact reason is unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In most of the puzzles of this type, a major difficulty arises from the physical nature that various gravitational and hydrodynamic effects are involved and interact, and that gas exchanges between phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Sorting out the response of Hi during tidal interac- tions is important for a refined evolutionary theory of galaxies of different types and in different environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Semi-analytical models of galaxy evolution have been plagued by the fact that environmental and internal ef- fects have a strong degeneracy when reproducing the observed Hi or SFR scaling relations of satellite galaxies (Stevens & Brown 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Because different environmen- tal mechanisms co-exist, it is hard to separate and assess the role of each (Boselli & Gavazzi 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Cortese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021), even in groups and the outskirts of clusters where tidal interactions should dominate other environmental effects (Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The most promising way forward may be a more detailed analysis of existing and newly observed data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Characterizing the distribution and kinematics of Hi in prominent tidally interacting galaxy samples will help us identify signatures to sep- arate the tidal effects from other environmental effects;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' comparing quantified properties with physical models, and formulating empirical relations to be implemented into semi-analytical models, will help us break the de- generacy between internal and external causes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Luckily, there have been long-lasting efforts in this di- rection of characterizing detailed Hi properties in tidal interactions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Rand 1994;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Yun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1994;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Wolfe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Lee-Waddell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Sorgho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Namumba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A highlight among them are the systematic research on compact groups (Verdes- Montenegro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Borthakur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Jones et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Built upon these benchmarking papers, in this paper we study in detail one classical interacting system, the NGC 4631 group (N4631g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We contribute the following unique inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the Five hundred meter Aperture Spherical Telescope (FAST, Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019) to obtain an Hi image with a high sensitivity, and moderate reso- lution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A first impression of the N4631g and its Hi distri- bution can be obtained from Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST data reveals and spatially resolves a significant excess of Hi compared to a previous deep interferometric observation with the Westerbork Synthesis Radio Telescope (WSRT) by Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey (Heald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This paper thus addresses in particular the existence of such an extended Hi enve- lope around NGC 4631, which the WSRT observations miss because it is too faint and too extended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The com- bined data show this well and allow an assessment of how much there is, how it is distributed, what its kine- matics are and how it is connected to the higher density Hi that the HALOGAS project found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The amount tells us about the total gas reservoir around galaxies, while the detailed properties tells us about the tidal interac- tion and the physics of the IGM (intra-galactic medium), CGM (circum-galactic medium), and ISM (inter-stellar medium) connection that are essential to gas accretion and depletion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The combination of single dish data and synthesis data, which is essential to obtain the new results in this paper, is a known but difficult problem (Stanimirovic 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This paper demonstrates the power of FAST as compared to existing attempts to add extended emis- sion restricted to other single-dish telescopes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' GBT and Parkes, de Blok et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020), which have much smaller dishes and hence have less overlap in u,v space with the synthesis data, or relatively signif- icant side-lobes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Arecibo, Heiles et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hess 3 et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Closely relevant to this paper, Richter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2018) used Hi image taken by the GBT in combination with the WSRT image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Limited by the resolution of the GBT image, the two types of Hi data were compared mainly in a qualitative way, and the focus of that work was instead on one line-of-sight with ultraviolet spectro- scopic data taken by the Hubble Space Telescope (HST).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST image used in this work has three times bet- ter resolution than the GBT image, has a much wider uv coverage in common with the WSRT data, and there- fore enables a relatively better quantified characteriza- tion and comparison of the Hi properties throughout the tidally interacting region in the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We introduce the sample, the Hi data , and the multi-wavelength data in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Particularly, we describe the observation and reduction of the FAST Hi data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In section 3, we ver- ify that the flux calibrations are consistent between the FAST and WSRT data, and show globally the existence of excess Hi detected by FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In section 4, we con- duct detailed analysis of the excess Hi, which is likely large-scale and low-density diffuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We quantify the distribution and localized kinematics of it, and its rela- tion to the dense Hi detected by WSRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In section 5, we quantify the hydrodynamic and gravitational envi- ronment around the galaxy NGC 4631, and discuss the fate and motion of the (diffuse) Hi in the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Finally we summarize in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Throughout the paper, we assume a Chabrier (2003) initial mass function to esti- mate the stellar mass and SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' DATA AND ANALYSIS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The NGC 4631 galaxy and group The galaxy NGC 4631, known as the Whale galaxy, is an edge-on spiral galaxy, and has remarkable Hi tidal structures (Weliachew et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Rand 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is centered at α2000 = 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9905◦, δ2000 = 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1682◦, ac- cording to the 2MASS Extended Source Catalog (Jar- rett et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It has a heliocentric systematic velocity of 615 km s−1 (Rand 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We take the error weighted mean of luminosity distances derived with the TRGB method in the literature (Seth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tully et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Radburn-Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Monachesi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016), which is 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='53 Mpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The members of N4631g have a velocity dispersion σc of 217 km s−1 (Kourkchi & Tully 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' As the brightest galaxy of the N4631g, NGC 4631 has two major com- panions, NGC 4656 and NGC 4627, 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 kpc away in projected distance respectively, the interaction with which should have produced most of the Hi tidal structures around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Its interaction with NGC 4656 might start only a few hundreds of million years ago, as suggested by the age of a tidal dwarf near NGC 4656 (Schechtman-Rook & Hess 2012), and the simula- tion of Combes (1978) in an attempt to reproduce its Hi tidal tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It also has many other fainter dwarf com- panions, and stellar tidal tails which do not correspond to the Hi tails (Mart´ınez-Delgado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These properties indicate a dynamic, actively interacting envi- ronment around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' NGC 4631 has an active star formation possibly due to the active tidal interaction with neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The ac- tive star formation may have triggered powerful outflows of mass and energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These outflows reveal themselves as super-shells and anomalous velocity features in the Hi (Rand 1994) and CO images (Rand 2000), filamen- tary structures of dust (Mel´endez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015), ionized gas (Golla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Martin & Kern 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Strickland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T¨ullmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2006) extending above the disk plane, and magnetic fields perpendicular to the disk plane (Mora-Partiarroyo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The present and past outflows may have built the prominent hot gaseous halo that is bright in the radio continuum (Ek- ers & Sancisi 1977;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Irwin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2012) and X-ray (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' But we point out that, the Hi struc- ture detected in this work which is large than 60 kpc in radius extends much further than the X-ray emitting hot gas halo which is roughly 10 kpc in radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST HI observation The FAST Hi observations of NGC 4631 were carried out on 2022 March 25/26/27 (proposal ID: PT2021 0071) as part of the FAST Extended Atlas of Selected Targets Survey (FEASTS)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The zenith an- gles were < 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7◦ during the observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A rectangle of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6◦ × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5◦ is targeted around α2000 = 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7027◦, δ2000 = 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4058◦, an arbitrary position (grey cross in top panel of Figure 3) between NGC 4631 and NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The rectangle is scanned in the on-the-fly (OTF) mode with six passes, evenly divided into vertical and horizontal ones to achieve basket weaving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The scans are conducted with the L-band (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='05 - 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='45 GHz) 19-beam receiver rotated by 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4/53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4◦(horizontal/vertical), and the spacing of scanning stripes set to be 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='66′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We show in the left panel of Figure 2 how these stripes are arranged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They cover extra regions on the four sides, in order to achieve relatively uniform sampling densities in the targeted region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The full width half maximum (FWHM) of the raw beam is ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9′ at a frequency of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='42 GHz (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The effective angular separation between scan lines is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15′, and the effective integration time per po- 1 https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='com/FEASTS/LVgal/wiki 4 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A false color image demonstrating the NGC 4631 group and its Hi gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' On top of the optical image, the blue colored halo shows the diffuse Hi flux imaged by FAST (beam FWHM=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′ or 7 kpc) in this study, while the light-blue finer structures are the denser Hi previously detected in the WSRT HALOGAS (Heald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011) observation (beam FWHM=40′′ or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='46 kpc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The names of 6 relatively prominent member galaxies are denoted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' sition is 235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The total integration time is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='47 h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The observation is accompanied by a 10-K noise diode turned on for 1 s every 60 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data is recorded by the Spec (W+N) backend, with a sampling time of 1 s, and channel width of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='63 kHz, or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='61 km/s for Hi 21 cm observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST data reduction We extract a low-redshift frequency slice of 1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7- 1425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 MHz (equivalent to 76-1609 km s−1), and focus on this part of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data reduction is carried out with a pipeline developed following the standard procedures of reducing radio single-dish image data, par- ticularly those from Arecibo Legacy Fast ALFA Survey (ALFALFA, Haynes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018) and HI Parkes All Sky Survey (HIPASS, Barnes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It has 4 major modules, including RFI flagging, calibration, imaging, and baseline flattening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Many of these steps go back- ward and iterate till convergency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We briefly introduce Keeler 529 NGC4627 Dwarf A NGC4631 MCG+06-28-022 NGC4656 FAST WSRT 10 kpc5 the steps below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' An early version of the pipeline is also described in Zuo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' RFI flagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We flag the radio frequency in- terferences (RFIs) in two major steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Firstly, we use the conventional waterfall map, which is distri- bution of flux in the diagram of frequency versus time, to identify outstanding stripes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Secondly, the whole image region is scanned with 6 passes, so that after gridding the data by sky position for each of the 6 passes, we can use a median and 3- σ based outlier finder to reject RFI contaminated data for the same sky position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The whole RFI flagging procedure is reviewed again after the steps of bandpass removal and flux calibration in the cal- ibration module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The RFI contamination rate is minimal in the FAST data used in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Calibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The bandpass is derived per beam for each stripe of the scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The Hi emission is masked from the waterfall map with a best effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The mask starts with a subjective, rough region with knowledge of Hi distribution from the litera- ture (Rand 1994), and is adjusted later with rms level based criterion after the first round of cal- ibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tests are conducted to decide an opti- mized smoothing width of 240 s for determining the bandpasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data and bandpass are cali- brated against the bandpass-removed sampling of the noise diode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The mask of the Hi emission is up- dated with the bandpass-removed and scaled data with the criterion of at least 200 connected pixels above 2-σ threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The procedure goes back to the step of determining the bandpasses and is it- erated for 3 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Finally, the bandpass-removed and scaled data is corrected for a zenith angle dependent effective gain value of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5-16 to ac- count for scaling differences from the perfect gain and aperture efficiency at almost zero zenith angle (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For the analysis of this paper, we pro- duce two sets of data cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The first set is a con- ventional FAST cube, with pixel size of of 30′′, and the channel width of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='61 km/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The second set is a projected FAST cube, gridded to match the area and WCS system of the WSRT HALOGAS data (see section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A Gaussian kernel with FWHM equivalent to half the FWHM of the raw beam is used to grid the data into channel maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FWHM of the raw beam is taken to be 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9′, the median value of the 19 beams typically at the se- lected frequency (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This gridding process effectively smoothes the data, increasing the FWHM of the actual beam to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The right panel of Figure 2 displays the the relative sampling densities of the observed data when gridding them into pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The density is roughly uniform with a 1-σ scatter of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='48% around the median value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Baseline flattening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We remove the continuum in the full range 1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7-1425.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 MHz of the se- lected frequency slice by modeling it with a first- order polynomial function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Before removing the continuum, the Hi emissions are masked using a mask file generated by SoFiA (Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We then remove the residual continuum, standing waves, and other global irregularities in the spec- tra, which are referred to together as the resid- ual continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The residual continuum is mod- eled with the S-G filter with an effective poly- nomial order of 2, and a width of 480 km s−1 (or 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='274 MHz), which are optimized after exper- iments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For reference, the major standing wave due to reflection between the dish and the receiver bin is ∼ 200 km s−1 (∼ 1 MHz) for FAST (Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This module is iterated for 3 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST data cube We use SoFiA (Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015) on the conven- tional FAST cube to generate the detection mask for Hi emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the threshold-based smooth+clipping source finding algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The threshold is set to be 3- σ, and the smoothing kernels have widths of 0, 3, and 5 pixels in the sky direction, and of 0 and 3 channels in the velocity direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The reliability module is used with a threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='99 to exclude false detections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The result- ing mask is used to project the cube into moment maps and integral spectrum, and also to select emission-free regions to derive the rms level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The FAST data cube has an rms level of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='965 mJy b−1 F , where bF denotes the beam area of FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It corresponds to a 5-σ column density limit of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0×1017 cm−2, assuming a line width of 20 km s−1, or a 5-σ point source mass limit of 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9 M⊙, assuming a line width of 150 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We show the column density map derived from the moment-0 images in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Apparent from the mo- ment images are the main target NGC 4631, its major satellite NGC 4656 to the south-east, and a known op- tically faint companion Dwarf A to the north-west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' An- other two Hi bearing dwarfs previously detected in the WSRT cube of Rand (1994), Keeler 529 and MCG+06- 28-022, are blended into the tidal feature on the north and south-east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Due to their relatively small Hi masses (each ∼ 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 M⊙, Rand 1994), we will not distinguish 6 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5° RA(deg) DEC(deg) scan track Cut_region 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3° 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7° 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3° 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7° 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3° 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0° 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7° RA(deg) Dec(deg) sampling density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='05 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Left: one set of vertical and horizontal scanning stripes of the observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Lines of different colors represent different IDs of the 19 beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The blue square represents the imaging region of the final data cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' One can see that the scanning mode is not the traditional basket weaving, but using evenly distributed horizontal and vertical scans to micmic a basket weaving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Right: the relative sampling density of the whole observed data set when gridding them into pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The densities are normalized to the median value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' them from the tidal structures in the analysis later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We also show the moment-1 and -2 images in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' De- spite the relatively low spatial resolution, the moment-1 image shows velocity gradients in the disk regions of NGC 4631 and NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It also shows several steep gradients in the region of tidal tails, possibly reflect- ing sharp turning in the direction of motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These steep gradients are accompanied by high values in the moment-2 image, where the relative large beam of FAST tends to mix velocity structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the moment-2 im- age, the particularly high values are also caused by over- lapping structures that are separated in velocity space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We run SoFiA similarly for the projected FAST cube, but the smoothing kernels have widths of 0, 3, 11, and 41 pixels in the sky direction instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In unit of arcsec, the maximum extents of smoothing are actually similar for the conventional and projected FAST cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Expect- edly, the depths and moment images from the projected FAST cube are similar to those from the conventional FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The WSRT data cube We use the naturally weighted data cube from the WSRT HALOGAS project (Heald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It was observed with an integration time of 10×12h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The obser- vation has the shortest and longest baselines of WSRT around 36 m and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7 km, corresponding to a nominal largest and smallest angular scale of 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′ and 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6′′, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data cube has a synthesis beam major and minor axes of 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0′′ and 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It has a pixel size of 4′′, and a channel width of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='12 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The WSRT data cube covers an area of roughly 1◦×1◦ around NGC 4631, so the companion NGC 4656 is near the edge of the image, and quite some of the tidal Hi is near or beyond the FWHM of the WSRT primary beam (PB) which has a size of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We run SoFiA on the WSRT cube to generate the detection mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The parameter setting is similar to that for the projected FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' With the SoFiA mask, we produce the moment images and integral spec- tra, and derive the rms level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The moment images are close to those published in Richter et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The column density map derived from the moment-0 im- age is displayed in the bottom-left panel of Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The WSRT cube has a rms level σW of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='257 mJy b−1, where b denotes the beam area of the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This rms level corresponds to a 5-σ column density limit of 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='32 × 1018 cm−2 assuming a line width of 20 km s−1 and 5-σ point source mass limit of 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='54 M⊙ assuming a line width of 150 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=" Through visual inspection, we find noticeable so-called “negative bowl” artifacts throughout the cube indicative of missing short-spacing information, particularly in the 7 12h44m 42m 40m 33°00' 32°40' 20' 00' ra (deg) dec (deg) FAST 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content="5 logNHI(cm 2) 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) WSRT 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content="0 logNHI(cm 2) 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) FAST+WSRT 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 logNHI(cm 2) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The Hi column density maps of NGC 4631 field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The maps are derived from the FAST cube (top), WSRT cube (bottom-left), and the FAST+WSRT combined cube (bottom-right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the top panel, the center of the FAST observational field is marked with a grey cross.