diff --git "a/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt" "b/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/59E1T4oBgHgl3EQfBQIH/content/tmp_files/load_file.txt" @@ -0,0 +1,2107 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf,len=2106 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content='02848v1 [math-ph] 7 Jan 2023 BOUNDEDNESS OF THE FIFTH OFF-DIAGONAL DERIVATIVE FOR THE ONE-PARTICLE COULOMBIC DENSITY MATRIX PETER HEARNSHAW Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' Boundedness is demonstrated for the fifth derivative of the one-particle reduced density matrix for non-relativistic Coulombic wavefunctions in the vicinity of the diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' Introduction and results We consider the non-relativistic quantum systems of N ≥ 2 electrons among N0 nuclei which represents the system of an atom or molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' For simplicity we restrict ourselves to the case of an atom (N0 = 1), although all results readily generalise to the molecular case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' The electrons have coordinates x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' , xN), xk ∈ R3, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' , N, and the nucleus has charge Z > 0 and its position fixed at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' The corresponding Schr¨odinger operator is (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content='1) H = −∆ + V where ∆ = �N k=1 ∆xk is the Laplacian in R3N, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content=' ∆xk refers to the Laplacian applied to the variable xk, and V is the Coulomb potential given by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/59E1T4oBgHgl3EQfBQIH/content/2301.02848v1.pdf'} +page_content='2) V (x) = − N � k=1 Z |xk| + � 1≤j