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the bottom-left panel, the FWHM of the WSRT PB is shown as the grey dashed circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the bottom-right panel, the grey dashed circle has a diameter equal to the critical angular scale for WSRT to miss extended Hi (see section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The bottom-right image does not look like the sum of the other two because the combination is done in the Fourier space thus the FAST flux is conserved, and because the PB attenuation effect of the WSRT cube is applied (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Beam shapes are denoted as green and open ellipses at the bottom left corner of each map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' velocity range between 500 and 700 km s−1 where tidal features are strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They highlight the need of single- dish image to fill this missing part, but also add un- certainties and complexities when we directly compare the FAST and WSRT images to characterize the spatial distribution of the large-scale Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Luckily, the typical absolute level of those “negative bowl” is around 1-σ of the WSRT data cube, and as we will show in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 and Figure 8, the associated cumulative absolute flux is low compared to the excess Hi detected by FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These facts mitigate the problem, but future investigation of optimized strategy of combining the single-dish and in- terferometric data in the uv space may better solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Derived cubes For convenience of comparison, we produce a few de- rived cubes to control for the effects of the PSF (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the FAST beam and the WSRT synthesis beam) and the WSRT PB attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the equation from Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2015) to pro- duce a data cube of PB attenuation levels (the PB cube hereafter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=" The equation is a function of the distance from the image center, and was calibrated using con- 8 12h44m 42m 40m 33°00' 32°40' 20' 00' 31°40' ra (deg) dec (deg) 450 500 550 600 650 700 750 v (km/s) 12h44m 42m 40m 33°00' 32°40' 20' 00' 31°40' ra (deg) dec (deg) 10 20 30 40 50 60 70 v (km/s) Figure 4." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Moment 1 (top) and 2 (bottom) images of the NGC 4631 field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The images are derived from the FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The column density contour of the WSRT data at the level of 1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5cm−2 is plotted on top to guide the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' tinuum sources from NRAO VLA Sky Survey (NVSS, Condon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1998) and Faint Images of the Radio Sky at Twenty centimeters (FIRST, Becker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We produce the PB-corrected WSRT cube by dividing the original WSRT cube by the PB cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We produce the smoothed WSRT cube by convolving the channel maps of the WSRT cube with the FAST beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The beam image of the FAST is derived by stack- ing point source images of the 19 beams with data from Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' More details and discussion regard- ing the beam image can be found in appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The flux of the smoothed WSRT cube is converted to the unit of Jy b−1 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We produce the PB-attenuated FAST cube by mul- tiplying the projected FAST cube with the PB cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We subtract the smoothed WSRT cube from the PB- attenuated FAST cube, and obtain the PB-attenuated excess Hi cube2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We apply PB correction to the PB- attenuated excess Hi cube, and obtain the PB-free excess Hi cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The PB-free excess Hi cube is largely positive, and the very few negative regions (most apparent ones are the two small white patches near the N4631 disk in the top panel of Figure 9) are likely due to point- ing uncertainties, deviation of real FAST beam from the adopted averaged one, and noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The PB-attenuated excess Hi cube has the advantage of a relatively uniform rms level, convenient for thresh- old based analysis, while the PB-free one has the advan- tage of reflecting the actual amount of excess Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We will show in section 4 that, the PB-free excess Hi cube is practically the diffuse HI cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Definition of regions We define the NGC 4631 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We take the SoFiA mask of the projected FAST cube, exclude the region of Dwarf A, and separate the region of NGC 4631 and NGC 4656 by arbitrarily drawing a line roughly along the disk direction of NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The line and the resul- tant NGC 4631 region to the north-west are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This region is delineated in order to study the distribution of any excess Hi detected by FAST (sec- tion 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We exclude NGC 4656 because it is at the corner of the WSRT field of view, where the PB atten- uation factor reaches 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 and where the rms level will thus be increased by 10 times after PB correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We separate the WSRT-detected NGC 4631 region into the disk region and the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The disk and tail regions are defined to compare the localized kinemat- ics and distribution of Hi fluxes detected by FAST and WSRT (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The tail region is further divided into the regions of four tails to study their bulk motions (section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These regions are defined based on the SoFiA mask of the WSRT cube and the tilted ring model of the NGC 4631 disk from Rand (1994), and through the watershed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The technique details are presented in appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The sky projected view of these regions are displayed in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We exclude the disk region from the NGC 4631 re- gion, and define the IGM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This region is mainly 2 Strictly speaking, we should compare (FAST cube) ∗ (WSRT beam) with (WSRT cube)∗(FAST beam), where ∗ is the sign of operation for convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We thus also tried smoothing the projected FAST cube with the WSRT beam, before applying the PB attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We find the two products do not differ much due to the relatively small size of the WSRT beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=" 9 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) region labels 0 1 2 3 4 5 6 7 8 Region Figure 5." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Label of regions in the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The id from 1 to 7 (color from dark blue to brown) corresponds to tail 1, tail 2, tail 3, tail 4, NGC 4656, Dwarf A, and NGC 4631 disk region respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The light blue color (id 0) marks the region detected in Hi by the projected FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The white dashed line separates the NGC 4631 and NGC 4656 regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' for highlighting where the excess Hi dominates the Hi detected by FAST (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2), and discussing the hy- drodynamical effects in the IGM (section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Multi-wavelength measurements from the literature We derive the stellar mass for NGC 4631 with Spitzer IRAC1 and 2 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 µm) fluxes from the Local Vol- ume Legacy (LVL) project (Dale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the equation from Querejeta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2015), to derive the IRAC1−IRAC2 color dependent IRAC1 mass-to-light ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The equation was calibrated using fluxes decom- posed into stellar and non-stellar components through independent component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The estimated stellar mass log M∗/M⊙ = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the star for- mation rates (SFR) derived in Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011) based on the far-ultraviolet and the total-infrared luminosi- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The total-infrared luminosity accounts for the dust attenuation of the far-ultraviolet luminosity, and was derived through spectral energy distribution fit- ting of mid- and far-infrared bands taken by Spitzer as part of the LVL project (Dale et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The SFR= 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='19 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 M⊙yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We also obtain these two parameters for NGC 4656 from the same datasets, with log M∗/M⊙ = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1, and SFR= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='17±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='07 M⊙yr−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We summarize from the literature and estimate more properties about the N4631g in the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Partic- ularly, in appendix D, we show that, based on the the local grouping of satellites, the characteristic radius r200 within which the averaged density is 200 times the cos- mic critical density is around 249 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Accordingly the virial temperature of the IGM should be around 8× 105 K, though the near-disk outflowing hot gas reaches a temperature of nearly 2×106 K (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A single-β model of the density profile of the IGM hot gas is presented and discussed in appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' COMPARING THE FAST AND WSRT DATA In this section, we provide integral spectra, fluxes and masses of Hi for galaxies in N4631g, and analyze Hi dis- tribution on different angular scales (inverse of spatial frequency) in the FAST and WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The difference of the integral measurements for galaxies between the two datasets provides a first-order measure of the excess Hi detected by FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Comparing integral fluxes of com- pact sources, and comparing amplitudes in an angular- scale range corresponding to overlapping region in the uv space help verify the consistency of flux calibrations between the two datasets, which is the basis for char- acterizing any excess Hi detected by FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Through comparing the amplitudes of the two datasets on large angular scales, we can further derive the critical angular scale for WSRT to miss extended Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The integral spectra and integrated fluxes In Figure 6, we show the integral Hi spectra of the N4631g from the FAST data, and compare it with those from the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The conventional FAST spectrum is slightly higher than the projected FAST spectrum at the high velocity end, consistent with the truncation of the galaxy NGC 4656 at the edge of the field of view of the WSRT ob- servation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The projected FAST Hi flux is in excess of the PB-corrected WSRT one throughout the velocity range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The integral fluxes from the FAST data, the projected FAST data, the WSRT cube, and the PB- corrected WSRT data are 1345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9±134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6, 1314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6±131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5, 593.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8±59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4, and 852.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1±85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 Jy km s−1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The error bars are dominated by an assumed flux cali- bration uncertainty of 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From the FAST cube, the Hi masses of NGC 4631, its major satellite NGC 4656, and dwarf companion Dwarf A are 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='08±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='77±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, and 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='77±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04 M⊙ (all assuming the distance of NGC 4656) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In comparison, the corresponding values from the PB- corrected WSRT cube are 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='38±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, and 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='82±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To show the very little influence of reso- 10 400 450 500 550 600 650 700 750 800 vel (km/s) 0 1 2 3 4 5 6 7 f (Jy) FAST FAST (proj) WSRT WSRT (PBc) Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Integral Hi spectra of N4631g from different cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The spectra from the FAST cube, the projected FAST cube, the WSRT cube, and the PB-corrected WSRT cube are plotted in red, pink, green and purple, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' lution in this comparison, we also derive the correspond- ing values from the PB-corrected smoothed WSRT cube, which are are 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='90±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='39±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04, and 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='76±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04 M⊙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' There is clear excess Hi detected by FAST for NGC 4631 and NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The excess Hi may be caused by the existence of diffuse Hi, which has large angular size or low surface densities 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' There is no excess Hi detected by FAST for Dwarf A, which is relatively small in angular size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Comparing the amplitude spectra One concern that arises when comparing the FAST and WSRT data is whether the flux calibrations are con- sistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The consistent integral fluxes of Dwarf A sup- port it, but we further justify it by comparing the am- plitude spectra between the PB-attenuated FAST cube and the smoothed WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The analysis exploits modified scripts from the pack- age uvcombine 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Each channel image is Fourier trans- formed, and becomes a complex image of amplitudes and phases where the position of a pixel reflects the spatial frequency (inverse of the angular scale).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The relation between the amplitude A and the angular scale is called the amplitude spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The right panel of Figure 7 shows the amplitude spectra for both datasets at a se- lected channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two spectra converge at intermedi- ate angular scales, largely between a lower and upper 3 We note that, when the definition of low-surface density is based on the rms level of the WSRT cube, it is influenced by the effect of PB attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We will discuss more on this point in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 4 https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='com/radio-astro-tools/uvcombine/ limit angular scales of 4′ and 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The lower limit is just slightly (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 times) higher than the FWHM of the FAST beam, while the upper one corresponds to the shortest baseline (36 m) of the WSRT array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We select the data points of the two datasets between the limiting angular scales, and compare their spectral amplitudes as well as the related real and imaginary parts in the left panel of Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data points all lie close to the one-to-one line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We select the channels (in total 50) where the maximum FAST amplitudes are higher than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 Jy, and derive the average linear scaling factor of FAST amplitudes over the WSRT amplitudes for each of these channels (more details in appendix F and left panel of Figure 20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The average scaling factors have a median value and standard deviation of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='98 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='02 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They strongly support the consistency of fluxes from FAST and WSRT observations on the se- lected overlapping angular scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We do not correct for this 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='02 scaling difference, but if we do so the amount of excess Hi derived in this work should be systematically enlarged by 2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the left panel of Figure 7, we see a hint of the FAST amplitudes exceeding the WSRT amplitudes on the high amplitude end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It indicates the start of the regime where the WSRT tends to miss large-scale diffuse flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In order to investigate whether this hint is really, we select chan- nels (50 in total) where the PB-attenuated FAST inten- sity is higher than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 Jy and higher than the WSRT intensity by more than 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For each channel, we derive the critical angular scale above which the FAST A are higher than the WSRT A by more than 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The critical angular scales have a relative narrow range, and a mean value of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6′ ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9′ (more details in appendix F and right panel of Figure 20), corresponding to a baseline of 65 m and a physical scale of 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This critical an- gular scale is roughly half the theoretical value derived from the shortest baseline of the WSRT array, possibly due to a combined effect of the PB attenuation, and the limited WSRT sampling density of the shortest baseline which can be exacerbated by RFI flagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE DIFFUSE HI DETECTED BY FAST This section characterizes the diffuse Hi detected by FAST, including how much there is, how it is dis- tributed, what its kinematics are, and how it is con- nected to the higher density Hi that the HALOGAS project detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Combining the HI data Because the FAST beam has a relatively low side- lobe level of around 1% beyond a radius of ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′ (ap- pendix A), we use the MIRIAD procedure immerge to 11 2 1 0 1 2 AWSRT 2 1 0 1 2 AFAST channel-31 imag real A 103 Angular scale (arcsec) 10 4 10 3 10 2 10 1 100 A smoothed WSRT PB attenuated FAST Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' An example of amplitude spectral analysis of channel maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two channel maps analyzed have the same channel number 31 (corresponding to a velocity of 477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7 km s−1), but are from the PB-attenuated FAST cube and the smoothed WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Left: a one-to-one comparison in amplitudes (purple), the real parts (yellow), and the imaginary parts (green) between the two types of data, selected to have angular scales between the limiting values marked in the right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The dashed line is the y = x line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The solid line shows the best-fit linear relation between the two types of amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Right: the amplitude spectra of the amplitude (A) as a function of the angular scale, for the FAST (red dots) and WSRT data (blue dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two black, thick, vertical lines mark the limiting angular scales of 4′ and 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′, between which both FAST and WSRT data should have relatively good sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Here this channel 31 is arbitrarily chosen, and the emission of that channel map is relatively compact in morphology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In Figure 20 of appendix F, we show a similar comparison between the FAST and WSRT datasets with data from all channels which have significant flux (FAST amplitudes>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 Jy) putting together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' combine the projected FAST and WSRT cubes, which uses the Gaussian functions to approximate beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The procedure immerge combines the two types of data in the Fourier domain, with a unit weight for the projected FAST data and a tapering for the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The ef- fect of the tappering is to make a Gaussian beam equiv- alent to the WSRT synthesis beam, after adding the tapered WSRT synthesis beam to the FAST beam in the Fourier domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The output is an image combining the spatial information of both data, but with the same PB attenuation effect as the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The proce- dure also derives a calibration factor of WSRT flux over FAST flux to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='98, consistent with the result from our amplitude spectral analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The combined data give us a visual impression where and how significant FAST detects the diffuse Hi that is lacking in the WSRT observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The combined moment-0 image is displayed in the bottom-right panel of Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' FAST detects an excess of Hi widely sur- rounding the denser tidal structures previously detected by WSRT, typically on a scale larger than the critical angular scale for WSRT to miss extended fluxes (see section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The immerge process adds not only a lot of new, diffuse Hi near the WSRT detection limit of 1018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='86 cm−2, but also thickens the structures at a rel- atively higher column density of 1020 cm−2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' FAST also detects more relatively high-density gas).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Because the side-lobe level of the FAST beam cannot be ignored (appendix A), the combined data cube and image are mainly for visual inspection here and later in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the following, we analyze the FAST- detected excess, diffuse Hi combining the two datasets, but not directly based on the immerge combined data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Relating the diffuse HI to large-angular scale gas We classify and quantify the distribution of excess Hi detected in the FAST data with respect to the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Unless otherwise specified, we focus on the NGC 4631 region in this section, as NGC 4656 is heavily at- tenuated by the PB effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the NGC 4631 region, 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3% of the flux from the PB-attenuated FAST cube are missed by the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The missed part may be related to the existence of low-surface density or large- angular scale Hi, which we refer to together as the diffuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the rms level of the WSRT data, to separate the PB-attenuated excess Hi into the low-surface density and the large-angular scale types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We remind that, the noise level of the PB-attenuated FAST cube decreases as a function of radius from the image center while that of the WSRT cube remains roughly constant, so the rel- ative level of low-surface density Hi that is missed by WSRT for being below the rms-based threshold should increase toward large radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This effect biases our anal- ysis toward attributing excess Hi to the low-surface den- sity type at large radius, and undermines the detection of large-angular scale type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 12 In Figure 8, we study the cumulative distribution of the PB-attenuated excess Hi as a function of the asso- ciated flux in the PB-attenuated FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The 3-σ detection threshold line of the smoothed WSRT cube is marked in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution to the left of the positive threshold line (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the right-side edge of the cyan band) reflects the part of PB-attenuated excess Hi missed by WSRT due to its low-surface density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' There is only 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3% of PB-attenuated excess Hi in this part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The remaining part (89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7%) of PB-attenuated excess Hi is likely missed by WSRT due to its large-angular scale dis- tribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Because the periphery of large-angular scale Hi distribution naturally has low densities, and because of the PB attenuation effects described above, the ac- tual fraction of large-angular scale Hi missed by WSRT should be higher than this value of 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thus, the majority of the diffuse Hi are invisible to WSRT not because of the limited sensitivity, but because of the limited shortest baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We display the column density maps of the diffuse Hi (PB-free excess Hi), its low-surface density part (the part below the WSRT detection threshold before apply- ing the correction for PB attenuation), and the large- angular scale part (the diffuse Hi minus the low-surface density part) for the NGC 4631 region in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' As discussed before, the low-surface density and large- angular scale parts displayed here are upper and lower limits of the actual parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The displayed large-angular scale Hi is almost always higher in level than the dis- played low-surface density Hi, except for the periphery of the whole region and a small region on the south- west.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It confirms that, a considerable fraction of the low-surface density Hi is attached to the large-angular scale Hi in the outskirts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The majority of the excess Hi is by nature the large-angular scale Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is still questionable whether the diffuse Hi primar- ily overlaps with or is beyond the region of dense Hi detected in the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In Figure 8, the right panel is similar to the left panel, but the x-axis is re- placed by the associated flux of the smoothed WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution to the left of the positive thresh- old line now reflects the part of PB-attenuated excess Hi residing in regions where the WSRT data detects no Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Only 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3% of the PB-attenuated excess Hi are found in blank regions of the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' More than half of the PB-attenuated excess Hi overlaps in regions with where the WSRT detects the dense Hi (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' disk region+tail region).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Another noticeable feature in the right panel of Figure 8 is that, the WSRT flux distribution is peaked at a value below zero (∼ −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 mJy b−1 F ), likely related to the “negative bowl” artifacts discussed in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Multiplying this absolute peak value with the number of voxels which have smoothed WSRT flux below 3-σ but non-zero excess Hi provides a rough estimate of the re- lated uncertainty for the fraction 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3% derived above, which is 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' If we further limit the analysis to the IGM region by excluding the disk region of NGC 4631, the frac- tion of PB-attenuated FAST flux missed by the WSRT data dramatically increases to 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2%, the fraction of PB- attenuated excess Hi classified into the low-surface den- sity type slightly increases to 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5%, and the fraction found beyond the dense Hi region (equivalent to the tail region) slightly increases to 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These fractions also indicate that, in the tail region, the amounts of dense Hi and diffuse Hi are roughly equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Relating the diffuse HI to properties of the dense HI In the following, we take advantage of the high resolu- tion of the WSRT data, quantify the localized kinematic properties of dense Hi, and search for the preferred kine- matic condition traced by the dense Hi to form the dif- fuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The analysis of this section is limited to the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use BAYGAUD (Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022) to fit multi-Gaussian models to the line-of-sight spectra of the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' BAYGAUD uses Bayesian analysis techniques to decide the optimal number of Gaussian components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Figure 10 shows the map of the number of components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The max- imum number reaches 4, but those line-of-sights with 4 Gaussian components are mostly within the galactic disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The NGC 4631 disk region has many Gaussian components possibly because of the edge-on geometry, the tidal perturbation, and the energy input from mas- sive young stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These complexities support our deci- sion to leave aside the disk region and focus on the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The profiles which are best fit with only one Gaussian component are referred to as the single-Gaussian pro- files, otherwise the multi-Gaussian profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For each multi-Gaussian profile, we identify the the Gaussian component with the highest intensity as the primary component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Figure 11 shows the distribution of σ of all the single or primary Gaussian components of dense Hi in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We divide the Gaussian compo- nents into narrow (warm) and broad (hot) ones by a σ of 8 km s−1, thermally corresponding to a temperature of 3600 K though the σ here are not really thermal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use not only the number of Gaussian components but also profile broadness to indicate the kinematic hot- ness of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The expectations are: 1) for single- Gaussian profiles, velocity dispersion σ is indicative of kinematic hotness, and high column densities of the 13 20 10 0 10 20 30 40 fHI, F(mJy/bF) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (excess HI) FAST PB attenuated 20 10 0 10 20 30 40 fHI, W(mJy/bF) WSRT smoothed Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution of attenuated excess Hi as a function of voxel values in data cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The left panel is for the attenuated FAST cube, and the right the smoothed WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In each panel, the solid grey curve is the cumulative distribution starting from the low-value side, and the dashed grey curve is for the peak-value normalized differential distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The cyan band is the ±3-σ range of the smoothed WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' broad (narrow) components tend to be associated with a high level of kinematic hotness (coolness);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2) in general, single-Gaussian profiles tend to be kinematically cooler than multi-Gaussian profiles if they are not significantly affected by projection effect;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3) for a multi-Gaussian pro- file, the narrower Gaussian component with the smaller value of σ is relatively cooler than the broader ones;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4) for multi-Gaussian profiles, profiles with narrow compo- nents tend to be kinematically cooler than those with- out, and those with a high fraction of flux in narrow components tend to be cooler than otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We study how the column density of diffuse Hi is re- lated to these kinematical properties of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In each panel of Figure 12, we select and divide into two subsets the line-of-sights along dense Hi by one type of dense Hi kinematic property described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We com- pare the distributions of column density in associated diffuse Hi between the two subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Systematic trends arise from the comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For single-Gaussian narrow profiles, high levels of diffuse Hi prefer those that are broader in widths (panel a), but do not have a clear trend with the column density (panel b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For single- Gaussian broad profiles, they show a slight tendency toward the broad widths (panel c) and high column densities (panel d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For all profiles, they prefer multi- Gaussian profiles over single-Gaussian profiles (panel e), and regions where there is no narrow Hi over otherwise (panel f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For multi-Gaussian profiles, they slightly pre- fer those with low fractions of narrow components (panel g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Together, these trends indicate that the localized kinematic hotness of the dense Hi and the column den- sity of the diffuse Hi seem to be boosted simultaneously in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' There might be a pipeline of the Hi shifting from the narrow, to the broad, and then to the diffuse status, or in the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The localized kinematics of the diffuse HI From the spectra displayed in Figure 6, the FAST flux does not extend further in velocity than the WSRT flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the literature, such an excess of Hi in the same velocity range is typically attributed to a tidal origin (Verdes-Montenegro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Those integral spec- tra mix the effect of bulk motions and localized kine- matics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the following, we remove the velocity shift due to bulk motions and derive super profiles to reflect localized kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In order to minimize the projec- tion effect of multiple velocity components, we select the line-of-sights which have single-Gaussian profiles in the dense Hi, which comprise 51%, 14%, and 65% of the line-of-sights in the NGC 4631 region (disk region+tail region), the disk region, and the tail region, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We keep in mind that in addition to thermal motions, beam smearing, and turbulence should significantly con- tribute to the broadening of line widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the velocity centers of line-of-sight spectra in the WSRT cube, which have been obtained using BAY- GAUD (Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=" We stack the line-of-sight spectra 14 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) Missing HI: the diffuse HI 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content="5 logNHI(1020 cm 2) 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) HI missed due to limited sensitivity 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content="5 logNHI(1020 cm 2) 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) HI missed due to limited baseline 18." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 logNHI(1020 cm 2) Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Column density maps of the excess Hi in the NGC 4631 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The top panel shows the PB-free excess Hi missed by WSRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The bottom-left and bottom-right panels divide the PB-free excess Hi into two parts: the one missed by WSRT due to the limited sensitivity (the low-surface density Hi) and the one missed missed by WSRT due to the limited shortest baseline (the large-angular scale Hi), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Some of the low-surface density Hi shown in the bottom-left panel may actually belong to the large-angular scale Hi in the bottom-right panel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' please refer to the main text for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' of the WSRT cube, after register them to the same ve- locity center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The stacking is performed for the WSRT- detected NGC 4631 region, the disk region, and the tail region, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We do the same stacking for the smoothed WSRT cube and the PB-attenuated FAST cube, using the same velocity centroid determined from the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We display these super profiles in Fig- ure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From the top panel, the PB-attenuated excess Hi of FAST is found throughout the localized velocity range, but not preferentially in the wings of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The conclusion above holds for both disk and tail regions displayed in the middle and bottom panels, but the super profiles of the former are much broader than the latter, indicating influences from the galactic inter- nal structures, geometry, and stellar feedbacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the following of this section, we therefore limit the analysis to the tail region to focus on tidal effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use emcee (Foreman-Mackey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=" 2013), the Python implementation of Goodman & Weare’s Affine Invariant Markov Chain Monte Carlo (MCMC) Ensem- 15 12h44m 43m 42m 41m 40m 33°00' 32°45' 30' 15' 00' ra (deg) dec (deg) Number of G components 1 2 3 4 5 ncomp Figure 10." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Map of number of Gaussian components from BAYGAUD fit for the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The numbers 1 to 4 is denoted by colors from cyan to red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 0 5 10 15 20 25 HI(km s 1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 frac (pixel) Velocity dispersion of the single or primary Gaussian component narrow broad Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution of the velocity dispersion of the single or primary Gaussian components in the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The vertical and dashed line at 8 km s−1 divides the Gaussian components into the narrow (warm) and broad (hot) types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' ble sampler, to fit a double-Gaussian model to each of the super profiles of the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The details and best-fit models are present in appendix G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is interesting to point out that, the narrow-Gaussian component accounts for roughly half the total flux in the FAST super profile, which is close to the ratio of the dense Hi flux over the FAST detected Hi flux in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thus, it is possible that the narrow component of the FAST super profile corresponds to the dense Hi detected by WSRT, while the broad component corresponds to a diffuse envelope missed by WSRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the square root difference between the veloc- ity dispersions of the WSRT and the smoothed WSRT cubes to correct for beam smearing effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' After the correction, the narrow and broad Gaussian components of the FAST super profile have σ of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 and 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 km s−1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is obvious that the width of the broad component is unlikely thermal, but should be possibly dominated by turbulence, and perhaps also some con- tribution from beam smearing of where no WSRT flux is detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE HYDRO-DYNAMIC AND TIDAL ENVIRONMENTS In this section, we investigate the thermal, radiative, and gravitational environments around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We investigate, what is the fate of the Hi and particularly the diffuse Hi in the IGM and tidal region, and what physical mechanisms drive that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The hydro-dynamic effects We come back to the column density map of FAST detected Hi in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The high density part, where NHI ≥ 1019cm−2, extends for ∼120 kpc across.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Near the edge, NHI drops by nearly 1 dex within a length comparable to the beam size of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′, or 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Similar but sharper (due to the use of images with a higher resolution) edges of Hi distribution were noticed before at a similar column density level, particularly by the pioneering work of Corbelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (1989) and van Gorkom (1993), in deep Hi imaging of the nearby galax- ies M33 and NGC 3198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The truncation of Hi disks was attributed to the ionisation by the cosmic ultra- violet (UV) background (Maloney 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The preva- lence of the truncation and the uniformity of the thresh- old column density are questioned recently by deep Hi imaging of more galaxies (Bland-Hawthorn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Ianjamasimanana et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018), as both the local UV background and the clumpiness of Hi affect the ionizing status while both factors are quite uncertain (Bland- Hawthorn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The condition for Hi to survive and evolve in the hot gas halo of N4631g may also dif- fer from those benchmark galaxies M33 and NGC 3198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Firstly, the tidal Hi reaches far into the IGM while re- taining a high column density, which may induce effi- cient cooling of the hot gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Secondly, the relatively high SFR of NGC 4631 may enhance the local UV radi- ation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the following, we discuss the fate of Hi in the IGM region in the context of different hydro-dynamic pro- cesses as a function of radius from NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We note 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) a) single-G: velocity dispersion of narrow line low sg, narrow high sg, narrow 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) b) single-G: column density of narrow line low sg, narrow high sg, narrow 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) c) single-G: velocity dispersion of broad line low sg, broad high sg, broad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) d) single-G: column density of broad line low sg, broad high sg, broad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) e) all: number of components ncomp = 1 ncomp > 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) f) all: the existence of narrow components with narrow comp without narrow comp 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 NHI, diffuse(1020cm 2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 frac (pixel) g) mutliple-G: narrow-component fraction high fracnarrow low fracnarrow Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Comparing the cumulative distributions of diffuse Hi column densities between line-of-sights with different localized kinematic properties of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The properties considered include the velocity dispersion of narrow/broad single-Gaussian components (panel a/c), and the column density of narrow/broad single-Gaussian components (panel b/d), the number of Gaussian components (panel e), the existence of the narrow component (panel f), and the flux fraction of narrow components along line-of-sights with multi-Gaussian components (panel g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 17 200 150 100 50 0 50 100 150 200 v(km/s) 0 50 100 150 200 f(mJy/bF) whole WSRT (sg fit) WSRT WSRT (smooth) FAST 200 150 100 50 0 50 100 150 200 v(km/s) 0 5 10 15 20 25 30 f(mJy/bF) disk WSRT (sg fit) WSRT WSRT (smooth) FAST 200 150 100 50 0 50 100 150 200 v(km/s) 0 20 40 60 80 100 120 140 f(mJy/bF) tail WSRT (sg fit) WSRT WSRT (smooth) FAST Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Super profiles of Hi from stacking line-of-sights of data cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The line-of-sights are selected to have single- Gaussian profiles in the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The top, middle, and bottom panels plot the super profiles of the whole WSRT Hi detected region, the disk region, and the tail region, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The cubes include the WSRT cube, the smoothed WSRT cube, and the PB-attenuated FAST cubes, which are plotted in orange, green and red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The stacking centers and stacking regions are determined by single-Gaussian fit to line-of-sights from the WSRT cube;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the super profile of the single-Gaussian fits is plotted in cyan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' that the following discussion is based on first order ap- proximations of the complex interplay between the dif- ferent phases and dynamics in the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' As such they merely provide a first indication of what might be hap- pening to the Hi in the tidal region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We point out that, the models discussed are 3- dimensional but the observed Hi is projected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The galactocentric distances can be underestimated, and the projection and overlapping of structures can arti- ficially enhance the Hi column density, which may be major sources of uncertainty in the discussion of Hi survival in the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' On the other hand, the projected phase-space distribution of flux (Figure16, discussed in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2) suggests that the overlapping of structures seems not severe in most parts of tail 1, 3 and 4, which may mitigate the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To overcome this observa- tional limitation in the future, hydrodynamic modeling specifically conducted to reproduce the Hi distribution in N4631g will greatly help;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' alternatively, a sample of many interacting systems like N4631g will provide a statistical and representative view for comparison with and constraint on general hydrodynamic simulation of interacting systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Despite the uncertainties, a major advance here is that, the calculations are based on real measurements of the diffuse Hi, which were lacking in most previous observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thermal conduction Based on the theory of Cowie & McKee (1977), we use the following simplified calculation to discuss the status of thermal conduction of the Hi in the IGM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We assume a density distribution for the hot gas in the IGM (nIGM) following the single-β models presented in Eckert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011) (See appendix E for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The temperature is assumed to be uniform at the virial tem- perature of 8×105 K (appendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Based on our mea- sured super profiles, we fix the velocity dispersion of the diffuse Hi to σHI = 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0km s−1 (section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We assume the Hi travels in the hot gas halo in an external pressure- confined way, and derive the volume density of the dif- fuse Hi (nHI) accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The value of log(nHI/cm−3) drops from −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 at 10 kpc to −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 at 60 kpc, consis- tent with the typical values of tidal Hi discussed in the literature (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Borthakur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For an Hi cloud with a radius rc, the dimensionless “global saturation parameter” σ0 = (TIGM/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5×107 K)2 nIGM rc separates the gas at the interface between Hi and hot gas into regimes of saturated evaporation, classical evapora- tion, and cooling flows (Cowie & McKee 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Using the critical value σ0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='027 (Cowie & McKee 1977), we derive the critical rc as a function of distance from 18 NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Then we calculate the critical column den- sity NHI,c,evap = nHI rc = 1018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 cm−2 for classical evap- oration in N4631g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Because N4631g has a relatively low mass and thus low virial temperature, thermal evapo- ration is only relevant on small scales, corresponding to low column densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This critical value does not vary significantly with distance to NGC 4631 because the Hi volume density scales with the ICM density in our as- sumed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For both the FAST detected Hi and the diffuse Hi (Figure 3 and 9), this critical column density value is only reached at the very periphery of the IGM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is also clear in Figure 14, where we plot the number density of pixels as a function of column density of the diffuse Hi and radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Between a distance of 20 and 60 kpc, the number densities peak where log(NHI/cm−2) > 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5, and sharply drop where log(NHI/cm−2) < 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The NHI,c,evap values lie right below where the sharp drop begins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thus the majority of the Hi in the IGM region is more likely to induce cooling out of the IGM at its surface instead of thermally evaporating itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We make a similar plot replacing the diffuse Hi by all the Hi detected by FAST in the bottom panel of Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The discussion above still applies, but the previous sharp pattern of number density dropping at log(NHI/cm−2) < 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 is more blurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In summary, there seems to be efficient cooling instead of evaporation associated with the Hi in the IGM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We note that the lack of direct measurements on the temperature and density of the IGM, and the magnetic fields (Cowie & Songaila 1977) in the tidal region are major sources of uncertainty in the derivation of the evaporation related parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Photon ionisation The Hi remains neutral in the UV radiation field through self-shelding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The quantity to derive is the crit- ical Hi column density (NHI,c,ion) where half of the hy- drogen gets ionized due to the photon ionisation by stars plus the cosmic background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We estimate the dimen- sionless ionisation parameter of stars (Ustar) from the SFR of NGC 4631 based on the equation in Tumlinson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use Cloudy (Ferland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1998) to sim- ulate the ionisation rate of hydrogen at different levels of Ustar plus the comic background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We derive NHI,c,ion as a function of distance to NGC 4631 based on prod- ucts of the simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' More technical details can be found in section H of the appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We emphasize that in the model Ustar is only attenuated as a function of radius squared, but the possible absorption of tidal Hi (and possibly also dust) as the photons travel through 0 10 20 30 40 50 60 r (kpc) 18 19 20 21 22 logNHI(cm 2) Diffuse HI NHI, c, evap NHI, c, ion FAST beam 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 log N 0 10 20 30 40 50 60 r (kpc) 18 19 20 21 22 logNHI(cm 2) FAST detected HI NHI, c, evap NHI, c, ion FAST beam 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='00 log N Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution of Hi column density as a function of projected distance from NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The top panel is for the diffuse (excess) Hi, while the bottom panel for all Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Each pixel in the plot is color coded by logarithm of the number of pixels from the relevant column density map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two dashed curves in each plot show the critical column densities to survive thermal evaporation (magenta), and UV ionisation (yellow) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The brown curves show the shape of the FAST beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' it is not considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' So the NHI,c,ion derived should be viewed as upper limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In Figure 14, the NHI,c,ion values lie roughly be- tween where the number densities of pixels con- centrate (log(NHI/cm−2) > 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5) and sharply drop (log(NHI/cm−2) < 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The transition in number densities is not sharply defined by NHI,c,ion, imply- ing the aforementioned over-estimation of NHI,c,ion and other uncertainties in the modeling, as well as possible counteracting effects of IGM cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Despite the likely over-estimation of NHI,c,ion, most pixels of diffuse Hi have NHI above them, indicating that most diffuse Hi are safe against photon ionisation in N4631g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tidal interactions of the HI We investigate the distribution of Hi in N4631g in re- sponse to the past and on-going tidal interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We visualize the 3-dimensional distribution, and also pro- vide a characterization of the phase-space distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 19 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The 3-dimensional visualization We provide snapshots of a 3-dimensional visualization of the Hi distribution in N4631g in Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The visualization is realized using the software SlicerAstro (Punzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use it to provide a first im- pression of the complex morphology and kinematics of Hi in the N4631g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Similar discussions were presented in Rand (1994) based on channel maps and position- velocity slices of an early WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From the snapshots of FAST data, tail 1 and 2 clearly connect NGC 4631 and NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 1 starts from the east and low-velocity side of NGC 4631, and reaches NGC 4656 on its east and high-velocity side (snapshot 1, 2, 3, 5, 6, 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 2 starts from near the disk center of NGC 4631, and reaches NGC 4656 on its west and low- velocity side (snapshot 1, 2, 5, 6, 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The connection between the two galaxies by tail 2 was not so clear in the WSRT data of HALOGAS, or the early WSRT data of Rand (1994);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' probably consequently, Combes (1978) tended to attribute the formation of tail 2 primarily to the perturbation of the much smaller but closer com- panion NGC 4627, and only secondarily to NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From the snapshots of the FAST data, tail 3 starts from the high-velocity and western side of NGC 4631 (snapshot 1, 3, 4, 5, 8), extends to the intermediate velocity and joins tail 1 in the south (snapshot 2, 5, 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This link between tail 3 and 1 was tentatively seen but again unclear in the WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 4 is short in both the FAST and WSRT data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It starts from the west end of the NGC 4631 disk, and extends to the east and low-velocity direction (snapshot 1, 5, 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Analysis of the phase-space distribution We study the projected phase-space distribution of Hi around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The projected phase-space diagram is a diagram of radial velocity offset versus projected distance to the center of NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We are limited by observational projections, but a first-order characteri- zation can still be obtained about the bulk motions of Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We plot the distribution of Hi in the regions of the NGC 4631 disk and the 4 tails in the projected phase- space diagram in Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We focus our discussion on the distribution of PB-corrected dense Hi, as it is a good tracer of the kinematic skeleton of tidal tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' But we also outline the distribution of diffuse Hi using the PB-corrected, mmerge combined cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution of dense Hi in the NGC 4631 disk shows the pattern of a rotating disk with a maximum velocity around 150 km s−1, which is by construction when defining the disk region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To guide the eye, the distribution of Hi in the disk region is repeated in all panels of the tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To assist the analysis, we also plot contours of the gravitational potential with linear steps (see details in appendix I), and mark the truncation radius imposed by NGC 4656 at 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9 kpc which we derive using the equation of Byrd & Valtonen (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We find three distinct patterns of the Hi distribution in the projected phase-space diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 1 and 3 both start from the end of the disk, and deaccelerate in rela- tively radial velocity while extending to large projected distance until reaching around the truncation radius im- posed by NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 4 is almost a parallel shift of the lower envelope of the disk in the projected phase- space diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This linear shape suggests an almost solid-body rotation, which are often found in systems of slow encounters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M81, Sorgho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tail 2 looks much broader in morphology and possibly higher in energy than the other tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Its furthest end crosses the truncation radius of NGC 4656, while the relative radial velocity is still high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the projected view, the furthest end reaches a gravitational potential level sim- ilar to those of tail 1 and 3, and much higher than that of tail 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Its high energy and complex morphology sug- gests it likely to have been perturbed by more than one galaxy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' both NGC 4656 and NGC 4627), which was supported by previous particle simulations to reproduce the dense Hi distribution in N4631g (Combes 1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Limited by projection effects, it is difficult to deduce the motion of gas without the aid of hydrodynamic simu- lations designed to reproduce the morphology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' But from the complexity of Hi distribution in the projected phase- space diagram, we can still infer that there are more than one tidal encounters in N4631g, which should ex- plain the widely spreading Hi, and may input turbulent energy through shocks to produce the diffuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' SUMMARY AND CONCLUSION We present a deep FAST image of Hi in and around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We identify a component of excess Hi de- tected by FAST but missed by WSRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Our major results are summarized below: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The nature of the excess HI is likely large- scale, diffuse HI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This excess Hi has a low spatial fre- quency, corresponding to a characteristic angular scale ≥ 14′ or 30 kpc, missed by WSRT due to the limited shortest baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is also highly turbulent, with a ve- locity dispersion around 44 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Around 40% (70%) of the excess Hi in the NGC 4631 region (IGM region) is found beyond the regions where dense Hi is detected by the WSRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The diffuse HI is more closely related to the dense HI that is kinematically hot than that is warm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' When overlapping with the dense Hi in the 20 Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Snapshots of 3-dimensional visualization of Hi distribution in the FAST and WSRT cubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' An animated version of this figure is available as on-line material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The duration of the animation is 28 s, and the content is the 3-dimensional visualization of the FAST and WSRT cubes (WCS system registered) continuously rotating by 360◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The viewing angles are denoted as direction axes, with N, E, W, z and Z pointing toward the north, east, west, low-redshift (velocity), and high-redshift (velocity) direction, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The visualization is realized using the software SlicerAstro (Punzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The figure here shows 8 snapshots from that animation, which are evenly distributed in a rotation of 360◦, and are ordered by number denoted in the top-left corner of panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For visual clarity, the 4 tidal tails are denoted in the figure (but not in the animation), and each pair of FAST and WSRT snapshots are vertically arranged (while horizontally arranged in the animation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To be continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1 2 T3 Z 3 W W FAST FAST Z W W WSRT WSRT 3 4 3 W W 专 FAST FAST W W WSRT WSRT E ZE21 Figure 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Continued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 5 6 T4 T3 T3 W Wt Z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T2 12 FAST FAST W Wt Z WSRT WSRT 2 7 8 T3 13 E W T4 T2 T2 FAST FAST E E W WSRT N WSRT Z E22 0 50 100 150 200 d 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0 50 100 150 200 vrad(kms 1) t1 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0 50 100 150 200 vrad(kms 1) t2 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0 50 100 150 200 vrad(kms 1) t3 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0 10 20 30 40 50 60 dproj(kpc) 0 50 100 150 200 vrad(kms 1) t4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0 200 400 600 800 Jyb 1kms 1 10 20 30 40 Jyb 1kms 1 10 20 30 40 Jyb 1kms 1 10 20 30 40 Jyb 1kms 1 10 20 30 40 Jyb 1kms 1 Figure 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The projected phase-space distribution of Hi flux around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From top to bottom, the distribution of Hi in the disk and the 4 tail regions are plotted respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The pixels are color coded by Hi flux from the PB-corrected WSRT cube, and the distributions are outlined by solid contours at the level of 4 (80) Jy b−1 km s−1 for the tail (disk) flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The distribution of Hi flux from the PB-corrected, FAST+WSRT combined cube is outlined by dashed contours at the same level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The disk region is repeated in every panel to guide the eye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Contours of gravitational potential with linear interval steps are plotted as grey dotted curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The truncation radius for NGC 4656 to strip gas from NGC 4631 is plotted as the thick, pink vertical line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The pink arrow mark the radial velocity deviation of NGC 4631 from NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 23 tail region, the diffuse Hi increases in column density with the dense Hi, and is particularly closely associated with the “hotter” part of the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is preferen- tially found where the dense Hi is more dominated by the broad-velocity components, or has multiple velocity components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The diffuse HI is likely to induce cooling flows of the hot IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The diffuse Hi in the IGM region typically have a column density ≥ 1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 cm−2, which is far above the critical column density for ther- mal evaporation, and likely safe from photon ionization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This relatively high Hi column density is consistent with a condition to induce efficient cooling flows from the hot IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The results above involve gases of four different phases in the IGM region, namely the hot IGM, the diffuse Hi characterized in result 1, the “hot” dense Hi, and the “warm” dense Hi, sorted roughly in reverse order of energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Result 3 indicates that, except for the periphery of the widely spreading IGM region, the hot IGM is likely cooling into the diffuse Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' An important reason for cooling flows to be induced near Hi gas, is that the thermal temperature of the interface between Hi and the hot IGM produced by turbulent mixing is intermediate between these two gas phases, reaching close to the value of 105 K for the radiative cooling function to peak (Dere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Indeed, if we take the radiative cooling function of Dere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2009) for the solar metallicity and assume no heating, the isochoric cooling time for hot gas at the virial temperature of N4631g is close to the dynamical time of N4631g (∼400 Myr at a radius of 30 kpc), indicative of difficult cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' But if the temperature drops to 105 K, the cooling time drops by more than one order of magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The diffuse Hi further links to the dense Hi gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Result 2 indicates a continuous shift in phases between the dif- fuse Hi, the hot dense Hi, and the warm dense Hi, while the shift could be in either direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Indeed, tidal in- teractions can both enhance cooling through mixing of metals, and heating through tidally induced shocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' If the net effect is the diffuse Hi progressively cooling into the dense Hi, then there is a unidirectional accretion pipeline that transfers gas from the hot IGM through the diffuse Hi to the dense Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' If, on the other hand, the dense Hi is being progressively heated into the dif- fuse Hi, the surface area of Hi in the IGM enlarges, and the cooling rate of the hot IGM increases as a result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In both cases, the diffuse Hi plays an important role in the gas accretion from the hot IGM, either more as a transfer station of the accreted gas, or more a catalyst for cooling from the hot IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Given such an important role of diffuse Hi in gas accretion, the tidal interaction may have significantly boosted the gas accreting rate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', the integral cool- ing rate from the hot IGM) of NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' N4631g has M200 ∼ 1012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 M⊙ (appendix D), putting NGC 4631 in a theoretical regime where heating from cosmic gas ac- cretion and internal feedbacks start to efficiently prevent gas cooling (Kereˇs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The gas accretion could be effectively slow in NGC 4631 if it was an unperturbed galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Tidal interaction enhances the gas accreting rate by spreading Hi widely in the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The tidal Hi, par- ticularly when in the diffuse phase, greatly increases the area of interface between the Hi and and the hot IGM, thus induce significantly extra cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The tidal effects also put the gas in a kinematic status prone to shocks, ram pressure, and tidal compression, causing localized gaseous condensation and thermal instabilities directly relevant for enhanced cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The tidal effects further help transport metals throughout the IGM which is im- portant for radiative cooling (Dere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' If such a scenario of enhanced cooling is true, we speculate the existence of a large amount of warm, ionized gas as an intermediate phase between the hot IGM and the dif- fuse Hi, which was indeed tentatively detected in Hα throughout the group (Donahue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It might be worth mentioning that, in a recent cosmological zoom- in magnetohydrodynamics simulation by Sparre et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2022), one simulated galaxy pair shows a broad Hi bridge, which is qualitatively similar to the structure ob- served between NGC 4631 and NGC 4656.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Sparre et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2022) found that the gas that had been in the CGM prior to the tidal interaction contributed to nearly half of the mass in the gas bridge, and more than one fourth of the fueling to star formation during the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Previous observational studies based on individual or statistical samples of tidally interacting systems found evidence for Hi to be both depleted and replenished in galaxies (Verdes-Montenegro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hess et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Ellison et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Theoretically, both effects are physically possible (Boselli & Gavazzi 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Hani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Stevens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' On the whole, there seems to be a high level of physical complexities in mergers, which may smooth out in statistical analysis of integral Hi measurements, and cannot be fully captured by in- dividual systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Our study put NGC 4631 in the cate- gory where the tidal interaction induces Hi fueling, but the main contribution is characterizing and highlighting the role of the diffuse Hi, instead of just adding vote to one side in the question of fueling or depletion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To put NGC 4631 in the context of general galaxy evolution, in Figure 17, we compare the SFR and Hi mass of it and NGC 4656 to other galaxies of a stellar 24 mass selected sample, and particularly to the main se- quences of the two properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is interesting to notice that the FAST measurements of the Hi mass put the two galaxies in the regime of Hi-excess galaxies, while the WSRT measurements put them in the Hi main se- quence of normal star-forming galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We will need a dataset like the one used in this paper but for a census of interacting galactic systems with different mass ra- tios, gas richnesses, merging distances, and large-scale environments, as well as for a sample of control galaxies in relative isolations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Such a dataset will be available in the future by combining data from FEASTS and from existing and SKA related interferometry surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We conclude that, tidal interaction should be an ef- ficient channel to accrete the IGM gas to the galaxy NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The excess Hi detected by FAST provides the crucial, new information to reach this conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We thank the anonymous referee for very construc- tive comments!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We thank Xu Kong, Thijs van der Hulst, Zhiyuan Li, Ningyu Tang, Tobias Westmeier, Feng Yuan, Pei Zuo for useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' JW thank support of the research grants from Ministry of Sci- ence and Technology of the People’s Republic of China (NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022YFA1602902), the National Science Foun- dation of China (NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 12073002, 11721303), and the science research grants from the China Manned Space Project (NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' CMS-CSST-2021-B02).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='OH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' acknowl- edges support from the National Research Foundation of Korea (NRF) grant funded by the Korea govern- ment (Ministry of Science and ICT: MSIT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' RS- 2022-00197685).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' LCH was supported by the National Science Foundation of China (11721303, 11991052, 12011540375) and the China Manned Space Project (CMS-CSST-2021-A04, CMS-CSST-2021-A06).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' KMH acknowledges financial support from the State Agency for Research of the Spanish Ministry of Science, Innova- tion and Universities through the ”Center of Excellence Severo Ochoa” awarded to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from the coordina- tion of the participation in SKA-SPAIN, funded by the Ministry of Science and Innovation (MCIN), and financial support from grant RTI2018-096228-B-C31 (MCIU/AEI/FEDER,UE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' PK acknowledges financial support by the German Federal Ministry of Educa- tion and Research (BMBF) Verbundforschung grant 05A20PC4 (Verbundprojekt D-MeerKAT-II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Parts of this research were supported by High-performance Com- puting Platform of Peking University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This work made use of the data from FAST (Five- hundred-meter Aperture Spherical radio Telescope).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' FAST is a Chinese national mega-science facility, oper- ated by National Astronomical Observatories, Chinese Academy of Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Facilities: FAST, GALEX, Spitzer, WSRT Software: Astropy(AstropyCollaborationetal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2013, 2018, 2022), Astrosclicer (Punzo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017), BAYGAUD (Oh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022), 3D-Barolo (Di Teodoro & Fraternali 2015), Cloudy (Ferland et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1998), galpy (Bovy 2015, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0), numpy (van der Walt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4), photu- tils (Bradley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0), Python (Perez & Granger 2007, v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='13), scipy (Virtanen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0) REFERENCES Andreon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Trinchieri, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Serra, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, A&A, 606, A24, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201730722 Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, A&A, 558, A33, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, AJ, 156, 123, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-3881/aabc4f Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Lim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022, ApJ, 935, 167, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ac7c74 Barnes, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Staveley-Smith, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', de Blok, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, MNRAS, 322, 486, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1046/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1365-8711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='04102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='x Becker, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', White, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Helfand, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995, ApJ, 450, 559, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/176166 Behroozi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Conroy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Wechsler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010, ApJ, 717, 379, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/717/1/379 Bland-Hawthorn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Maloney, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Stephens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Zovaro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Popping, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, ApJ, 849, 51, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aa8f45 Blumenthal, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Barnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, MNRAS, 479, 3952, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/sty1605 Borthakur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Verdes-Montenegro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010, ApJ, 710, 385, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/710/1/385 Borthakur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Verdes-Montenegro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, ApJ, 812, 78, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/812/1/78 Borthakur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Tumlinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016, ApJ, 833, 259, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/833/2/259 Bose, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Eisenstein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Hernquist, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, MNRAS, 490, 5693, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stz2546 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Fossati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022, A&A Rv, 30, 3, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1007/s00159-022-00140-3 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Gavazzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2006, PASP, 118, 517, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/500691 25 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 log M * (M ) 3 2 1 0 1 2 log SFR (M yr 1) N4631 N4656 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 log M * (M ) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 log MHI(M ) N4631 N4656 FAST WSRT (PBcor) Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The position of NGC 4631 and NGC 4656 in the diagram of SFR versus stellar mass and Hi mass versus stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two red or orange dots represent NGC 4636 and NGC 4656, with the former having the higher stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The background data points are from the xGASS sample (Catinella et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Left: the red and orange dots are for Hi masses from the FAST cube and the PB-corrected WSRT cube respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the solid and dashed curves are the position and scatter of star forming main sequence from (Saintonge et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Right: the blue and cyan points in the background represent measurements and upper limits for Hi detected and un-detected galaxies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' the solid and dashed curves are the position and scatter of Hi main sequence of star-forming galaxies from Janowiecki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Bovy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, ApJS, 216, 29, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0067-0049/216/2/29 Bradley, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, astropy/photutils: v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2, v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2, Zenodo, Zenodo, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3568287 Byrd, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Valtonen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1990, ApJ, 350, 89, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/168362 Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Janowiecki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, MNRAS, 476, 875, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/sty089 Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2003, ApJL, 586, L133, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/374879 Chown, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Athanassoula, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, MNRAS, 484, 5192, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stz349 Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Vollmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2007, ApJL, 659, L115, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/518034 Combes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1978, A&A, 65, 47 Condon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cotton, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Greisen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1998, AJ, 115, 1693, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/300337 Corbelli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Schneider, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Salpeter, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1989, AJ, 97, 390, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/114989 Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021, PASA, 38, e035, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1017/pasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='18 Cowie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & McKee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1977, ApJ, 211, 135, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/154911 Cowie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Songaila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1977, Nature, 266, 501, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1038/266501a0 Dale, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cohen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Johnson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009, ApJ, 703, 517, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/703/1/517 Das, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sardone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Leroy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, ApJ, 898, 15, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ab97b9 de Blok, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Walter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ferguson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, ApJ, 865, 26, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aad557 Dere, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Landi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Young, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009, A&A, 498, 915, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/200911712 Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, MNRAS, 451, 3021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stv1213 Donahue, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Aldering, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Stocke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995, ApJL, 450, L45, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/316771 Dutton, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Macci`o, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2014, MNRAS, 441, 3359, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stu742 Eckert, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Molendi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Paltani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, A&A, 526, A79, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201015856 Ekers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1977, A&A, 54, 973 Ellison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, MNRAS, 478, 3447, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/sty1247 Ellison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Mendel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Patton, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Scudder, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, MNRAS, 435, 3627, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stt1562 Ettori, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, MNRAS, 446, 2629, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stu2292 Ferland, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Korista, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Verner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1998, PASP, 110, 761, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/316190 Foreman-Mackey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Hogg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Lang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Goodman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, PASP, 125, 306, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/670067 Golla, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Dettmar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Domgoergen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1996, A&A, 313, 439 26 Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Lin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021, ApJ, 918, 53, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ac062e Hani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sparre, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ellison, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Torrey, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Vogelsberger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, MNRAS, 475, 1160, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stx3252 Haynes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Giovanelli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, ApJ, 861, 49, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aac956 Heald, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', J´ozsa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, A&A, 526, A118, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201015938 Heiles, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Perillat, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Nolan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, PASP, 113, 1247, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/323290 Hess, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cluver, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yahya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, MNRAS, 464, 957, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stw2338 Ianjamasimanana, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Walter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', de Blok, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Heald, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Brinks, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, AJ, 155, 233, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-3881/aabbaa Irwin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Beck, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Benjamin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2012, AJ, 144, 44, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-6256/144/2/44 Janowiecki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, MNRAS, 493, 1982, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/staa178 Jarrett, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Chester, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cutri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2000, AJ, 119, 2498, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/301330 Jiang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yue, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Gan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, Science China Physics, Mechanics, and Astronomy, 62, 959502, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1007/s11433-018-9376-1 Jiang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Tang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Hou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, Research in Astronomy and Astrophysics, 20, 064, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/1674-4527/20/5/64 Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Verdes-Montenegro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Damas-Segovia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, A&A, 632, A78, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201936349 Kereˇs, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Katz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Weinberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Dav´e, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2005, MNRAS, 363, 2, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='09451.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='x Koopmann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Giovanelli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Haynes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2008, ApJL, 682, L85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/591124 Kourkchi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Tully, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, ApJ, 843, 16, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aa76db Lan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Mo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, ApJ, 866, 36, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aadc08 Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Gil de Paz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kennicutt, Robert C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, ApJS, 192, 6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0067-0049/192/1/6 Lee-Waddell, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Koribalski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Westmeier, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, MNRAS, 487, 5248, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stz017 Leitherer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ortiz Ot´alvaro, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Bresolin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010, ApJS, 189, 309, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0067-0049/189/2/309 Maloney, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1993, ApJ, 414, 41, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/173055 Martin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Kern, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, ApJ, 555, 258, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/323161 Mart´ınez-Delgado, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', D’Onghia, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Chonis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, AJ, 150, 116, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-6256/150/4/116 Mel´endez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Veilleux, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Martin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, ApJ, 804, 46, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/804/1/46 Monachesi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Bell, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Radburn-Smith, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016, MNRAS, 457, 1419, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stv2987 Mora-Partiarroyo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Krause, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Basu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019a, A&A, 632, A10, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201834571 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019b, A&A, 632, A11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201935961 Namumba, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Koribalski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', J´ozsa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021, MNRAS, 505, 3795, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stab1524 Navarro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Frenk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & White, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1997, ApJ, 490, 493, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/304888 Oh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', For, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Staveley-Smith, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022, ApJ, 928, 177, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ac5905 Perez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Granger, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2007, Computing in Science and Engineering, 9, 21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1109/MCSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='53 Punzo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', van der Hulst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Roerdink, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Fillion-Robin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Yu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, Astronomy and Computing, 19, 45, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='ascom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='004 Putman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, in Astrophysics and Space Science Library, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 430, Gas Accretion onto Galaxies, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Fox & R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Dav´e, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1007/978-3-319-52512-9 1 Putman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Peek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Joung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2012, ARA&A, 50, 491, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1146/annurev-astro-081811-125612 Querejeta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Meidt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Schinnerer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, ApJS, 219, 5, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0067-0049/219/1/5 Radburn-Smith, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', de Jong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Seth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, ApJS, 195, 18, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0067-0049/195/2/18 Rand, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1994, A&A, 285, 833 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2000, ApJ, 535, 663, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/308869 Reichert, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', B¨ohringer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Fassbender, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & M¨uhlegger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, A&A, 535, A4, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361/201116861 Richter, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Winkel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Wakker, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, ApJ, 868, 112, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aae838 Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2016, MNRAS, 462, 1749, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stw1715 Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Tacconi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, ApJS, 233, 22, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4365/aa97e0 Schechtman-Rook, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Hess, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2012, ApJ, 750, 171, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/750/2/171 Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Koribalski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Duc, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, MNRAS, 428, 370, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/sts033 Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Westmeier, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Giese, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, MNRAS, 448, 1922, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stv079 Seth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Dalcanton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & de Jong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2005, AJ, 129, 1331, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/427859 27 Shangguan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Li, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, ApJ, 870, 104, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/aaf21a Sorgho, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Foster, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Carignan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Chemin, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, MNRAS, 486, 504, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stz696 Sparre, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Whittingham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Damle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022, MNRAS, 509, 2720, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stab3171 Stanimirovic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2002, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 278, Single-Dish Radio Astronomy: Techniques and Applications, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Stanimirovic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Altschuler, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Goldsmith, & C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Salter, 375–396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='org/abs/astro-ph/0205329 Stevens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2017, MNRAS, 471, 447, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stx1596 Stevens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Diemer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Lagos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019, MNRAS, 483, 5334, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/sty3451 Strickland, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Heckman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Colbert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Hoopes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Weaver, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2004, ApJ, 606, 829, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/383136 Swaters, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', van Albada, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', van der Hulst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2002, A&A, 390, 829, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361:20011755 T¨ullmann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Pietsch, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Rossa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Breitschwerdt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Dettmar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2006, A&A, 448, 43, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361:20052936 Tully, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, AJ, 149, 54, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-6256/149/2/54 Tully, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Courtois, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Dolphin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, AJ, 146, 86, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-6256/146/4/86 Tumlinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Werk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Thom, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, ApJ, 733, 111, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1088/0004-637X/733/2/111 van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Colbert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Varoquaux, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2011, Computing in Science and Engineering, 13, 22, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1109/MCSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='37 van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1993, in Astrophysics and Space Science Library, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 188, The Environment and Evolution of Galaxies, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Shull & H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thronson, 345, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1007/978-94-011-1882-8 20 Verdes-Montenegro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Del Olmo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Perea, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2005, A&A, 430, 443, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361:20047084 Verdes-Montenegro, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Williams, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, A&A, 377, 812, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1051/0004-6361:20011127 Virtanen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Gommers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Oliphant, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, Nature Methods, 17, 261, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1038/s41592-019-0686-2 Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kauffmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', J´ozsa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015, MNRAS, 449, 2010, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stv390 Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2020, ApJ, 890, 63, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ab68dd Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Kauffmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', J´ozsa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, MNRAS, 433, 270, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/mnras/stt722 Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Immler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Walterbos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Lauroesch, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Breitschwerdt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001, ApJL, 555, L99, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/323179 Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Walterbos, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Steakley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Norman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Braun, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1995, ApJ, 439, 176, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1086/175162 Weliachew, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Guelin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1978, A&A, 65, 37 Wolfe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Pisano, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Lockman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', McGaugh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Shaya, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013, Nature, 497, 224, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1038/nature12082 Yamasaki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Sato, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Mitsuishi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Ohashi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2009, PASJ, 61, S291, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1093/pasj/61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='sp1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='S291 Yu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2022, ApJ, 930, 85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4357/ac5f07 Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Ho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', & Lo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1994, Nature, 372, 530, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1038/372530a0 Zhu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2021, ApJL, 922, L21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/2041-8213/ac350a Zuo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', Yun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2018, ApJS, 237, 2, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3847/1538-4365/aabd30 28 APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE AVERAGE BEAM IMAGE OF FAST We derive a clean average beam image of the 19 beams, gridded in the same way as for the N4631 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the calibrated mapping data of point sources from Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020) to derive the average beam of FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The observation was specifically designed to characterize the beam properties of FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data are in total 100 minutes’ mapping of point sources in raster scan mode along right ascension or declination directions, with a high sampling rate of per 10′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We refer the readers to Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020) for more details of the data and of the properties of the 19 beams of FAST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the same procedure that has produced the NGC 4631 cube in this paper to make the images of the 19 beams separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We note that, a different 2-dimensional interpolation method was used in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020) for gridding, which is improper for the NGC 4631 data here whose sampling rate is much lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' After masking contaminating sources in the neighborhood, we follow the steps in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020) and fit a skew Gaussian to each of the 19 beam images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We stack the images of the 19 beams after register them to the same Gaussian center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The stacking procedure takes the 3-sigma clipped mean value for each pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The directly stacked beam image looks like a smoothed version of beam 1 displayed in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020) because of additional smoothing in gridding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It has a central core surrounded by a side-lobe ring, and then a axisymmetric periodical pattern with 6 broad peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It still has some noise patterns in the background and imperfectness in the periodical pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We clean the beam image by first using the segmentation function of the python package astropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='photutils to flag and mask the noise patterns in the background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We then perform a Fourier decomposition of the periodical pattern, and find that the pattern can be well represented by only retaining the m = 6 mode of the Fourier components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' After these two steps, we obtain a relatively clean and average beam image for the NGC 4631 FAST image data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We show the directly stacked beam image, the cleaned beam image, and a difference map of the two images in Figure 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In Figure 18, we also present an azimuthally averaged radial profile of the cleaned beam image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Within a radius of ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′, the inner region of the profile is well fitted by a Gaussian function with a FWHM of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Beyond that, the real beam deviate from the Gaussian approximation, with a level of around 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The level of the first side-lobe is around 1/10 that of Arecibo (Heiles et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2001), indicating the power of FAST to map low-surface density, extended Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' However, the level also suggests that the scattered light due to side-lobes cannot be fully ignored when we investigate extended Hi with column densities close to 1018cm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Therefore, in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6, we convolve the WSRT cube with the real beam of FAST, before comparing the distribution of Hi fluxes between the WSRT and FAST data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We caution that, the beam shape of the NGC 4631 data may differ from the data of in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020), as the observing times are quite different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Moreover, the beam shapes, particularly the side-lobes, differ between the 19 beams, as shown in Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' However, this average beam image is the best we can achieve with the resources in hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' And, the variation among beams is an intrinsic systematic uncertainty of the 19-beam mapping, which is a necessary compromise for the mapping efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE DISK AND TIDAL TAIL REGIONS OF NGC 4631 We manually separate the FAST-detected region of the NGC 4631 and NGC 4656 system by arbitrarily drawing a line roughly along the disk direction of NGC 4656 (the white dashed line in Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We separate the WSRT-detected NGC 4631 region into regions of the main disk and 4 tidal tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We firstly determine the region of the main disk of NGC 4631 in the data cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We take the parameters of the kinematic model of the main disk of NGC 4631 from Rand (1994), and use 3D-Barolo (Di Teodoro & Fraternali 2015) to make a 3 dimensional data cube based on the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We arbitrarily take a density threshold equivalent to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='02% the peak density of the model to draw a mask of the NGC 4631 disk region in the cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The region belonging to the two satellite galaxies NGC 4656 and Dwarf A are already labeled by SoFiA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The cube space beyond the disk region of NGC 4631, NGC 4656 and Dwarf A, but are within the SoFiA mask of the WSRT cube are considered the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The separation of the tail region into different tails is performed with the 3-dimensional watershed algorithm of the python package skimage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The outputs are 3-dimensional flagging masks of the separate components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' A previous study, Combes (1978) manually separated the tidal features into four tails, denoting them by number 1 to 4, and used numerical simulation of interaction to reproduce the morphology and kinematics of these 4 tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The same denoting system has been adopted by studies later to have a coherence context of discussion (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Rand 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Our watershed results directly flag tail 3 and 4, but 1 and 2 are blended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We manually and arbitrarily draw a division line in the sky plane to separate tail 1 from 2 in the blended region to qualitatively match the separation in Rand (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 29 75 50 25 0 25 50 75 x (arcmin) 80 60 40 20 0 20 40 60 80 y (arcmin) stacked beam 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 level 75 50 25 0 25 50 75 x (arcmin) 80 60 40 20 0 20 40 60 80 y (arcmin) cleaned beam 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 level 0 2 4 6 8 r (arcmin) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 logf/fpeak beam profile Gaussian model Figure 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The beam of the FAST Hi data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Top-left and top-right panels are the stacked beam and the cleaned beam respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The bottom panel is the azimuthally averaged radial profile of the beam, and its best-fit Gaussian model with a FWHM of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The sky projected view of these regions are displayed in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE TEMPERATURE OF THE HOT GAS NEAR THE DISK There are abundant studies in the literature on the properties of the X-ray emitting hot gas near the disk within a distance of around 10 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This part of the hot gas halo mostly represents hot gas outflows from the galactic disk, especially from its inner actively star-forming region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Therefore its temperature should be higher than, and can be used as upper limit of that in a hydrostatic equilibrium in the galaxy’s potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (1995) used ROSAT data to detect the soft X-ray radiation of the hot gas of NGC 4631 out to 8 kpc above the disk plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They estimated a characteristic thermal temperature of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='03 keV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2001) used Chandra to detect the halo out to a similar distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They performed a 2-component thermal plasma model fit, obtaining a hot component of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='61±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='12 keV close to the disk and a cooler component of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='18±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='02 keV dominating the outer corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' As in this study we focus on the tidal Hi far away from the disk, we only take the temperature of the further component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' T¨ullmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2006) used XMM-Newton to derive the temperature out of 3 stripes south of the disk, and 5 stripes north of the disk, reaching out to nearly 11 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They used 5 bands ranging from super-soft to hard, so they managed to derive two characteristic temperatures for both a soft and a hard components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The hard component has a mean temperature of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='03 keV, and a slightly higher but comparable number density of IGM throughout the analysis regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The soft component has a temperature that is roughly 4 times lower, and we thus take the temperature of the more energetic hard component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Finally, Yamasaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2009) used the Imaging Spectrometer of Suzaku to trance X-ray halo out to about 10 kpc from the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They fit 2-component thermal models to the disk and the halo regions separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the halo region, the hard component of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='016 keV is dominating over the soft component by 5 times more flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='30 Taking together these four sets of previous measurements, we calculate a mean value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='24±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='03 keV, equivalent to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 × 106 K, as the temperature of the hot gas halo within 10 kpc around the NGC 4631 disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE DARK MATTER HALO MASS OF N4631G We use M500 as the fiducial measure of the dark matter halo mass, the mass within r500 the radius where the average density is 500 times the critical density of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Characteristic masses are also defined at alternative averaged density levels, like M200 and M101 (the virial mass at redshift z= 0 in ΛCDM cosmology).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' They are convertible with each other assuming a NFW model (Navarro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 1997) of the dark matter halo with a concentration index c∆ of 8, as is expected for a halo of roughly 1012 M⊙ at redshift z = 0 (Dutton & Macci`o 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the stellar mass-halo mass relation in Behroozi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2010) to derive a lower limit of log M500/M⊙ = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It is viewed as a lower limit because from halo occupation distribution studies, dark matter halos with a mass around 1012 M⊙ should have the number of satellites which have stellar masses above 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='28 M⊙ far less than unity (Bose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the M500-IGM temperature relation from Reichert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011), in combination with the characteristic temperature of the near-disk hot gas summarized above, to derive an upper limit of log M500/M⊙ = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='13 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The N4631g can be found in the group catalog of Kourkchi & Tully (2017) with a PGC id of 42637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' From that group catalog, it has 10 member galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' These member galaxies have a radial velocity dispersion σc of 217 km s−1, and a projected gravitational radius Rg of 92 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Based on the equation of Tully (2015), we derivelog M500/M⊙ of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' This value is between the lower and upper limits derived above, and is taken to be the final estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Accordingly, the r500, r200, and M200 of N4631g are 148 kpc, 224 kpc, and 1012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 M⊙ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The corresponding virial mass implies a virial temperature of 8×105 K, considerably lower than that of the X-ray emitting and outflowing hot gas near the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE DENSITY OF THE HOT GAS HALO We base on the M500 estimated in appendix D to derive M500,gas, the hot gas mass within R500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the M500,gas-M500 relations from Andreon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2017) and Ettori (2015), which derive log M500,gas/M⊙ of 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='56±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='17 and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='51±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='10 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The two values are consistent within the error bar, and we take the one with smaller error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We consider a single-β model distribution of the IGM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Following the specifics in Eckert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011), we assume the β value to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='64, and the core radius rc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='19r500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Cumulating the IGM model profile from center to R500, we derive a central density of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='778×10−4 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We also consider a double-β model, to match the fact that many previous studies found two thermal components in the hot gas halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Following Eckert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011), we set the outer component to have core radius rc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='03r500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We arbitrarily set the central density of the outer and inner components to be equal, partly motivated by the fact that in T¨ullmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2006) the density of the hot and cold components are roughly equal in the inner corona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We plot both models in Figure 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Although the double-β model fit the measured densities from Yamasaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2009) better, both models are close beyond a radius of 10 kpc in the IGM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We thus adopt the single-β model for simpler assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' AMPLITUDE SPECTRAL ANALYSIS THROUGHOUT APPLICABLE CHANNELS To demonstrate the consistency of amplitudes cross the applicable channels (which have flux intensity greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='15 Jy), we plot the relation between the normalized amplitudes of all these channels in the left panel of Figure 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The normalization factor of each channel is taken to be the maximum amplitude from the PB-attenuated FAST cube in the selected angular scale range (4 to 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The data points distribute close to the y = x line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' To demonstrate the deviation of critical angular scales, in the right panel of Figure 20, we show the relation between amplitude ratios and angular scales from the selected channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Each curve represents the median relation from a channel map, and starts from 4′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The curves start to exceed unity near the mean critical angular scale of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' MCMC RESULT OF DOUBLE-GAUSSIAN FIT TO THE SUPER PROFILES We use emcee (Foreman-Mackey et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2013) to conduct a double-Gaussian fit to the super profile stacked from the line-of-sights with single-Gaussian spectra in dense Hi in the tail region of the projected FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The amplitude a and σ of the narrow and broad Gaussian components are denoted by 1 and 2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We also include a fraction uncertainty of the model f in the fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The corner figure of probability distribution of parameters are displayed in 31 0 10 20 30 40 50 r (kpc) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 lognICM (cm 3) single double N S Figure 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' IGM density profiles of N4631g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The black and pink solid lines are the single and double-β models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The black dashed lines are the 1-σ uncertainty range of the single-β model due to uncertainty in the estimate of M500,gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The blue and cyan dots are measurements from Yamasaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2018) at distances from the north and south sides of the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 AWSRT, normalized 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 AFAST, normalized 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 log Angular scale (arcsec) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3 log AFAST/AWSRT Figure 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The comparison between amplitudes of amplitude spectra from the WSRT cube and PB-attenuated FAST cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Left: relation of normalized amplitudes from the two types of cubes selected from the angular scale range between 4′ and 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5′ as in Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The dashed line mark the y = x line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Right: the median curves of the ratio of amplitudes from the two cubes as a function of the angular scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Each curve corresponds to one channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The horizontal dashed line mark the y position of zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The red vertical line marks the mean critical angular scale of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6′ for FAST amplitudes to exceed the WSRT amplitudes by 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The black vertical line marks the angular scale corresponding to the shortest baseline of the WSRT array configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Figure 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We do not find strong degeneracy between model parameters from the corner figures, where the probability distribution are projected onto 2-dimensional diagrams of the parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The fractional uncertainty of the model is low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' So the double-Gaussian model seems a good description of the super profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We do the same for the smoothed WSRT cube, and the original WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The results are displayed in Figure 22, and 23 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The degeneracies of σ1 and σ2 with a1/(a1+a2) become stronger, but the probability distributions are still relatively narrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' So the double-Gaussian model seems still a reasonable description of the super profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The best-fit σ of the narrow and broad Gaussian components, and the ratio of peak intensities between them are 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='3+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='37 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='33 km s−1, 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='43 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='39 km s−1, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='76+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='010 for the super profile of FAST data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The values are 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='30 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='29 km s−1, 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='63 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='38 km s−1, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='74+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='028 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='028 for the super profile of the smoothed WSRT cube, and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='45 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='55 km s−1, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='9+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='17 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='91 km s−1 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='61+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='118 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='136 for the super profile of the WSRT cube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 32 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 1(kms 1) 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 2(kms 1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='80 a1/(a1 + a2) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 log(f) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 1(kms 1) 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 2(kms 1) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 log(f) FAST (tail region) Figure 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of FAST data cube in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' USING CLOUDY TO PREDICT THE CRITICAL COLUMN DENSITY OF HI FOR PHOTON IONISATION The procedure below is a modified version of the one described in Borthakur et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We consider two sources contributing to the UV photons, the cosmic background UV radiation, and the photons from the young stars in NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' For the UV photons associated with young stars, we use the equation from Tumlinson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' (2011) to estimate the dimensionless ionisation parameter Ustar which depends on the SFR of NGC 4631 and the distance squared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' It also assumes a uniform fraction of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='1 for the UV photons to escape from the interstellar medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We have ignored the UV photons from NGC 4656, as its SFR is around one fourth, thus the distance to have the same level of Ustar is half that of NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The UV photons from NGC 4656 only start to be important when the distance from NGC 4631 is larger than 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 kpc along the direction connecting these two galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Diffuse stellar features have been found around NGC 4631, but mostly consisting of old stars (Mart´ınez-Delgado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2015), unlikely to provide additional UV photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use starburst99 (Leitherer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 2010) to generate a young stellar population with a solar metallicity and an age of 4 Myr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the spectral energy distribution of this stellar population as input for Cloudy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We generate a three dimensional grid of hydrogen density nH, the hydrogen column density NH, and the stellar ionisation parameter Ustar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' log nH ranges from -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 to -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 with a step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2, log NH range 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 to 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 with a step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='25, and Ustar from -6 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 with a step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the default “background” and “Background cosmic ray”, to add the ionizing effects of the cosmic UV background and the cosmic ray background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' In the top panel of Figure 24, we plot the resulting 33 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 1(kms 1) 12 14 16 18 2(kms 1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='75 a1/(a1 + a2) 8 6 4 log(f) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 1(kms 1) 12 14 16 18 2(kms 1) 8 6 4 log(f) WSRT (tail region) Figure 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of WSRT data cube in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' neutral fraction of hydrogen (NHI/NH), as a function of log NHI in different bins of U, fixing log nHI at -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We can see that toward the low values of Ustar (dark purple), NHI/NH converges to the highest possible value at a given NHI, because the comic UV background starts to dominate there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Setting NHI/NH = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5, we derive the critical Hi column density (NHI,c,ion) from each curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We plot NHI,c,ion as a function of Ustar for different values of nH in the righ panel of Figure 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We assume nH = 2nHI, and interpolate in this parameter space to derive the critical column density of Hi as a function of distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We plot NHI,c,ion as a function of radius to NGC 4631 in the right panel of Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The values of NHI,c,ion flatten around 1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 cm−2 beyond a distance of 30 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The value of 1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 cm−2 is close to many previously derived when only accounting for the cosmic background of UV radiation (Maloney 1993), but if we remove the effect of young stars in NGC 4631, NHI,c,ion would drop to one third of its current value at a radius of 30 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We note that the leakage fraction of UV photons, the extent of shielding by Hi in tails at smaller distances, the lack of information on the filling factor and clumpiness of Hi, and the contribution of ionizing energy from shocks, are major sources of uncertainties in the deviation of the ionisation related parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' THE GRAVITATIONAL POTENTIAL AROUND NGC 4631 We use galpy (Bovy 2015) to model the mass distribution and gravitational potential around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' We use the Miyamoto-Nagai model with the Milky Way specifics (scale length 3 kpc and scale height 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='28 kpc) to represent the 34 12 13 14 15 1(kms 1) 27 30 33 36 39 2(kms 1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='84 a1/(a1 + a2) 8 6 4 log(f) 12 13 14 15 1(kms 1) 27 30 33 36 39 2(kms 1) 8 6 4 log(f) WSRT (tail region, smoothed) Figure 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Corner figure of parameter probabilities of the double-Gaussian model for the Hi super profile of smoothed WSRT data cube in the tail region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' disk, the NFW model with scale radius equal to r200/c∆ to represent the dark matter, and use the rotational velocity of 145 km s−1 at a radius of 8 kpc (Rand 1994) to calibrate the normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The resulted mass model has a disk mass of 1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 M⊙ within 8 kpc, and a halo mass of 1012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='02 M⊙ within r500 derived in appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Thus the mass model is close to the observed stellar mass and M500 of NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Then we use the evaluatePotentials task of galpy to evaluate the potential distribution around NGC 4631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' 35 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 logNHI(cm 2) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 logNHI/NH Ionization by UV photons from stars and background 6 5 4 3 2 Ustar 18 19 20 21 logNHI, c, ion(cm 2) nH = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 nH = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 nH = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2 nH = -2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='0 nH = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='8 nH = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='6 nH = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 Figure 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Photon ionisation of hydrogen in grids of stellar ionisation parameter, hydrogen density and hydrogen column density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Left: the neutral ratio of hydrogen, NHI/NH, is plotted as a function of the Hi column density in bins of stellar ionisation parameter Ustar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The values of Ustar range from -6 to -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='4 with a linear step of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content='2, and the curves in lighter purple colors correspond to higher values of Ustar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The dashed, horizontal line mark where the neutral ratio is 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' Right: the critical Hi column density, where the ionisation or neutral ratio is 50%, as a function of Ustar in different bins of nH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} +page_content=' The darker blue colors correspond to lower values of nH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/rtAzT4oBgHgl3EQfA_rZ/content/2301.00937v1.pdf'} diff --git a/ttE5T4oBgHgl3EQfLA54/content/tmp_files/2301.05470v1.pdf.txt b/ttE5T4oBgHgl3EQfLA54/content/tmp_files/2301.05470v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..3bb51bc597852248326d6b2d1b29a33fa9a87c68 --- /dev/null +++ b/ttE5T4oBgHgl3EQfLA54/content/tmp_files/2301.05470v1.pdf.txt @@ -0,0 +1,543 @@ +arXiv:2301.05470v1 [math.AG] 13 Jan 2023 +LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA +P. GILLE +Abstract. We define the notion of reductive group schemes defined over the lo- +calization of a regular henselian ring A at a strict normal crossing divisor D. We +provide a criterion for the existence for parabolic subgroups of a given type. +Keywords: Reductive group schemes, normal crossing divisor, parabolic subgroups. +MSC 2000: 14L15, 20G15, 20G35. +1. Introduction +In the reference [7], we investigated a theory of loop reductive group schemes over +the ring of Laurent polynomials k[t±1 +1 , . . . , t±1 +n ]. Using Bruhat-Tits’ theory, this per- +mitted to relate the study of those group schemes to that of reductive algebraic groups +over the field of iterated Laurent series k((t1)) . . . ((tn)). The main issue of this note is +to start a similar approach for reductive group schemes defined over the localization +AD of a regular henselian ring A at a strict normal crossing divisor D and to relate +with algebraic groups defined over a natural field associated to A and D, namely +the completion Kv of the fraction field K with respect to the valuation arising from +the blow-up of Spec(A) at its maximal ideal. The example which connects the two +viewpoints is k[[t1, . . . , tn]][ 1 +t1, . . . 1 +tn] where Kv ∼= k +� t1 +tn, . . . , +t1 +tn−1 )((tn)) +After defining the notion of loop reductive group schemes in this setting, we show +that for this class of group schemes, the existence of parabolic subgroups over the +localization AD is controlled by the parabolic subgroups over Kv (Theorem 4.1). +Acknowledgements. We thank R. Parimala for her insight about the presented +results. +2. Tame fundamental group +2.1. Abhyankar’s lemma. Let X = Spec(A) be a regular local scheme. Let k be +the residue field of A and p ≥ 0 be its characteristic. We put �Z′ = � +l̸=p Zl. Let K +be the fraction field of A, and let Ks be a separable closure of K. It determines a +base point ξ : Spec(K) → X so that we can deal with the Grothendieck fundamental +group Π1(X, ξ) [10]. +Date: January 16, 2023. +1 + +2 +P. GILLE +Let (f1, . . . , fr) be a regular sequence of A and consider the divisor D = � Di = +� div(fi), it has strict normal crossing. We put U = X \ D = Spec(AD). +We recall that a finite étale cover V → U is tamely ramified with respect to D if the +associated étale K–algebra L = L1 × · · · × La is tamely ramified at the D′ +is, that is, +for each i, there exists ji such that for the Galois closure �Lji/K of Lji/K, the inertia +group associated to vDi has order prime to p [10, XIII.2.0]. +Grothendieck and Murre defined the tame (modéré in French) fundamental group +ΠD +1 (U, ξ) with respect to U ⊂ X as defined in [10, XIII.2.1.3] and [8, §2]. This is +a profinite quotient of Π1(U, ξ) whose quotients by open subgroups provides finite +Galois tame cover of U. +We are given a finite étale tame cover V → U. In this case Abhyankar’s lemma +states that there exists a flat Kummer cover X′ = Spec(A′) → X where +A′ = A[T1, . . . , Tr]/(T n1 +1 +− f1, . . . , T nr +r +− fr) +and the ni’s are coprime to p such that V ′ = V ×X X′ → X′ extends uniquely to a +finite étale cover Y ′ → X′ [10, XIII.5.2]. +Lemma 2.1. Let V → U be a finite étale cover which is tame. Then Pic(V ) = 0. +Proof. We use the some notation as above. We know that X′ is regular [10, XIII.5.1] so +a fortiori locally factorial. It follows that the restriction maps Pic(X′) → Pic(V ′) → +Pic(V ) are surjective [5, 21.6.11]. Since A′ is finite over the local ring A, it is semilocal +so that Pic(A′) = Pic(X′) = 0. Thus Pic(V ) = 0 as desired. +□ +From now on we assume that A is henselian. According to [5, 18.5.10], the finite +A–ring A′ is a finite product of henselian local rings. We observe that A′ ⊗A k = +k[T1, . . . , Tr]/(T n1 +1 , . . . , T nr +r ) is a local Artinian algebra so that A′ is connected. It +follows that A′ is a henselian local ring. Its maximal ideal is m′ = m⊗AA′+⟨T1, . . . , Tr⟩ +so that A′/m′ = k. Since there is an equivalence of categories between finite étale +covers of A (resp. A′) and étale k–algebras [5, 18.5.15], the base change from A to +A′ provides an equivalence of categories between the category of finite étale covers of +A and that of A′. +It follows that Y ′ → X′ descends uniquely to a finite étale cover �f : �Y → X. From +now on, we assume that V is furthermore connected, it implies that +H0(V, OV ) = B[T1, . . . , Tr]/(T n +1 − f1, . . . , T n +r − fr) +where B is finite connected étale cover of A. If follows that V → U is a quotient of +a Galois cover of the shape +Bn = B[T ±1 +1 , . . . , T ±1 +r ]/(T n +1 − f1, . . . , T n +r − fr) +where B is Galois cover of A containing a primitive n–root of unity. We record that +Bn is the localization at T1 . . . Tr of B′ +n = B[T1, . . . , Tr]/(T n +1 − f1, . . . , T n +r − fr). We + +LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA +3 +have +Gal(Bn/AD) = +� r� +i=1 +µn(B) +� +⋊ Gal(B/A). +Passing to the limit we obtain an isomorphism +πt +1(U, ξ) ∼= +� r� +i=1 +�Z′(1) +� +⋊ π1(X, ξ). +We denote by f : Usc,t → U the profinite étale cover associated to the quotient +πt +1(U, ξ) of π1(U, ξ). According to [8, thm. 2.4.2], it is the universal tamely ramified +cover of U. It is a localization of the inductive limit �B′ of the B′ +n. On the other hand +we consider the inductive limit �B of the B’s and se that �B′ is a �B-ring. +2.2. Blow-up. We follow a blowing-up construction arising from [5, lemma 15.1.1.6]. +We denote by X the blow-up of Spec(A) at his closed point, this is a regular scheme +[9, §8.1, th. 1.19] and the exceptional divisor E ⊂ X is a Cartier divisor isomomorphic +to Pr−1 +k +. We denote by R = OX,η the local ring at the generic point η of E. The ring +R is a DVR of fraction field K and of residue field F = k(E) = k(t1, . . . , tr−1) where +ti is the image of fi +fr ∈ R by the specialization map. We denote by v : K× → Z the +discrete valuation associated to R. +We deal now with a Galois extension Bn of AD as above. Since B is a connected +finite étale cover of A, B is regular and local; it is furthermore henselian [5, 18.5.10]. +We denote by L the field of fraction of B and by Ln that of Bn. We have [Ln : L] = nr. +We want to extend the valuation v to L and to Ln. +We denote by l = B/mB the residue field of B, this is a finite Galois field extension +of k. Also (t1, . . . , tr) is a system of parameters for B. We denote by w : L× → Z the +discrete valuation associated to the exceptional divisor of the blow-up of Spec(B) at +its closed point. Then w extends v and Lw/Kv is an unramified extension of degree +[L : K] and of residual extension Fl = l(t1, . . . , tr−1)/k(t1, . . . , tr−1). +On the other hand we denote by wn : L× +n → Z the discrete valuation associated to +the exceptional divisor of the blow-up of Spec(Bn) at its closed point. We put ln = +Bn/mBn, we have l = ln. The valuation wn +n on Ln extends w and its residual extension +is Fl,n = l +� +t1/n +1 +, . . . , t1/n +r−1 +� +/k +� +t1, . . . , tr−1 +� +so that [Fl,n : Fl] = nr−1. Furthermore the +ramification index en of Ln/L is ≥ n. Since nr ≤ en [Fl,n : Fl] ≤ [Ln : K] = nr(where +the last inequality is [2, §VI.3, prop. 2]) it follows that en = n. The same statement +shows that the map Lw ⊗L Ln → Lwn is an isomorphism. To summarize Lwn/Lw +is tamely ramified of ramification index n and of degree nr. All together we have +Lwn = Lw ⊗K Ln so that Lwn is Galois over Kv of group � +i µn(B) ⋊ Gal(B/A) = +� +i µn(l) ⋊ Gal(l/k). + +4 +P. GILLE +We denote by ∆ : µn(l) ⊂ � +i µn(l) the diagonal subgroup. We put L∆ +wn = L∆(µn(B)) +n +. +Since tr is an uniformizing parameter of Kv and since ∆(ζ) . tr = ζ.tr for each ζ ∈ +µn(B), it follows that (Lwn)∆ is the maximal unramified extension of Lwn/Kv. +2.3. Loop cocycles and loop torsors. Let G be an affine X–group scheme locally +of finite presentation. A loop cocycle is an element of Z1� +πt +1(U), G( �B) +� +and it defines a +Galois cocycle in Z1(πt +1(U), G(Usc,t)). We denote by Z1 +loop(πt +1(U), G(Usc,t)) the image +of the map Z1� +πt +1(U), G( �B) +� +→ Z1(πt +1(U), G(Usc,t)) and by H1 +loop(U, G) the image of +the map +Z1� +πt +1(U), G( �B) +� +→ H1(πt +1(U), G(Usc,t)) → H1(U, G). +We say that a G-torsor E over U (resp. a fppf sheaf G-torsor) is a loop torsor if its +class belongs to H1 +loop(U, G) ⊂ H1(U, G). +A given class γ ∈ H1 +loop(U, G) is represented by a 1–cocycle φ : Gal(Bn/AD) → +G(B) for some cover Bn/A as above. +Its restriction φar : Gal(B/A) → G(B) to +the subgroup Gal(B/A) of Gal(Bn/A) is called the “arithmetic part” and the other +restriction φgeo : � +i µn(B) → G(B) is called the geometric part. We observe that +φgeo is a B-group homomorphism. +Furthermore for σ ∈ Gal(B/A) and τ ∈ � +i µn(B) the computation of [7, page 16] +shows that φgeo(στσ−1) = φar(σ) σφ(τ) φar(σ)−1 so that φgeo descends to a homomor- +phism of A-group schemes φgeo : µr +n → φarG. This provides a parameterization of loop +cocycles. +Lemma 2.2. (1) For Bn/A as above, the map φ �→ (φar, φgeo) provides a bijection be- +tween Z1 +loop +� +Gal(Bn/AD), G(B) +� +and the couples (z, η) where z ∈ Z1� +Gal(B/A), G(B)) +and η : � +i µn → zG is an A–group homomorphism. +(2) The map φ �→ (φar, φgeo) provides a bijection between Z1 +loop +� +π1(U, ξ)t, G( �B) +� +and +the couples (z, η) where z ∈ Z1� +π1(X, ξ), G( �B)) and η : �r +i=1 �Z′ → zG is an A–group +homomorphism. +Proof. This is similar with [7, lemma 3.7]. +□ +We examine more closely the case of a finite étale X–group scheme F of constant +degree d. +Lemma 2.3. (1) F( �B) = F(Xsc) = F(Usc,t). +(2) We assume that d is prime to p. We have H1 +loop(U, F) = H1(U, F). +(3) We assume that d is prime to p. Let f : F → H be a homomorphism of A–group +schemes (locally of finite type). Then f∗ +� +H1(U, F) +� +⊂ H1 +loop(U, H). +Proof. (1) We are given a cover Bn/A as above such that FBn ∼= ΓBn is finite constant. +as above. +Since B and Bn are connected, the map F(B) → F(Bn) reads as the + +LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA +5 +identity Γ ∼= F(B) → F(Bn) ∼= Γ so is bijective. By passing to the limit we get +F( �B) = F(Usc,t). +(2) Let E be a F–torsor over U. This is a finite étale U–scheme. Since U is noetherian +and connected, we have a decomposition E = V1 ×U · · · ×U Vl where each Vi is a +connected finite étale U–scheme of constant degree di. We have d1 + · · · + dl = d so +that we can assume that d1 is prime to p. We have then E(V1) ̸= ∅. +It follows that f1 : V1 → U is a finite étale cover so that there exists a fac- +torization Usc,t → V1 +h−→ U of f so that E(Usc,t) ̸= ∅. +Therefore [E] arises from +H1(πt +1(U, ξ), F(Usc,t)) ⊂ H1(U, F). It follows that H1(πt +1(U, ξ), F(Usc,t)) +∼ +−→ H1(U, F). +We use now (1) and obtain the desired bijection H1(πt +1(U, ξ), F(B)) +∼ +−→ H1(U, F). +(3) This follows readily from (2). +□ +2.4. Twisting by loop torsors. We assume that the A–group scheme G acts on an +A–scheme Z. Let φ : (�r +i µn)(B) ⋊ Gal(B/A) → G(B) be a loop cocycle. It gives +rise to an A–action of µr +n on φarZ. We denote by (φarZ)φgeo the fixed point locus for +this action, it is representable by a closed A–subscheme of φarZ [4, A.8.10.(1)]. We +have a closed embedding (φarZ)φgeo ×X U ⊂ φZ of U-schemes. +3. Fixed points method +Theorem 3.1. Let X = Spec(A) be a henselian regular local scheme and U = X\D as +above. We denote by v : K× → Z the discrete valuation associated to the exceptional +divisor E of the blow-up of X at its closed point. +Let G be an affine A-group scheme of finite presentation acting on a proper smooth +A–scheme Z. Let φ be a loop cocycle for G. Then Y = +� +φarZ +�φgeo +is a smooth proper +A–scheme and the following are equivalent: +(i) (φZ)(Kv) ̸= ∅; +(ii) Y (k) ̸= ∅; +(iii) Y (U) ̸= ∅; +(iv) (φZ)(U) ̸= ∅. +This is quite similar with the fixed point theorem [7, §, thm. 7.1]. The following +example makes the connection. +Example +3.2. We +assume +that +A += +k[[t1, . . . , tr]] +for +a +field +k +and +k[U] = k[[t1, . . . , tn]] +� 1 +t1, . . . , 1 +tr +� +. We are given an affine algebraic k–group G act- +ing on a smooth proper k–scheme Z. In this case K = k((t1, . . . , tr)) and A embeds +in k +� t1 +tr , . . . , tr−1 +tr +� +[[tr]] so that K embeds in k +� t1 +tn, . . . , tr−1 +tr +� +((tr)) which is nothing but +the complete field Kv. If Q is a loop G-torsor over U, the statement is then that +QZ(U) ̸= ∅ if and only if QZ(Kv) ̸= ∅. Taking a cocycle φ ∈ Z1(π1(U)t, G(ks)) for E, +this rephrases by the equivalence between (φZ)(U) ̸= ∅ and (φZ)(Kv) ̸= ∅. + +6 +P. GILLE +What we have from [7, thm. 7.1] (in characteristic zero but this extends to this tame +setting) is the equivalence between (φZ)(k[t±1 +1 , . . . , t±1 +r ]) ̸= ∅ and (φZ) +� +k((t1)) . . . ((tr)) +� +̸= +∅. Since (φZ)(k[t±1 +1 , . . . , t±1 +r ]) ⊂ (φZ)(U) and (φZ) +� +Kv +� +⊂ (φZ) +� +k((t1)) . . . ((tr)) +� +, it +follows that this special case of Theorem 3.1 is a consequence of the fixed point result +of [7]. +We proceed to the proof of Theorem 3.1. +Proof. According to [4, A.8.10.(1)], Y = +� +φar(Zφgeo) +� +is a closed A–scheme of φarZ so +is proper. It is smooth over X according to point (2) of the same reference. +Let φ : Gal(Bn/AD) → G(B) be the loop 1-cocycle for some Galois cover Bn/AD as +above for some n prime to p. Up to replace G by φarG and G by φarZ, we can assume +that φar = 1 without lost of generality. +(ii) =⇒ (iii). Since Yk is the special fiber of the smooth X–scheme Y , Hensel’s lemma +shows that Y (A) → Y (k) is onto. Since Y (k) is not empty, it follows that Y (A) is +not empty and so is Y (U). +(iii) =⇒ (iv). Since Y (U) ⊂ φZ(U), Y (U) ̸= ∅ implies that φZ(U) ̸= ∅. +(iv) =⇒ (i). This is obvious. +(i) =⇒ (ii). We assume that (φZ)(Kv) ̸= ∅. By definition we have +(φZ)(Kv) = +� +z ∈ Z(Lwn) | φ(σ).σ(z) = z ∀σ ∈ Gal(Ln/K) +� +and our assumption is that this set is non-empty. Let Own be the valuation ring of +Z(Lwn). Since Z is proper over X, we have a specialization map Z(Lwn) = Z(Own) → +Zk(Fl,n). We get that the set +� +z ∈ Zk(Fl,n), | φ(σ).σ(z) = z ∀σ ∈ Gal(Lwn/Kv) +� +is not empty. Since we have an embedding +Fl,n = l +� +t1/n +1 +, . . . , tr−1) ֒→ l +�� +t1/n +1 +�� +. . . +�� +t1/n +r−1 +�� +in a higher field of Laurent series successive specializations, along the coordinates +t1/n +1 +, ..., t1/n +r−1 show similarly that the set +(3.1) +� +z ∈ (Zk) +� +l +� +| φ(σ).σ(z) = z ∀σ ∈ Gal(Lwn/Kv) +� +is not empty. Since ηar = 1, this set is (Zk)ηgeo(k). Thus Y (k) = (Zk)ηgeo(k) is non +empty. +□ +4. Parabolic subgroups of loop reductive group schemes +4.1. Chevalley groups. Let G0 be Chevalley group defined over Z. Let T0 be a +maximal split Z-subtorus of G0 together with a Borel subgroup B0 containing it. We +denote by ∆0 the Dynkin diagram of (G0, B0, T0). We denote by G0,ad the adjoint + +LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA +7 +quotient of G0 and by Gsc +0 the simply connected covering of DG0. We have a map +Aut(G0) → Aut(Gsc +0 ) +∼ +−→ Aut(G0,ad) and a fundamental exact sequence +1 → G0,ad → Aut(G0,ad) → Out(G0,ad) → 1 +where Out(G0,ad) +∼ +−→ Aut(∆0) We recall that there is a bijection I → P0,I be- +tween the finite subsets of ∆0 and the parabolic subgroups of G0 containing B0 +[11, XXVI.3.8]; it is increasing for the inclusion order, in particular B0 = P0,∅ and +G0 = P0,∆0. We consider the total scheme ParG0 of parabolic subgroups of G0, it is +a projective smooth Z–scheme equipped with a type map t : ParG0 → Of(∆0) where +Of(∆0) stands for the finite constant scheme attached to the set of subsets of ∆0 [11, +XXVI.3]. The fiber at I is denoted by ParG0,I, it has connected fibers and is the +scheme of parabolic subgroups of G0 of type I. We have a natural action of Aut(G0) +on ParG0. As in [6, §5.1], we denote by AutI(G0) the stabilizer of I for this action. +By construction AutI(G0) acts on ParG0,I. +4.2. Definition. Let G be a reductive U-group scheme in the sense of Demazure- +Grothendieck [11, XIX]. Since U is connected and G is locally splittable [11, XXII.2.2] +for the étale topology, G is an étale form of a Chevalley group G0 as above defined +over Z. +We say that G is a loop group scheme if the Aut(G0)-torsor Q = Isom(G0, G) +(defined in [11, XXIV.1.9]) is a loop Aut(G0)-torsor. We denote by G0,ad the adjoint +quotient of G0 and ny Gsc +0 the simply connected covering of DG0. We have a map +Aut(G0) → Aut(Gsc +0 ) +∼ +−→ Aut(G0,ad) which permits to see Gad (resp. Gsc) as twisted +forms of G0,ad (resp. Gsc +0 ) so that Gad and Gsc are also loop reductive group schemes. +We consider the map Aut(G0) → Aut(G0,ad) → Out(G0,ad) +∼ +−→ Aut(∆0). +If φ : Gal(Bn/A) → Aut(G0)(B) is a loop cocycle, we get an action of Gal(Bn/A) +on ∆0 called the star action. If I is stable under the star action, we can twist ParG0,I +by φ and deal with the scheme φParG0,I which is the scheme of parabolic subgroup +schemes of G of type I. +4.3. Parabolics. +Theorem 4.1. Assume that G is a loop U-group scheme and let φ : Gal(Bn/AD) → +Aut(G0)(B) be a loop cocycle such that G ∼= φG0. Let I ⊂ ∆0 be a subset stable under +the star action defined by φ. Then the following are equivalent: +(i) G admits a U–parabolic subgroup of type I; +(ii) the k–morphism ηgeo +k +: µr +n → Aut(ηarG0)k = +� +ηarAut(G0) +� +k normalizes a para- +bolic k–subgroup of ηarG0,k of type I; +(iii) GKv admits a parabolic subgroup of type I. +Proof. Without loss of generality we can assume that G is adjoint. Our assumption +on the star action rephrases by saying that φ takes values in AutI(G0). + +8 +P. GILLE +We apply Theorem 3.1 to the action of AutI(G0) on the proper A-scheme ParG0,I. +We consider the A-scheme Y = (φarParG0,I)φgeo. Theorem 3.1 shows that the following +statements are equivalent. +(i’) (φParG0,I)(U) ̸= ∅; +(ii’) Y (k) ̸= ∅. +(iii’) (φParG0,I)(Kv) ̸= ∅. +Clearly (i’) is equivalent to condition (i) of the Theorem and similarly we have +(iii′) ⇐⇒ (iii). It remains to establish the equivalence between (ii) and (ii’). +Assume that (φarParG0,I)φgeo(k) is not empty and pick a k–point z. Then the sta- +bilizer (φarG0)z is a k–parabolic subgroup of φarG0 of type I which is stabilized by the +action φgeo +k . In other words, φgeo +k +normalizes (φarG)z. Conversely we assume that φarG +admits a k–parabolic subgroup of type I normalized by φgeo. +Conversely assume that φarG admits a k–parabolic parabolic k–subgroup of type I +normalized by φgeo. It defines then a point z ∈ (φarParG0,I)(k) which is fixed by φgeo. +□ +4.4. An example. Assume that the residue field k is not of characteristic two and +consider the diagonal quadratic form of dimension 2r +q = +� +I⊂{1,...,r} +uI tI(xI)2 +where tI = � +i∈I ti and uI ∈ A×. Then SO(q) is a loop reductive group scheme over +U. Since the projective quadric {q = 0} is a scheme of parabolic subgroups of SO(q), +Theorem 4.1 shows that q is isotropic over AD if and only if q is isotropic over Kv. +The two dimensional case is related with [3, proof of Theorem 3.1]. +References +[1] A. Borel, Linear algebraic groups, 2nd edn, Graduate Texts in Mathematics 126 (Springer, New +York, 1991). +[2] N. Bourbaki, Algèbre commutative, Ch. 1 à 10, Springer. +[3] J.-L. Colliot-Thélène, R. Parimala, V. Suresh, Patching and local-global principles for homoge- +neous spaces over function fields of p-adic curves, Comment. Math. Helv. 87 (2012), 1011-1033. +[4] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, Cambridge University Press, second +edition (2016). +[5] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique +IV, Publications mathématiques de l’I.H.É.S. no 20, 24, 28 and 32 (1964 - 1967). +[6] P. Gille, Sur la classification des schémas en groupes semi-simples, “Autour des schémas en +groupes, III”, Panoramas et Synthèses 47 (2015), 39-110. +[7] P. Gille and A. Pianzola, Torsors, reductive group schemes and extended affine Lie algebras, +Memoirs of AMS 1063 (2013). +[8] A. Grothendieck, J. P. Murre, The tame fundamental group of a formal neighbourhood of a +divisor with normal crossings on a scheme, Lecture Notes in Mathematics 208 (1971), Springer- +Verlag, Berlin-New York. + +LOOP GROUP SCHEMES AND ABHYANKAR’S LEMMA +9 +[9] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6 +(2002), Oxford University Press, Oxford. +[10] Séminaire de Géométrie algébrique de l’I.H.E.S., Revêtements étales et groupe fondamental, +dirigé par A. Grothendieck, Documents mathématiques vol. 3 (2003), Société mathématique de +France. +[11] Séminaire de Géométrie algébrique de l’I. H. E. S., 1963-1964, schémas en groupes, dirigé par +M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153. Springer (1970). +UMR 5208 Institut Camille Jordan - Université Claude Bernard Lyon 1 43 boule- +vard du 11 novembre 1918 69622 Villeurbanne cedex - France +Email address: gille@math.univ-lyon1.fr + diff --git a/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/2301.11925v1.pdf.txt b/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/2301.11925v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b296ef244560816b84a7ea7f670d0845714c99ba --- /dev/null +++ b/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/2301.11925v1.pdf.txt @@ -0,0 +1,659 @@ +OCTUPOLES FOR OCTAHEDRAL SYMMETRY +YU. NESTERENKO +Abstract. Spherical harmonics of degree 4 are widely used in volumetric +frame fields design due to their ability to reproduce octahedral symmetry. +In this paper we show how to use harmonics of degree 3 (octupoles) for the +same purpose, thereby reducing number of parameters and computational +complexity. The key ingredients of the presented approach are +• implicit equations for the manifold of octupoles possessing octahedral +symmetry up to multiplication by −1, +• corresponding rotationally invariant measure of octupole’s deviation +from the specified symmetry, +• smoothing penalty term compensating the lack of octupoles’ symme- +tries during a field optimization. +1. Introduction +The most common state-of-the-art approaches for volumetric frame fields de- +sign involve the use of 4th-degree spherical harmonics as a representation of +field values (see [7, 11]). This choice is quite natural due to the fact that such +harmonics form the linear space closed under 3D rotations and containing har- +monics possessing octahedral symmetry. Moreover, algebraic conditions for this +symmetry expressed both in terms of implicit equations and penalty function +are also known ([10]). +The major practical disadvantage of this representation is the dimension of +the space — 9, which is three times the minimum required to parameterise +frame rotations. In this paper we show how to reduce the dimension by passing +from the 4th-degree spherical harmonics to the 3rd-degree ones also known as +octupoles (see Landau and Lifshitz [9] clarifying the connection with the tensor +formalism). +In a nutshell, our suggestion is to sacrifice the half of symmetries of frame repre- +sentation, but compensating for this by additional symmetries in the smoothing +penalty term. +Figure 1. +Spherical plots of basis functions Y3,−3, . . . , Y3,3. +arXiv:2301.11925v1 [math.NA] 23 Jan 2023 + +2 +YU. NESTERENKO +2. Semisymmetric octupoles +As stated, we consider real-valued spherical harmonics of degree 3 on the unit +sphere — octupoles. These polynomials form the 7D linear space with standard +orthonormal basis Y3,−3, . . . , Y3,3 (see [6]). +With them being odd functions, none of the octupoles (except zero) are oc- +tahedrally symmetric by itself, but some of their modules are. Two of such +semisymmetric octupoles — Y3,−2 and Y3,2 — possessing the half of octahedral +symmetries (while the remaining are satisfied up to multiplication by −1) can +be seen in Figure 1. +Since the space we are working in is an eigenspace of the Laplace operator, all +possible rotations of its functions lie in the same space and may be represented +as a linear combinations of its basis functions. +Figure 2. +The reference harmonic and its rotation. +This applies in particular to semisymmetric harmonics. Moreover, in coordinate +form all harmonics of this kind may be obtained from a reference one (let it be +Y3,−2) by the formula +a = Rx(α) × Ry(β) × Rz(γ) × ˜a. +Here ˜a = (0, 1, 0, 0, 0, 0, 0)T and a are coordinates of the reference and the +rotated harmonics respectively, and α, β and γ are Euler angles of the corre- +sponding rotation. +Appendix A.1 describes the construction of the rotation matrices Rx, Ry and +Rz. +From the geometrical point of view, all a(α, β, γ) form the manifold of dimension +3 embedded in R7. The next lemma claims that this manifold is simply an +intersection of quadrics (hypersurfaces of the second order). +Lemma 1. The manifold of all semisymmetric octupoles is given by the system +of equations +(2.1) +� +aT a = 1, +aT Mk a = 0, +k = 1, . . . , 3, + +R +~h +hOCTUPOLES FOR OCTAHEDRAL SYMMETRY +3 +where M1, M2, M3 are the symmetric matrices defined as follows. +(2.2) +M1 = +� +��������� +−5 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +3 +0 +0 +0 +0 +0 +0 +0 +4 +0 +0 +0 +0 +0 +0 +0 +3 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +−5 +� +��������� +(2.3) +M2 = +� +��������� +0 +5 +0 +0 +0 +0 +0 +5 +0 +√ +15 +0 +0 +0 +0 +0 +√ +15 +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +0 +0 +0 +0 +0 +2 +0 +√ +15 +0 +0 +0 +0 +0 +√ +15 +0 +5 +0 +0 +0 +0 +0 +5 +0 +� +��������� +(2.4) +M3 = +� +��������� +0 +0 +0 +0 +0 +5 +0 +0 +0 +0 +0 +√ +15 +0 +−5 +0 +0 +0 +2 +0 +− +√ +15 +0 +0 +0 +2 +0 +0 +0 +0 +0 +√ +15 +0 +0 +0 +0 +0 +5 +0 +− +√ +15 +0 +0 +0 +0 +0 +−5 +0 +0 +0 +0 +0 +� +��������� +Idea of proof. The given implicit equations may be obtained by the standard +technique based on rational parametrization of the unit circle (to eliminate +trigonometric expressions) and Gr¨obner basis construction (see [5]). The state- +ment can be verified by direct calculations. +Topology of the manifold of semisymmetric octupoles is described in Appendix +A.2. +Figure 3. +Iterative semisymmetrization + +2 +3 +204 +YU. NESTERENKO +3. Semisymmetry enforcement +Now we are ready to construct the polynomial penalty function enforcing its +argument — octupole — to be semisymmetric. +Lemma 2. Homogeneous 4th-degree polynomial +d(a) = 25a4 +−3 + 50a2 +−3a2 +−2 + 20 +√ +15a−3a2 +−2a−1 − 10a2 +−3a2 +−1+ +30a2 +−2a2 +−1 + 8 +√ +15a−3a3 +−1 + 21a4 +−1 − 40a2 +−3a2 +0 + 80a2 +−2a2 +0+ +32a2 +−1a2 +0 + 16a4 +0 + 120a−3a−2a0a1 − 16 +√ +15a−2a−1a0a1− +10a2 +−3a2 +1 + 30a2 +−2a2 +1 − 24 +√ +15a−3a−1a2 +1 + 42a2 +−1a2 +1 + 32a2 +0a2 +1+ +21a4 +1 + 120a−3a−1a0a2 + 8 +√ +15a2 +−1a0a2 + 40 +√ +15a−3a−2a1a2− +8 +√ +15a0a2 +1a2 + 50a2 +−3a2 +2 − 20 +√ +15a−3a−1a2 +2 + 30a2 +−1a2 +2+ +80a2 +0a2 +2 + 30a2 +1a2 +2 − 120a−2a−1a0a3 − 20 +√ +15a2 +−2a1a3+ +24 +√ +15a2 +−1a1a3 − 8 +√ +15a3 +1a3 + 40 +√ +15a−2a−1a2a3+ +120a0a1a2a3 + 20 +√ +15a1a2 +2a3 + 50a2 +−3a2 +3 + 50a2 +−2a2 +3− +10a2 +−1a2 +3 − 40a2 +0a2 +3 − 10a2 +1a2 +3 + 50a2 +2a2 +3 + 25a4 +3, +(3.1) +where a = (a−3, a−2, a−1, a0, a1, a2, a3) ∈ R7 consists of octupole coordinates in +basis Y3,−3, . . . , Y3,3, defines the rotationally invariant measure of octupole devi- +ation from semisymmetry. +Idea of proof. The statement follows from the method of obtaining this poly- +nomial. It consists of averaging the trial non-invariant deviation measure +(3.2) +�d(a) = +3 +� +k=1 +(aT Mk a)2 +over SO3 action’s orbits. The next formula can be verified by direct calculations. +d(a) = +1 +vol SO3 +� +R∈SO3 +�d(R · a) dµ = +1 +8π2 +2π +� +0 +π +� +0 +2π +� +0 +�d(Rz(α) × Rx(β) × Rz(γ) × a) sin β dγ dβ dα. +(3.3) +4. Numerical example +In this section we show how deviation measure (3.1) works. We use the next +combination of the scale and semisymmetry controlling terms with positive +weights w1 = 5 and w2 = 2.5 +(4.1) +p(a; w1, w2) = w1(aT a − 1)2 + w2 d(a), + +OCTUPOLES FOR OCTAHEDRAL SYMMETRY +5 +as the penalty function together with a simple gradient descent method. Figure +3 shows the convergence process of the sample initial octupole to the semisym- +metrical one. +The plots below describe the distance to the nearest semisymmetrical octupole +and square root of the penalty value. One can see distance-like behavior of the +square root of p(a; w1, w2). +0 +2 +4 +6 +8 +10 12 14 16 18 20 +10−4 +10−3 +10−2 +10−1 +100 +Iterations +Distance measures +distance +sqrt penalty +Note that due to the invariance of (4.1) under 3D rotations, its symmetrization +effect is orientation agnostic. Therefore, applying it to a field values during +the optimization process does not affect octupoles’ orientations but helps to +maintain their symmetries. This topic is discussed in the next section. +5. Fields smoothing +Since octupoles possess octahedral symmetries only up to multiplication by −1, +we need to compensate for this by defining field smoothness in a special way. For +this purpose we propose quite an intuitive expression of the form |x−y|2|x+y|2 +as the smoothing penalty term. +Thus, in discrete cases the final field energy (consideration of boundary condi- +tions is outside the scope of our discussion) becomes +(5.1) +E = +� +a∼b +|a − b|2|a + b|2 + +� +a +p(a, w1, w2). +Here, the first terms enforce smoothness and the second are responsible for +maintenance of the field values semisymmetry during the optimization. +The described energy function in combination with coarse-to-fine optimiza- +tion strategy shows results comparable to the ”classic” frame fields design ap- +proaches ([7, 11]) while using 7 instead of 9 unknowns per frame. +Two simple examples of this approach are provided in Appendix A.3. + +6 +YU. NESTERENKO +6. Conclusion +The implicit equations for the manifold of octupoles possessing octahedral sym- +metry up to multiplication by −1, and the corresponding rotationally invariant +deviation measure have been found. The smoothing penalty for octupole fields +compensating for the lack of their symmetries has been constructed. +In comparison to existing approaches, the obtained results allow to reduce num- +ber of unknowns and computational costs of volumetric frame fields design +problems. +7. Appendix A.1 +The rotational matrices Rx, Ry and Rz for spherical harmonics of degree 3 are +defined as follows. +(7.1) +Rz(γ) = +� +��������� +cos 3γ +0 +0 +0 +0 +0 +sin 3γ +0 +cos 2γ +0 +0 +0 +sin 2γ +0 +0 +0 +cos γ +0 +sin γ +0 +0 +0 +0 +0 +1 +0 +0 +0 +0 +0 +− sin γ +0 +cos γ +0 +0 +0 +− sin 2γ +0 +0 +0 +cos 2γ +0 +− sin 3γ +0 +0 +0 +0 +0 +cos 3γ +� +��������� +(7.2) +Rx(π +2 ) = 1 +4 +� +��������� +0 +0 +0 +√ +10 +0 +− +√ +6 +0 +0 +−4 +0 +0 +0 +0 +0 +0 +0 +0 +√ +6 +0 +√ +10 +0 +− +√ +10 +0 +− +√ +6 +0 +0 +0 +0 +0 +0 +0 +0 +−1 +0 +− +√ +15 +√ +6 +0 +− +√ +10 +0 +0 +0 +0 +0 +0 +0 +0 +− +√ +15 +0 +1 +� +��������� +(7.3) +Ry(β) = Rx(π +2 ) × Rz(β) × Rx(π +2 )T +(7.4) +Rx(α) = Ry(π +2 )T × Rz(α) × Ry(π +2 ) +See [2, 3, 4, 8] for more details. + +OCTUPOLES FOR OCTAHEDRAL SYMMETRY +7 +8. Appendix A.2 +The manifold of frame rotations has the topology of the quotient space SO3 / S4, +where S4 denotes the group of order 24 of all octahedral symmetries. Semisym- +metric octupoles are invariant only under even S4 transformations. Hence the +corresponding topology is SO3 / A4, where A4 denotes the corresponding sub- +group. +x +y +z +Figure 4. +Fundamental zones for S4 and A4 symmetries. +It’s possible to describe these topologies using the Rodriguez representation +of 3D rotations (see [1]). +The fundamental zone for S4 symmetries in this +representation has the form of a truncated cube with 6 regular octagonal faces +and 8 regular triangular faces. +For A4 symmetries the fundamental zone is +the regular octahedron. The inclusion A4 ⊂ S4 implicates the reverse one for +the fundamental zones (see figure 4, note that the triangular faces are pairwise +coplanar). +The topologies we consider are obtained by gluing the opposite octagons and +the corresponding opposite triangles with 45◦ and 60◦ turn respectively. The +colors in the picture indicate how the vertices map to each other. Note that all +octahedron’s vertices are coincident and correspond to the octupole opposite to +the reference one (i.e. −Y3,−2). + +8 +YU. NESTERENKO +9. Appendix A.3 +The pictures below show usual singular structures (see [7, 11]) of frame fields +optimized using energy function (5.1). +Figure 5. +Frame fields singularities of valence 3. +References +[1] R. Becker and S. Panchanadeeswaran. Crystal rotations represented as Rodrigues vectors. +Texture, Stress, and Microstructure, 10:167–194, 1989. +[2] M.A. Blanco, M. Florez, and M. Bermejo. Evaluation of the rotation matrices in the basis +of real spherical harmonics. Journal of Molecular Structure: THEOCHEM, 419(1-3):19– +27, 1997. +[3] C.H. Choi, J. Ivanic, M.S. Gordon, and K. Ruedenberg. Rapid and stable determination +of rotation matrices between spherical harmonics by direct recursion. The Journal of +Chemical Physics, 111(19):8825–8831, 1999. +[4] J.R.A. Collado, J.F. Rico, R. Lopez, M. Paniagua, and G. Ramirez. Rotation of real +spherical harmonics. Computer Physics Communications, 52(3):323–331, 1989. +[5] D. O’Shea D. A. Cox, J. Little. Ideals, Varieties, and Algorithms. Undergraduate Texts +in Mathematics. Springer, forth edition, 2015. +[6] C. G¨orller-Walrand and K. Binnemans. Rationalization of crystal-field parametrization. +Handbook on the Physics and Chemistry of Rare Earths, 23:121–283, 1996. +[7] J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3D cross-frame field. +ACM Transactions on Graphics, 30(6):143:1–143:8, 2011. +[8] J. Ivanic and K. Ruedenberg. Rotation matrices for real spherical harmonics. Direct +determination by recursion. The Journal of Chemical Physics, 100(15):6342–6347, 1996. +[9] L. Landau and E. Lifshitz. The Classical Theory of Fields, pages 96–99. Course of Theo- +retical Physics, Volume 2. Pergamon Press, 3rd revised english edition, 1971. +[10] Yu. Nesterenko. On spherical harmonics possessing octahedral symmetry. ArXiv, +2012.12614, 2020. +[11] N. Ray and D. Sokolov. On smooth 3D frame field design. ArXiv, 1507.03351, 2015. +Siemens Digital Industries Software +Email address: Yuri.Nesterenko@siemens.com + diff --git a/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/load_file.txt b/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a02a988517e7d4b566365d424093a03e3da1bfef --- /dev/null +++ b/ttFKT4oBgHgl3EQf2y5g/content/tmp_files/load_file.txt @@ -0,0 +1,300 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf,len=299 +page_content='OCTUPOLES FOR OCTAHEDRAL SYMMETRY YU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' NESTERENKO Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Spherical harmonics of degree 4 are widely used in volumetric frame fields design due to their ability to reproduce octahedral symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' In this paper we show how to use harmonics of degree 3 (octupoles) for the same purpose, thereby reducing number of parameters and computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The key ingredients of the presented approach are implicit equations for the manifold of octupoles possessing octahedral symmetry up to multiplication by −1, corresponding rotationally invariant measure of octupole’s deviation from the specified symmetry, smoothing penalty term compensating the lack of octupoles’ symme- tries during a field optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Introduction The most common state-of-the-art approaches for volumetric frame fields de- sign involve the use of 4th-degree spherical harmonics as a representation of field values (see [7, 11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' This choice is quite natural due to the fact that such harmonics form the linear space closed under 3D rotations and containing har- monics possessing octahedral symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Moreover, algebraic conditions for this symmetry expressed both in terms of implicit equations and penalty function are also known ([10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The major practical disadvantage of this representation is the dimension of the space — 9, which is three times the minimum required to parameterise frame rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' In this paper we show how to reduce the dimension by passing from the 4th-degree spherical harmonics to the 3rd-degree ones also known as octupoles (see Landau and Lifshitz [9] clarifying the connection with the tensor formalism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' In a nutshell, our suggestion is to sacrifice the half of symmetries of frame repre- sentation, but compensating for this by additional symmetries in the smoothing penalty term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Spherical plots of basis functions Y3,−3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' , Y3,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='11925v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='NA] 23 Jan 2023 2 YU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' NESTERENKO 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Semisymmetric octupoles As stated, we consider real-valued spherical harmonics of degree 3 on the unit sphere — octupoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' These polynomials form the 7D linear space with standard orthonormal basis Y3,−3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' , Y3,3 (see [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' With them being odd functions, none of the octupoles (except zero) are oc- tahedrally symmetric by itself, but some of their modules are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Two of such semisymmetric octupoles — Y3,−2 and Y3,2 — possessing the half of octahedral symmetries (while the remaining are satisfied up to multiplication by −1) can be seen in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Since the space we are working in is an eigenspace of the Laplace operator, all possible rotations of its functions lie in the same space and may be represented as a linear combinations of its basis functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The reference harmonic and its rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' This applies in particular to semisymmetric harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Moreover, in coordinate form all harmonics of this kind may be obtained from a reference one (let it be Y3,−2) by the formula a = Rx(α) × Ry(β) × Rz(γ) × ˜a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Here ˜a = (0, 1, 0, 0, 0, 0, 0)T and a are coordinates of the reference and the rotated harmonics respectively, and α, β and γ are Euler angles of the corre- sponding rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 describes the construction of the rotation matrices Rx, Ry and Rz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' From the geometrical point of view, all a(α, β, γ) form the manifold of dimension 3 embedded in R7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The next lemma claims that this manifold is simply an intersection of quadrics (hypersurfaces of the second order).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The manifold of all semisymmetric octupoles is given by the system of equations (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) � aT a = 1, aT Mk a = 0, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' , 3, R ~h hOCTUPOLES FOR OCTAHEDRAL SYMMETRY 3 where M1, M2, M3 are the symmetric matrices defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2) M1 = � ��������� −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −5 � ��������� (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3) M2 = � ��������� 0 5 0 0 0 0 0 5 0 √ 15 0 0 0 0 0 √ 15 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 √ 15 0 0 0 0 0 √ 15 0 5 0 0 0 0 0 5 0 � ��������� (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='4) M3 = � ��������� 0 0 0 0 0 5 0 0 0 0 0 √ 15 0 −5 0 0 0 2 0 − √ 15 0 0 0 2 0 0 0 0 0 √ 15 0 0 0 0 0 5 0 − √ 15 0 0 0 0 0 −5 0 0 0 0 0 � ��������� Idea of proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The given implicit equations may be obtained by the standard technique based on rational parametrization of the unit circle (to eliminate trigonometric expressions) and Gr¨obner basis construction (see [5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The state- ment can be verified by direct calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Topology of the manifold of semisymmetric octupoles is described in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Iterative semisymmetrization 2 3 204 YU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' NESTERENKO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Semisymmetry enforcement Now we are ready to construct the polynomial penalty function enforcing its argument — octupole — to be semisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Homogeneous 4th-degree polynomial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='d(a) = 25a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3 + 50a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2 + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a−1 − 10a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='30a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1 + 8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−3a3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1 + 21a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1 − 40a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0 + 80a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='32a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0 + 16a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0 + 120a−3a−2a0a1 − 16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−2a−1a0a1− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='10a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 + 30a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 − 24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−3a−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 + 42a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 + 32a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='21a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 + 120a−3a−1a0a2 + 8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a0a2 + 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−3a−2a1a2− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a0a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1a2 + 50a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2 − 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−3a−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2 + 30a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='80a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2 + 30a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2 − 120a−2a−1a0a3 − 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a1a3+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a1a3 − 8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1a3 + 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a−2a−1a2a3+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='120a0a1a2a3 + 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='√ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='15a1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2a3 + 50a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−3a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 + 50a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−2a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='10a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='−1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 − 40a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='0a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 − 10a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 + 50a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2a2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 + 25a4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) where a = (a−3, a−2, a−1, a0, a1, a2, a3) ∈ R7 consists of octupole coordinates in basis Y3,−3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' , Y3,3, defines the rotationally invariant measure of octupole devi- ation from semisymmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Idea of proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The statement follows from the method of obtaining this poly- nomial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' It consists of averaging the trial non-invariant deviation measure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2) �d(a) = 3 � k=1 (aT Mk a)2 over SO3 action’s orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The next formula can be verified by direct calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' d(a) = 1 vol SO3 � R∈SO3 �d(R · a) dµ = 1 8π2 2π � 0 π � 0 2π � 0 �d(Rz(α) × Rx(β) × Rz(γ) × a) sin β dγ dβ dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Numerical example In this section we show how deviation measure (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' We use the next combination of the scale and semisymmetry controlling terms with positive weights w1 = 5 and w2 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='5 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) p(a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' w1, w2) = w1(aT a − 1)2 + w2 d(a), OCTUPOLES FOR OCTAHEDRAL SYMMETRY 5 as the penalty function together with a simple gradient descent method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Figure 3 shows the convergence process of the sample initial octupole to the semisym- metrical one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The plots below describe the distance to the nearest semisymmetrical octupole and square root of the penalty value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' One can see distance-like behavior of the square root of p(a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' w1, w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 0 2 4 6 8 10 12 14 16 18 20 10−4 10−3 10−2 10−1 100 Iterations Distance measures distance sqrt penalty Note that due to the invariance of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) under 3D rotations, its symmetrization effect is orientation agnostic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Therefore, applying it to a field values during the optimization process does not affect octupoles’ orientations but helps to maintain their symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' This topic is discussed in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Fields smoothing Since octupoles possess octahedral symmetries only up to multiplication by −1, we need to compensate for this by defining field smoothness in a special way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' For this purpose we propose quite an intuitive expression of the form |x−y|2|x+y|2 as the smoothing penalty term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Thus, in discrete cases the final field energy (consideration of boundary condi- tions is outside the scope of our discussion) becomes (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) E = � a∼b |a − b|2|a + b|2 + � a p(a, w1, w2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Here, the first terms enforce smoothness and the second are responsible for maintenance of the field values semisymmetry during the optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The described energy function in combination with coarse-to-fine optimiza- tion strategy shows results comparable to the ”classic” frame fields design ap- proaches ([7, 11]) while using 7 instead of 9 unknowns per frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Two simple examples of this approach are provided in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 6 YU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' NESTERENKO 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Conclusion The implicit equations for the manifold of octupoles possessing octahedral sym- metry up to multiplication by −1, and the corresponding rotationally invariant deviation measure have been found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The smoothing penalty for octupole fields compensating for the lack of their symmetries has been constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' In comparison to existing approaches, the obtained results allow to reduce num- ber of unknowns and computational costs of volumetric frame fields design problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1 The rotational matrices Rx, Ry and Rz for spherical harmonics of degree 3 are defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1) Rz(γ) = � ��������� cos 3γ 0 0 0 0 0 sin 3γ 0 cos 2γ 0 0 0 sin 2γ 0 0 0 cos γ 0 sin γ 0 0 0 0 0 1 0 0 0 0 0 − sin γ 0 cos γ 0 0 0 − sin 2γ 0 0 0 cos 2γ 0 − sin 3γ 0 0 0 0 0 cos 3γ � ��������� (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2) Rx(π 2 ) = 1 4 � ��������� 0 0 0 √ 10 0 − √ 6 0 0 −4 0 0 0 0 0 0 0 0 √ 6 0 √ 10 0 − √ 10 0 − √ 6 0 0 0 0 0 0 0 0 −1 0 − √ 15 √ 6 0 − √ 10 0 0 0 0 0 0 0 0 − √ 15 0 1 � ��������� (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3) Ry(β) = Rx(π 2 ) × Rz(β) × Rx(π 2 )T (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='4) Rx(α) = Ry(π 2 )T × Rz(α) × Ry(π 2 ) See [2, 3, 4, 8] for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' OCTUPOLES FOR OCTAHEDRAL SYMMETRY 7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='2 The manifold of frame rotations has the topology of the quotient space SO3 / S4, where S4 denotes the group of order 24 of all octahedral symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Semisym- metric octupoles are invariant only under even S4 transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Hence the corresponding topology is SO3 / A4, where A4 denotes the corresponding sub- group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' x y z Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Fundamental zones for S4 and A4 symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' It’s possible to describe these topologies using the Rodriguez representation of 3D rotations (see [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The fundamental zone for S4 symmetries in this representation has the form of a truncated cube with 6 regular octagonal faces and 8 regular triangular faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' For A4 symmetries the fundamental zone is the regular octahedron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The inclusion A4 ⊂ S4 implicates the reverse one for the fundamental zones (see figure 4, note that the triangular faces are pairwise coplanar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The topologies we consider are obtained by gluing the opposite octagons and the corresponding opposite triangles with 45◦ and 60◦ turn respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The colors in the picture indicate how the vertices map to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Note that all octahedron’s vertices are coincident and correspond to the octupole opposite to the reference one (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' −Y3,−2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' 8 YU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' NESTERENKO 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='3 The pictures below show usual singular structures (see [7, 11]) of frame fields optimized using energy function (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Frame fields singularities of valence 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' References [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Becker and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Panchanadeeswaran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Crystal rotations represented as Rodrigues vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Texture, Stress, and Microstructure, 10:167–194, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Blanco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Florez, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Bermejo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Evaluation of the rotation matrices in the basis of real spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Journal of Molecular Structure: THEOCHEM, 419(1-3):19– 27, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ivanic, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Gordon, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ruedenberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The Journal of Chemical Physics, 111(19):8825–8831, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Collado, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Rico, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Lopez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Paniagua, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ramirez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Rotation of real spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Computer Physics Communications, 52(3):323–331, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' O’Shea D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Cox, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Little.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ideals, Varieties, and Algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Undergraduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Springer, forth edition, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' G¨orller-Walrand and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Binnemans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Rationalization of crystal-field parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Handbook on the Physics and Chemistry of Rare Earths, 23:121–283, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Tong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Wei, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Bao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Boundary aligned smooth 3D cross-frame field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' ACM Transactions on Graphics, 30(6):143:1–143:8, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ivanic and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ruedenberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Rotation matrices for real spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Direct determination by recursion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The Journal of Chemical Physics, 100(15):6342–6347, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Landau and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Lifshitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' The Classical Theory of Fields, pages 96–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Course of Theo- retical Physics, Volume 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Pergamon Press, 3rd revised english edition, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [10] Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Nesterenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' On spherical harmonics possessing octahedral symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' ArXiv, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='12614, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' [11] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Ray and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Sokolov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' On smooth 3D frame field design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' ArXiv, 1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='03351, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content=' Siemens Digital Industries Software Email address: Yuri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='Nesterenko@siemens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} +page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ttFKT4oBgHgl3EQf2y5g/content/2301.11925v1.pdf'} diff --git a/xtE5T4oBgHgl3EQfNA53/content/2301.05486v1.pdf b/xtE5T4oBgHgl3EQfNA53/content/2301.05486v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0d385878f08afee22b90f969930812b18f744719 --- /dev/null +++ b/xtE5T4oBgHgl3EQfNA53/content/2301.05486v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2b17b52a3dfc0c5f66543d860f2b27a1dcb1d53a4d235337a8f544209dfa1c5 +size 1922662 diff --git a/zdE2T4oBgHgl3EQfMgbP/content/2301.03726v1.pdf b/zdE2T4oBgHgl3EQfMgbP/content/2301.03726v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8f90475855c4c6deab81822d930ac4b68ababbbe --- /dev/null +++ b/zdE2T4oBgHgl3EQfMgbP/content/2301.03726v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b913aea73e2b49acd83d8ed27dc9b8f6929200c80fd8645a22097713d55ae1d1 +size 1431643 diff --git a/zdE2T4oBgHgl3EQfMgbP/vector_store/index.faiss b/zdE2T4oBgHgl3EQfMgbP/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e605cd7d1f89cbf7ec8593d8afbe45d333b4be2c --- /dev/null +++ b/zdE2T4oBgHgl3EQfMgbP/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ff8a58b7f0d6333a7534ad6eca229c6a457e4372db537f706f38347073a6cbee +size 8519725 diff --git a/zdE2T4oBgHgl3EQfMgbP/vector_store/index.pkl b/zdE2T4oBgHgl3EQfMgbP/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..823cde9b6ad530f6c6b67b9e5c5b41344b682cb2 --- /dev/null +++ b/zdE2T4oBgHgl3EQfMgbP/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a7bc3a9cbacadd821ab52aded6aa9be3b576f5c3d6e8b6599ac7a791d1616b40 +size 248887